KR101949484B1 - Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials - Google Patents

Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials Download PDF

Info

Publication number
KR101949484B1
KR101949484B1 KR1020170037100A KR20170037100A KR101949484B1 KR 101949484 B1 KR101949484 B1 KR 101949484B1 KR 1020170037100 A KR1020170037100 A KR 1020170037100A KR 20170037100 A KR20170037100 A KR 20170037100A KR 101949484 B1 KR101949484 B1 KR 101949484B1
Authority
KR
South Korea
Prior art keywords
transition metal
cnfs
carbon nanofibers
coated
carbon
Prior art date
Application number
KR1020170037100A
Other languages
Korean (ko)
Other versions
KR20180108957A (en
Inventor
최진영
이창섭
박희구
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Priority to KR1020170037100A priority Critical patent/KR101949484B1/en
Priority to PCT/KR2017/003286 priority patent/WO2018174327A1/en
Publication of KR20180108957A publication Critical patent/KR20180108957A/en
Application granted granted Critical
Publication of KR101949484B1 publication Critical patent/KR101949484B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은, 화학기상증착법으로 탄소나노섬유를 합성하는 단계와, 상기 합성된 탄소나노섬유의 표면에 딥코팅 방식으로 전이금속을 코팅하는 단계를 포함하는 탄소나노섬유 복합체의 제조방법을 제공할 뿐만 아니라, 상기 전이금속이 코팅된 탄소나노섬유 복합체를 음극재로 사용하여 3전극 전지를 제조하는 단계를 포함하는 이차전지 제조방법을 제공한다.The present invention also provides a method for producing a carbon nanofiber composite comprising the steps of: synthesizing carbon nanofibers by chemical vapor deposition; and coating a surface of the synthesized carbon nanofibers with a transition metal by a dip coating method The present invention also provides a method for manufacturing a secondary battery, comprising the steps of: preparing a three-electrode battery using the transition metal-coated carbon nanofiber composite material as an anode material.

Description

전이금속이 코팅된 탄소나노섬유 복합체의 제조방법 및 이를 이용한 이차전지의 제조방법{Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a carbon nanofiber composite material and a method of manufacturing the same,

본 발명은 탄소나노섬유 복합체의 제조방법에 관한 것으로, 보다 상세하게는 화학기상증착방법으로 탄소나노섬유를 균일하게 성장시키고, 합성된 탄소나노섬유에 전이 금속인 Fe, Co, Ni, Cu를 코팅한 탄소나노섬유 복합체 및 이를 음극 재료로서 이용하여 높은 충전/방전 용량과 효율을 갖게 하는 이차 전지 제조방법에 관한 것이다.More particularly, the present invention relates to a method for producing carbon nanofibers by uniformly growing carbon nanofibers by a chemical vapor deposition method and coating the synthesized carbon nanofibers with transition metals such as Fe, Co, Ni and Cu A carbon nanofiber composite material, and a method of manufacturing a secondary battery using the carbon nanofiber composite material as a negative electrode material, thereby achieving high charge / discharge capacity and efficiency.

탄소는 sp, sp2, sp3의 혼성결합을 할 수 있는 원소로서, 분자 간의 결합 방식에 따라 다양한 동소체(흑연, 다이아몬드, 탄소나노섬유, 탄소나노튜브, 그래핀 등)를 가진다. 탄소의 여러 동소체 중에서 탄소나노섬유는 탄소 함량이 90% 이상인 1㎛ 미만의 굵기를 가지는 섬유상의 탄소재료로서 herringbone, platelet, spiral등의 다양한 형태를 가진다. Carbon is an element capable of hybridization of sp, sp 2 and sp 3 , and has various isomers (graphite, diamond, carbon nanofibers, carbon nanotubes, graphene, etc.) depending on the bonding method between molecules. Among carbon isotopes, carbon nanofibers are fibrous carbon materials having a carbon content of 90% or more and a thickness of less than 1 μm, and have various forms such as herringbone, platelet, and spiral.

한편, 이차전지는 여러 번의 충전과 방전이 가능하여 재사용할 수 있는 전지로서, 리튬 이차전지가 나오기 전까지 주로 사용된 전지에는 납축전지와 Ni-Cd 전지가 있다. 이러한 이차전지는 메모리 효과와 환경오염문제라는 단점을 지니고 있다. 하지만, 리튬 이차전지는 고에너지 밀도와 높은 용량을 특성으로 유망한 전력원으로 각광받고 있다. 특히, 단위 부피당 에너지 밀도가 높으며 출력 밀도가 우수하여 높은 성능을 보이므로 긴 사이클 수명의 특성과 자기 방전 특성이 없어 많은 수요를 차지하고 있다. 또한, 전자산업의 급속한 발전으로 전자기기의 경량화, 소형화, 다양화 등이 요구되며, 고용량, 고성능, 고밀도의 특성을 가진 전지 개발에 대한 관심이 증가하는 추세이다.On the other hand, a secondary battery is a rechargeable battery which can be charged and discharged many times. Until a lithium secondary battery comes out, a lead-acid battery and a Ni-Cd battery are mainly used. Such a secondary battery has disadvantages of memory effect and environmental pollution problem. However, lithium secondary batteries are attracting attention as a promising power source because of their high energy density and high capacity. Particularly, since the energy density per unit volume is high and the output density is high, it shows high performance, and therefore, it has a long cycle life characteristic and does not have a self-discharge characteristic. In addition, with the rapid development of the electronic industry, light weight, miniaturization and diversification of electronic devices are required, and there is an increasing tendency to develop batteries having high capacity, high performance and high density.

그러나, 리튬 금속을 음극으로 사용하는 리튬 이차전지는 충전/방전을 반복 할 때 수지상(dendrite)의 결정이 발생하기 쉽고, 이로 인하여 단락의 위험성이 있기 때문에 리튬 이차전지의 음극재는 주로 흑연계 음극 활물질이 사용되고 있다.However, in a lithium secondary battery using lithium metal as a negative electrode, crystals of dendrite are liable to occur when charging / discharging is repeated, and as a result, there is a risk of short-circuiting. Therefore, the negative electrode material of a lithium secondary battery is mainly composed of a graphite- Has been used.

최근 리튬 이차전지 음극재로 연구되는 흑연계 음극 활물질은 그래핀(graphen), 탄소나노튜브(carbon nanotube), 탄소나노섬유(carbon nanofiber), 할로우 또는 포러스 카본(hollow or porous cabon) 등이 있다. 그 중에서 전술한 바와 같이, 탄소나노섬유는 화학적 안정성, 전기전도도 및 높은 에너지 효율을 가지며 일반 탄소 재료에 비해 넓은 비표면적을 가지고 있어 연료전지 전극, 흡착재, 에너지 저장 등에 적용이 가능하며, 합성 방법과 조건의 조절로 직경과 결합의 유무, 층의 수와 같은 물리화학적 성질을 가지기 때문에 구조적 한계가 있는 흑연계 음극 활물질을 대체할 수 있는 유망한 소재가 될 것으로 판단된다.Recently, graphite anode active materials, which are studied as lithium secondary battery anode materials, include graphen, carbon nanotube, carbon nanofiber, and hollow or porous cabon. As described above, carbon nanofibers have chemical stability, electrical conductivity and high energy efficiency. They have a larger specific surface area than general carbon materials, and thus can be applied to fuel cell electrodes, adsorbents, and energy storage. It is expected to be a promising material to replace the graphite anode active material with structural limitations because it has physicochemical properties such as diameter, bonding, and number of layers.

이러한 탄소계 음극 재료의 문제점은 큰 비가역 용량으로 인한 낮은 충전/방전 용량과 효율을 가지는 문제점이 있다.A problem with such a carbonaceous anode material is that it has a low charging / discharging capacity and efficiency due to a large irreversible capacity.

대한민국 등록특허 제10-0497775호(등록일자: 2004년02월27일)Korean Registered Patent No. 10-0497775 (Registered Date: February 27, 2004)

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 화학기상증착방법으로 탄소나노섬유를 균일하게 성장시키고, 합성된 탄소나노섬유에 전이 금속인 Fe, Co, Ni, Cu를 코팅하여 탄소나노섬유 복합체의 제조방법을 제공하고, 이를 리튬 이차전지의 음극 재료로서 이용하여 높은 충전/방전 용량과 효율을 갖는 이차 전지 제조방법을 제공하는 것을 목적으로 한다.Disclosure of the Invention The present invention has been conceived to solve the problems as described above, and it is an object of the present invention to provide a carbon nanofiber which uniformly grows carbon nanofibers by a chemical vapor deposition method, and coating the synthesized carbon nanofibers with transition metals Fe, Co, Ni, It is another object of the present invention to provide a method for manufacturing a secondary battery having a high charging / discharging capacity and efficiency by using the same as a cathode material of a lithium secondary battery.

이를 위해, 본 발명은, (a) 화학기상증착법으로 탄소나노섬유를 합성하는 단계; 및 (b) 상기 합성된 탄소나노섬유의 표면에 딥코팅 방식으로 전이금속을 코팅하는 단계를 포함하는 탄소나노섬유 복합체의 제조방법을 제공한다.To this end, the present invention provides a method for fabricating a carbon nanotube, comprising: (a) synthesizing carbon nanofibers by chemical vapor deposition; And (b) coating a surface of the synthesized carbon nanofibers with a transition metal by a dip coating method.

게다가, (c) 상기 전이금속이 코팅된 탄소나노섬유 복합체를 음극재로 사용하여 3전극 전지를 제조하는 단계를 포함하는 이차전지 제조방법을 제공한다.Further, there is provided a method of manufacturing a secondary battery, comprising the steps of: (c) fabricating a three-electrode battery using the transition metal-coated carbon nanofiber composite as an anode material.

바람직하게, 상기 전이금속은 Fe, Co, Ni, Cu 중에서 어느 하나가 선택될 수 있고, 상기 전이금속의 수용액은 0.1M 이하의 범위를 가질 수 있다. Preferably, the transition metal may be selected from among Fe, Co, Ni, and Cu, and the aqueous solution of the transition metal may have a range of 0.1M or less.

또한, 상기 탄소나노섬유가 성장된 니켈 폼을 상기 전이금속의 수용액에 딥코팅하고 5분 동안 대기 건조 후, 80℃에서 12시간 이상 건조시키는 것을 특징으로 한다.Further, the nickel foam on which the carbon nanofibers are grown is dip-coated on the transition metal solution, air-dried for 5 minutes, and then dried at 80 ° C for 12 hours or more.

또한, 상기 작업전극(working electrode)을 상기 전이금속이 코팅된 탄소나노섬유 복합체로 제조하고, 상기 상대전극 및 기준전극은 Li 금속을 재질로 하는 것을 특징으로 한다.Also, the working electrode is made of a carbon nanofiber composite material coated with the transition metal, and the counter electrode and the reference electrode are made of Li metal.

또한, 상기 전해질은, 에틸렌 카보네이트(EC) 및 프로필렌 카보네이트(PC)가 1:1의 무게비율로 혼합된 용액에 1M의 LiClO4를 용해하여 형성되는 것을 특징으로 한다.The electrolyte is characterized in that 1 M of LiClO 4 is dissolved in a solution of ethylene carbonate (EC) and propylene carbonate (PC) in a weight ratio of 1: 1.

이와 같이, 본 발명은 리튬 이차전지의 음극 재료로서 화학적 안정성과 열전도성이 우수한 탄소나노섬유를 합성한 후, 전이 금속인 Fe, Co, Ni, Cu를 코팅하여 이차전지를 제조하게 한다. 이때, 탄소나노섬유는 비교적 저온에서 성장시킬 수 있어 대량 생산에 적합하고, 이러한 탄소나노섬유에 균일하게 코팅된 전이 금속층은 바람직하지 않은 전해액과 전극의 반응/분해를 완화시키며, 탄소나노섬유 표면의 전자 전도성을 향상시킬 수 있다.As described above, the present invention is to synthesize carbon nanofibers excellent in chemical stability and thermal conductivity as a negative electrode material of a lithium secondary battery, and then coating the transition metal Fe, Co, Ni and Cu to prepare a secondary battery. At this time, the carbon nanofibers can be grown at a relatively low temperature, which is suitable for mass production. The transition metal layer uniformly coated on the carbon nanofibers alleviates the reaction / decomposition of the undesirable electrolyte and the electrode, The electronic conductivity can be improved.

그 결과, 이차전지는 전해질의 부반응을 억제하고 유지 효율을 향상시킬 수 있으므로, 용량과 안정성이 개선되고 전극의 수명을 연장시킬 수 있는 효과가 있다.As a result, the secondary battery can suppress the side reaction of the electrolyte and improve the holding efficiency, so that the capacity and stability are improved and the life of the electrode is prolonged.

도 1은 본 발명의 바람직한 실시예에 따른 전이금속이 코팅된 탄소나노섬유 복합체를 음극 전극으로 사용한 3전극 이차전지의 제조방법의 흐름을 나타낸 도면이고,
도 2는 본 발명의 바람직한 실시예에 적용되는 화학기상증착(CVD) 장치의 구성을 나타낸 도면이고,
도 3은 본 발명의 바람직한 실시예에 따른 전이금속 코팅시의 딥코팅 과정을 나타낸 도며이고,
도 4는 본 발명의 바람직한 실시예에 따른 전이금속이 코팅된 탄소나노섬유 복합체의 SEM 사진으로서, 각각 (a) CNFs-Fe, (b)CNFs-Co, (c)CNFs-Ni, (d)CNFS-Cu의 SEM 사진으로 나타낸 것이고,
도 5는 본 발명의 바람직한 실시예에 따른 전이금속이 코팅된 탄소나노섬유 복합체의 결정성을 조사하기 위하여 Raman Spectra 그래프로서, 각각 (a) CNFs-Fe, (b)CNFs-Co, (c)CNFs-Ni, (d)CNFS-Cu의 Raman Spectra 결과를 그래프로 나타낸 것이고,
도 6은 본 발명의 바람직한 실시예에 따른 전이금속이 코팅된 탄소나노섬유 복합체에서 전이금속의 결합 에너지를 조사하기 위하여 XPS 분석을 수행한 결과를 나타낸 XPS spectra로서, 각각 (a) CNFs-Fe, (b)CNFs-Co, (c)CNFs-Ni, (d)CNFS-Cu의 XPS Spectra 결과를 그래프로 나타낸 것이고,
도 7은 본 발명의 바람직한 실시예에 따른 전이금속이 코팅된 탄소나노섬유 복합체에서 전해질로 1M LiClO4를 사용하여 CV를 수행한 결과이고, 각각 (a) CNFs, (b)CNFs-Fe, (c)CNFs-Co, (d)CNFs-Ni, (e)CNFS-Cu의 CV 수행결과를 그래프로 나타낸 것이고,
도 8은 본 발명의 바람직한 실시예에 따른 전이금속이 코팅된 탄소나노섬유 복합체를 리튬 이차전지의 음극재로 사용하여 제작한 전지의 30th 사이클 동안의 용량을 나타낸 결과이고, 각각 (a)CNFs, (b)CNFs-Fe, (c)CNFs-Co, (d)CNFs-Ni, (e)CNFS-Cu의 Cycle performance 수행결과를 그래프로 나타낸 것이다.
FIG. 1 is a view showing a flow of a method for manufacturing a three-electrode secondary battery using a carbon nanofiber composite coated with a transition metal according to a preferred embodiment of the present invention as a cathode electrode,
FIG. 2 is a view showing a configuration of a chemical vapor deposition (CVD) apparatus applied to a preferred embodiment of the present invention,
3 is a view illustrating a dip coating process during transition metal coating according to a preferred embodiment of the present invention,
(A) CNFs-Fe, (b) CNFs-Co, (c) CNFs-Ni, and (d) a transition metal- SEM photograph of CNFS-Cu,
FIG. 5 is a Raman spectrum graph showing CNFs-Fe, (b) CNFs-Co, (c), and (c) graphs showing the crystallinity of the transition metal coated carbon nanofiber composite according to a preferred embodiment of the present invention. CNFs-Ni, (d) Raman Spectra of CNFS-Cu,
FIG. 6 is an XPS spectra showing XPS analysis results for investigating binding energy of transition metals in a transition metal coated carbon nanofiber composite according to a preferred embodiment of the present invention, wherein (a) CNFs-Fe, (b) CNFs-Co, (c) CNFs-Ni, and (d) CNFS-Cu,
7 is a graph showing the results of CV performed using 1 M LiClO 4 as an electrolyte in a transition metal coated carbon nanofiber composite according to a preferred embodiment of the present invention. FIG. 7 shows the results of (a) CNFs, (b) CNFs- (c) CNFs-Co, (d) CNFs-Ni, and (e) CNFS-
FIG. 8 is a graph showing a capacity of a battery fabricated using a carbon nanofiber composite material coated with a transition metal according to a preferred embodiment of the present invention as a negative electrode material for a lithium secondary battery, (b) CNFs-Fe, (c) CNFs-Co, (d) CNFs-Ni and (e) CNFS-Cu.

본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 통해 설명될 것이다. 그러나 본 발명은 여기에서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 본 실시예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여 제공되는 것이다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and how to accomplish it, will be described with reference to the embodiments described in detail below with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. The embodiments are provided so that those skilled in the art can easily carry out the technical idea of the present invention to those skilled in the art.

도면들에 있어서, 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니며 명확성을 기하기 위하여 과장된 것이다. 또한 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소를 나타낸다.In the drawings, embodiments of the present invention are not limited to the specific forms shown and are exaggerated for clarity. Also, the same reference numerals denote the same components throughout the specification.

본 명세서에서 "및/또는"이란 표현은 전후에 나열된 구성요소들 중 적어도 하나를 포함하는 의미로 사용된다. 또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 또한, 명세서에서 사용되는 "포함한다" 또는 "포함하는"으로 언급된 구성요소, 단계, 동작 및 소자는 하나 이상의 다른 구성요소, 단계, 동작, 소자 및 장치의 존재 또는 추가를 의미한다.The expression "and / or" is used herein to mean including at least one of the elements listed before and after. Also, singular forms include plural forms unless the context clearly dictates otherwise. Also, components, steps, operations and elements referred to in the specification as " comprises "or" comprising " refer to the presence or addition of one or more other components, steps, operations, elements, and / or devices.

이하에서 본 발명의 바람직한 실시예를 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

도 1은 본 발명의 바람직한 실시예에 따른 전이금속이 코팅된 탄소나노섬유 복합체 제조과정 및 이를 음극 전극으로 사용한 3전극 이차전지의 제조과정을 나타낸 플로우차트이다.1 is a flow chart illustrating a process for fabricating a carbon nanofiber composite material coated with a transition metal according to a preferred embodiment of the present invention and a process for manufacturing a 3-electrode secondary battery using the same as a cathode electrode.

도 1에 나타낸 바와 같이, 먼저, 화학기상증착법을 이용하여 탄소계의 음극재로 사용할 탄소나노섬유를 합성한다(S100). 여기서, 탄소나노섬유의 합성에는 화학기상증착법(CVD)를 이용하기 때문에 대량 생산에 용이하므로 생산비를 절감할 수 있다.As shown in FIG. 1, first, a carbon nanofiber to be used as a carbonaceous anode material is synthesized by chemical vapor deposition (S100). Here, since synthesis of carbon nanofibers is performed by chemical vapor deposition (CVD), it is easy to mass-produce, and thus the production cost can be reduced.

이어, 상기 합성된 탄소나노섬유에 균일하게 전이금속을 코팅한다(S200). 여기서, 전이 금속으로는 Fe, Co, Ni, Cu 중의 어느 하나가 이용될 수 있으며, 주로 저가의 전이금속을 이용하여 생산비를 절감하는 것이 바람직하다. 또한, 전이 금속 코팅시 딥코팅(dip-coating) 방식을 이용하는데, 피코팅재인 탄소나노섬유를 상기 전이금속 수용액에 담그어 상기 탄소나노섬유의 표면에 전구체를 형성한 후 소정의 온도로 소성하여 전이금속 코팅층을 형성하게 된다. 이와 같이, 딥코팅은 간편하여 공정을 단축시켜 생산비를 절감시킬 수 있고, 균일한 코팅층의 형성에 유리하므로 균일한 코팅층 형성으로 안정성을 향상시킬 수 있게 한다.Next, the synthesized carbon nanofibers are uniformly coated with a transition metal (S200). Here, any one of Fe, Co, Ni, and Cu may be used as the transition metal, and it is preferable to reduce the production cost mainly by using a low-cost transition metal. Also, a dip coating method is used for transition metal coating. The carbon nanofibers, which are a coating material, are immersed in the transition metal aqueous solution to form precursors on the surfaces of the carbon nanofibers, followed by calcination at a predetermined temperature, Thereby forming a metal coating layer. As such, the dip coating can be simplified to shorten the production cost to reduce the production cost, and it is advantageous to form a uniform coating layer, thereby making it possible to improve the stability by forming a uniform coating layer.

이어, 전이금속이 코팅된 탄소나노섬유 복합체를 음극재로 사용하여 3전극 전지를 제조한다(S300). 이처럼, 탄소나노섬유에 균일하게 코팅된 전이금속층은 상기 탄소나노섬유의 표면의 전자전도성을 향상시킬 수 있게 하므로, 리튬 이차전지의 용량 향상에 기여하게 된다.Next, a three-electrode battery is manufactured using a carbon nanofiber composite coated with a transition metal as an anode material (S300). As described above, the transition metal layer uniformly coated on the carbon nanofibers improves the electron conductivity of the surface of the carbon nanofibers, thereby contributing to the improvement of the capacity of the lithium secondary battery.

이하에서 도 2 내지 도 8을 참조하여 보다 자세히 살펴보면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to FIGS. 2 to 8. FIG.

탄소나노섬유의Of carbon nanofiber 합성(S100) Synthesis (S100)

도 2는 본 발명의 바람직한 실시예에 적용되는 화학기상증착법(CVD)을 위한 장치의 구성을 나타낸 도면이다.2 is a diagram showing the configuration of an apparatus for chemical vapor deposition (CVD) applied to a preferred embodiment of the present invention.

도 2에 나타낸 바와 같이, 탄소계 음극재로 사용할 탄소나노섬유는 수평 석영관 반응장치를 이용하여 화학기상증착법으로 성장시켰다. 이때, 상기 수평 석영관은 균일한 온도분포를 얻기 위해 3-zone으로 구성하였고, 전자식 MFC(Mass Flow Controller)로 반응 가스들의 유량을 조절하였으며, 탄소나노섬유를 성장시키기 위해 탄소원으로 에틸렌(Ethylene)을 사용하고, 기상반응 촉진가스로는 수소를, 캐리어 가스로 질소를 사용하였다.As shown in FIG. 2, the carbon nanofibers to be used as the carbonaceous anode material were grown by a chemical vapor deposition method using a horizontal quartz tube reactor. At this time, the horizontal quartz tube was composed of 3-zone to obtain a uniform temperature distribution, and the flow rate of reaction gases was controlled by an electronic mass flow controller (MFC). Ethylene was used as a carbon source for growing carbon nanofibers. , Hydrogen was used as a gas phase reaction promoting gas, and nitrogen was used as a carrier gas.

즉, 표 1을 참조하면, 탄소나노섬유 합성에 사용된 탄소 소스는 20% 에틸렌가스(C2H4/N2, Korea standard gas), 기상반응 촉진 가스로는 20% 수소가스(H2/N2, Korea standard gas), 그리고 캐리어 가스로는 고순도 질소 가스(N2,, Korea standard gas)를 사용하였다. That is, referring to Table 1, 20% ethylene gas (C 2 H 4 / N 2 , Korea standard gas) was used as a carbon source for carbon nanofiber synthesis, 20% hydrogen gas (H 2 / N 2 , Korea standard gas) and high purity nitrogen gas (N 2 , Korea standard gas) as the carrier gas.

Figure 112017029028171-pat00001
Figure 112017029028171-pat00001

탄소나노섬유의 합성 방법은, 먼저 석영관 보트에 탄소나노섬유를 성장시키기 위해 집전체로 사용된 니켈폼(Ni foam)을 반응로에 넣고, 이후 반응의 안정화를 위해 질소 분위기에서 10℃/min로 600℃까지 합성온도를 올려주었다. 이후, 30분간 수소 가스를 흘려주며 온도를 600℃로 유지한 다음, 10분간 에틸렌 가스를 수소 가스와 함께 흘려주어 탄소나노섬유를 성장시켰다. 반응이 끝난 후 질소 가스를 흘려주며 상온까지 냉각시켰다. 이처럼, 탄소나노섬유의 합성에는 화학기상증착법(CVD)를 이용하기 때문에 대량 생산에 용이하므로 생산비를 절감할 수 있다.In order to synthesize the carbon nanofibers, a nickel foam used as a current collector for growing carbon nanofibers in a quartz tube boat was placed in a reactor, and then, in order to stabilize the reaction, To 600 < 0 > C. Thereafter, hydrogen gas was supplied for 30 minutes, the temperature was maintained at 600 ° C, and ethylene gas was flowed with hydrogen gas for 10 minutes to grow carbon nanofibers. After the reaction was completed, nitrogen gas was poured into the flask and cooled to room temperature. As described above, since the synthesis of carbon nanofibers is performed by chemical vapor deposition (CVD), it is easy to mass-produce, and the production cost can be reduced.

탄소나노섬유상에On carbon nanofibers 전이금속 코팅층 합성(S200) Transition metal coating layer synthesis (S200)

탄소나노섬유는 리튬 이온의 삽입·탈리 과정에서 결정구조의 변화가 작아 리튬 이차전지가 우수한 수명을 나타낼 수 있는 기반을 제공하지만 작은 이론용량을 가진다. 이러한 단점을 해결하기 위해 본 발명에서는 탄소나노섬유에 전이금속을 코팅하여 합성하였다.Carbon nanofibers provide a basis for lithium secondary batteries to exhibit excellent lifetime due to small change in crystal structure during insertion and removal of lithium ions, but they have a small theoretical capacity. In order to solve these drawbacks, the present invention has synthesized carbon nanofiber by coating a transition metal.

도 3에 도시된 바와 같이, 탄소나노섬유에 코팅하기 위해 사용된 전이 금속은 Fe, Co, Ni 및 Cu 중 어느 하나의 수용액 상태에서 사용하였다. 즉, 화학기상증착법으로 합성한 탄소나노섬유를 0.1 M의 Fe, Co, Ni 및 Cu 중 어느 하나의 전이 금속 용액에서 딥코팅(dip-coating)하는 방법을 사용하였다. 가령, 탄소나노섬유가 성장된 니켈 폼(Ni foam)을 전이 금속 용액에 딥코팅하고, 5분 동안 대기 건조 후, 80℃에서 12시간 이상 건조시켰다. 이때, 합성된 탄소나노섬유 복합체(CNFs)를 모두 같은 값의 몰농도를 갖는 전이금속 용액에 딥코팅하여 전이금속 용액의 몰농도를 조절하거나(가령, 0.1 M의 전이금속 용액에 사용하고), 딥코팅 시의 탄소나노섬유를 꺼내는 인출속도(withdrawl speed)를 조절하여 탄소나노섬유의 표면에 균일한 전이금속의 코팅층을 형성하도록 한다.As shown in FIG. 3, the transition metal used for coating the carbon nanofibers was used in an aqueous solution of any one of Fe, Co, Ni and Cu. That is, a method of dip-coating carbon nanofibers synthesized by chemical vapor deposition in 0.1 M of a transition metal solution of any one of Fe, Co, Ni and Cu was used. For example, carbon nanofiber-grown Ni foam was dip-coated on a transition metal solution, air-dried for 5 minutes, and then dried at 80 ° C for 12 hours or more. At this time, the carbon nanofiber composites (CNFs) synthesized may be dip-coated on a transition metal solution having a molar concentration of the same value to control the molar concentration of the transition metal solution (for example, to use a 0.1 M transition metal solution) The withdrawing speed at which the carbon nanofibers are taken out during dip coating is controlled to form a uniform transition metal coating layer on the surface of the carbon nanofibers.

이와 같이, 딥코팅은 간편하여 공정을 단축시켜 생산비를 절감시킬 수 있고, 균일한 코팅층을 형성하여 안정성을 향상시킬 수 있게 한다.As described above, the dip coating is simple and the process can be shortened to reduce the production cost, and the uniform coating layer can be formed to improve the stability.

이차 전지의 제조 및 전기화학적 특성 조사 Preparation and electrochemical characterization of secondary battery

전술한 바와 같이, 본 발명에서는 화학기상증착법으로 탄소나노섬유를 성장시키고, 4가지 전이금속으로 Fe, Co, Ni, Cu를 수용액으로 제조하여 성장된 탄소나노섬유에 딥코팅하는 방법으로 탄소나노섬유 복합체를 합성하였다.As described above, in the present invention, carbon nanofibers are grown by a chemical vapor deposition method, and Fe, Co, Ni, and Cu are prepared as four transition metals as an aqueous solution and dip coated on the grown carbon nanofibers. Complex was synthesized.

또한, 전이금속이 코팅된 탄소나노섬유 복합체를 리튬 이차전지의 음극재로 사용하여 3전극 전지를 제조하였다. 즉, 80℃ 건조기에서 12시간 이상 건조시켜 3전극 전지의 음극재로 사용하였다.In addition, a three - electrode battery was fabricated by using a carbon nanofiber composite material coated with a transition metal as an anode material of a lithium secondary battery. That is, it was dried in a dryer at 80 ° C. for 12 hours or more to be used as an anode material of a three-electrode battery.

3전극 전지는 Ar이 채워진 글로브 박스(glove box)에서 제조하였으며, 3전극 전지는 half cell로 제작하였으며, 작업전극(working electrode)으로는 전이금속이 코팅된 탄소나노섬유 복합체를, 상대(counter) 및 기준 전극(reference electrode)으로는 리튬 금속을, 분리막으로는 glass fiber separator를 사용하였다. 전해질로는 EC(ethylene carbonate): PC (propylene carbonate)가 1:1 무게비율로 혼합된 용액에 1M LiClO4가 용해된 전해질을 사용하였다. The three-electrode cell was fabricated in a glove box filled with Ar, the three-electrode cell was fabricated in a half cell, the working electrode was a counter electrode coated with a carbon nanofiber composite, Lithium metal was used as a reference electrode, and a glass fiber separator was used as a separator. Electrolyte was prepared by dissolving 1M LiClO 4 in a solution of ethylene carbonate (EC) and propylene carbonate (PC) in a weight ratio of 1: 1.

분석기기Analytical instrument

전술한 바와 같이, 본 발명에서는 화학기상증착법으로 탄소나노섬유를 성장시키고, 4가지 전이금속으로 Fe, Co, Ni, Cu를 수용액으로 제조하여 성장된 탄소나노섬유에 딥코팅하는 방법으로 탄소나노섬유 복합체를 합성하고, 합성된 탄소나노섬유 복합체의 물리화학적 성질을 다수개의 분석장비를 이용하여 분석하였고, 이 방법으로 제조된 복합체를 작업전극으로 하는 3극 전극의 이차전지를 제조하여, 전기화학적 특성을 조사하였는데, 이하에서 분석 장비 및 전기화학적 특성에 대해 설명하면 다음과 같다.As described above, in the present invention, carbon nanofibers are grown by a chemical vapor deposition method, and Fe, Co, Ni, and Cu are prepared as four transition metals as an aqueous solution and dip coated on the grown carbon nanofibers. The physicochemical properties of the synthesized carbon nanofiber composites were analyzed by using a number of analysis equipments and a secondary electrode of a triode electrode was fabricated using the composite produced by this method as a working electrode to obtain electrochemical characteristics The analytical equipment and electrochemical characteristics will be described as follows.

먼저, 전이금속이 코팅된 탄소나노섬유 복합체의 성장 유무와 섬유의 형태 및 크기를 Scanning electron microscopy(SEM, Hitachi, S-4800)으로 관찰하였다.First, the growth and morphology and size of the carbon nanofiber composite with transition metal coating were observed by scanning electron microscopy (SEM, Hitachi, S-4800).

또한, 결정구조 및 미세분석은 Raman spectroscopy(Raman, Horiba Jobin-Yvon, LabRam HR) 및 photoelectron spectroscopy(XRD, Thermo Fisher Scientific, Multilab-2000)으로 수행하였다. 이때, Raman의 경우 514 nm Ar+ laser를 사용하였으며, XRD는 10~80°의 2θ 범위에서 Cu Kα선을 사용하여 0.016의 scan step로 측정하였다. 합성된 탄소나노섬유에서 탄소와 Ni 및 Mo의 결합을 조사하기 위하여 Al Kα선을 이용하여 X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, Multilab-2000)를 측정하였다. The crystal structure and microanalysis were performed by Raman spectroscopy (Raman, Horiba Jobin-Yvon, LabRam HR) and photoelectron spectroscopy (XRD, Thermo Fisher Scientific, Multilab-2000). At this time, 514 nm Ar + laser was used for Raman, and XRD was measured at 0.016 scan step using Cu Kα line in 2θ range of 10 ~ 80 °. X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, Multilab-2000) was performed using Al Kα line to investigate the binding of carbon to Ni and Mo in synthesized carbon nanofibers.

전이금속이 코팅된 탄소나노섬유 복합체를 음극재로 사용하여 조립한 3전극 전지의 가역성을 알아보기 위하여 전기화학적 특성(Electrochemical characteristics)(solartron, SI1287)을 이용하여 순환전압전류법(Cyclic Voltammetry)으로 0.01 ~ 2V의 전압에서 100mV/s의 주사속도로 전류를 인가하여 전기화학적 특성을 조사하였다. 또한, Automatic battery cycler(WonATech Co.,Ltd, WBCS3000)를 사용하여 충·방전 용량 및 사이클(cycle) 특성을 조사하였다.In order to investigate the reversibility of the assembled three-electrode cell using a carbon nanofiber composite coated with a transition metal as an anode material, cyclic voltammetry was performed using electrochemical characteristics (solartron, SI1287) The electrochemical characteristics were investigated by applying a current at a scanning rate of 100 mV / s at a voltage of 0.01 to 2V. In addition, charge / discharge capacity and cycle characteristics were investigated using an automatic battery cycler (WonATech Co., Ltd, WBCS3000).

결과 및 토의Results and Discussion

SEMSEM

성장된 CNFs에 네 가지의 전이 금속인 Fe, Co, Ni 및 Cu을 코팅한 후, 미시적인 형태를 조사하기 위해 SEM 측정을 수행하였으며, 그 결과를 도 4에 나타내었다.Four kinds of transition metals such as Fe, Co, Ni and Cu were coated on the grown CNFs, and SEM measurement was performed to investigate microscopic morphology. The results are shown in FIG.

도 4에서 알 수 있듯이, 합성된 CNFs를 모두 같은 농도인 0.1 M의 전이 금속 용액에 딥코팅한 후 SEM image를 측정한 결과, 도 4(a)의 경우 Fe의 코팅이 CNFs를 균일하게 감싸고 있는 것을 확인할 수 있다. As shown in FIG. 4, the synthesized CNFs were dip-coated on a 0.1 M transition metal solution of the same concentration and SEM images were measured. As a result, in the case of FIG. 4 (a), the coating of Fe uniformly encloses the CNFs .

반면, 도 4(b)와 도 4(d)에서는 CNFs 위를 뭉쳐진 Co와 Cu가 큰 덩어리를 이루어 덮고 있으며 일부는 코팅이 되지 않은 CNFs가 노출되어 있다. 도 4(c)에서는 Ni이 큰 덩어리 없이 코팅되어 있으나 균일함은 Fe에 비하여 부족하였다. CNFs를 코팅하기 위해 사용된 전이 금속 중 Fe와 Ni은 비교적 균일하고 큰 덩어리가 없이 코팅이 되어 Li의 삽입·탈리 과과정에서 CNFs의 분해를 완화시킨다.On the other hand, in FIGS. 4 (b) and 4 (d), Co and Cu formed on the CNFs are covered with a large lump, and some of the uncoated CNFs are exposed. In FIG. 4 (c), Ni was coated without a large lump, but the uniformity was insufficient compared to Fe. Among the transition metals used for coating CNFs, Fe and Ni are relatively uniform and coated without a large lump, which mitigates the decomposition of CNFs during Li insertion and desorption.

이에 따라, 전이금속 용액의 종류에 따른 전이금속층의 코팅의 균일한 정도는 다음과 같은 우선 순위(Fe > Ni > Co=Cu )로서, Fe이 가장 우수함을 알 수 있다.Accordingly, it can be seen that the uniformity of the coating of the transition metal layer according to the type of the transition metal solution has the following priority (Fe> Ni> Co = Cu), and Fe is the most excellent.

RamanRaman

전이 금속이 코팅된 CNFs의 결정성을 분석하기 위해 Raman spectroscopy를 수행하였으며, 그 결과를 도 5에 나타내었다. 도 5에서 볼 수 있듯이, 모든 Raman 데이터에서 합성된 CNFs 고유의 특성 피크로서 1,340cm-1 근처에서 나타나는 G-band (Graphite-like band)와 1,580cm-1 근처에서 나타나는 D-band (Defect-like band)가 관찰되었다. 도 5(a)의 경우 680cm-1에서 FeO, 도 5(b)에서는 670cm-1에서 CoO, 도 5(c)에선 550cm-1에서 NiO, 도 5(d)에서는 260cm-1에서 CuO가 나타남을 알 수 있다.Raman spectroscopy was performed to analyze the crystallinity of CNFs coated with transition metal, and the results are shown in FIG. As can be seen in Figure 5, it appears as a characteristic peak unique synthesis of CNFs on all Raman data in the vicinity of 1,340cm -1 G-band (Graphite- like band) and D-band (Defect-like appearing in the vicinity of 1,580cm -1 band was observed. Figure 5 (a) in at 680cm -1 FeO, Fig. 5 (b) in the 670cm -1 CoO, Fig. 5 (c) In NiO, Fig. 5 (d) at 550cm -1 is CuO appears at 260cm -1 for .

XPSXPS

전이 금속의 결합에너지(binding energy)를 조사하기 위해 XPS 분석을 수행하였으며, 그 결과를 도 6에 나타내었다. 여기서, 결합 에너지는 전기음성도 차이에 따라 다르게 나타나는데, 큰 전기음성도를 가지는 원소는 전자를 강하게 당기기 때문에 상대적으로 낮은 결합에너지를 가지게 된다.XPS analysis was performed to investigate the binding energy of transition metals, and the results are shown in FIG. Here, the binding energy differs depending on the difference in electronegativity. Elements having a large electronegativity have a relatively low binding energy because they strongly attract electrons.

도 6에서 네 가지 전이 금속의 결합에너지를 비교하면 Fe는 710~730eV의 결합에너지를 가지고, Co는 780~810eV, Ni은 850~890eV, 그리고 Cu는 930~960eV의 결합에너지를 가지고 있어 합성된 CNFs에 코팅된 전이 금속 중 Fe의 전기음성도가 가장 큰 결합에너지를 가지는 것으로 관찰되었다.In FIG. 6, the binding energies of the four transition metals are compared. Fe has a binding energy of 710 to 730 eV, Co has a binding energy of 780 to 810 eV, Ni has a binding energy of 850 to 890 eV, and Cu has a binding energy of 930 to 960 eV The electronegativity of Fe among the transition metals coated on CNFs was observed to have the greatest binding energy.

전기화학적 특성Electrochemical properties

본 발명의 실시예에 따라 전이금속이 코팅된 탄소나노섬유 복합체의 전기화학적 특성을 조사하였다. 이때, 전기화학적 특성에 대한 전해질의 영향을 알아보기 위해 EC(ethylene carbonate):PC(propylene carbonate)가 1:1의 무게비율로 혼합된 용액에 LiClO4를 용해시킨 전해질을 사용하여 실험을 진행하였다.The electrochemical characteristics of the transition metal coated carbon nanofiber composites were investigated in accordance with the present invention. At this time, in order to examine the influence of the electrolyte on the electrochemical characteristics, an experiment was performed using an electrolyte in which LiClO 4 was dissolved in a solution in which EC (ethylene carbonate): PC (propylene carbonate) was mixed at a weight ratio of 1: 1 .

순환전압전류법(Cyclic voltammetry method CyclicCyclic Voltammetry)Voltammetry)

전이 금속이 코팅된 CNFs를 리튬 이차전지의 음극재로 사용하여 순환전압저류법을 수행하였으며, 이를 도 7에 나타내었다.Figure 7 shows the cyclic voltage storage method using CNFs coated with a transition metal as an anode material of a lithium secondary battery.

전극의 리튬 삽입·탈리 반응에서 에너지에 따라 산화, 환원 전위를 가지는 특정 자리가 달라지며, 완전한 가역 반응일 경우 전위 변화 속도에 관계없이 산화, 환원 피크의 차이가 작아 CV(Cyclic Voltammetry)의 형태가 대칭적으로 나타난다.In the case of the complete reversible reaction, the difference in oxidation and reduction peaks is small regardless of the rate of change of the potential, so that the form of the CV (Cyclic Voltammetry) It appears symmetrically.

도 7(a)는 리튬 이차전지의 음극재로 합성한 CNFs를 자체로만 사용한 결과로서, 첫 번째 충전시 0.6V, 1.3V에서 환원 피크가, 그리고 방전 시에는 0.4V에서 산화 피크가 나타났으며, 두 번째 충전 시에는 0.7V에서 환원 피크가 그리고 방전 시에는 0.4V에서 산화 피크가 나타났다. FIG. 7 (a) shows the result of using only CNFs synthesized from an anode material of a lithium secondary battery. In FIG. 7, oxidation peaks at 0.6 V and 1.3 V at the first charging and at 0.4 V during discharging , A reduction peak at 0.7 V during the second charge, and an oxidation peak at 0.4 V during discharge.

도 7(b)는 CNFs-Fe에 대한 결과로서, 첫 번째 충전 시 0.5V, 1.7V에서 환원 피크가 그리고 방전 시에는 1.2V, 1.9V에서 산화 피크가 나타났으며, 두 번째 충전 시에는 0.6V, 1.3V에서 환원 피크가 그리고 방전 시에는 0.4V, 1.7V에서 산화 피크가 나타났다. FIG. 7 (b) shows the results of the CNFs-Fe as a result of the reduction peak at 0.5 V and 1.7 V for the first charge, 1.2 V and 1.9 V for the discharge, and 0.6 V and 1.3V, respectively, and oxidation peak at 0.4V and 1.7V at discharge.

도 7(c)는 CNFs-Co에 대한 결과로서, 첫 번째 충전 시 1.3V에서 환원 피크만 나타났고, 이후 충·방전에서 산화, 환원 피크가 나타나지 않았다.FIG. 7 (c) shows the results of the reduction of CNFs-Co. At the first charge, only the reduction peak appeared at 1.3 V, and no oxidation and reduction peaks were observed in the charge and discharge thereafter.

도 7(d)는 CNFs-Ni에 대한 결과로서, 첫 번째 충전 시 0.6V, 1V, 2.2V에서 환원 피크가 그리고 방전 시에는 1.1V, 1.8V, 2.2V에서 산화 피크가 나타났으며, 두 번째 충전 시 0.8V, 2.2V에서 환원 피크가 그리고 방전 시에는 1.1V, 1.7V, 2.2 V에서 산화 피크가 나타났다. FIG. 7 (d) shows the reduction peak at 0.6 V, 1 V, and 2.2 V at the first charge and the oxidation peak at 1.1 V, 1.8 V, and 2.2 V at the discharge, as a result of CNFs-Ni. Oxidation peak was observed at 0.8V and 2.2V at the first charge and 1.1V, 1.7V and 2.2V at discharge, respectively.

도 7(e)는 CNFs-Cu에 대한 결과로서, 첫 번째 충전 시 1.4V에서 환원 피크가 그리고 방전 시에는 2.1V에서 산화 피크가 나타났으며, 두 번째 충전 시 0.8V에서 환원 피크가 방전 시에는 1.1V, 1.8V에서 산화 피크가 나타났다.FIG. 7 (e) shows the results for the CNFs-Cu. The first peak indicates the reduction peak at 1.4 V and the second peak at 2.1 V during discharge. Showed an oxidation peak at 1.1 V and 1.8 V, respectively.

충·방전 시 사라진 산화, 환원 피크는 전해질 분해 및 solid electrolyte interface(SEI) 생성과 관련이 있는 것으로 사료된다. 또한, CV(cyclic voltammetry) 그래프의 면적은 용량과 관련이 있으며, CNFs-Fe와 CNFs-Ni가 가장 큰 CV 면적을 나타내었고, 사이클 대비 용량과 비교했을 경우에도 가장 큰 효율을 보여주었다.The oxidation and reduction peaks disappearing during charge and discharge are considered to be related to electrolyte decomposition and generation of solid electrolyte interface (SEI). In addition, the area of the CV (cyclic voltammetry) graph is related to the capacity. CNFs-Fe and CNFs-Ni showed the largest CV area and showed the greatest efficiency even when compared with the capacity per cycle.

Cyclic performance(Cyclic performance ( GalvanostaticGalvanostatic charge-discharge) charge-discharge)

전이 금속이 코팅된 CNFs와 대조군으로 니켈폼에 성장시킨 CNFs를 음극 활물질로 사용하여 3전극 셀을 제조한 전지의 전기화학적 특성을 측정하였다.Electrochemical properties of CNFs coated with transition metal and CNFs grown on nickel foil as a control were used as anode active materials.

제조된 3전극 셀의 전기화학적 특성을 알아보기 위하여 100mA/g의 전류를 인가하여 충·방전 특성을 조사하였으며, 30th 사이클 동안 방전 용량과 효율을 측정하여 각각 도 8과 표 2에 나타내었다.With a current of 100mA / g is applied to evaluate the electrochemical properties of the resulting three-electrode cell was examined for charge-discharge characteristics, by measuring the discharge capacity and the efficiency during the 30th cycle are shown in Figure 8 and Table 2, respectively.

표 2는 EC:PC가 1:1의 무게비율로 혼합된 용액에 1M LiClO4를 용해시킨 전해질에서, 리튬 이차전지의 음극재로 각각 (a)CNFs, (b)CNFs-Fe, (c)CNFs-Co, (d)CNFs-Ni, (e)CNFS-Cu를 사용하여 제작한 전지의 30th 사이클 동안의 Cycle performance 수행결과를 나타낸 것이다.(A) CNFs, (b) CNFs-Fe, and (c) cobalt, respectively, as an anode material for a lithium secondary battery in an electrolyte in which 1 M LiClO 4 was dissolved in a solution in which EC: PC was mixed at a weight ratio of 1: CNFs-Co, (d) CNFs-Ni, and (e) CNFS-Cu.

유지효율(Retention rate)(%)=30사이클 후 방전용량/최대 방전용량 ×100Retention rate (%) = discharge capacity after 30 cycles / maximum discharge capacity × 100

샘플
Sample
최대
방전용량
(mAh/g)
maximum
Discharge capacity
(mAh / g)
5사이클 후After 5 cycles 30사이클 후
After 30 cycles
방전용량
(mAh/g)
Discharge capacity
(mAh / g)
방전용량
(mAh/g)
Discharge capacity
(mAh / g)
유지 효율
(%)
Maintenance efficiency
(%)
(a)(a) 310310 135135 154154 49.749.7 (b)(b) 670670 362362 275275 4141 (c)(c) 872872 234234 172172 19.719.7 (d)(d) 942942 344344 241241 25.625.6 (e)(e) 10281028 387387 136136 13.213.2

도 8과 표 2를 참조하면, 도 8(a)는 니켈 폼에 성장시킨 CNFs를 음극 활물질로 제조된 셀의 측정 결과로, 초기 용량 310mAh/g에서 30사이클 후 154mAh/g으로 감소하여 49.7%의 유지 효율을 보여주었다.8 (a) and 8 (b) show the result of measurement of the CNFs grown on the nickel foil as the negative electrode active material. As a result, the cell capacity decreased from the initial capacity 310 mAh / g to 154 mAh / .

도 8(b) 내지 도 8(e)는 전이 금속으로 코팅된 CNFs를 음극 활물질로 제조된 셀의 측정 결과이다. 전이 금속으로 코팅된 대부분의 CNFs는 안정기를 거친 5 사이클 이후 360mAh/g부근으로 감소하였고, 그 중 CNFs-Co는 234mAh/g로 감소하였다. 8 (b) to 8 (e) are measurement results of a cell made of a negative electrode active material coated with transition metal CNFs. Most of the CNFs coated with the transition metal decreased to around 360 mAh / g after 5 cycles after the ballast, and CNFs-Co decreased to 234 mAh / g.

초기 용량은 CNF-Cu가 1,028mAh/g으로 가장 높았지만, 30사이클 후 136 mAh/g으로 감소하여 13.2%의 가장 낮은 유지 효율이 나타났다. 반면, 낮은 초기 용량을 가진 CNF-Fe는 670mAh/g에서 30 사이클 후 275mAh/g으로 감소하여 41%의 가장 높은 유지 효율을 나타내었다. The initial capacity of CNF-Cu was the highest at 1,028 mAh / g, but decreased to 136 mAh / g after 30 cycles, which showed the lowest maintenance efficiency of 13.2%. On the other hand, CNF-Fe with a low initial capacity decreased from 670 mAh / g to 275 mAh / g after 30 cycles, showing the highest retention efficiency of 41%.

Cycle performances의 결과를 통해 CNFs에 비해 전이 금속을 코팅한 CNFs의 초기 용량이 뛰어남을 확인할 수 있었다. 하지만, 30사이클 후 용량은 CNFs-Co와 CNF-Cu의 경우 전이 금속이 균일하게 코팅되지 않아 CNFs와 비교했을 때 용량 차이가 없었고, 전이 금속이 균일하게 코팅된 CNFs-Fe과 CNFs-Ni의 경우는 CNFs보다 초기 용량과 30사이클 후 용량이 모두 향상된 것을 볼 수 있다. 특히 CNFs-Fe의 경우는 30사이클 후의 용량을 비교했을 때 CNFs 보다 78%의 용량 증가를 보였다. 이것으로 보아 전이 금속을 코팅하였을 때, CNFs의 낮은 용량을 보다 향상시킬 수 있으며, 전해질의 부 반응을 억제하여 유지 효율 또한 향상됨을 알 수 있었다.The results of cycle performances show that the initial capacity of CNFs coated with transition metal is superior to that of CNFs. However, after 30 cycles, the capacities of CNFs-Co and CNF-Cu were not uniformly coated with the transition metal, so there was no difference in capacity compared to CNFs. In the case of CNFs-Fe and CNFs-Ni coated with transition metal uniformly Shows that both the initial capacity and the capacity after 30 cycles are improved over CNFs. Especially, CNFs-Fe showed 78% more capacity than CNFs after 30 cycles. As a result, it was found that when the transition metal is coated, the low capacity of CNFs can be further improved, and the negative reaction of the electrolyte is suppressed, thereby improving the retention efficiency.

결론conclusion

본 발명에서는 화학기상증착법으로 합성된 탄소나노섬유를 전이 금속(Fe, Co, Ni, Cu) 수용액에 간편한 딥코팅 방법으로 코팅하여 전이금속이 코팅된 탄소나노섬유 복합체를 제조하였다. In the present invention, the carbon nanofibers synthesized by the chemical vapor deposition method are coated with an aqueous solution of transition metal (Fe, Co, Ni, Cu) by a simple dip coating method to prepare a carbon nanofiber composite material coated with a transition metal.

상기 전이 금속이 코팅된 CNFs의 SEM image 결과를 보면, CNFs-Co와 CNFs-Cu는 전이 금속이 CNFs를 균일하게 코팅하지 못하고 뭉쳐 있음을 알 수 있었다. CNFs-Ni는 코팅의 두께가 불규칙하게 코팅되어 있으나 뭉쳐진 전이 금속은 발견할 수 없었다. 전이 금속이 코팅된 CNFs 가운데 CNFs-Fe가 가장 균일하게 코팅이 되었다.SEM images of the CNFs coated with the transition metal showed that the transition metal was not uniformly coated with CNFs and that the CNFs-Co and CNFs-Cu were not uniformly coated. CNFs-Ni was coated irregularly in the thickness of the coating, but no rolled transition metal was found. Among the CNFs coated with transition metal, CNFs-Fe was most uniformly coated.

CNFs에 코팅한 네 가지의 전이 금속 중 전기음성도가 높고 가장 균일하게 코팅된 CNFs-Fe를 리튬 이차전지의 음극재로 사용하여 측정한 결과, CV(cyclic voltammogram)에서 충·방전 시 산화, 환원 피크가 대칭적인 그래프를 보여 가역적인 반응임을 알 수 있었다. 또한, CNF-Fe는 CNFs에 비하여 초기 용량이 향상되었으며, 30 cycle에서의 용량이 78% 증가된 것으로 나타났고, 네 가지 전이 금속 중에서 유지 효율이 41%로 가장 우수하였다. Among the four transition metals coated on the CNFs, CNFs-Fe, which has the highest electronegativity and is most uniformly coated, was used as an anode material for a lithium secondary battery. As a result, in the cyclic voltammogram (CV) The peak shows a symmetrical graph and is reversible. In addition, the initial capacity of CNF-Fe was improved compared to CNFs, and the capacity at 30 cycles was increased by 78%. Among the four transition metals, the retention efficiency was the best at 41%.

CNFs-Ni의 경우에도 Ni이 비교적 균일하게 코팅되었고 높은 초기 용량과 30 cycle에서 나타난 용량 또한 CNFs에 비해 56%의 증가를 보였다. In the case of CNFs-Ni, Ni was relatively uniformly coated, and the high initial capacity and the capacity at 30 cycles showed an increase of 56% compared to CNFs.

이것으로 보아 CNF에 균일하게 코팅된 전이 금속은 표면의 전자 전도성을 증가시켜 CNFs의 낮은 충/방전 용량을 향상시킬 수 있으며, 바람직하지 않은 전극과 전해질 간의 부반응을 억제하여 유지 효율 또한 향상시킴을 알 수 있었다.As a result, the transition metal uniformly coated on the CNF can increase the surface electron conductivity, thereby improving the low charge / discharge capacity of the CNFs and improving the maintenance efficiency by suppressing side reactions between the undesirable electrode and the electrolyte. I could.

이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능 하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.While the invention has been shown and described with respect to the specific embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims. Anyone with it will know easily.

Claims (10)

(a) 니켈 폼에 화학기상증착법으로 탄소나노섬유를 합성하는 단계; 및
(b) 상기 탄소나노섬유가 성장된 니켈 폼을 Co 수용액 또는 Ni 수용액에 딥 코팅한 후, 건조하는 단계를 포함하고,
상기 (b) 단계에서,
상기 탄소나노섬유가 성장된 니켈 폼을 0.1M 이하의 Co 수용액 또는 Ni 수용액에 딥코팅하고 상기 건조 과정은 5분 동안 대기 건조시킨 후, 80℃에서 12시간 이상 진공 건조시키는 것을 특징으로 하는 탄소나노섬유 복합체의 제조방법.
(a) synthesizing carbon nanofibers on a nickel foam by chemical vapor deposition; And
(b) dip coating the nickel foam on which the carbon nanofibers are grown with Co aqueous solution or Ni aqueous solution, followed by drying,
In the step (b)
Wherein the carbon nanofiber-grown nickel foam is dip-coated on a Co aqueous solution or a Ni aqueous solution of 0.1 M or less, the drying process is air-dried for 5 minutes, and then vacuum dried at 80 ° C for 12 hours or more. Fiber composite.
(a) 니켈 폼에 화학기상증착법으로 탄소나노섬유를 합성하는 단계;
(b) 상기 탄소나노섬유가 성장된 니켈 폼을 Co 수용액 또는 Ni 수용액에 딥 코팅한 후, 건조하는 단계; 및
(c) 상기 전이금속이 코팅된 탄소나노섬유 복합체를 음극재로 사용하여 이차전지를 제조하는 단계를 포함하고,
상기 탄소나노섬유가 성장된 니켈 폼을 0.1M 이하의 Co 수용액 또는 Ni 수용액에 딥코팅하고 상기 건조 과정은 5분 동안 대기 건조시킨 후, 80℃에서 12시간 이상 진공 건조시키는 것을 특징으로 하는 이차전지 제조방법.
(a) synthesizing carbon nanofibers on a nickel foam by chemical vapor deposition;
(b) dip coating the carbon nanofiber-grown nickel foam in an aqueous solution of Co or Ni, followed by drying; And
(c) preparing a secondary battery using the transition metal-coated carbon nanofiber composite as an anode material,
Wherein the Ni foams on which the carbon nanofibers have been grown are dip-coated on a Co aqueous solution or a Ni aqueous solution of 0.1 M or less, the drying process is air-drying for 5 minutes, and then vacuum drying is performed at 80 ° C for 12 hours or more. Gt;
제2항에 있어서,
전해질은,
에틸렌 카보네이트(EC) 및 프로필렌 카보네이트(PC)가 1:1의 무게비율로 혼합된 용액에 1M의 LiClO4를 용해하여 형성되는 것을 특징으로 하는 이차전지 제조방법.
3. The method of claim 2,
The electrolyte,
Wherein the electrolyte is formed by dissolving 1 M of LiClO 4 in a solution in which ethylene carbonate (EC) and propylene carbonate (PC) are mixed at a weight ratio of 1: 1.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020170037100A 2017-03-23 2017-03-23 Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials KR101949484B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170037100A KR101949484B1 (en) 2017-03-23 2017-03-23 Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials
PCT/KR2017/003286 WO2018174327A1 (en) 2017-03-23 2017-03-28 Method for producing carbon nanofiber composite coated with transition metal, and method for producing secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170037100A KR101949484B1 (en) 2017-03-23 2017-03-23 Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials

Publications (2)

Publication Number Publication Date
KR20180108957A KR20180108957A (en) 2018-10-05
KR101949484B1 true KR101949484B1 (en) 2019-02-19

Family

ID=63584440

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170037100A KR101949484B1 (en) 2017-03-23 2017-03-23 Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials

Country Status (2)

Country Link
KR (1) KR101949484B1 (en)
WO (1) WO2018174327A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497775B1 (en) 2002-08-23 2005-06-23 나노미래 주식회사 Catalyst for Process of Graphite Nanofibers And Process Thereof, Graphite Nanofibers And Process of Graphite Nanofibers
KR101022857B1 (en) * 2008-01-16 2011-03-17 인하대학교 산학협력단 Preparation method of carbon nano fiber composites electroplated transition metal for hydrogen storage
KR101560595B1 (en) * 2014-06-17 2015-10-16 한국기계연구원 Carbon hybrid fiber including conductive particles, method for manufacturing the same, and functional textile assembly and semiconductor device using the same
KR101608052B1 (en) * 2014-10-30 2016-04-01 계명대학교 산학협력단 Synthesis method of CNFs grown on Ni and Mo Catalysts, and manufacturing method of secondary cell using of it
US10501855B2 (en) * 2015-04-02 2019-12-10 The Board Of Trustees Of The Leland Stanford Junior University Bifunctional non-noble metal oxide/chalcogenide nanoparticle electrocatalysts through lithium-induced conversion for overall water-splitting

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Nanosci. Nanotechnol. 2015, Vol. 15, No. 11*
Journal of Power Sources 174 (2007) 493-500*

Also Published As

Publication number Publication date
WO2018174327A1 (en) 2018-09-27
KR20180108957A (en) 2018-10-05

Similar Documents

Publication Publication Date Title
Zhu et al. Hexagonal prism-like hierarchical Co 9 S 8@ Ni (OH) 2 core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors
Song et al. Covalent organic frameworks construct precise lithiophilic sites for uniform lithium deposition
Wu et al. NiCo 2 S 4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries
Xia et al. Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries
Kretschmer et al. A free-standing LiFePO 4–carbon paper hybrid cathode for flexible lithium-ion batteries
Liang et al. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage
Wang et al. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries
WO2020040695A1 (en) Transition metal sulfide-based material for lithium-sulfur batteries
Yue et al. Facile preparation of Mn 3 O 4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries
Wang et al. Local confinement and alloy/dealloy activation of Sn–Cu nanoarrays for high-performance lithium-ion battery
KR101616083B1 (en) Manufacturing method of secondary batteries using Si-CNFs based on Co-Cu catalysts
KR101773129B1 (en) Manufacturing method of Mesoporous Silica carbon Nanofiber composite and Manufacturing method of Lithium Secondary battery using it
KR101672533B1 (en) Synthesis method of Silicon/Carbon nanofibers composites based on Ni and Mo catalysts, and manufacturing method of Lithium Secondary Batteries with anode materials of it
US10084183B2 (en) Silicon oxide-carbon composite and method of manufacturing the same
KR101392388B1 (en) Carbon nanofibers composite and method for preparing the same and anode active materials for lithium secondary batteries comprising the same
Yu et al. Ternary nanoarray electrode with corn-inspired hierarchical design for synergistic lithium storage
KR102114208B1 (en) Synthesis method of Silicon-reduced Graphene oxide composite and manufacturing method of Lithium Secondary Batteries using it as anode materials
KR101608052B1 (en) Synthesis method of CNFs grown on Ni and Mo Catalysts, and manufacturing method of secondary cell using of it
US20210226190A1 (en) Structural battery electrode, method for manufacturing same, and structural battery using same structural battery electrode
KR101949484B1 (en) Synthesis method of Transition metal-coated Carbon nanofibers and manufacturing method of Lithium Secondary Batteries using it as anode materials
KR101802727B1 (en) Manufacturing method of carbon Nanofiber composite using RuO2 and Manufacturing method of Lithium Secondary battery using it
KR20220105418A (en) Manufacturing method of Silicon/Carbon nanotube/Graphene Composite film as Anode Materials for Lithiumion Batteries and Manufacturing method for Lithiumion Batteries using it
WO2017087512A1 (en) Metal oxide nanofiber electrode and method
KR20190038519A (en) Synthesis method of Silicon-reduced Graphene oxide composite and manufacturing method of Lithium Secondary Batteries using it as anode materials
Guo et al. Structure, Morphology, and Composition of Mn 3 N 2/MnO/C Composite Anode Materials for Li-Ion Batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant