KR101926386B1 - Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same - Google Patents

Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same Download PDF

Info

Publication number
KR101926386B1
KR101926386B1 KR1020170127424A KR20170127424A KR101926386B1 KR 101926386 B1 KR101926386 B1 KR 101926386B1 KR 1020170127424 A KR1020170127424 A KR 1020170127424A KR 20170127424 A KR20170127424 A KR 20170127424A KR 101926386 B1 KR101926386 B1 KR 101926386B1
Authority
KR
South Korea
Prior art keywords
formula
positive photoresist
highly fluorinated
group
photoresist
Prior art date
Application number
KR1020170127424A
Other languages
Korean (ko)
Inventor
이진균
손종찬
정석헌
정병준
배준한
Original Assignee
인하대학교 산학협력단
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단, 서울시립대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020170127424A priority Critical patent/KR101926386B1/en
Application granted granted Critical
Publication of KR101926386B1 publication Critical patent/KR101926386B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • H01L51/0008
    • H01L51/0016
    • H01L51/0018
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Photolithography (AREA)

Abstract

The present invention relates to a highly fluorinated positive photoresist for being processed as a high fluorine type solvent, and a method for manufacturing an organic electronic device using the same capable of forming a pattern by increasing solubility of a light exposed part in irradiation of ultraviolet rays (UV) when the highly fluorinated positive photoresist for being processed as a high fluorine type solvent is used. After forming a photoresist pattern by using the highly fluorinated positive photoresist for being processed as a high fluorine type solvent and depositing an organic electronic material on the pattern, the present invention can form a fine pattern by using the high fluorine type solvent without an additional additive in a lift-off process or an RIE process. Since the highly fluorinated positive photoresist manufactures the pattern without PAG or subsequent heat treatment, the highly fluorinated positive photoresist can minimize influence for a lower organic electronic material layer even when performing photo patterning on an upper part of the organic electronic material layer. The present invention can manufacture an organic electronic device using a multicolor OLED pixel array patterning process and other organic electronic materials by using the highly fluorinated positive photoresist for being processed as a high fluorine type solvent.

Description

고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 및 이를 이용한 유기전자소자의 제조방법{Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorine-containing positive-type photoresist capable of being processed with a fluorine-based solvent and a method for manufacturing an organic electronic device using the same,

본 발명은 리프트-오프(LIFT-OFF) 공정 또는 반응성 이온 에칭(Reactive Ion Each; 이하 'RIE') 공정에 유리한 고불소화 포지티브형 포토레지스트와, 이를 이용한 미세패턴 제조방법, 및 유기전자소자의 제조방법에 관한 것이다.The present invention relates to a high fluorinated positive type photoresist favorable to a lift-off process or a reactive ion etching (RIE) process, a method for manufacturing a fine pattern using the same, ≪ / RTI >

최근, 평판 표시장치로서 액정 디스플레이(Liquid Crystal Display; 이하 'LCD')가 널리 대중화되었으나, 보다 고품위 대면적, 유연 디스플레이에 대한 수요가 생성되기 시작하여 유기발광소자 기반 디스플레이 장치(Organic Light-Emitting Display; 이하 'OLED')가 시장에 등장하였다.2. Description of the Related Art In recent years, a liquid crystal display (LCD) has been widely popularized as a flat panel display device. However, demand for a high-quality large-area and flexible display has begun to be generated, and an organic light- OLED ') has emerged in the market.

OLED에 대한 시장의 요구가 증가함에 따라, 제조 기술이 점점 발달하면서, LCD를 능가하는 고해상도 및 대면적 기술이 개발되고 있다.As the market demand for OLEDs grows, high-resolution and large-area technologies are being developed that surpass LCDs as manufacturing technology continues to evolve.

현 시점에서 OLED를 제조하기 위한 화소 형성 방법은 고정밀도 금속 포토마스크(Fine Metal Mask; 이하 'FMM')을 이용한 열 진공증착 기법, 백색 유기 발광재료와 컬러필터를 함께 적용, 색 변환을 통해 삼색 화소를 구현하는 백색 OLED (white OLED; 이하 'WOLED') 기법, 용액화가 가능한 유기발광재료를 적용, 잉크젯 및 기타 인쇄 방법을 통해 화소를 구현하는 프린팅 기법, 및 유기전자재료를 도너 필름에 증착하고 이를 다시 레이저(laser)의 조사를 통해 OLED 기판의 원하는 부위로 옮겨 접착하는 전달 패터닝 기법 등이 있다.At present, a pixel forming method for manufacturing an OLED includes applying a thermal vacuum deposition technique using a high-precision metal photomask (FMM), a white organic light emitting material and a color filter, White OLED (hereinafter, referred to as 'WOLED') technique for realizing pixels, application of a solutionable organic light emitting material, printing technique for implementing pixels through inkjet and other printing methods, and deposition of organic electronic materials on a donor film And a transfer patterning technique in which the semiconductor layer is transferred to a desired portion of the OLED substrate through laser irradiation.

상기 FMM을 이용한 열 진공증착법은 이미 양산에 적용되고 있는 방법으로서 기술적인 완성도 및 이를 위한 재료 및 장비의 개발 면에서 상당한 수준에 올라있다고 할 수 있다. 하지만 이 방식만으로는 OLED의 생산성을 크게 높일 수 있는 8세대급 대면적 기판의 적용이 어렵고, 또한 FMM이 가지는 물리적 한계에 의해 고해상도의 화소 구현에 제한이 발생하게 된다.The thermal vacuum deposition method using the FMM has already been applied to mass production, and it can be said that it has reached a considerable level in terms of technical completeness and development of materials and equipment therefor. However, it is difficult to apply the 8th generation large area substrate which can increase the productivity of the OLED only by this method. Moreover, due to the physical limitations of the FMM, there is a limitation in realizing high resolution pixels.

상기 FMM을 이용한 열 진공 증착법이 가지는 문제를 해결을 위해 제시된 프린팅 기반 레이저 열전사(laser-induced thermal imaging; LITI) 방식 및 잉크젯 프린팅 등이 제안되었으나, 아직까지는 극복하기 어려운 기술적 난제를 가지고 있어 현재 차세대 디스플레이 제조를 위한 기술적 플랫폼이 아직 확립되어 있지 않은 상태이다.In order to solve the problems of the thermal vacuum deposition method using the FMM, proposed printing-based laser-induced thermal imaging (LITI) method and inkjet printing have been proposed. However, since it has a technical difficulty that can not be overcome yet, A technical platform for the manufacture of displays has not yet been established.

OLED의 대면적화 및 고해상도 화소의 형성을 위해, FMM을 적용하지 않는 비인쇄식 화소 형성 기법이 필요하며, 현재의 전자소자 제작 기술을 바탕으로 대면적 기판을 이용하여 고해상도 화소를 구현하기 위해서는 기존 LCD에 적용되고 있는 포토리소그라피 패터닝 공정을 적용하는 방법이 제시되고 있다.Non-printable pixel formation techniques that do not use FMM are required for large-area OLEDs and high-resolution pixels. In order to realize high-resolution pixels using a large-area substrate based on current electronic device fabrication technology, A method of applying a photolithographic patterning process which is applied to a photolithography process is proposed.

다만, LCD 공정의 포토리소그라피 패터닝 공정을 OLED의 화소 형성에 바로 적용하기에는 재료기술적 장벽이 존재한다.However, there are material technical barriers to directly apply the photolithographic patterning process of the LCD process to the pixel formation of the OLED.

특히, OLED 제조에 사용되는 전하이동재료 및 발광재료와 같은 유기전자재료의 경우 포토리소그라피 패터닝 공정에 사용되는 포토레지스트 및 수계/유기계 용제 등에 의해 물성 및 성능이 손상되어 기존의 포토리소그라피 패터닝 공정을 그대로 고해상도 OLED 화소 패턴 형성에 적용할 수 없다.Particularly, in the case of an organic electronic material such as a charge transporting material and a light emitting material used for manufacturing an OLED, physical properties and performance are impaired by a photoresist and a water / organic solvent used in a photolithographic patterning process, and the existing photolithography patterning process It can not be applied to high resolution OLED pixel pattern formation.

따라서, 유기물 전하전달재료 및 발광재료에 대한 물리적/화학적 영향을 최소화할 수 있는 고불소계 소재를 이용하여 OLED 소자를 제조함으로써 화소를 형성하는 방법에 대한 개발이 필요한 실정이다.Therefore, it is necessary to develop a method of forming pixels by manufacturing an OLED device using a high fluorine-based material capable of minimizing physical / chemical effects on an organic charge transfer material and a light emitting material.

고불소화 포토레지스트의 경우 일반적인 수계/유기계 포토레지스트와 마찬가지로 자외선(UV) 조사 시, 노광 부위의 용해도가 증가하여 현상되지 않아 패턴으로 남는 네가티브형 포토레지스트와, 노광 부위의 용해도가 감소하여 현상되는 포지티브형 포토레지스트로 나뉘어 진다(도 1 및 도 2 참조). In the case of a fluorinated photoresist, a negative type photoresist which remains as a pattern due to an increase in solubility of the exposed portion due to ultraviolet (UV) irradiation, as in general aqueous / organic photoresists, and a positive Type photoresist (see Figs. 1 and 2).

고불소화 네가티브형 포토레지스트의 경우 고불소화 포지티브형 포토레지스트에 비해 고불소계 용제에 대한 용해 특성이 우수하지 않다. The high fluorinated negative type photoresist does not have excellent solubility characteristics with respect to the high fluorinated solvent as compared with the high fluorinated positive type photoresist.

구체적으로, 고불소화 네가티브형 포토레지스트는 광산 발생제(photoacid generator; 이하 'PAG')에서 나온 산(H+)에 의한 분해반응으로 포토레지스트의 극성이 증가하여 고불소계 용제에 대한 용해도가 감소하며, 또한 PAG에서 나온 산에 의해 포토레지스트에 존재하는 에폭사이드(epoxide)나 옥세탄(oxetane) 작용기가 개환반응(ring opening reaction)을 일으켜 가교가 됨으로써 고불소계 용제에 대한 용해도가 감소한다.Specifically, a highly fluorinated negative type photoresist is decomposed by an acid (H + ) from a photoacid generator (hereinafter, referred to as 'PAG') to increase the polarity of the photoresist, thereby decreasing the solubility of the fluorine- , And the epoxide or oxetane functional group present in the photoresist due to the acid generated from the PAG causes a ring opening reaction to cross-link, thereby decreasing the solubility of the fluorine-containing solvent.

또한, 고불소화 네가티브형 포토레지스트는 안트라센(anthracene) 작용기에서와 같이 광이합체 반응을 통해 가교가 되는 경우 고불소계 용제에 대한 용해도가 감소하며, 아조페닐(azophenyl) 작용기에서와 같이 광에 의한 시스-트렌스(cis-trans), 트렌스-시스(trans-cis) 분자 구조 변화 등을 통해 고불소계 용제에 대한 용해도가 감소하게 된다.In addition, when a fluorinated negative type photoresist is cross-linked through a photodimer reaction as in an anthracene functional group, solubility in a high fluorine solvent is decreased, and light-induced cis- The solubility in a high fluorine-containing solvent is reduced through changes in molecular structures such as cis-trans and trans-cis.

이러한 원인 때문에 고불소화 네가티브형 포토레지스의 패턴을 제거하는데 한계가 존재한다. 따라서, 용해도가 감소한 포토레지스트의 패턴을 제거하기 위해서 고불소계 용제에 추가적으로 알코올류(isopropyl alcohol) 또는 헥사메틸디실라제인(hexamethyldisilazane; HMDS) 등을 소량 첨가하여 제작된 패턴을 제거하는 방법이 존재한다. For this reason, there is a limitation in removing the pattern of the highly fluorinated negative type photoresist. Therefore, in order to remove the pattern of the photoresist having reduced solubility, there is a method of removing a pattern produced by adding a small amount of isopropyl alcohol or hexamethyldisilazane (HMDS) to a high fluorine solvent .

다만, 추가적으로 알코올류나 실란(silane) 또는 실라제인(silazane) 계열을 첨가할 경우 단분자 유기전자재료의 패턴에 화학적인 영향을 미치게 됨으로서 단분자 유기전자재료 패턴에 물리적·화학적 손상을 입힐 가능성이 존재한다. However, addition of an alcohol, silane or silazane series may chemically affect the pattern of the monomolecular organic electronic material, which may cause physical or chemical damage to the monomolecular organic electronic material pattern do.

결국 고불소화 네가티브형 포토레지스트를 이용하여 리프트-오프 공정 또는 RIE 공정을 통해 유기단분자 패턴을 제작하기에는 공정상 어려움이 존재할 수 있다.Consequently, there may be process difficulties in fabricating the organic monomolecular pattern through the lift-off process or the RIE process using the high-fluorination negative photoresist.

따라서, 도포(coating) 및 현상(develop) 박리(strip)과정을 유기용제나 수용액의 도움없이 고불소계 용제만을 이용하여 진행할 수 있고, 고불소화 포토레지스트 도포 후 자외선 조사 시, 조사된 영역의 용해도 증가를 바탕으로 한 패턴 제작이 가능하며, 고불소화 포토레지스트 패턴 제작 후 원하는 유기전자재료를 열 진공 증착과정 또는 용액 코팅과정 후 리프트-오프 공정 또는 RIE 공정이 용이하게 진행할 수 있는 고불소화 포토레지스트에 대한 연구 개발이 시급한 실정이다.Therefore, coating and developing strips can be performed using only a high fluorine-based solvent without the aid of an organic solvent or an aqueous solution, and when irradiated with ultraviolet rays after application of a fluorine-containing photoresist, the solubility of the irradiated region is increased And a high fluorinated photoresist pattern can be easily fabricated after the fabrication of a highly fluorinated photoresist pattern and a desired organic electronic material can be easily subjected to a lift-off process or an RIE process after a thermal vacuum deposition process or a solution coating process. Research and development is urgent.

한국등록특허 제1751466호(2017.06.28. 공고)Korean Registered Patent No. 1751466 (Announced 2017.06.28)

본 발명의 목적은, 고불소계 용제에 대한 충분한 용해성을 가지면서 자외선(UV) 조사 시 주쇄의 분해 메커니즘을 통해 용해도가 증가되어 포지티브 패턴을 용이하게 구현할 수 있는 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트를 제공하는 데에 있다.An object of the present invention is to provide a fluorine-containing fluorine-containing polymer which has sufficient solubility in a high fluorine-based solvent and has high solubility through decomposition mechanism of a main chain upon irradiation with ultraviolet (UV) Type photoresist.

또한, 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트를 이용하여 리프트-오프 공정 또는 RIE 공정을 통해 유기전자재료의 미세패턴 제조방법을 제공하는 데에 있다.It is also an object of the present invention to provide a method of manufacturing a fine pattern of an organic electronic material through a lift-off process or an RIE process using a highly fluorinated positive type photoresist processable with a high fluorine solvent.

또한, 상기 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 및 이를 이용한 미세패턴 형성방법을 통해 다색 패터닝 화소를 형성할 수 있는 유기전자소자 제조방법을 제공하는 데에 있다.It is another object of the present invention to provide a method of manufacturing an organic electronic device capable of forming a multi-color patterning pixel by using a high fluorine-containing positive photoresist capable of being processed with the high fluorine solvent and a method of forming a fine pattern using the same.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.In order to achieve the above object, the present invention provides a compound represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112018067213125-pat00066
Figure 112018067213125-pat00066

R1은 수소(H) 또는 메틸기(CH3)이고, X는 (CH2)x(CF2)yF[(CH2)x(CF2)yF에서, x와 y는 0 ≤ x ≤ 10, 4 ≤ y ≤ 12의 자연수]이고, R2는 수소(H) 또는 메틸기(CH3)이고, R3 및 R4 중 어느 하나는 페닐이고, 다른 하나는 페닐 또는 메틸기(CH3)이고, R5는 수소(H) 또는 메틸기(CH3)이고, Y는 치환 또는 비치환된 C1 내지 C10의 알킬기, 치환 또는 비치환된 C6 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 시클로 알킬기, 또는 치환 또는 비치환된 C1 내지 C10의 축합환계 탄화수소기 중 어느 하나이고, z는 랜덤 공중합(r) 또는 블록 공중합(b) 중 어느 하나를 나타내는 것이고, a, b, 및 c는 단량체의 평균 몰비를 각각 나타낸 것으로서 a : b : c는 (5 ~ 1) : 1 : (1 ~ 0)임.R 1 is hydrogen (H) or methyl group (CH 3 ), X is (CH 2 ) x (CF 2 ) y F [(CH 2 ) x (CF 2 ) y F, x and y are 0 ≦ x ≦ 10, 4 ≤ y ≤ 12), R 2 is hydrogen (H) or methyl (CH 3 ), and either R 3 or R 4 is phenyl and the other is phenyl or methyl (CH 3 ) , R 5 is hydrogen (H) or methyl (CH 3 ), Y is a substituted or unsubstituted C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 20 aryl group, a substituted or unsubstituted C 3 to C 20 cycloalkyl group or a substituted or unsubstituted C 1 to C 10 condensed ring hydrocarbon group, and z represents any one of random copolymerization (r) and block copolymerization (b) a, b and c represent the average molar ratios of the monomers, respectively, and a: b: c is (5-1): 1: (1-0).

또한 본 발명은 상기 화합물을 포함하는, 고불소화 포지티브형 포토레지스트를 제공한다.The present invention also provides a highly fluorinated positive type photoresist comprising the compound.

또한 본 발명은 하기 화학식 1로 표시되는 화합물의 제조방법을 제공한다.The present invention also provides a process for preparing a compound represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112018067213125-pat00067
Figure 112018067213125-pat00067

상기 화학식 1로 표시되는 화합물은, 하기 화학식 1-1, 1-2, 및 1-3으로 표시되는 단량체를 공중합한 것이고,The compound represented by the formula (1) is a copolymer of the monomers represented by the following formulas (1-1), (1-2) and (1-3)

[화학식 1-1][Formula 1-1]

Figure 112017096035689-pat00003
Figure 112017096035689-pat00003

상기 화학식 1-1에서, R1은 수소(H) 또는 메틸기(CH3)이고, X는 (CH2)x(CF2)yF[(CH2)x(CF2)yF에서, x와 y는 0 ≤ x ≤ 10, 4 ≤ y ≤ 12의 자연수]이고,In the above formula 1-1, R 1 is hydrogen (H) or methyl (CH 3), X is (CH 2) x (CF 2 ) y F [(CH 2) x (CF 2) y F, x And y is a natural number of 0? X? 10 and 4? Y? 12,

[화학식 1-2][Formula 1-2]

Figure 112018067213125-pat00068
Figure 112018067213125-pat00068

상기 화학식 1-2에서, R2는 수소(H) 또는 메틸기(CH3)이고,
R3 및 R4 중 어느 하나는 페닐이고, 다른 하나는 페닐 또는 메틸기(CH3)이고,
In Formula 1-2, R 2 is hydrogen (H) or methyl (CH 3 )
R 3 and R 4 is any one of phenyl, and the other is phenyl or methyl group (CH 3),

[화학식 1-3][Formula 1-3]

Figure 112017096035689-pat00005
Figure 112017096035689-pat00005

상기 화학식 1-3은, R5는 수소(H) 또는 메틸기(CH3)이고, Y는 치환 또는 비치환된 C1 내지 C10의 알킬기, 치환 또는 비치환된 C6 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 시클로 알킬기, 또는 치환 또는 비치환된 C1 내지 C10의 축합환계 탄화수소기 중 어느 하나이고,Wherein R 5 is hydrogen (H) or methyl (CH 3 ), Y is a substituted or unsubstituted C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 20 aryl group , A substituted or unsubstituted C 3 to C 20 cycloalkyl group, or a substituted or unsubstituted C 1 to C 10 condensed ring hydrocarbon group,

상기 화학식 1에서, z는 화학식 1-1, 화학식 1-2, 및 화학식 1-3으로 표시되는 단량체의 중합반응의 종류를 나타낸 것으로서 z는 랜덤 공중합(r) 또는 블록 공중합(b) 중 어느 하나를 나타내는 것이고, a, b, 및 c는 화학식 1-1, 화학식 1-2, 및 화학식 1-3으로 표시되는 단량체의 평균 몰비를 각각 나타낸 것으로서 a : b : c는 (5 ~ 1) : 1 : (1 ~ 0)임.In the above formula (1), z represents the type of polymerization of monomers represented by formulas (1-1), (1-2) and (1-3), and z represents any one of random copolymerization (r) A, b and c represent the average molar ratios of the monomers represented by formulas (1-1), (1-2) and (1-3), respectively, : (1 ~ 0).

또한 본 발명은 기판 상부에 상기 고불소화 포지티브형 포토레지스트를 포함한 용액을 도포하는 단계; 상기 고불소화 포지티브형 포토레지스트가 도포된 기판 상에 자외선을 노광한 후 노광부를 현상액으로 현상하여 고불소화 포지티브형 포토레지스트 패턴을 형성하는 단계; 및 상기 형성된 패턴 상에 정공주입층과 정공수송층을 열 진공증착한 후 리프트-오프 공정을 진행하여 정공주입층과 정공수송층으로 이루어진 미세패턴을 형성하는 단계를 포함하는, 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조방법을 제공한다.The present invention also provides a method of manufacturing a semiconductor device, comprising: applying a solution containing the highly fluorinated positive type photoresist on a substrate; Exposing the substrate coated with the highly fluorinated positive photoresist to ultraviolet light, and developing the exposed portion with a developer to form a highly fluorinated positive photoresist pattern; And forming a fine pattern of a hole injection layer and a hole transport layer by performing a lift-off process after thermally vacuum-depositing a hole injection layer and a hole transport layer on the formed pattern, thereby forming a highly fluorinated positive type photoresist The present invention also provides a method for producing a fine pattern using the same.

또한 본 발명은 투명 전극 상에 정공주입층 및 정공수송층을 열 진공증착하는 단계(제1단계); 상기 정공주입층 및 정공수송층이 증착된 투명 전극 상에 청구항 3에 따른 고불소화 포지티브형 포토레지스트를 포함한 용액을 도포하는 단계(제2단계); 상기 포토레지스트 용액이 도포된 전극을 노광한 후, 노광부를 현상액으로 용해시켜 포지티브형 패턴을 투명 전극 상에 형성하는 단계(제3단계); 및 상기 형성된 포지티브형 패턴 상에 발광층을 증착한 후, 전자수송층, 전자 주입층, 및 금속 전극을 추가적으로 열 진공증착하는 단계(제4단계)를 포함하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법을 제공한다.The present invention also provides a method of manufacturing a thin film transistor, comprising: (1) a step of thermally vacuum depositing a hole injection layer and a hole transport layer on a transparent electrode; Applying a solution containing a highly fluorinated positive photoresist according to claim 3 onto the transparent electrode on which the hole injection layer and the hole transport layer are deposited (second step); Exposing the electrode coated with the photoresist solution, and dissolving the exposed portion with a developing solution to form a positive pattern on the transparent electrode (third step); And a step of further subjecting the electron transport layer, the electron injection layer, and the metal electrode to thermal vacuum deposition after depositing a light emitting layer on the formed positive pattern (fourth step). A device manufacturing method is provided.

또한 본 발명은 상기 방법으로 제조된 것인, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자를 제공한다.Further, the present invention provides an organic electronic device using a highly fluorinated positive photoresist, which is produced by the above method.

본 발명에 따른 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트는 단분자 유기전자재료의 멀티패터닝 시 한번 형성된 유기전자재료의 패턴 영역은 추가적인 자외선 노광에 노출되지 않아 자외선 노출에 따른 유기물의 성능저하를 최소화 할 수 있다. The highly fluorinated positive type photoresist which can be processed with a high fluorine solvent according to the present invention is characterized in that the pattern area of the organic electronic material formed once during the multi patterning of the monomolecular organic electronic material is not exposed to the additional ultraviolet exposure, The degradation can be minimized.

또한 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트의 패턴 형성 시 용해도의 증가에 의한 패턴형성이므로 스핀코팅 용제보다 용해성이 작은 용제를 이용하여 현상과정을 진행할 수 있다. In addition, since the pattern is formed by increasing the solubility in pattern formation of a highly fluorinated positive type photoresist which can be processed with a high fluorine solvent, the development process can be performed using a solvent having a lower solubility than the spin coating solvent.

또한 리프트-오프 공정 및 RIE 공정에서 사용하는 박리 용제 또한 스핀코팅 용제 보다 용해성이 작은 고불소계 용제를 사용할 수 있고, RIE 공정에서 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 패턴의 용해성 감소 현상이 발생하는 경우, 자외선(UV) 전면 노광을 통하여 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 패턴의 용해성을 증가시킬 수 있다. In addition, a high fluorine solvent having a lower solubility than the spin coating solvent can be used as the peeling solvent used in the lift-off process and the RIE process, and the solubility reduction phenomenon of the highly fluorinated positive photoresist pattern that can be processed with a high fluorine- It is possible to increase the solubility of the highly fluorinated positive photoresist pattern which can be processed with a high fluorine solvent through ultraviolet (UV) front exposure.

또한 패턴 제작을 위해 PAG 등 첨가제와 후속 열처리(post-exposure bake)가 필요 없어 직교공정 중 단분자 유기전자재료 패턴에 대한 화학적 침해성을 최소화하여 유기물 고유의 성능을 유지하는데 유리하다는 장점을 가진다. In addition, since the additive such as PAG and the post-exposure bake are not required for the pattern production, it is advantageous to maintain the inherent performance of the organic material by minimizing the chemical invasion to the pattern of monomolecular organic electronic material during the orthogonal process.

도 1은 고불소화 포지티브형 포토레지스트와 네가티브형 포토레지스트를 이용한 리프트-오프 공정을 개략적으로 나타낸 도면;
도 2는 동일한 포토마스크(photomask)를 사용시 고불소화 네가티브형 포토레지스트(a)와 본 발명인 고불소화 포지티브형 포토레지스트(b)를 사용하였을 때 형성된 패턴 이미지를 나타낸 도면;
도 3은 실시예 1 내지 실시예 3에 따라 합성된 화합물에 자외선(UV) 조사 시 일어나는 주쇄사슬 분해 메카니즘을 나타낸 도면;
도 4는 본 발명의 실시예에 따라 합성된 단량체와, 단량체를 이용하여 중합된 화합물의 1H-NMR 스펙트럼을 나타낸 도면; 및
도 5은 실시예 2에 따라 합성된 화합물을 포함한 고불소화 포지티브형 포토레지스트로부터 HATCN/NPB의 미세패턴 형성과정을 나타낸 도면이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a lift-off process using a highly fluorinated positive photoresist and a negative photoresist;
2 shows a pattern image formed when a high fluorinated negative type photoresist (a) and a highly fluorinated positive type photoresist (b) of the present invention are used when the same photomask is used;
FIG. 3 is a view showing a main chain chain decomposition mechanism occurring upon ultraviolet (UV) irradiation of the compounds synthesized according to Examples 1 to 3; FIG.
4 is a graph showing the 1 H-NMR spectrum of a monomer synthesized according to an embodiment of the present invention and a compound polymerized using a monomer; And
5 is a view showing a process of forming a fine pattern of HATCN / NPB from a highly fluorinated positive type photoresist containing a compound synthesized according to Example 2. FIG.

이하, 본 발명인 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 및 이를 이용한 유기전자소자의 제조방법을 보다 상세하게 설명한다.Hereinafter, a highly fluorinated positive type photoresist capable of being processed with a high fluorine solvent and a method for manufacturing an organic electronic device using the same will be described in detail.

본 발명의 발명자들은 우수한 용해 특성을 갖는 고불소화 포토레지스트에 대해 연구개발 하던 중 고불소화 용제에 대한 용해성을 부여하는 고불소계 단량체와, 자외선 조사 시 고분자 주쇄에 자유라디칼을 형성하여 주쇄절단을 유도하는 기능성 단량체의 공중합을 통하여 합성된 화합물을 고불소화 포지티브형 포토레지스트로 이용함으로써 노광 시 용해도가 증가하여 유기전자재료 패턴을 제작할 때 다른 첨가제와 후속 열처리공정 없이 고불소계 용제와 고불소화 포지티브형 포토레지스트만을 이용하여 미세패턴을 제작할 수 있음을 밝혀내어 본 발명을 완성하였다.The inventors of the present invention have found that a fluorine-containing monomer which imparts solubility to a fluorine-containing solvent during research and development of a fluorine-containing photoresist having excellent solubility characteristics, and a fluorine-containing monomer which forms free radicals in the polymer main chain When the compound synthesized through copolymerization of functional monomers is used as a highly fluorinated positive photoresist, the solubility at the time of exposure is increased. Therefore, when an organic electronic material pattern is produced, only a high fluorine solvent and a high fluorine- The present inventors have completed the present invention.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.The present invention provides a compound represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112018067213125-pat00069
Figure 112018067213125-pat00069

R1은 수소(H) 또는 메틸기(CH3)이고, X는 (CH2)x(CF2)yF[(CH2)x(CF2)yF에서, x와 y는 0 ≤ x ≤ 10, 4 ≤ y ≤ 12의 자연수]이고, R2는 수소(H) 또는 메틸기(CH3)이고,
R3 및 R4 중 어느 하나는 페닐이고, 다른 하나는 페닐 또는 메틸기(CH3)이고,
R5는 수소(H) 또는 메틸기(CH3)이고, Y는 치환 또는 비치환된 C1 내지 C10의 알킬기, 치환 또는 비치환된 C6 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 시클로 알킬기, 또는 치환 또는 비치환된 C1 내지 C10의 축합환계 탄화수소기 중 어느 하나이고, z는 랜덤 공중합(r) 또는 블록 공중합(b) 중 어느 하나를 나타내는 것이고, a, b, 및 c는 단량체의 평균 몰비를 각각 나타낸 것으로서 a : b : c는 (5 ~ 1) : 1 : (1 ~ 0)임.
R 1 is hydrogen (H) or methyl group (CH 3 ), X is (CH 2 ) x (CF 2 ) y F [(CH 2 ) x (CF 2 ) y F, x and y are 0 ≦ x ≦ 10, 4 ≤ y ≤ 12], R 2 is hydrogen (H) or methyl group (CH 3 )
R 3 and R 4 is any one of phenyl, and the other is phenyl or methyl group (CH 3),
R 5 is hydrogen (H) or a methyl group (CH 3 ), Y is a substituted or unsubstituted C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 20 aryl group, a substituted or unsubstituted C 3 to C 20 cycloalkyl groups or substituted or unsubstituted C 1 to C 10 condensed ring hydrocarbon groups, z represents any one of random copolymerization (r) and block copolymerization (b), and a , b and c represent the average molar ratios of the monomers, respectively, and a: b: c is (5-1): 1: (1-0).

상기 화합물은 하기 화학식 2, 화학식 3 및 화학식 5로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The compound may be any one selected from the group consisting of the following chemical formulas (2), (3) and (5), but is not limited thereto.

[화학식 2](2)

Figure 112017096035689-pat00007
Figure 112017096035689-pat00007

상기 화학식 2에서, m 및 n은 각 단량체들의 평균 몰비를 나타낸 것으로서, m : n은 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미하고, In the formula (2), m and n represent an average molar ratio of monomers, wherein m: n is (5-1): 1, r is a random copolymer,

[화학식 3](3)

Figure 112017096035689-pat00008
Figure 112017096035689-pat00008

상기 화학식 3에서, o 및 p는 각 단량체들의 평균 몰비를 나타낸 것으로서, o : p는 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미하고,In the formula (3), o and p represent the average molar ratios of the respective monomers, o: p is (5-1): 1, r is a random copolymer,

삭제delete

삭제delete

삭제delete

[화학식 5][Chemical Formula 5]

Figure 112017096035689-pat00010
Figure 112017096035689-pat00010

상기 화학식 5에서, t 및 u는 각 단량체들의 평균 몰비를 나타낸 것으로서, t : u는 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미한다.In the above formula (5), t and u represent an average molar ratio of monomers, t: u is (5-1): 1, and r is a random copolymer.

구체적으로, 상기 화학식 2로 표시되는 화합물은 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA)와 1,2-Ethanedione, 1,2-diphenyl-, 1-[O-(2-methyl-1-oxo-2-propen-1-yl)oxime] (αBMOMA)를 (5~1) : 1의 몰 비로 랜덤 공중합한 것이다.Specifically, the compound represented by Formula 2 is preferably 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl Methacrylate (FDMA) and 1,2-ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl-1-oxo-2-propen- 1): 1 in terms of molar ratio.

또한 상기 화학식 3으로 표시되는 화합물은 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA)와 1,2-Propanedione, 1-phenyl-, 2-[O-(2-methyl-1-oxo-2-propenyl)oxime] (MPOMA)를 (5~1) : 1의 몰 비로 랜덤 공중합한 것이다.Further, the compound represented by the above-mentioned general formula (3) is preferably 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacryl (FDMA) and 1,2-propanedione, 1-phenyl-, 2- [O- (2-methyl-1-oxo-2-propenyl) oxime] (MPOMA) Random copolymerization.

상기 화학식 5로 표시되는 화합물은 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로옥틸 메타크릴레이트(FOMA)와 1,2-Ethanedione, 1,2-diphenyl-, 1-[O-(2-methyl-1-oxo-2-propen-1-yl)oxime] (αBMOMA)를 (5~1) : 1의 몰 비로 랜덤 공중합한 것이다.The compound represented by the general formula (5) can be produced by reacting 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate (FOMA) with 1,2- Random copolymerization of ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl-1-oxo-2-propen-1-yl) oxime] (αBMOMA) will be.

삭제delete

또한 본 발명은 상기 화합물을 포함하는, 고불소화 포지티브형 포토레지스트를 제공한다.The present invention also provides a highly fluorinated positive type photoresist comprising the compound.

또한 본 발명은 하기 화학식 1로 표시되는 화합물의 제조방법을 제공한다.The present invention also provides a process for preparing a compound represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112018067213125-pat00070
Figure 112018067213125-pat00070

[반응식 1]

Figure 112018067213125-pat00071
[Reaction Scheme 1]
Figure 112018067213125-pat00071

상기 반응식 1을 참조하면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1, 1-2, 및 1-3으로 표시되는 단량체를 공중합한 것이다.Referring to Reaction Scheme 1, the compound represented by Formula 1 is a copolymer of monomers represented by the following Formulas 1-1, 1-2, and 1-3.

삭제delete

[화학식 1-1][Formula 1-1]

Figure 112017096035689-pat00013
Figure 112017096035689-pat00013

상기 화학식 1-1에서, R1은 수소(H) 또는 메틸기(CH3)이고, X는 (CH2)x(CF2)yF[(CH2)x(CF2)yF에서, x와 y는 0 ≤ x ≤ 10, 4 ≤ y ≤ 12의 자연수]이고,In the above formula 1-1, R 1 is hydrogen (H) or methyl (CH 3), X is (CH 2) x (CF 2 ) y F [(CH 2) x (CF 2) y F, x And y is a natural number of 0? X? 10 and 4? Y? 12,

[화학식 1-2]

Figure 112018067213125-pat00072

상기 화학식 1-2에서, R2는 수소(H) 또는 메틸기(CH3)이고, R3 및 R4 중 어느 하나는 페닐이고, 다른 하나는 페닐 또는 메틸기(CH3)이고,
[화학식 1-3][Formula 1-2]
Figure 112018067213125-pat00072

In Formula 1-2, R 2 is hydrogen (H) or methyl (CH 3 ), and either R 3 or R 4 is phenyl and the other is phenyl or methyl (CH 3 )
[Formula 1-3]

삭제delete

삭제delete

삭제delete

Figure 112017096035689-pat00015
Figure 112017096035689-pat00015

상기 화학식 1-3은, R5는 수소(H) 또는 메틸기(CH3)이고, Y는 치환 또는 비치환된 C1 내지 C10의 알킬기, 치환 또는 비치환된 C6 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 시클로 알킬기, 또는 치환 또는 비치환된 C1 내지 C10의 축합환계 탄화수소기 중 어느 하나이고,Wherein R 5 is hydrogen (H) or methyl (CH 3 ), Y is a substituted or unsubstituted C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 20 aryl group , A substituted or unsubstituted C 3 to C 20 cycloalkyl group, or a substituted or unsubstituted C 1 to C 10 condensed ring hydrocarbon group,

상기 화학식 1에서, z는 화학식 1-1, 화학식 1-2, 및 화학식 1-3으로 표시되는 단량체의 중합반응의 종류를 나타낸 것으로서 z는 랜덤 공중합(r) 또는 블록 공중합(b) 중 어느 하나를 나타내는 것이고, a, b, 및 c는 화학식 1-1, 화학식 1-2, 및 화학식 1-3으로 표시되는 단량체의 평균 몰비를 각각 나타낸 것으로서 a : b : c는 (5 ~ 1) : 1 : (1 ~ 0)임.In the above formula (1), z represents the type of polymerization of monomers represented by formulas (1-1), (1-2) and (1-3), and z represents any one of random copolymerization (r) A, b and c represent the average molar ratios of the monomers represented by formulas (1-1), (1-2) and (1-3), respectively, : (1 ~ 0).

상기 화학식 1-1로 표시되는 단량체는 불소계 용제에 용해도를 부여하는 역할을 하는 단량체로서 고불소계 용제에 용해되면서 도포 시 코팅이 된다.The monomer represented by the above formula (1-1) is a monomer which serves to impart solubility to a fluorine-based solvent and is dissolved in a high fluorine-based solvent to be coated upon application.

구체적으로 화학식 1-1로 표시되는 단량체는 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA) 또는 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로옥틸 메타크릴레이트(FOMA) 중 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.Specifically, the monomer represented by Formula 1-1 is 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl methacrylate (FDMA) or 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate (FOMA). But is not limited to.

상기 화학식 1-2로 표시되는 단량체는 자외선 조사 시 고분자 주쇄사슬에 자유라디칼을 생성하여 주쇄의 분해 반응을 가능하게 하는 단량체이다.The monomer represented by Formula 1-2 is a monomer capable of decomposing the main chain by generating free radicals in the main chain of the polymer when irradiated with ultraviolet rays.

구체적으로 화학식 1-2로 표시되는 단량체는 1,2-에탄디온, 1,2-디페닐-, 1-[O-(2-메틸-1-옥소-2-프로펜일)옥심](1,2-Ethanedione, 1,2-diphenyl-, 1-[O-(2-methyl-1-oxo-2-propenyl)oxime]), 1,2-프로판디온, 1-페닐-, 2-[O-(2-메틸-1-옥소-2-프로페닐)옥심](1,2-Propanedione, 1-phenyl-, 2-[O-(2-methyl-1-oxo-2-propenyl)oxime]) 중 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.Specifically, the monomer represented by the general formula (1-2) may be 1,2-ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl- 1 -oxo-2-propenyl) oxime] 2-ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl-1-oxo-2-propenyl) oxime] (2-methyl-1-oxo-2-propenyl) oxime] (1,2-propanedione, But the present invention is not limited thereto.

구체적으로, 도 3은 고불소화 포지티브형 포토레지스트의 주사슬 분해 메카니즘을 나타낸 것이다.Specifically, Fig. 3 shows the main chain decomposition mechanism of the highly fluorinated positive type photoresist.

도 3을 참조하면 화학식 1-2로 표시되는 단량체는 고불소화 포지티브형 포토레지스트에서 용해도 변화에 영향을 주는 단량체로서, 자외선(UV) 조사 시 라디칼 분해되어 절단(scission)됨으로써 용해도가 증가되어 가용성 상태로 전환될 수 있다.Referring to FIG. 3, the monomer represented by the general formula 1-2 is a monomer that affects the solubility change in a highly fluorinated positive type photoresist. When the monomer is scribed by ultraviolet (UV) irradiation, the solubility is increased, . ≪ / RTI >

상기 화학식 1-3으로 표시되는 단량체는 완성된 고분자의 유리전이온도(glass transition temperature; Tg)를 높이기 위한 단량체이다.The monomer represented by Formula 1-3 is a monomer for increasing the glass transition temperature (T g ) of the finished polymer.

구체적으로 화학식 1-3으로 표시되는 단량체는 이소보르닐 메타크릴레이트 (isobornyl methacrylate), 노보닐 메타크릴레이트(norbornyl methacrylate), 메틸 메타크릴레이트(methyl methacrylate) 또는 이소보르닐 아크릴레이트(isobornyl acrylate) 중 어느 하나일 수 있으며, 특히 화학식 1-3에 포함하는 Y의 경우, 이소보르닐(isobornyl), 노보닐(norbornyl), 페닐(phenyl), 또는 메틸(methyl)일 수 있고, 이에 제한되는 것은 아니다.Specifically, the monomer represented by the general formula (1-3) is selected from the group consisting of isobornyl methacrylate, norbornyl methacrylate, methyl methacrylate or isobornyl acrylate, In particular, Y included in formulas 1-3 may be isobornyl, norbornyl, phenyl, or methyl, but is not limited thereto. no.

상기 화합물은 하기 화학식 2, 화학식 3 및 화학식 5로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The compound may be any one selected from the group consisting of the following chemical formulas (2), (3) and (5), but is not limited thereto.

[화학식 2](2)

Figure 112017096035689-pat00016
Figure 112017096035689-pat00016

상기 화학식 2에서 m 및 n은 각 단량체들의 평균 몰비를 나타낸 것으로서, m : n은 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미하고,In the formula (2), m and n represent an average molar ratio of monomers, wherein m: n is (5-1): 1, r is a random copolymer,

[화학식 3](3)

Figure 112017096035689-pat00017
Figure 112017096035689-pat00017

상기 화학식 3에서 o 및 p는 각 단량체들의 평균 몰비를 나타낸 것으로서, o : p는 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미하고,In the above formula (3), o and p represent the average molar ratio of monomers, o: p is (5-1): 1, r is a random copolymer,

[화학식 5][Chemical Formula 5]

삭제delete

삭제delete

삭제delete

Figure 112017096035689-pat00019
Figure 112017096035689-pat00019

상기 화학식 5에서 t 및 u는 각 단량체들의 평균 몰비를 나타낸 것으로서, t : u는 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미한다.In the formula (5), t and u represent an average molar ratio of monomers, t: u is (5-1): 1, and r is a random copolymer.

구체적으로, 상기 화학식 2로 표시되는 화합물은 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA)와 1,2-Ethanedione, 1,2-diphenyl-, 1-[O-(2-methyl-1-oxo-2-propen-1-yl)oxime] (αBMOMA)를 (5~1) : 1의 몰 비로 랜덤 공중합한 것이다.Specifically, the compound represented by Formula 2 is preferably 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl Methacrylate (FDMA) and 1,2-ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl-1-oxo-2-propen- 1): 1 in terms of molar ratio.

또한 상기 화학식 3으로 표시되는 화합물은 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA)와 1,2-Propanedione, 1-phenyl-, 2-[O-(2-methyl-1-oxo-2-propenyl)oxime] (MPOMA)를 (5~1) : 1의 몰 비로 랜덤 공중합한 것이다.Further, the compound represented by the above-mentioned general formula (3) is preferably 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacryl (FDMA) and 1,2-propanedione, 1-phenyl-, 2- [O- (2-methyl-1-oxo-2-propenyl) oxime] (MPOMA) Random copolymerization.

상기 화학식 5로 표시되는 화합물은 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로옥틸 메타크릴레이트(FOMA)와 1,2-Ethanedione, 1,2-diphenyl-, 1-[O-(2-methyl-1-oxo-2-propen-1-yl)oxime] (αBMOMA)를 (5~1) : 1의 몰 비로 랜덤 공중합한 것이다.The compound represented by the general formula (5) can be produced by reacting 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate (FOMA) with 1,2- Random copolymerization of ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl-1-oxo-2-propen-1-yl) oxime] (αBMOMA) will be.

삭제delete

상기 화학식 2, 화학식 3 또는 화학식 5로 표시되는 화합물은 다른 첨가제가 필요없이 단독으로 자외선(UV) 조사 조건 하에서 주쇠사슬분해 작동원리에 의해 용해도가 증가되어 가용성 상태로 전환될 수 있다.The compound represented by the above formula (2), (3) or (5) can be converted to a soluble state by solubility by the principle of decomposition of the main chain under ultraviolet (UV) irradiation conditions without the need for other additives.

또한 본 발명은 기판 상부에 상기 고불소화 포지티브형 포토레지스트를 포함한 용액을 도포하는 단계; 상기 고불소화 포지티브형 포토레지스트가 도포된 기판 상에 자외선을 노광한 후 노광부를 현상액으로 현상하여 고불소화 포지티브형 포토레지스트 패턴을 형성하는 단계; 및 상기 형성된 패턴 상에 정공주입층과 정공수송층을 열 진공증착한 후 리프트-오프 공정을 진행하여 정공주입층과 정공수송층으로 이루어진 미세패턴을 형성하는 단계를 포함하는, 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조방법을 제공한다.The present invention also provides a method of manufacturing a semiconductor device, comprising: applying a solution containing the highly fluorinated positive type photoresist on a substrate; Exposing the substrate coated with the highly fluorinated positive photoresist to ultraviolet light, and developing the exposed portion with a developer to form a highly fluorinated positive photoresist pattern; And forming a fine pattern of a hole injection layer and a hole transport layer by performing a lift-off process after thermally vacuum-depositing a hole injection layer and a hole transport layer on the formed pattern, thereby forming a highly fluorinated positive type photoresist The present invention also provides a method for producing a fine pattern using the same.

상기 정공주입층은 1,4,5,8,9,11-헥사아자트리페닐렌-헥사니트릴 (1,4,5,8,9,11-hexaazatriphenylene-hexanitrile), 4,4′,4″-트리스[페닐(m-톨릴)아미노]트리페닐아민(4,4′,4″-Tris[phenyl(m-tolyl)amino]triphenylamine), 및 2,3,5,6-테트라플루오로-7,7,8,8-테트라시아노퀴노디메탄 (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The hole-injecting layer may be formed of at least one selected from the group consisting of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (1,4,5,8,9,11-hexaazatriphenylene-hexanitrile), 4,4 ' -Tris [phenyl (m-tolyl) amino] triphenylamine), and 2,3,5,6-tetrafluoro-7 , And 7,8,8-tetracyanoquinodimethane (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane), but the present invention is not limited thereto .

상기 정공수송층은 N,N′-다이(나프탈렌-1-일)-N,N′-바이페닐-벤지딘(N,N′-di(naphthalene-1-yl)-N,N′-biphenyl-benzidine), 트리스(4-카바조일-9-일페닐)아민(Tris(4-carbazoyl-9-ylphenyl)amine), 및 N,N′-비스(3-메틸페닐)-N,N′-디페닐벤지딘(N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine)으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The hole transport layer may be formed of a material selected from the group consisting of N, N'-di (naphthalen-1-yl) -N, N'-biphenyl-benzidine ), Tris (4-carbazoyl-9-ylphenyl) amine, and N, N'-bis (3-methylphenyl) -N, N'-diphenylbenzidine (N, N'-bis (3-methylphenyl) -N, N'-diphenylbenzidine).

상기 리프트-오프 공정은 상기 형성된 패턴 상에 정공주입층과 정공수송층을 열 진공증착한 후 고불소계 용제로 제1 리프트-오프 공정을 진행하는 단계, 및 제1 리프트-오프 공정 이후 고불소계 용제 내에서 음파를 이용하여 제2 리프트-오프 공정을 진행하는 단계를 포함할 수 있으며, 이에 제한되는 것은 아니다.The lift-off process may include a step of thermally vacuum-depositing a hole injection layer and a hole transport layer on the formed pattern, followed by a first lift-off process with a high fluorine-based solvent, and a second lift- The second lift-off process may be performed using a sound wave in the second lift-off process, but the present invention is not limited thereto.

상기 미세패턴은 평균 크기가 1 내지 1000 ㎛일 수 있으며, 이에 제한되는 것은 아니다.The fine pattern may have an average size of 1 to 1000 mu m, but is not limited thereto.

또한 본 발명은 투명 전극 상에 정공주입층 및 정공수송층을 열 진공증착하는 단계(제1단계); 상기 정공주입층 및 정공수송층이 증착된 투명 전극 상에 상기 고불소화 포지티브형 포토레지스트를 포함한 용액을 도포하는 단계(제2단계); 상기 포토레지스트 용액이 도포된 전극을 노광한 후, 노광부를 현상액으로 용해시켜 포지티브형 패턴을 투명 전극 상에 형성하는 단계(제3단계); 및 상기 형성된 포지티브형 패턴 상에 발광층을 증착한 후, 전자수송층, 전자 주입층, 및 금속 전극을 추가적으로 열 진공증착하는 단계(제4단계)를 포함하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법을 제공한다.The present invention also provides a method of manufacturing a thin film transistor, comprising: (1) a step of thermally vacuum depositing a hole injection layer and a hole transport layer on a transparent electrode; Applying a solution containing the highly fluorinated positive photoresist on the transparent electrode on which the hole injection layer and the hole transport layer are deposited (second step); Exposing the electrode coated with the photoresist solution, and dissolving the exposed portion with a developing solution to form a positive pattern on the transparent electrode (third step); And a step of further subjecting the electron transport layer, the electron injection layer, and the metal electrode to thermal vacuum deposition after depositing a light emitting layer on the formed positive pattern (fourth step). A device manufacturing method is provided.

상기 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법은 제2단계 내지 제4단계를 2 내지 4회 반복수행 할 수 있으며, 이에 제한되는 것은 아니다.The method for fabricating an organic electronic device using the highly fluorinated positive photoresist may be repeated two to four times, but is not limited thereto.

본 발명의 일 실시예로서, 상기 제2단계 내지 제4단계를 2회 내지 4회 반복수행할 경우, 2색 내지 4색 화소를 포함하는 유기전자소자를 제조할 수 있고, 상기 방법은 유기전자소자 제조 이외에 유기물 전자재료를 이용하여 구성가능한 소자의 제작에도 적용할 수 있다. According to an embodiment of the present invention, when the second to fourth steps are repeated two to four times, an organic electronic device including two to four color pixels can be manufactured, In addition to device fabrication, it can be applied to fabrication of configurable devices using organic electronic materials.

상기 투명 전극은 투명 금속 산화물 전극, 전도성 고분자 박막, 탄소나노튜브 박막, 금속나노와이어 박막, 또는 그래핀 박막 중 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The transparent electrode may be a transparent metal oxide electrode, a conductive polymer thin film, a carbon nanotube thin film, a metal nanowire thin film, or a graphene thin film, but is not limited thereto.

상기 투명 금속 산화물 전극은 상기 투명 금속 산화물 전극은 인듐주석산화물, 불소가 도핑된 산화주석, 및 산화아연으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.In the transparent metal oxide electrode, the transparent metal oxide electrode may be any one selected from the group consisting of indium tin oxide, fluorine-doped tin oxide, and zinc oxide, but is not limited thereto.

상기 전도성 고분자는 폴리-3,4-에틸렌디옥시티오펜/폴리스티렌설포네이트(PEDOT/PSS), 폴리아닐린, 폴리아세틸렌 및 폴리페닐렌비닐렌으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The conductive polymer may be any one selected from the group consisting of poly-3,4-ethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), polyaniline, polyacetylene and polyphenylene vinylene, but is not limited thereto .

상기 금속나노와이어는 금나노와이어, 은나노와이어, 구리나노와이어, 니켈나노와이어, 철나노와이어, 코발트나노와이어, 아연나노와이어, 크롬나노와이어 및 망간나노와이어로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The metal nanowire may be any one selected from the group consisting of gold and silver nanowires, silver nanowires, copper nanowires, nickel nanowires, iron nanowires, cobalt nanowires, zinc nanowires, chromium nanowires, and manganese nanowires. But is not limited to.

또한 본 발명은 상기 방법으로 제조된 것인, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자를 제공한다.Further, the present invention provides an organic electronic device using a highly fluorinated positive photoresist, which is produced by the above method.

상기 유기전자소자는 유기발광다이오드, 유기박막트렌지스터, 유기발광트렌지스터, 및 유기태양전지로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The organic electronic device may be any one selected from the group consisting of an organic light emitting diode, an organic thin film transistor, an organic light emitting transistor, and an organic solar cell, but is not limited thereto.

이하, 하기 실시예에 의해 본 발명인 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 및 이를 이용한 유기전자소자의 제조방법을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, a fluorine-containing positive photoresist capable of being processed with a high fluorine-based solvent according to the present invention and a method for producing an organic electronic device using the same will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> P(FDMA-r-αBMOMA) 화합물의 합성(중합시 FDMA 단량체와 αBMOMA 단량체의 몰비, m : n = 4 : 1)Example 1 Synthesis of P (FDMA-r-αBMOMA) Compound (Molar ratio of FDMA monomer to αBMOMA monomer during polymerization, m: n = 4: 1)

1. 1,2-에탄디온, 1,2-디페닐-, 1-[O-(2-메틸-1-옥소-2-프로펜일)옥심](1,2-Ethanedione, 1,2-diphenyl-, 1-[O-(2-methyl-1-oxo-2-propenyl)oxime]; 이하 'αBMOMA')의 합성1. 1,2-ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl-1-oxo-2-propenyl) oxime] -, 1- [O- (2-methyl-1-oxo-2-propenyl) oxime]; hereinafter referred to as "αBMOMA"

[반응식 2][Reaction Scheme 2]

Figure 112017096035689-pat00020
Figure 112017096035689-pat00020

(1) α-벤질모노옥심(α-benzilmonoxime; α-BMO) 합성(1) Synthesis of? -Benzylmonoxime (? -BMO) Synthesis of?

상기 반응식 2를 참조하면, 상온(25℃)에서 에탄올(40 cm3)에 벤질(Benzil, 4.3 g, 20.45 mmol), 아세트산나트륨(sodium acetate, 3.0 g), 및 히드록실아민 히드로클로라이드(hydroxylamine hydrochloride, 1.4 g)을 첨가하여 혼합용액을 생성하였다.Referring to Reaction Scheme 2, benzyl (4.3 g, 20.45 mmol), sodium acetate (3.0 g), and hydroxylamine hydrochloride were added to ethanol (40 cm 3 ) at room temperature , 1.4 g) was added to produce a mixed solution.

혼합용액을 환류하여 90℃까지 가열하였고, 3시간 동안 교반하였다.The mixed solution was refluxed, heated to 90 ° C, and stirred for 3 hours.

이후 상온(25℃)까지 냉각하고, 에틸아세테이트를 첨가하여 희석시킨 후 물로 2번 세척하여 형성된 유기층을 제거하였다.The mixture was cooled to room temperature (25 캜), diluted with ethyl acetate and washed twice with water to remove the organic layer formed.

산마그네슘(MgSO4)을 이용하여 용액을 건조시키고, 감압 하에 조생성물(crude procut)을 농축시켰다.The solution was dried with magnesium sulfate (MgSO 4 ) and the crude product was concentrated under reduced pressure.

농축된 조생성물(crude procut)을 헥산에 재침전시켜 흰색 고체인 αBMO을 수득하였고(수율: 78%, 3.6 g), 1H-NMR 데이터는 도 4a에 나타내었다.The concentrated crude product was reprecipitated in hexane to give? -BMO as a white solid (yield: 78%, 3.6 g), and 1 H-NMR data is shown in FIG.

(2) αBMOMA의 합성(2) Synthesis of αBMOMA

상기 반응식 2를 참조하면, 상온(25℃)에서 디클로로메탄(ichloromethane; 이하 'DCM', 100 cm3)에 αBMO(3 g, 13.3 mmol)와 트리에틸아민(triethyl amine; 이하 'TEA', 2.7 g, 26.6 mmol)을 첨가하여 혼합용액을 생성하였다.Referring to Reaction Scheme 2, αBMO (3 g, 13.3 mmol) and triethylamine (hereinafter referred to as "TEA") were added to dichloromethane (DCM, 100 cm 3 ) at room temperature (25 ° C.) g, 26.6 mmol) was added to form a mixed solution.

이후 0℃에서 혼합용액에 메타아크릴클로라이드(Methacryloyl chloride; 이하 'MAC', 2.8 g, 26.6 mmol)를 천천히 적하하여 혼합용액을 생성하였고, 상온(25℃)까지 가열하였다.Methacryloyl chloride (hereinafter referred to as 'MAC', 2.8 g, 26.6 mmol) was slowly added dropwise to the mixed solution at 0 ° C. to prepare a mixed solution, which was then heated to room temperature (25 ° C.).

상온에서 4시간 동안 혼합용액을 교반한 후 형성된 유기층을 분리하기 위해 1 N 염산(HCl)을 첨가하여 반응을 종료하였다.After stirring the mixture solution at room temperature for 4 hours, 1N hydrochloric acid (HCl) was added to complete the reaction.

이후 황산마그네슘(MgSO4)을 이용하여 건조하였고, 진공 하에서 용매를 증발시켜 조생성물을 얻었다.Subsequently, the reaction product was dried using magnesium sulfate (MgSO 4 ), and the solvent was evaporated under vacuum to obtain a crude product.

실리카겔을 이용한 플레쉬 컬럼 크로마토그래피(Flash column chromatography)을 수행(DCM : 헥산 = 2 : 1)하여 조생성물(crude product)을 정제하여 녹색 고체인 αBMOMA를 얻었고(수율: 84%, 3.3 g), 1H-NMR 데이터는 도 4b에 나타내었다.Performing a flash column chromatography (Flash column chromatography) using silica gel (DCM: hexane = 2: 1) to obtained a green solid αBMOMA Purification of the crude product (crude product) (Yield: 84%, 3.3 g), 1 The 1 H-NMR data are shown in FIG. 4B.

1H-NMR(400 MHz, CDCl3, d) = 7.94(2H, d, J = 7.5 Hz), 7.75(2H, d, J = 7.5 Hz), 7.54-7.34(6H, m), 5.72(1H, s), 5.41(1H, s), 1.69(3H, s). 1 H-NMR (400 MHz, CDCl 3, d) = 7.94 (2H, d, J = 7.5 Hz), 7.75 (2H, d, J = 7.5 Hz), 7.54-7.34 (6H, m), 5.72 (1H , &lt; / RTI &gt; s), 5.41 (1H, s), 1.69 (3H, s).

2. 사슬 이동제(Chain trasnfer agent; CTA) 합성2. Synthesis of Chain trasnfer agent (CTA)

[반응식 3][Reaction Scheme 3]

Figure 112017096035689-pat00021
Figure 112017096035689-pat00021

1)비스-도데실설파닐티오카보닐디설파이드[Bis-(dodecylsulfanylthiocarbonyl) disulfide]의 합성1) Synthesis of bis-dodecylsulfanyl thiocarbonyl disulfide [Bis- (dodecylsulfanylthiocarbonyl) disulfide]

둥근 플라스크에 테트라하이드로퓨란(Tetrahydrofuran; 이하 'THF', 25 cm3)에 녹인 포타슘 터트-부톡사이드(2.77 g, 24.70 mmol)와 n-헵탄(100 cm3)을 넣고 5℃에서 투명한 용액이 될 때까지 교반하였다. Potassium tert-butoxide (2.77 g, 24.70 mmol) and n-heptane (100 cm 3 ) dissolved in tetrahydrofuran (THF) (25 cm 3 ) were added to a round flask, Lt; / RTI &gt;

그 후 도데칸티올(Dodecane thiol, 5.00 g, 24.70 mmol)을 30분 동안 5℃에서 천천히 투입하여 흰색 슬러리 형태로 변하였다. 흰색 슬러리에 이황화탄소(1.88 g, 24.70 mmol)를 5℃에서 20분 동안 천천히 투입한 후 10분 동안 추가적으로 교반하였다.Dodecane thiol (5.00 g, 24.70 mmol) was then slowly added over 30 minutes at 5 &lt; 0 &gt; C to form a white slurry. Carbon disulfide (1.88 g, 24.70 mmol) was added slowly to the white slurry at 5 &lt; 0 &gt; C for 20 minutes and then further stirred for 10 minutes.

상온에서 4시간 동안 교반한 후에 아이오딘(3.13 g, 12.35 mmol)을 40분 동안 조금씩 투입한 후 15시간 동안 추가적으로 교반하였다.After stirring at room temperature for 4 hours, iodine (3.13 g, 12.35 mmol) was added portionwise over 40 minutes and further stirred for 15 hours.

반응이 완료된 후, 물(100 cm3)을 넣어 유기용매 층을 분리하였고, 분리한 유기용매 층은 티오황산나트륨(Na2S2O3) 수용액(50 cm3), 염화나트륨 포화수용액(100 cm3)을 이용하여 세척하고, 황산마그네슘(MgSO4)을 이용하여 수분을 제거하였다.After completion of the reaction, water put was separated organic layer, separating the organic solvent layer with sodium thiosulfate to (100 cm 3) (Na 2 S 2 O 3) solution (50 cm 3), saturated aqueous sodium chloride solution (100 cm 3 ), And water was removed using magnesium sulfate (MgSO 4 ).

반응이 끝난 합성물을 정제하여 노란색 고체인 비스-도데실설파닐티오카보닐디설파이드를 수득하였다(수율: 94%, 6.448 g, 11.6 mmol).The reaction mixture was purified to obtain a yellow solid of bis-dodecylsulfanyl thiocarbonyl disulfide (yield: 94%, 6.448 g, 11.6 mmol).

2) 사슬 이동제인 4-시아노-4-(도데실설파닐티오카보닐)설파닐 펜탄산[4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid](이하 'CDSTSP')의 합성2) Synthesis of 4-cyano-4- (dodecylsulfanylthiocarbonyl) sulfanyl pentanoic acid (hereinafter referred to as 'CDSTSP') which is a chain transfer agent [4-cyano-4- (dodecylsulfanylthiocarbonyl) sulfanylpentanoic acid]

앞서 합성한 비스-도데실설파닐티오카보닐디설파이드(2.78 g, 5.008 mmol)를 둥근 플라스크에 넣고 에틸 아세테이트(30 cm3)에 용해시켰다. The previously synthesized bis-dodecylsulfanyl thiocarbonyl disulfide (2.78 g, 5.008 mmol) was dissolved in ethyl acetate (30 cm 3 ) in a round flask.

상기 용액에 4,4′-아조비스(4-시아노발레르산)[4,4′-Azobis(4-cyanovaleric acid), 0.79 g, 2.84 mmo]을 투입한 후 80℃에서 1시간 동안 교반하고 상온까지 냉각하였다. 4,4'-Azobis (4-cyanovaleric acid) (0.79 g, 2.84 mmol) was added to the solution, followed by stirring at 80 ° C for 1 hour And then cooled to room temperature.

그 후, 다시 4,4′-아조비스(4-시아노발레르산)(0.79 g, 2.84 mmol)을 투입하고 식히는 과정을 2번 더 반복하였다. Thereafter, the process of adding 4,4'-azobis (4-cyanovaleric acid) (0.79 g, 2.84 mmol) and cooling was repeated two more times.

이와 같이 제조된 합성물을 n-헵탄을 이용하여 재결정한 후, 여과하여 건조시킴으로써 CDSTSP를 수득하였다(수율: 80%, 2.58 g, 6.41 mmol).The thus-prepared compound was recrystallized using n-heptane, followed by filtration and drying to obtain CDSTSP (yield: 80%, 2.58 g, 6.41 mmol).

3. 화학식 2로 표시되는 P(FDMA-r-αBMOMA) 화합물의 합성(중합시 FDMA 단량체와 αBMOMA 단량체의 몰비, m : n = 4 : 1)합성3. Synthesis of P (FDMA-r-αBMOMA) compound represented by Formula 2 (molar ratio of FDMA monomer to αBMOMA monomer in polymerization, m: n = 4: 1)

[반응식 4][Reaction Scheme 4]

Figure 112017096035689-pat00022
Figure 112017096035689-pat00022

상기 반응식 4를 참조하면, 단량체에 들어있는 중합 억제제의 제거를 위해 산화알루미늄 컬럼을 통과시킨 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-헵타데카플루오로데실 메타아크릴레이트 (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-Heptadecafluorodecyl Methacrylate; 이하 'FDMA', 2.2 g) 및 αBMOMA(0.3 g)와, 용매로 사용되는 고불소계 용제인 α,α,α-트리플루오로톨루엔(α,α,α-trifluorotoluene; 이하 'TFT', 1.5 cm3)과 THF(1.5 cm3)를 쉬링크 튜브(Schlenk tube, 25 cm3)에 담아 질소가스로 버블링하였다.Referring to Scheme 4, in order to remove the polymerization inhibitor contained in the monomer, 3,3,4,4,5,5,6,6,7,7,8,8,9,9 , 10,10-heptadecafluorodecyl methacrylate (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-Heptadecafluorodecyl Methacrylate ?,? -Trifluorotoluene (hereinafter referred to as 'TFT', 1.5 cm 3 ) was used as a solvent, and 0.5 g of 'FDMA', 2.2 g) and αBMOMA (0.3 g) ) And THF (1.5 cm 3 ) were placed in a Schlenk tube (25 cm 3 ) and bubbled with nitrogen gas.

쉬링크 튜브에 아조비스이소부티로니트릴(Azobisisobutyronitrile; 이하 'AIBN', 8.4 mg)과 CDSTSP(41.1 mg)을 투입하였다. 쉬링크 튜브를 잘 밀봉한 후, 진공펌프와 질소가스를 이용하여 내부를 질소가스 분위기로 바꾸어 주었다.Azobisisobutyronitrile (hereinafter referred to as 'AIBN', 8.4 mg) and CDSTSP (41.1 mg) were added to the shrink tube. After shrinking the shrink tube well, the atmosphere was changed to a nitrogen gas atmosphere using a vacuum pump and nitrogen gas.

질소가스로 버블링한 단량체와 용매를 넣고 동결-융해주기(Freeze-thaw cycle)를 통해 질소 치환을 하였고, 질소 치환을 끝낸 용액은 질소 조건 하에서, 70℃에서 12시간 동안 교반하였다.The monomer bubbled with nitrogen gas and the solvent were put into the flask and the flask was purged with nitrogen through a freeze-thaw cycle. The purged nitrogen solution was stirred at 70 ° C for 12 hours under a nitrogen atmosphere.

반응종료 후, 헥산을 이용하여 침전시키고, 진공 오븐에서 용매를 제거하여, 흰색 고체인 하기 화학식 2로 표시되는 P(FDMA-r-αBMOMA) 화합물을 합성하였고(수율: 88%, 2.2 g), 1H-NMR 데이터는 도 4c에 나타내었다.After completion of the reaction, the reaction mixture was precipitated with hexane and the solvent was removed in a vacuum oven to obtain P (FDMA-r-αBMOMA) (yield: 88%, 2.2 g) The 1 H-NMR data is shown in FIG. 4C.

[화학식 2](2)

Figure 112017096035689-pat00023
Figure 112017096035689-pat00023

<실시예 2> P(FDMA-r-αBMOMA) 화합물의 합성(중합시 FDMA 단량체와 αBMOMA 단량체의 몰비, m : n = 2 : 1)Example 2 Synthesis of P (FDMA-r-αBMOMA) Compound (Molar ratio of FDMA monomer to αBMOMA monomer during polymerization, m: n = 2: 1)

FDMA(1.1 g), AIBN(4.2 mg), 및 CDSTSP(20.6 mg)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 하기 화학식 2로 표시되는 P(FDMA-r-αBMOMA) 화합물을 합성하였고(수율: 80%, 1.1 g), 1H-NMR 데이터는 도 4d에 나타내었다.P (FDMA-r-αBMOMA) compound represented by the following formula 2 was synthesized under the same conditions as in Example 1 except that FDMA (1.1 g), AIBN (4.2 mg), and CDSTSP (Yield: 80%, 1.1 g). &Lt; 1 &gt; H-NMR data is shown in Fig.

[화학식 2](2)

Figure 112017096035689-pat00024
Figure 112017096035689-pat00024

<실시예 3> P(FDMA-r-αBMOMA) 화합물의 합성(중합시 FDMA 단량체와 αBMOMA 단량체의 몰비, m : n = 1.33 : 1)Example 3 Synthesis of P (FDMA-r-αBMOMA) Compound (Molar ratio of FDMA monomer to αBMOMA monomer during polymerization, m: n = 1.33: 1)

FDMA 1.0 g, AIBN 3.7 mg, 및 CDSTSP 18.3 mg을 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 하기 화학식 2로 표시되는 P(FDMA-r-αBMOMA) 화합물을 합성하였고(수율: 88%, 1.2 g), 1H-NMR 데이터는 도 4e에 나타내었다.(Yield: 88%) was synthesized under the same conditions as in Example 1 except that 1.0 g of FDMA, 3.7 mg of AIBN and 18.3 mg of CDSTSP were used, 1.2 g), and 1 H-NMR data is shown in Fig. 4 (e).

[화학식 2](2)

Figure 112017096035689-pat00025
Figure 112017096035689-pat00025

<실시예 4> P(FDMA-r-MPOMA) 화합물의 합성(중합시 FDMA 단량체와 MPOMA 단량체의 몰비, o : p = 2 : 1)Example 4 Synthesis of P (FDMA-r-MPOMA) Compound (molar ratio of FDMA monomer to MPOMA monomer at polymerization, o: p = 2: 1)

1. 1,2-프로판디온, 1-페닐-, 2-[O-(2-메틸-1-옥소-2-프로페닐)옥심](1,2-Propanedione, 1-phenyl-, 2-[O-(2-methyl-1-oxo-2-propenyl)oxime]; 이하 'MPOMA')의 합성1, 2-propanedione, 1-phenyl-, 2- [O- (2-methyl- Synthesis of O- (2-methyl-1-oxo-2-propenyl) oxime]

[반응식 5][Reaction Scheme 5]

Figure 112017096035689-pat00026
Figure 112017096035689-pat00026

상기 반응식 5를 참조하면, 상온(25℃)에서 DCM(100 cm3)에 2-이소니트로소프로피오페논(2-Isonitrosopropiophenone; 이하 'ISNP' 5 g, 30.6 mmol)과 TEA(6.20 g, 61.3 mmol)을 첨가하여 혼합용액을 생성하였다.Referring to Scheme 5, 2-isonitrosopropiophenone (ISNP 5 g, 30.6 mmol) and TEA (6.20 g, 61.3 mmol) were added to DCM (100 cm 3 ) at room temperature mmol) was added to prepare a mixed solution.

이후 0℃에서 혼합용액에 MAC(6.40 g, 61.3 mmol)를 천천히 적하하여 혼합용액을 생성하였고, 상온(25℃)까지 가열하였다.Then, MAC (6.40 g, 61.3 mmol) was slowly added dropwise to the mixed solution at 0 ° C. to prepare a mixed solution, which was then heated to room temperature (25 ° C.).

상온(25℃)에서 12시간 동안 혼합용액을 교반한 후 형성된 유기층을 분리하기 위해 1 N 염산(HCl)을 첨가하여 반응을 종료하였다.After the mixed solution was stirred at room temperature (25 ° C) for 12 hours, 1 N hydrochloric acid (HCl) was added to complete the reaction.

이후 황산마그네슘(MgSO4)을 이용하여 건조하였고, 진공 하에서 용매를 증발시켜 조생성물을 얻었다.Subsequently, the reaction product was dried using magnesium sulfate (MgSO 4 ), and the solvent was evaporated under vacuum to obtain a crude product.

실리카겔을 이용한 플레쉬 컬럼 크로마토그래피(Flash column chromatography)을 수행(에틸아세테이트 : 헥산 = 1 : 5)하여 조생성물(crude product)을 정제하여 무색 고체인 MPOMA를 얻었고(수율: 86%, 6.1 g), MPOMA(C13H13NO3)에 필요한 탄소(67.5%), 수소(5.7%), 및 질소(6.06%)의 원소비율과 상응하는 값을 얻을 수 있었고(탄소(66.5), 수소(5.8%), 및 질소(5.95%)), 1H-NMR 데이터는 도 4f에 나타내었다.The crude product was purified by flash column chromatography using silica gel (ethyl acetate: hexane = 1: 5) to obtain MPOMA (yield: 86%, 6.1 g) as a colorless solid. (66.5%), hydrogen (5.8%), hydrogen (5.7%) and nitrogen (6.06%) required for MPOMA (C 13 H 13 NO 3 ) ), And nitrogen (5.95%)), and 1 H-NMR data is shown in Fig.

1H-NMR(400 MHz, CDCl3, d) = 8.13(2H, d, J = 8 Hz), 7.58(1H, t, J = 8 Hz), 7.46(2H, t, J = 8 Hz), 6.24(1H, s), 5.73(1H, s), 2.31(3H, s), 2.04(3H, s). 1 H-NMR (400 MHz, CDCl 3, d) = 8.13 (2H, d, J = 8 Hz), 7.58 (1H, t, J = 8 Hz), 7.46 (2H, t, J = 8 Hz), 6.24 (1H, s), 5.73 (1H, s), 2.31 (3H, s), 2.04 (3H, s).

13C-NMR(100 MHz, CDCl3, d) = 12.99, 18.34, 25.35, 30.81, 127.25, 128.46, 130.99, 133.88, 134.74, 134.89, 161.89, 163.68, 189.98. 13 C-NMR (100 MHz, CDCl 3 , d) = 12.99, 18.34, 25.35, 30.81, 127.25, 128.46, 130.99, 133.88, 134.74, 134.89, 161.89, 163.68, 189.98.

2. P(FDMA-r-MPOMA) 화합물의 합성(중합시 FDMA 단량체와 MPOMA 단량체의 몰비, o : p = 2 : 1)2. Synthesis of P (FDMA-r-MPOMA) compound (molar ratio of FDMA monomer to MPOMA monomer in polymerization, o: p = 2: 1)

[반응식 6][Reaction Scheme 6]

Figure 112017096035689-pat00027
Figure 112017096035689-pat00027

FDMA 2.0 g, MPOMA 0.43 g, AIBN 20 mg 및 TFT 단일 용제 4 cm3를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 조건으로 하기 화학식 3으로 표시되는 P(FDMA-r-MPOMA) 화합물을 합성하였고(수율: 95%, 2.3 g), 1H-NMR 데이터는 도 4g에 나타내었다.(FDMA-r-MPOMA) compound represented by the following formula 3 was synthesized under the same conditions as in Example 1 except that 2.0 g of FDMA, 0.43 g of MPOMA, 20 mg of AIBN and 4 cm 3 of a TFT single solvent were used. (Yield: 95%, 2.3 g). &Lt; 1 &gt; H-NMR data is shown in Fig. 4g.

[화학식 3](3)

Figure 112017096035689-pat00028
Figure 112017096035689-pat00028

<실시예 5> P(FDMA-r-MPOMA) 화합물의 합성(중합시 FDMA 단량체와 MPOMA 단량체의 몰비, o : p = 1.33: 1)Example 5 Synthesis of P (FDMA-r-MPOMA) Compound (molar ratio of FDMA monomer to MPOMA monomer at polymerization, o: p = 1.33: 1)

FDMA 2.0 g, MPOMA 0.65 g, AIBN 20 mg, TFT 단일 용제 4 cm3를 사용한 것을 제외하고는 상기 실시예 3과 동일한 조건으로 하기 화학식 3으로 표시되는 P(FDMA-r-MPOMA) 고불소화 포지티브형 포토레지스트를 합성하였고(수율: 91%, 2.4 g), 1H-NMR 데이터는 도 4h에 나타내었다.(FDMA-r-MPOMA) highly fluorinated positive type (represented by the following Formula 3) was obtained under the same conditions as Example 3, except that 2.0 g of FDMA, 0.65 g of MPOMA, 20 mg of AIBN and 4 cm 3 of a TFT single solvent were used. A photoresist was synthesized (yield: 91%, 2.4 g), and 1 H-NMR data is shown in FIG. 4 h.

[화학식 3](3)

Figure 112017096035689-pat00029
Figure 112017096035689-pat00029

<실시예 6> P(FDMA-r-OMBA) 화합물의 합성(중합시 FDMA 단량체와 OMBA 단량체의 몰비, q : r = 2 : 1)Example 6 Synthesis of P (FDMA-r-OMBA) Compound (molar ratio of FDMA monomer to OMBA monomer during polymerization, q: r = 2: 1)

1. 2.3-부탄디온, 2-[O-(2-메틸-1-옥소-2-프로페닐)옥심](2,3-Butanedione, 2-[O-(2-methyl-1-oxo-2-propenyl)oxime], 이하 'OMBA') 합성1. Preparation of 2,3-butanedione, 2- [O- (2-methyl-1-oxo-2-propenyl) oxime] -propenyl) oxime], hereinafter 'OMBA') Synthesis

[반응식 7][Reaction Scheme 7]

Figure 112017096035689-pat00030
Figure 112017096035689-pat00030

상기 반응식 7을 참조하면, 상온(25℃)에서 DCM(100 cm3)에 부타디온 모노옥심(butadione monoxime; 이하 'BDM', 5 g, 49.4 mmol)과 TEA(10.01 g, 98.9 mmol)을 첨가하여 혼합용액을 생성하였다.Referring to Scheme 7, butadione monoxime (BDM ', 5 g, 49.4 mmol) and TEA (10.01 g, 98.9 mmol) were added to DCM (100 cm 3 ) at room temperature To prepare a mixed solution.

이후 0℃에서 혼합용액에 MAC(10.34 g, 98.9 mmol)를 천천히 적하하여 혼합용액을 생성하였고, 상온(25℃)까지 가열하였다.Then, MAC (10.34 g, 98.9 mmol) was slowly added dropwise to the mixed solution at 0 ° C. to prepare a mixed solution, which was then heated to room temperature (25 ° C.).

상온에서 12시간 동안 혼합용액을 교반한 후 형성된 유기층을 분리하기 위해 1 N 염산(HCl)을 첨가하여 반응을 종료하였다.After stirring the mixture solution at room temperature for 12 hours, 1 N hydrochloric acid (HCl) was added to complete the reaction.

이후 황산마그네슘(MgSO4)을 이용하여 건조하였고, 진공 하에서 용매를 증발시켜 조생성물을 얻었다.Subsequently, the reaction product was dried using magnesium sulfate (MgSO 4 ), and the solvent was evaporated under vacuum to obtain a crude product.

실리카겔을 이용한 플레쉬 컬럼 크로마토그래피(Flash column chromatography)을 수행(에틸아세테이트 : 헥산 = 1 : 5)하여 조생성물(crude product)을 정제하여 무색 고체인 OMBA를 얻었고(수율: 67%, 5.6 g), 1H-NMR 데이터는 도 4i에 나타내었다.The crude product was purified by flash column chromatography using silica gel (ethyl acetate: hexane = 1: 5) to obtain a colorless solid OMBA (yield: 67%, 5.6 g) The 1 H-NMR data are shown in FIG. 4I.

1H-NMR(400 MHz, CDCl3, d) = 6.22(1H, s), 5.72(1H, s), 2.51(3H, s), 2.09(3H, s), 2.02 (3H, s). 1 H-NMR (400 MHz, CDCl 3, d) = 6.22 (1H, s), 5.72 (1H, s), 2.51 (3H, s), 2.09 (3H, s), 2.02 (3H, s).

2. P(FDMA-r-OMBA) 화합물의 합성(중합시 FDMA 단량체와 OMBA 단량체의 몰비, q : r = 2 : 1)2. Synthesis of P (FDMA-r-OMBA) compound (molar ratio of FDMA monomer to OMBA monomer during polymerization, q: r = 2: 1)

[반응식 8][Reaction Scheme 8]

Figure 112017096035689-pat00031
Figure 112017096035689-pat00031

FDMA 5.0 g, OMBA 0.8 g, AIBN 50 mg, 및 TFT 단일 용제 3 cm3를 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 하기 화학식 4로 표시되는 P(FDMA-r-OMBA) 화합물을 합성하였고(수율: 95%, 5.5 g), 1H-NMR 데이터는 도 4j에 나타내었다.(FDMA-r-OMBA) compound represented by the following formula 4 was synthesized under the same conditions as in Example 1 except that 5.0 g of FDMA, 0.8 g of OMBA, 50 mg of AIBN, and 3 cm 3 of a TFT single solvent were used (Yield: 95%, 5.5 g), and 1 H-NMR data is shown in FIG. 4j.

[화학식 4][Chemical Formula 4]

Figure 112017096035689-pat00032
Figure 112017096035689-pat00032

<실시예 7> P(FDMA-r-OMBA) 화합물의 합성(중합시 FDMA 단량체와 OMBA 단량체의 몰비, q : r = 1.33 : 1)Example 7 Synthesis of P (FDMA-r-OMBA) Compound (molar ratio of FDMA monomer to OMBA monomer during polymerization, q: r = 1.33: 1)

FDMA 2.0 g, OMBA 0.47 g, AIBN 20 mg, 및 TFT 단일 용제 3 cm3을 사용한 것을 제외하고는 상기 실시예 6와 동일한 조건으로 하기 화학식 4로 표시되는 P(FDMA-r-OMBA) 화합물을 합성하였고(수율: 97%, 2.4 g), 1H-NMR 데이터는 도 4k에 나타내었다.(FDMA-r-OMBA) compound represented by the following formula 4 was synthesized under the same conditions as in Example 6 except that 2.0 g of FDMA, 0.47 g of OMBA, 20 mg of AIBN, and 3 cm 3 of a TFT single solvent were used (Yield: 97%, 2.4 g). &Lt; 1 &gt; H-NMR data is shown in Fig. 4k.

[화학식 4][Chemical Formula 4]

Figure 112017096035689-pat00033
Figure 112017096035689-pat00033

<실시예 8> P(FOMA-r-αBMOMA) 화합물의 합성(중합시 FOMA 단량체와 αBMOMA 단량체의 몰비, m : n = 4 : 1)Example 8 Synthesis of P (FOMA-r-αBMOMA) Compound (molar ratio of FOMA monomer and αBMOMA monomer during polymerization: m: n = 4: 1)

[반응식 9][Reaction Scheme 9]

Figure 112018067213125-pat00034
Figure 112018067213125-pat00034

FDMA 대신에 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로옥틸 메타크릴레이트(이하 'FOMA', 1.8 g)와, αBMOMA 0.3 g, AIBN 8.4 mg, 및 CDSTSP 41.1 mg을 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 하기 화학식 5로 표시되는 P(FDMA-r-αBMOMA) 화합물을 합성하였고(수율: 86%, 1.8 g), 1H-NMR 데이터는 도 4l에 나타내었다.(Hereinafter referred to as 'FOMA', 1.8 g) and αBMOMA 0.3 (instead of FDMA) were used in place of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate P (FDMA-r-αBMOMA) compound represented by the following formula 5 was synthesized (yield: 86%, 1.8 g, AIBN 8.4 mg, CDSTSP 41.1 mg) under the same conditions as in Example 1 ), And 1 H-NMR data is shown in Fig.

[화학식 5][Chemical Formula 5]

Figure 112017096035689-pat00035
Figure 112017096035689-pat00035

<실시예 9> P(FOMA-r-αBMOMA) 화합물의 합성(중합시 FOMA 단량체와 αBMOMA 단량체의 몰비, m : n = 2 : 1)Example 9 Synthesis of P (FOMA-r-αBMOMA) Compound (molar ratio of FOMA monomer and αBMOMA monomer during polymerization, m: n = 2: 1)

FOMA 0.9 g, αBMOMA 0.3 g, AIBN 4.2 mg, 및 CDSTSP 20.6 mg을 사용한 것을 제외하고는 상기 실시예 8과 동일한 조건으로 하기 화학식 5로 표시되는 P(FDMA-r-αBMOMA) 화합물을 합성하였고(수율: 92%, 1.1 g), 1H-NMR 데이터는 도 4m에 나타내었다.(FDMA-r-αBMOMA) compound represented by the following formula (5) was synthesized in the same manner as in Example 8 except that 0.9 g of FOMA, 0.3 g of αBMOMA, 4.2 mg of AIBN and 20.6 mg of CDSTSP were used : 92%, 1.1 g). &Lt; 1 &gt; H-NMR data is shown in Fig.

[화학식 5][Chemical Formula 5]

Figure 112017096035689-pat00036
Figure 112017096035689-pat00036

<실시예 10> P(FOMA-r-αBMOMA) 화합물의 합성(중합시 FOMA 단량체와 αBMOMA 단량체의 몰비, m : n = 1.33 : 1)Example 10 Synthesis of P (FOMA-r-αBMOMA) Compound (molar ratio of FOMA monomer and αBMOMA monomer during polymerization, m: n = 1.33: 1)

FOMA 0.6 g,αBMOMA 0.3 g, AIBN 2.8 mg, 및 CDSTSP 13.7 mg을 사용한 것을 제외하고는 상기 실시예 8과 동일한 조건으로 하기 화학식 5로 표시되는 P(FDMA-r-αBMOMA) 화합물을 합성하였고(수율: 90%, 0.8 g), 1H-NMR 데이터는 도 4n에 나타내었다.(FDMA-r-αBMOMA) compound represented by the following formula (5) was synthesized in the same manner as in Example 8 except that 0.6 g of FOMA, 0.3 g of αBMOMA, 2.8 mg of AIBN and 13.7 mg of CDSTSP were used : 90%, 0.8 g), and 1 H-NMR data is shown in FIG. 4n.

[화학식 5][Chemical Formula 5]

Figure 112017096035689-pat00037
Figure 112017096035689-pat00037

<실시예 11> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조Example 11 Preparation of fine pattern using highly fluorinated positive photoresist

도 5는 실시예 2에 따라 합성된 P(FDMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용하여 미세 패턴을 형성할 수 있는 리프트-오프(LIFT-OFF) 공정을 나타낸 도면이다.5 is a view showing a lift-off process capable of forming a fine pattern using a highly fluorinated positive type photoresist containing P (FDMA-r-αBMOMA) compound synthesized according to Example 2 .

도 5를 참조하면, Si 웨이퍼 상부에 포토레지스트 용액(실시예 2에 따라 합성된 P(FDMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트와 고불소계 용제(hydrofluoroether, PF-7600 사용)을 도포하였다.5, a high fluorinated positive type photoresist containing a P (FDMA-r-αBMOMA) compound synthesized according to Example 2 and a fluorinated solvent (hydrofluoroether (PF-7600) .

고불소화 포지티브형 포토레지스트가 도포된 Si 웨이퍼 상에 새도우 마스크를 통해 UV 노광한 후, 노광부를 현상액(FC-770 용제 : HFE-7300 용제, 1 : 1 v/v)으로 용해, 제거하여 고불소화 포지티브형 포토레지스트 패턴을 형성하였다.After UV exposure through a shadow mask on a Si wafer coated with a fluorinated positive photoresist, the exposed portion was dissolved and removed with a developer (FC-770 solvent: HFE-7300 solvent, 1: 1 v / v) Thereby forming a positive photoresist pattern.

형성된 고불소화 포지티브형 포토레지스트 패턴 상에 정공주입층(HIL)인 1,4,5,8,9,11-헥사아자트리페닐렌-헥사니트릴 (1,4,5,8,9,11-hexaazatriphenylene-hexanitrile; 이하 'HATCN') 10 nm와 정공수송층(HTL)인 N,N′-다이(나프탈렌-1-일)-N,N′-바이페닐-벤지딘(N,N′-di(naphthalene-1-yl)-N,N′-biphenyl-benzidine; 이하 'NPB') 40 nm를 열 진공증착한 후 HFE-7300 용제로 리프트-오프(LIFT-OFF)를 진행하였다.(HIL), 1,4,5,8,9,11-hexaazatriphenylene-hexanenitrile (1,4,5,8,9,11-hexafluorophenyl) hexanetriol, which is a hole injection layer (HIL) 10 nm of hexaazatriphenylene-hexanitrile (HATCN) and 10 nm of a hole transport layer (HTL), N, N'-di (naphthalene- -1-yl) -N, N'-biphenyl-benzidine (hereinafter referred to as 'NPB') 40 nm was thermally vacuum deposited and then lifted off with HFE-7300 solvent.

HFE-7300 용제 내에서 추가적으로 음파(sonication)를 이용하여 리프트-오프(LIFT-OFF)를 진행하여 20 ㎛ × 20 ㎛(가로 × 세로)의 미세한 HATCN/NPB 패턴을 얻었다.A fine HATCN / NPB pattern of 20 μm × 20 μm (width × length) was obtained by further lifting off using HFE-7300 solvent using sonication.

<실시예 12> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조&Lt; Example 12 > Preparation of fine pattern using highly fluorinated positive photoresist

실시예 1에 따라 합성된 P(FDMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was produced in the same manner as in Example 11, except that a highly fluorinated positive type photoresist containing P (FDMA-r-αBMOMA) compound synthesized according to Example 1 was used.

<실시예 13> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조&Lt; Example 13 > Production of fine patterns using highly fluorinated positive photoresist

실시예 3에 따라 합성된 P(FDMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was produced in the same manner as in Example 11, except that a highly fluorinated positive type photoresist containing P (FDMA-r-αBMOMA) compound synthesized according to Example 3 was used.

<실시예 14> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조&Lt; Example 14 > Preparation of fine pattern using highly fluorinated positive photoresist

실시예 4에 따라 합성된 P(FDMA-r-MPOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was prepared in the same manner as in Example 11 except that a highly fluorinated positive type photoresist containing P (FDMA-r-MPOMA) compound synthesized according to Example 4 was used.

<실시예 15> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조&Lt; Example 15 > Production of fine pattern using highly fluorinated positive photoresist

실시예 5에 따라 합성된 P(FDMA-r-MPOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was produced in the same manner as in Example 11, except that a highly fluorinated positive type photoresist containing P (FDMA-r-MPOMA) compound synthesized according to Example 5 was used.

<실시예 16> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조Example 16: Fabrication of fine patterns using highly fluorinated positive photoresist

실시예 6에 따라 합성된 P(FDMA-r-OMBA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was prepared in the same manner as in Example 11 except that a highly fluorinated positive type photoresist containing P (FDMA-r-OMBA) compound synthesized according to Example 6 was used.

<실시예 17> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조Example 17: Fabrication of fine patterns using highly fluorinated positive photoresist

실시예 7에 따라 합성된 P(FDMA-r-OMBA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was prepared in the same manner as in Example 11 except that a highly fluorinated positive type photoresist containing P (FDMA-r-OMBA) compound synthesized according to Example 7 was used.

<실시예 18> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조&Lt; Example 18 > Preparation of fine pattern using highly fluorinated positive photoresist

실시예 8에 따라 합성된 P(FOMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was prepared in the same manner as in Example 11 except that a highly fluorinated positive type photoresist containing P (FOMA-r-αBMOMA) compound synthesized according to Example 8 was used.

<실시예 19> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조Example 19 Preparation of fine patterns using highly fluorinated positive photoresist

실시예 9에 따라 합성된 P(FOMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was prepared in the same manner as in Example 11, except that a highly fluorinated positive type photoresist containing P (FOMA-r-αBMOMA) compound synthesized according to Example 9 was used.

<실시예 20> 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조&Lt; Example 20 > Preparation of fine pattern using highly fluorinated positive photoresist

실시예 10에 따라 합성된 P(FOMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 미세패턴을 제조하였다.A fine pattern was prepared in the same manner as in Example 11 except that a highly fluorinated positive type photoresist containing P (FOMA-r-αBMOMA) compound synthesized according to Example 10 was used.

<실시예 21> 유기발광다이오드(organic light emitting diode; 이하 'OLED') 소자의 제작Example 21 Fabrication of an organic light emitting diode (OLED) device

투명전극인 인듐주석산화물(ITO) 상에 정공주입층(HIL)인 HATCN 10 nm와 정공수송층(HTL)인 NPB 40 nm를 열 진공증착하였다. NPB가 증착된 인듐주석산화물(ITO) 상에 질소 분위기 혹은 공기 중에서 포토레지스트 용액(실시예 1에 따라 합성된 P(FDMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트와 고불소계 용제(hydrofluoroether, PF-7600 사용)을 도포하였다.HATCN 10 nm as a hole injection layer (HIL) and NPB 40 nm as a hole transport layer (HTL) were thermally vacuum deposited on indium tin oxide (ITO) as a transparent electrode. A high fluorinated positive type photoresist containing a P (FDMA-r-αBMOMA) compound synthesized according to Example 1 and a high fluorine type solvent ( hydrofluoroether, PF-7600).

새도우 마스크를 통해 노광한 후, 노광부를 현상액(FC-770 용제 : HFE-7300 용제, 10 : 1 v/v)으로 용해, 제거하여 고불소화 포지티브형 포토레지스트 패턴을 얻었다.After exposure through a shadow mask, the exposed portion was dissolved and removed with a developer (FC-770 solvent: HFE-7300 solvent, 10: 1 v / v) to obtain a highly fluorinated positive photoresist pattern.

그 후 패턴 상에 발광층(EML)인 CBP:Ir(ppy)3(20% doping ratio)를 20 nm 증착하고, 전자수송층인 2,2′,2″-(1,3,5-벤진트리일)-트리스(1-페닐-1-H-벤지미다졸(2,2′,2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole; TPBi) 40 nm 및 금속전극을 추가적으로 상부에 열 진공증착하여 OLED 소자를 제작하였다.Subsequently, CBP: Ir (ppy) 3 (20% doping ratio) as a light emitting layer (EML) was deposited to a thickness of 20 nm on the pattern to form an electron transport layer of 2,2 ', 2 &quot;-( 1,3,5- ) - tris (1-phenyl-1-H-benzimidazole (TPBi) 40 nm And a metal electrode were further thermally vacuum-deposited on the upper part to fabricate an OLED device.

<실시예 22> OLED 소자의 제작Example 22: Fabrication of OLED device

실시예 2에 따라 합성된 P(FDMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as Example 21 except that a highly fluorinated positive photoresist containing P (FDMA-r-? BMOMA) compound synthesized according to Example 2 was used.

<실시예 23> OLED 소자의 제작&Lt; Example 23 > Fabrication of OLED device

실시예 3에 따라 합성된 P(FDMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as Example 21 except that a highly fluorinated positive photoresist containing P (FDMA-r-? BMOMA) compound synthesized according to Example 3 was used.

<실시예 24> OLED 소자의 제작Example 24 Fabrication of OLED Device

실시예 4에 따라 합성된 P(FDMA-r-MPOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as Example 21 except that a highly fluorinated positive photoresist containing P (FDMA-r-MPOMA) compound synthesized according to Example 4 was used.

<실시예 25> OLED 소자의 제작&Lt; Example 25 > Fabrication of OLED device

실시예 5에 따라 합성된 P(FDMA-r-MPOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as in Example 21 except that a highly fluorinated positive photoresist containing P (FDMA-r-MPOMA) compound synthesized according to Example 5 was used.

<실시예 26> OLED 소자의 제작Example 26: Fabrication of OLED device

실시예 6에 따라 합성된 P(FDMA-r-OMBA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as Example 21 except that a highly fluorinated positive photoresist containing P (FDMA-r-OMBA) compound synthesized according to Example 6 was used.

<실시예 27> OLED 소자의 제작&Lt; Example 27 > Fabrication of OLED device

실시예 7에 따라 합성된 P(FDMA-r-OMBA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as in Example 21 except that a highly fluorinated positive type photoresist containing P (FDMA-r-OMBA) compound synthesized according to Example 7 was used.

<실시예 28> OLED 소자의 제작&Lt; Example 28 > Fabrication of OLED device

실시예 8에 따라 합성된 P(FOMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as in Example 21 except that a highly fluorinated positive type photoresist containing P (FOMA-r-αBMOMA) compound synthesized according to Example 8 was used.

<실시예 29> OLED 소자의 제작Example 29: Fabrication of OLED device

실시예 9에 따라 합성된 P(FOMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as in Example 21 except that a highly fluorinated positive type photoresist containing P (FOMA-r-αBMOMA) compound synthesized according to Example 9 was used.

<실시예 30> OLED 소자의 제작&Lt; Example 30 > Fabrication of OLED device

실시예 10에 따라 합성된 P(FOMA-r-αBMOMA) 화합물을 포함한 고불소화 포지티브형 포토레지스트를 이용한 것을 제외하고는, 상기 실시예 21과 동일한 조건으로 OLED 소자를 제작하였다.An OLED device was fabricated under the same conditions as Example 21 except that a highly fluorinated positive photoresist containing P (FOMA-r-? BMOMA) compound synthesized according to Example 10 was used.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.

Claims (20)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure 112018067213125-pat00073

R1은 수소(H) 또는 메틸기(CH3)이고,
X는 (CH2)x(CF2)yF[(CH2)x(CF2)yF에서, x와 y는 0 ≤ x ≤ 10, 4 ≤ y ≤ 12의 자연수]이고,
R2는 수소(H) 또는 메틸기(CH3)이고,
R3 및 R4 중 어느 하나는 페닐이고, 다른 하나는 페닐 또는 메틸기(CH3)이고,
R5는 수소(H) 또는 메틸기(CH3)이고,
Y는 치환 또는 비치환된 C1 내지 C10의 알킬기, 치환 또는 비치환된 C6 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 시클로 알킬기, 또는 치환 또는 비치환된 C1 내지 C10의 축합환계 탄화수소기 중 어느 하나이고,
z는 랜덤 공중합(r) 또는 블록 공중합(b) 중 어느 하나를 나타내는 것이고,
a, b, 및 c는 단량체의 평균 몰비를 각각 나타낸 것으로서 a : b : c는 (5 ~ 1) : 1 : (1 ~ 0)임.
A compound represented by the following formula (1):
[Chemical Formula 1]
Figure 112018067213125-pat00073

R 1 is hydrogen (H) or methyl group (CH 3 )
X is (CH 2) x (CF 2 ) y F [(CH 2) x (CF 2) y F in, x and y are natural numbers of 0 ≤ x ≤ 10, 4 ≤ y ≤ 12],
R 2 is hydrogen (H) or methyl (CH 3 )
R 3 and R 4 is any one of phenyl, and the other is phenyl or methyl group (CH 3),
R 5 is hydrogen (H) or methyl (CH 3 )
Y is a substituted or unsubstituted C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 20 aryl group, a substituted or unsubstituted C 3 to C 20 cycloalkyl group, or a substituted or unsubstituted C 1 to C 10 condensed ring hydrocarbon group,
z represents any one of random copolymer (r) and block copolymer (b)
a, b and c represent the average molar ratios of the monomers, respectively, and a: b: c is (5-1): 1: (1-0).
청구항 1에 있어서,
상기 화합물은,
하기 화학식 2, 화학식 3 및 화학식 5로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 화합물:
[화학식 2]
Figure 112018067213125-pat00039

상기 화학식 2에서,
m 및 n은 각 단량체들의 평균 몰비를 나타낸 것으로서, m : n은 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미하고,
[화학식 3]
Figure 112018067213125-pat00040

상기 화학식 3에서,
o 및 p는 각 단량체들의 평균 몰비를 나타낸 것으로서, o : p는 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미하고,
[화학식 5]
Figure 112018067213125-pat00042

상기 화학식 5에서,
t 및 u는 각 단량체들의 평균 몰비를 나타낸 것으로서, t : u는 (5 ~ 1) : 1이고, r은 랜덤 공중합체를 의미함.
The method according to claim 1,
The compound,
Wherein the compound is any one selected from the group consisting of the following chemical formulas (2), (3) and (5):
(2)
Figure 112018067213125-pat00039

In Formula 2,
m and n represent the average molar ratios of the respective monomers, m: n is (5-1): 1, r is a random copolymer,
(3)
Figure 112018067213125-pat00040

In Formula 3,
o and p represent the average molar ratios of the respective monomers, o: p is (5-1): 1, r is a random copolymer,
[Chemical Formula 5]
Figure 112018067213125-pat00042

In Formula 5,
t and u represent the average molar ratios of the respective monomers, t: u is (5-1): 1, and r is a random copolymer.
청구항 1 또는 청구항 2 중 어느 하나에 따른 화합물을 포함하는, 고불소화 포지티브형 포토레지스트.A highly fluorinated positive type photoresist comprising a compound according to any one of claims 1 or 2. 하기 화학식 1로 표시되는 화합물의 제조방법:
[화학식 1]
Figure 112018067213125-pat00074

상기 화학식 1로 표시되는 화합물은,
하기 화학식 1-1, 1-2, 및 1-3으로 표시되는 단량체를 공중합한 것이고,
[화학식 1-1]
Figure 112018067213125-pat00044

상기 화학식 1-1에서,
R1은 수소(H) 또는 메틸기(CH3)이고,
X는 (CH2)x(CF2)yF[(CH2)x(CF2)yF에서, x와 y는 0 ≤ x ≤ 10, 4 ≤ y ≤ 12의 자연수]이고,
[화학식 1-2]
Figure 112018067213125-pat00075

상기 화학식 1-2에서,
R2는 수소(H) 또는 메틸기(CH3)이고,
R3 및 R4 중 어느 하나는 페닐이고, 다른 하나는 페닐 또는 메틸기(CH3)이고,
[화학식 1-3]
Figure 112018067213125-pat00046

상기 화학식 1-3은,
R5는 수소(H) 또는 메틸기(CH3)이고,
Y는 치환 또는 비치환된 C1 내지 C10의 알킬기, 치환 또는 비치환된 C6 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 시클로 알킬기, 또는 치환 또는 비치환된 C1 내지 C10의 축합환계 탄화수소기 중 어느 하나이고,
상기 화학식 1에서,
z는 화학식 1-1, 화학식 1-2, 및 화학식 1-3으로 표시되는 단량체의 중합반응의 종류를 나타낸 것으로서 z는 랜덤 공중합(r) 또는 블록 공중합(b) 중 어느 하나를 나타내는 것이고,
a, b, 및 c는 화학식 1-1, 화학식 1-2, 및 화학식 1-3으로 표시되는 단량체의 평균 몰비를 각각 나타낸 것으로서 a : b : c는 (5 ~ 1) : 1 : (1 ~ 0)임.
A process for producing a compound represented by the following formula (1)
[Chemical Formula 1]
Figure 112018067213125-pat00074

The compound represented by the general formula (1)
(1), (1-2), and (1-3)
[Formula 1-1]
Figure 112018067213125-pat00044

In Formula 1-1,
R 1 is hydrogen (H) or methyl group (CH 3 )
X is (CH 2) x (CF 2 ) y F [(CH 2) x (CF 2) y F in, x and y are natural numbers of 0 ≤ x ≤ 10, 4 ≤ y ≤ 12],
[Formula 1-2]
Figure 112018067213125-pat00075

In Formula 1-2,
R 2 is hydrogen (H) or methyl (CH 3 )
R 3 and R 4 is any one of phenyl, and the other is phenyl or methyl group (CH 3),
[Formula 1-3]
Figure 112018067213125-pat00046

(1-3)
R 5 is hydrogen (H) or methyl (CH 3 )
Y is a substituted or unsubstituted C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 20 aryl group, a substituted or unsubstituted C 3 to C 20 cycloalkyl group, or a substituted or unsubstituted C 1 to C 10 condensed ring hydrocarbon group,
In Formula 1,
z represents the kind of the polymerization reaction of the monomers represented by formulas (1-1), (1-2) and (1-3), and z represents any one of random copolymerization (r)
a, b, and c represent the average molar ratios of the monomers represented by formulas (1-1), (1-2), and (1-3) 0).
청구항 4에 있어서,
상기 화학식 1-1로 표시되는 단량체는,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-헵타데카플루오로데실 메타크릴레이트(FDMA) 또는 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로옥틸 메타크릴레이트(FOMA) 중 어느 하나인 것을 특징으로 하는, 화합물의 제조방법.
The method of claim 4,
The monomer represented by the formula (1-1)
3, 4, 4, 5, 5, 6, 6,7,7,8,8,9,9,10,10-heptadecafluorodecyl methacrylate (FDMA) Tricyclodecanyl methacrylate (FOMA), and 4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate (FOMA).
청구항 4에 있어서,
상기 화학식 1-2로 표시되는 단량체는,
1,2-에탄디온, 1,2-디페닐-, 1-[O-(2-메틸-1-옥소-2-프로펜일)옥심](1,2-Ethanedione, 1,2-diphenyl-, 1-[O-(2-methyl-1-oxo-2-propenyl)oxime]), 또는 1,2-프로판디온, 1-페닐-, 2-[O-(2-메틸-1-옥소-2-프로페닐)옥심](1,2-Propanedione, 1-phenyl-, 2-[O-(2-methyl-1-oxo-2-propenyl)oxime]) 중 어느 하나인 것을 특징으로 하는, 화합물의 제조방법.
The method of claim 4,
The monomer represented by the general formula (1-2)
1,2-ethanedione, 1,2-diphenyl-, 1- [O- (2-methyl-1-oxo-2-propenyl) oxime] 1- [O- (2-methyl-1-oxo-2-propenyl) oxime], or 1,2-propanedione, (2-methyl-1-oxo-2-propenyl) oxime]. Gt;
청구항 4에 있어서,
상기 화학식 1-3으로 표시되는 단량체는,
이소보르닐 메타크릴레이트(isobornyl methacrylate), 노보닐 메타크릴레이트(norbornyl methacrylate), 메틸 메타크릴레이트(methyl methacrylate) 또는 이소보르닐 아크릴레이트(isobornyl acrylate) 중 어느 하나인 것을 특징으로 하는, 화합물의 제조방법.
The method of claim 4,
The monomer represented by the general formula (1-3)
Characterized in that the compound is any one of isobornyl methacrylate, norbornyl methacrylate, methyl methacrylate or isobornyl acrylate. Gt;
기판 상부에 상기 청구항 3에 따른 고불소화 포지티브형 포토레지스트를 포함한 용액을 도포하는 단계;
상기 고불소화 포지티브형 포토레지스트가 도포된 기판 상에 자외선을 노광한 후 노광부를 현상액으로 현상하여 고불소화 포지티브형 포토레지스트 패턴을 형성하는 단계; 및
상기 형성된 패턴 상에 정공주입층과 정공수송층을 열 진공증착한 후 리프트-오프 공정을 진행하여 정공주입층과 정공수송층으로 이루어진 미세패턴을 형성하는 단계
를 포함하는, 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조방법.
Applying a solution containing the highly fluorinated positive type photoresist according to claim 3 on the substrate;
Exposing the substrate coated with the highly fluorinated positive photoresist to ultraviolet light, and developing the exposed portion with a developer to form a highly fluorinated positive photoresist pattern; And
Forming a fine pattern comprising a hole injection layer and a hole transport layer by performing a lift-off process after thermally vacuum-depositing a hole injection layer and a hole transport layer on the formed pattern,
Wherein the fluorine-containing positive photoresist is a fluorine-containing polymer.
청구항 8에 있어서,
상기 정공주입층은,
1,4,5,8,9,11-헥사아자트리페닐렌-헥사니트릴 (1,4,5,8,9,11-hexaazatriphenylene-hexanitrile), 4,4′,4″-트리스[페닐(m-톨릴)아미노]트리페닐아민(4,4′,4″-Tris[phenyl(m-tolyl)amino]triphenylamine), 및 2,3,5,6-테트라플루오로-7,7,8,8-테트라시아노퀴노디메탄 (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조방법.
The method of claim 8,
Wherein the hole injection layer comprises:
1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (1,4,5,8,9,11-hexaazatriphenylene-hexanitrile), 4,4 ', 4 "-tris [phenyl m-tolyl) amino] triphenylamine (4,4 ', 4 "-Tris [phenyl (m-tolyl) amino] triphenylamine and 2,3,5,6-tetrafluoro-7,7,8- Wherein the fluorinated positive photoresist is any one selected from the group consisting of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, A method for manufacturing a fine pattern.
청구항 8에 있어서,
상기 정공수송층은,
N,N′-다이(나프탈렌-1-일)-N,N′-바이페닐-벤지딘(N,N′-di(naphthalene-1-yl)-N,N′-biphenyl-benzidine), 트리스(4-카바조일-9-일페닐)아민(Tris(4-carbazoyl-9-ylphenyl)amine), 및 N,N′-비스(3-메틸페닐)-N,N′-디페닐벤지딘(N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine)으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조방법.
The method of claim 8,
The hole-
N'-di (naphthalen-1-yl) -N, N'-biphenyl-benzidine, (4-carbazoyl-9-ylphenyl) amine, and N, N'-bis (3-methylphenyl) -N, N'-diphenylbenzidine -Bis (3-methylphenyl) -N, N'-diphenylbenzidine). 3. The method of claim 1, wherein the fluorine-containing positive photoresist is selected from the group consisting of:
청구항 8에 있어서,
상기 리프트-오프 공정은,
상기 형성된 패턴 상에 정공주입층과 정공수송층을 열 진공증착한 후 고불소계 용제로 제1 리프트-오프 공정을 진행하는 단계, 및
제1 리프트-오프 공정 이후 고불소계 용제 내에서 음파를 이용하여 제2 리프트-오프 공정을 진행하는 단계
를 포함하는, 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조방법.
The method of claim 8,
The lift-off process includes:
Subjecting the formed pattern to thermal vacuum deposition of a hole injection layer and a hole transport layer, followed by a first lift-off process with a high fluorine solvent, and
The second lift-off process is performed using sound waves in the high fluorine-based solvent after the first lift-off process
Wherein the fluorine-containing positive photoresist is a fluorine-containing polymer.
청구항 8에 있어서,
상기 미세패턴은,
평균 면적이 1 내지 1000 ㎛인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 미세패턴 제조방법.
The method of claim 8,
The fine pattern may be formed,
Wherein the average area is from 1 to 1000 占 퐉.
투명 전극 상에 정공주입층 및 정공수송층을 열 진공증착하는 단계(제1단계);
상기 정공주입층 및 정공수송층이 증착된 투명 전극 상에 청구항 3에 따른 고불소화 포지티브형 포토레지스트를 포함한 용액을 도포하는 단계(제2단계);
상기 포토레지스트 용액이 도포된 전극을 노광한 후, 노광부를 현상액으로 용해시켜 포지티브형 패턴을 투명 전극 상에 형성하는 단계(제3단계); 및
상기 형성된 포지티브형 패턴 상에 발광층을 증착한 후, 전자수송층, 전자 주입층, 및 금속 전극을 추가적으로 열 진공증착하는 단계(제4단계)
를 포함하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법.
Thermal vacuum deposition of a hole injection layer and a hole transport layer on the transparent electrode (first step);
Applying a solution containing a highly fluorinated positive photoresist according to claim 3 onto the transparent electrode on which the hole injection layer and the hole transport layer are deposited (second step);
Exposing the electrode coated with the photoresist solution, and dissolving the exposed portion with a developing solution to form a positive pattern on the transparent electrode (third step); And
After the light emitting layer is deposited on the formed positive pattern, the electron transport layer, the electron injection layer, and the metal electrode are further subjected to thermal vacuum deposition (fourth step)
Wherein the fluorinated positive photoresist is a fluorinated positive photoresist.
청구항 13에 있어서,
상기 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법은,
제2단계 내지 제4단계를 2 내지 4회 반복수행 하는 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법.
14. The method of claim 13,
The method for manufacturing an organic electronic device using the highly fluorinated positive photoresist,
Wherein the second step to the fourth step are repeatedly performed two to four times.
청구항 13에 있어서,
상기 투명 전극은,
투명 금속 산화물 전극, 전도성 고분자 박막, 탄소나노튜브 박막, 금속나노와이어 박막, 또는 그래핀 박막 중 어느 하나인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법.
14. The method of claim 13,
The transparent electrode
Wherein the positive electrode is a transparent metal oxide electrode, a conductive polymer thin film, a carbon nanotube thin film, a metal nanowire thin film, or a graphene thin film.
청구항 15에 있어서,
상기 투명 금속 산화물 전극은,
상기 투명 금속 산화물 전극은 인듐주석산화물, 불소가 도핑된 산화주석, 및 산화아연으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법.
16. The method of claim 15,
Wherein the transparent metal oxide electrode comprises:
Wherein the transparent metal oxide electrode is any one selected from the group consisting of indium tin oxide, fluorine-doped tin oxide, and zinc oxide.
청구항 15에 있어서,
상기 전도성 고분자는,
폴리-3,4-에틸렌디옥시티오펜/폴리스티렌설포네이트(PEDOT/PSS), 폴리아닐린, 폴리아세틸렌 및 폴리페닐렌비닐렌으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법.
16. The method of claim 15,
The conductive polymer may include,
Wherein the fluorinated positive photoresist is any one selected from the group consisting of poly-3,4-ethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), polyaniline, polyacetylene and polyphenylene vinylene. A method of manufacturing an organic electronic device using the same.
청구항 15에 있어서,
상기 금속나노와이어는,
금나노와이어, 은나노와이어, 구리나노와이어, 니켈나노와이어, 철나노와이어, 코발트나노와이어, 아연나노와이어, 크롬나노와이어 및 망간나노와이어로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자 제조방법.
16. The method of claim 15,
The metal nanowire may include a metal nanowire,
Characterized in that it is any one selected from the group consisting of gold nanowires, silver nanowires, copper nanowires, nickel nanowires, iron nanowires, cobalt nanowires, zinc nanowires, chromium nanowires and manganese nanowires. A method of manufacturing an organic electronic device using a photoresist.
청구항 13에 따른 제조방법으로 제조된 것인, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자.An organic electronic device using a highly fluorinated positive photoresist, which is produced by the manufacturing method according to claim 13. 청구항 19에 있어서,
상기 유기전자소자는,
유기발광다이오드, 유기박막트렌지스터, 유기발광트렌지스터, 및 유기태양전지로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 고불소화 포지티브형 포토레지스트를 이용한 유기전자소자.
The method of claim 19,
The organic electronic device includes:
An organic light emitting diode, an organic thin film transistor, an organic light emitting transistor, and an organic solar cell, wherein the organic electronic device is a high fluorinated positive photoresist.
KR1020170127424A 2017-09-29 2017-09-29 Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same KR101926386B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170127424A KR101926386B1 (en) 2017-09-29 2017-09-29 Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170127424A KR101926386B1 (en) 2017-09-29 2017-09-29 Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same

Publications (1)

Publication Number Publication Date
KR101926386B1 true KR101926386B1 (en) 2018-12-07

Family

ID=64669408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170127424A KR101926386B1 (en) 2017-09-29 2017-09-29 Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same

Country Status (1)

Country Link
KR (1) KR101926386B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210051940A (en) * 2019-10-31 2021-05-10 인하대학교 산학협력단 Red pigment dispersion using highly fluorinated copolymers and fluorous solvents, and photo-patterning method using the same
KR20220027557A (en) * 2020-08-27 2022-03-08 인하대학교 산학협력단 Highly fluorinated polymer photoresist and method for manufacturing organic electronic device using the same
WO2022172114A1 (en) * 2021-02-12 2022-08-18 株式会社半導体エネルギー研究所 Apparatus for manufacturing light-emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210051940A (en) * 2019-10-31 2021-05-10 인하대학교 산학협력단 Red pigment dispersion using highly fluorinated copolymers and fluorous solvents, and photo-patterning method using the same
KR102291544B1 (en) 2019-10-31 2021-08-19 인하대학교 산학협력단 Red pigment dispersion using highly fluorinated copolymers and fluorous solvents, and photo-patterning method using the same
KR20220027557A (en) * 2020-08-27 2022-03-08 인하대학교 산학협력단 Highly fluorinated polymer photoresist and method for manufacturing organic electronic device using the same
KR102416260B1 (en) 2020-08-27 2022-07-05 인하대학교 산학협력단 Highly fluorinated polymer photoresist and method for manufacturing organic electronic device using the same
WO2022172114A1 (en) * 2021-02-12 2022-08-18 株式会社半導体エネルギー研究所 Apparatus for manufacturing light-emitting device

Similar Documents

Publication Publication Date Title
KR102087299B1 (en) Film of quantum dot, method for patterning the same and quantum dot light emitting device using the same
KR101926386B1 (en) Highly perfluorinated positive-tone photoresists being capable of processing with fluorous solvent and preparing method of organic electronic devices using the same
TWI501037B (en) Photosensitive resin composition, cured film and method of producing the same, organic el display device, and liquid crystal display device
TWI502277B (en) Photosensitive resin composition, cured film and method of producing the same, organic el display device, and liquid crystal display device
US9746771B2 (en) Laminate body
US10690847B2 (en) Method of making a photonic crystal device and photonic crystal device
JP5498971B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic EL display device
KR101618897B1 (en) Process for producing cured film, photosensitive resin composition, cured film, organic electro-luminescence display and liquid crystal display
KR102099092B1 (en) Photo-sensitive resin composition, method for manufacturing cured film by using the same, cured film, liquid crystal display and organic el device
TW200916950A (en) Photosensitive composition, partition wall, and black matrix
TWI480693B (en) Photoresist employing photodimerization chemistry and method for manufacturing organic light emitting diode display using the same
JP5623897B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
KR101784104B1 (en) Preparing method of organic light emitting diode device using perfluorinated photoresist polymers with narrow molecular weight distribution
TWI564664B (en) Positive photosensitive resin composition, forming method of harden film, harden film, liquid crystal display device and organic electroluminescence
KR20150028271A (en) Process for producing cured film, photosensitive resin composition, cured film, organic electro-luminescence display and liquid crystal display
JP5524036B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic EL display device
CN107073516B (en) Method for producing structure having concave pattern, resin composition, method for forming conductive film, electronic circuit, and electronic device
KR102207286B1 (en) Highly fluorinated polymer photoresist containing a spiropyran unit and method for manufacturing organic electronic device using the same
JP2019178191A (en) Fluorine resin
KR101964685B1 (en) Positive-type photosensitive resin composition, method for forming cured film, cured film, organic el display device, and, liquid crystal display device
KR101888862B1 (en) Photosensitive resin composition, pattern, and method for forming pattern
KR101400390B1 (en) Photoresist composition and method for manufacturing of organic light emitting display device using the same
WO2022210326A1 (en) Fluorine resin, composition, photocrosslinked product, and electronic device provided therewith
KR102416260B1 (en) Highly fluorinated polymer photoresist and method for manufacturing organic electronic device using the same
TW202039250A (en) Laminate, organic semiconductor device, methods for manufacturing laminate and organic semiconductor device, composition, and composition kit

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant