KR101911601B1 - 광학식 거리계 시스템 - Google Patents

광학식 거리계 시스템 Download PDF

Info

Publication number
KR101911601B1
KR101911601B1 KR1020160114028A KR20160114028A KR101911601B1 KR 101911601 B1 KR101911601 B1 KR 101911601B1 KR 1020160114028 A KR1020160114028 A KR 1020160114028A KR 20160114028 A KR20160114028 A KR 20160114028A KR 101911601 B1 KR101911601 B1 KR 101911601B1
Authority
KR
South Korea
Prior art keywords
light
optical
optical path
reflected
variable module
Prior art date
Application number
KR1020160114028A
Other languages
English (en)
Other versions
KR20180026997A (ko
Inventor
한영근
심영보
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020160114028A priority Critical patent/KR101911601B1/ko
Publication of KR20180026997A publication Critical patent/KR20180026997A/ko
Application granted granted Critical
Publication of KR101911601B1 publication Critical patent/KR101911601B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

광학식 거리계 시스템이 제공된다. 광학식 거리계 시스템은 광원; 상기 광원에서 제공되는 광이 입력 및 출력되고, 상기 광의 출력 방향이 입력 방향과 상이하도록 상기 광의 경로 변경이 가능한 광 경로 가변 모듈; 및 상기 광 경로 가변 모듈에서 출력된 광이 반사되는 반사면을 갖는 반사 거울을 포함하며, 상기 광 경로 가변 모듈에서의 상기 광 경로의 변경으로 상기 반사면에서 상기 광의 반사 지점들이 변경된다.

Description

광학식 거리계 시스템{OPTICAL RANGEFINDER}
본 발명은 광학식 거리계 시스템에 관련된 것으로, 보다 상세하게는 주변 지형 및 사물의 3차원 공간 및 거리 측정이 가능한 광학식 거리계 시스템에 관한 것이다.
일반적으로, 라이다(light detection and ranging)는 대기 중의 온도, 습도 및 먼지, 연기, 에어로졸, 구름입자 등의 존재와 이동을 측정하기 위한 레이더로서, 가시광선이나 적외선 등의 레이저광선을 이용하며, 방출된 레이저광의 펄스는 떠다니는 입자에 의하여 후방 산란되고, 이 산란된 펄스가 지상관측소에서 수신하는 방식으로 측정하게 된다.
또한, 라이다는 방위 분해능, 거리 분해능이 우수하며, 또한 레이저광은 마이크로파에 비해 도플러 효과가 크다는 것을 이용하여 미세한 저속도 목표물의 속도 측정을 하는 도플러 레이더와, 목표 물체에 대한 분자의 라만 시프트(raman-shift)에 의한 송신광과 다른파장의 수신광을 검출하여 그 파장, 강도 등으로부터 대기 성분분석 등을 동시에 실행하는 라만 레이더 등이 있다.
이때, 라이다는 일반적으로 레이저광을 목표지점으로 조사하기 위한 스캔장치를 구비하여 왔다.
한국 등록특허 제10-1449931호에는 전방위 공간 정보를 얻기 위해서 해당 3차원 공간 스캔장치를 모터 등의 기계적 요소를 이용하여 회전시키는 기술 내용이 개시된다.
이러한 기계적 구동 방식은 기계적 요소들의 결합에서 발생하는 유격 및 진동 등의 선천적인 문제를 가지고 있어, 고비용의 정밀 장치를 구현하여야만 성능을 만족할 수 있다. 또한, 기계 장치가 갖는 수명 및 내구성이 문제된다.
본 발명은 기계적인 작동 없이 주위 전방위 공간을 측정할 수 있는 광학식 거리계 시스템을 제공한다.
또한, 본 발명은 내구성과 스캔의 속도를 동시에 확보하고, 생산 비용을 절감할 수 있는 광학식 거리계 시스템을 제공한다.
본 발명에 따른 광학식 거리계 시스템은 광원; 상기 광원에서 제공되는 광이 입력 및 출력되고, 상기 광의 출력 방향이 입력 방향과 상이하도록 상기 광의 경로 변경이 가능한 광 경로 가변 모듈; 및 상기 광 경로 가변 모듈에서 출력된 광이 반사되는 반사면을 갖는 반사 거울을 포함하며, 상기 광 경로 가변 모듈에서의 상기 광 경로의 변경으로 상기 반사면에서 상기 광의 반사 지점들이 변경된다.
또한, 상기 광 경로 가변 모듈은 상기 광이 통과하는 액정물질이 제공되는 광 경로부; 복수 개가 서로 조합하여 상기 광 경로부를 에워싸는 전극들; 및 상기 전극들에 전압을 인가하며, 인가되는 전압 크기 조절이 가능한 전원부를 포함하되, 상기 전극들에 인가되는 전압 크기에 따라 상기 액정물질에서의 광 굴절률이 달라질 수 있다.
또한, 상기 전극들은 투명 전극일 수 있다.
또한, 상기 전극들은 상기 광 경로부의 둘레를 따라 상기 광 경로부의 중심 축을 중심으로 한 쌍씩 서로 마주 배열될 수 있다.
또한, 상기 광 경로 가변 모듈은 상기 광이 통과하며, 상기 광이 출력되는 출력단을 갖는 광 도파로; 복수 개가 서로 조합하여 상기 광 도파로를 에워싸는 압전 소자들; 및 상기 압전 소자들에 전압을 인가하며, 인가되는 전압 크기 조절이 가능한 전원부를 포함하되, 상기 압전 소자들에 인가되는 전압 크기에 따라 상기 광 도파로의 출력단이 향하는 방향이 변경될 수 있다.
또한, 상기 압전 소자들은 상기 광 도파로의 둘레를 따라 상기 광 도파로의 중심 축을 중심으로 한 쌍씩 서로 마주 배열될 수 있다.
또한, 상기 광 경로 가변 모듈은 상기 광의 경로 상에 순차적으로 위치하는 적어도 두 개 이상의 줌 렌즈를 포함할 수 있다.
또한, 상기 반사면은 상기 광의 입력 방향과 동일한 축을 중심으로 360° 방향으로 제공될 수 있다.
또한, 상기 반사면은 상기 광의 입력 방향과 동일한 축을 중심으로 360° 방향으로 제공되며, 볼록면인 제1영역; 및 상기 제1영역의 상부 또는 하부에 위치하고, 상기 광의 입력 방향과 동일한 축을 중심으로 360° 방향으로 제공되며 오목면인 제2영역을 포함할 수 있다.
또한, 상기 반사면에서 반사된 상기 광은 주변 지형 및 사물에서 반사된 후 상기 반사 거울로 재입사되고, 상기 광학식 거리계 시스템은, 상기 광원으로부터 상기 광 경로 가변 모듈로 제공되는 광에서 분리된 샘플광과, 상기 반사 거울로 재입사되어 상기 반사면에서 반사된 반사광을 검출되는 광 검출기; 및 상기 샘플광의 출력 시간 정보, 상기 광 경로 가변 모듈에서 출력되는 상기 광 경로 정보, 그리고 상기 반사광의 검출 시간 정보를 통해 상기 주변 지형 및 사물의 3차원 분포를 측량하는 신호 처리부를 더 포함할 수 있다.
또한, 상기 광 경로 가변 모듈과 상기 반사 거울 사이 구간에 위치하고, 상기 반사광을 상기 광 검출기로 반사시키는 반사면을 갖는 집광 거울을 더 포함하며, 상기 집광 거울의 반사면은 상기 광 경로 가변 모듈에서 출력된 광이 상기 반사 거울 측으로 투과되는 투과 영역을 가질 수 있다.
본 발명에 의하면, 광 경로 가변 모듈에서의 전기적 제어로 360도 전방위 공간상에 광을 스캔할 수 있으므로, 내구성 및 공간 스캔의 속도가 향상될 수 있다.
또한 본 발명에 의하면, 광학식 거리계 시스템에서 기계적 구동 방식에 비해 간단한 구조로 360도 전방위 공간상에 광을 스캔할 수 있으므로, 생산 비용이 절감될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 광학식 거리계 시스템을 나타내는 도면이다.
도 2는 본 발명의 일 실시 예에 따른 광 경로 가변 모듈을 나타내는 도면이다.
도 3은 도 2의 광 경로 가변 모듈의 단면을 나타내는 도면이다.
도 4는 전극들에 전압 인가에 따른 광의 굴절을 나타내는 도면이다.
도 5는 본 발명의 일 실시 예에 따른 광 경로 가변 모듈을 나타내는 도면이다.
도 6은 도 5의 광 경로 가변 모듈의 단면을 나타내는 도면이다.
도 7은 본 발명의 또 다른 실시 예에 따른 광 경로 가변 모듈을 나타내는 도면이다.
도 7은 도 8의 광 경로 가변 모듈의 단면을 나타내는 도면이다.
도 9는 광 도파로의 변형으로 출력단이 향하는 방향이 변경된 일 예를 나타내는 도면이다.
도 10은 본 발명의 일 실시 예에 따른 반사 거울을 나타내는 사시도이다.
도 11은 본 발명의 다른 실시 예에 따른 반사 거울을 나타내는 사시도이다.
도 12는 본 발명의 다른 실시 예에 따른 반사 거울을 나타내는 사시도이다.
도 13은 본 발명의 일 실시 예에 따른 집광 거울을 나타내는 도면이다.
도 14는 본 발명의 다른 실시 예에 따른 집광 거울을 나타내는 도면이다.
도 15는 본 발명의 다른 실시 예에 따른 광학식 거리계 시스템을 나타내는 도면이다.
도 16은 본 발명의 또 다른 실시 예에 따른 광학식 거리계 시스템을 나타내는 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
도 1은 본 발명의 일 실시 예에 따른 광학식 거리계 시스템을 나타내는 도면이다.
도 1을 참조하면, 광학식 거리계 시스템(100)은 광을 이용하여 주변 지형 및 사물의 3차원 공간 및 거리를 측정한다. 이러한 광학식 거리계 시스템(100)은 자율 주행 자동차, 로봇, 군사, 항공 측량, 기상 측량, 산업측량 등에 적용될 수 있다. 본 실시 예에서는 레이저 광을 이용한 거리계 시스템(LIDAR)를 예를 들어 설명한다.
광학식 거리계 시스템(100)은 광원(10), 광 도파로(20), 광 경로 가변 모듈(30), 렌즈(40), 반사 거울(50), 집광 거울(60), 광 검출기(70), 그리고 신호 처리부(80)를 포함한다.
광원(10)은 광을 제공한다. 광원(10)은 펄스 광을 제공할 수 있다. 실시 예에 의하면, 광은 펄스 레이저가 제공된다. 광원(10)은 근적외선 또는 중적외선 파장의 광을 제공할 수 있다. 광원(10) VCSEL (vertical cavity surface-emitting laser) 기반 소자, ECL (external cavity laser) 기반 소자, DFB (distributed feed back) 소자, DBR (distributed Bragg reflector) 소자, 광섬유 레이저, LED (light emitting diode), SLD (super luminescent diode) 중 어느 하나가 제공될 수 있다.
광 도파로(20)는 광원(10)과 연결되며, 광원(10)에서 제공된 광의 이동 경로를 제공한다. 광 도파로(20) 상에는 광 분할 도파로(21)가 제공된다. 광 분할 도파로(21)는 광 분기 도파로(22)와 연결되며, 광 분기 도파로(22)는 광 검출기(70)와 연결된다. 광 분할 도파로(21)는 광 도파로(20)를 따라 이동하는 광의 일부(S)를 분할한다. 일부 분할된 광(S)은 광 분기 도파로(22) 통해 광 검출기(70)로 제공된다. 이하, 광 분기 도파로(22)를 통해 광 검출기(70)로 제공되는 광(S)을 샘플 광이라 한다. 광 분할 도파로(21)에서 분리된 샘플광(S)을 제외한 나머지 광(t)은 광 도파로(20)를 따라 광 경로 가변 모듈(30)로 제공된다.
광 경로 가변 모듈(30)은 광의 이동 경로를 제공하며, 광이 입력되는 입력단과 광이 출력되는 출력단을 포함한다. 광 경로 가변 모듈(30)은 광의 출력 방향이 입력 방향과 상이하도록 광의 경로를 변경할 수 있다.
도 2는 본 발명의 일 실시 예에 따른 광 경로 가변 모듈을 나타내는 도면이고, 도 3은 도 2의 광 경로 가변 모듈의 단면을 나타내는 도면이다.
도 2 및 도 3을 참조하면, 광 경로 가변 모듈(30)은 광 경로부(31), 전극(32), 그리고 전원부(미도시)를 포함한다.
광 경로부(31)는 광이 통과하는 경로를 제공하며, 내부에 액정물질이 제공된다.
전극(32)은 복수 개 제공되며, 서로 조합하여 광 경로부(31)를 에워싸도록 제공된다. 실시 예에 의하면, 전극(32)은 투명 전극으로 제공된다. 투명 전극(32)은 광 투과성이 있는 전극으로, 산화 주석, 산화 인듐, 백금, 금, 또는 이를 포함하는 금속 화합물 등의 박막으로 제공될 수 있다. 전극(32)들은 광 경로부(31)의 중심축을 기준으로 한 쌍씩 서로 마주 배열될 수 있다. 광 경로부(31)의 중심축(31a)을 기준으로 서로 마주 배열되는 한 쌍의 전극을 양극(anode)과 음극(cathode)으로 제공된다.
전원부는 전극(32)들에 전압을 인가하고, 인가되는 전압 크기 조절이 가능하다. 전원부는 전극(32)들에 선택적으로 전압을 인가할 수 있다 또한, 전원부는 전극(32)들마다 인가되는 전압 크기를 달리할 수 있다. 전압이 인가되는 전극(32)들의 위치, 그리고 전극(32)들에 인가되는 전압 크기에 따라 액정물질의 분자 배열이 달라진다. 전압이 인가되는 전극(32)들의 위치에 따라 광 굴절 방향이 달라지고, 전극(32)들에 인가되는 전압 크기에 따라 광 굴절률이 달라진다. 전원부는 전압이 인가되는 전극(32)들의 위치 및 동시에 전압이 인가되는 전극(32) 쌍의 개수, 그리고 전극(32)들마다 인가되는 전압 크기 제어를 통해 광의 굴절 방향 및 굴절률을 제어할 수 있다.
도 4는 전극들에 전압 인가에 따른 광의 굴절을 나타내는 도면이다.
도 4를 참조하면, 전압이 인가되는 전극(32)들의 위치 및 전극(32)들에 인가되는 전압 크기에 따라 광 경로부(31)에서 광(t)의 경로가 변경되어 광의 출력 방향이 입력 방향과 달라진다.
실시 예에 의하면, 광 경로부(31)는 육각 기둥 형상으로 제공되고, 4개의 전극(32)이 상호간에 절연되어 광 경로부(31)를 에워싸도록 제공된다.
도 5는 본 발명의 일 실시 예에 따른 광 경로 가변 모듈을 나타내는 도면이고, 도 6은 도 5의 광 경로 가변 모듈의 단면을 나타내는 도면이다.
도 5 및 도 6을 참조하면, 광 경로부(31)의 형상 및 전극(32)들의 개수는 다양하게 변경될 수 있다. 본 실시 예에 의하면, 광 경로부(31)가 원 기둥 형상으로 제공되고, 6개의 전극(32)이 상호간에 절연되어 광 경로부(31)를 에워싸도록 제공된다. 광 경로부(31)의 중심축(31a)을 기준으로 서로 마주 배열되는 한 쌍의 전극(32)은 양극과 음극으로 제공된다. 광 경로부(31)를 에워싸는 전극(32) 쌍이 많아질수록, 광 굴절 방향을 다양하게 조절할 수 있다.
본 발명에서 광 경로부(31)의 형상 및 전극(32)들의 개수는 상술한 실시 예에 한정되지 않으며 다양하게 변경될 수 있다.
도 7은 본 발명의 또 다른 실시 예에 따른 광 경로 가변 모듈을 나타내는 도면이고, 도 8은 도 7의 광 경로 가변 모듈의 단면을 나타내는 도면이다.
도 7 및 도 8을 참조하면, 광 경로 가변 모듈(30)은 광 도파로(33), 압전 소자(34), 그리고 전원부(미도시)를 포함한다.
광 도파로(33)는 광이 통과하는 경로를 제공하며, 광이 입력되는 입력단과 출력되는 출력단(33b)을 갖는다.
압전 소자(34)는 복수 개 제공되며, 서로 조합하여 광 도파로(33)를 에워싸도록 제공된다. 압전 소자(34)들은 광 도파로(33)의 중심축을 기준으로 한 쌍씩 서로 마주 배열될 수 있다. 광 도파로(33)의 중심축을 기준으로 서로 마주 보는 한 쌍의 압전 소자(34) 단위로 전압이 인가될 수 있다. 본 실시 예에서는 4개의 압전 소자(34)가 두 쌍을 이루어 광 도파로(33)를 에워싸는 것으로 설명하였으나, 제공되는 압전 소자(34)의 개수는 다양하게 변경될 수 잇다.
전원부는 압전 소자(34)들에 전압을 인가하고, 인가되는 전압 크기 조절이 가능하다. 전원부는 압전 소자(34)들에 선택적으로 전압을 인가할 수 있다 또한, 전원부는 압전 소자(34)들마다 인가되는 전압 크기를 달리할 수 있다. 전압의 인가로 압전 소자(34)들에 변형이 발생한다. 압전 소자(34)들의 변형은 전압에 비례하여 발생한다. 이러한 압전 소자(34)들의 변형은 광 도파로(33)를 변형시켜, 광 도파로(33)의 출력단(33b)이 향하는 방향(a1, a2)이 변경된다. 광 도파로(33)는 전압이 인가되는 압전 소자(34)들의 위치, 그리고 압전 소자(34)들에 인가되는 전압 크기에 따라 변형이 다양하게 일어날 수 있다. 전압이 인가되는 압전 소자(34)들의 위치에 따라 광 도파로(33)의 변형 방향(a1, a2)이 달라지고, 압전 소자(34)들에 인가되는 전압 크기에 따라 광 도파로(33)의 변형 정도가 달라질 수 있다. 전원부는 전압이 인가되는 압전 소자(34)들의 위치 및 동시에 전압이 인가되는 압전 소자(34) 쌍의 개수, 그리고 압전 소자(34)마다 인가되는 전압 크기 제어를 통해 광 도파로(33)의 출력단(33b)이 향하는 방향(a1, a2)을 다양하게 제어할 수 있다. 도 9는 광 도파로(33)의 변형으로 출력단(33b)이 향하는 방향이 변경된 일 예를 나타내며, 출력단(33b)이 향하는 방향으로 광(t)이 출력되는 모습을 나타낸다.
다시 도 1을 참조하면, 렌즈(40)는 광 경로 가변 모듈(30)에서 출력된 광이 반사 거울(50)로 이동하는 경로 상에 제공된다. 렌즈(40)는 광의 발산을 제어한다. 렌즈(40)는 광 경로 가변 모듈(30)에서 출력된 광이 측정 대상 전방위로 도달하는 광의 범위 및 광량의 조절이 가능하다.
반사 거울(50)은 반사면(51)을 갖는다. 반사면(51)은 렌즈(40)를 통과한 광을 반사시켜, 광(t1, t2, t3, …)의 경로를 변경한다. 또한, 반사면(51)은 반사면(51)에서 반사되어 주변으로 제공된 광(t1, t2, t3, …)이 주변 지형 및 사물(미도시)에서 반사되는 다시 반사면(51)으로 회수되는 광(ta)을 집광 거울(60) 측으로 반사시킨다. 반사면(51)은 반사 거울(50)의 중심축을 기준으로 360도 전방위로 광(t1, t2, t3, …)의 반사가 가능한 형상을 가질 수 있다. 반사 거울(50)의 중심축은 광 경로 가변 모듈(30)에 입력되는 광의 입력 방향과 동일한 축을 가질 수 있다.
도 10은 본 발명의 일 실시 예에 따른 반사 거울을 나타내는 사시도이다.
도 10을 참조하면, 반사 거울(50)은 상면(52) 및 하면(53)이 원형으로 제공되고, 상면(52)이 하면(53)보다 큰 직경을 갖는다. 측면(51)은 상면(52)으로부터 하면(53)으로 갈수록 점차 직경이 작아지는 형상을 갖는다. 측면(51)은 오목한 형태를 가질 수 있다. 반사면(51)은 반사 거울(50)의 측면에 제공된다. 오목한 형상의 반사면(51)은 주변 지형 및 사물에서 반사되는 반사광(ta)의 집광률을 높일 수 있다.
광 경로 가변 모듈(30)에서 광 경로가 변경된 출력 광은 경로가 변경된 방향에 따라 서로 상이한 반사 지점에서 반사면(51)으로부터 반사된다. 반사면(51)은 상기 반사 지점의 위치에 따라 상이한 방향으로 광(t1, t2, t3, …)을 반사한다. 때문에, 반사면(51)은 광의 입사 방향에 따라 360도 전방위로 광(t1, t2, t3, …)의 반사가 가능하다.
도 11은 본 발명의 다른 실시 예에 따른 반사 거울을 나타내는 사시도이다.
도 11을 참조하면, 반사 거울(50)은 원뿔 형상으로 제공될 수 있다. 반사 거울(50)의 상면(52)은 원형으로 제공되고, 측면(51)은 상면(52)으로부터 꼭지점(53)으로 갈수록 점차 직경이 작아지는 형상을 가질 수 있다. 측면(51)은 볼록한 형태를 가질 수 있다. 반사면(51)은 반사 거울(50)의 측면에 제공된다. 볼록한 형상의 반사면(51)은 광의 가변 범위를 넓혀 다양한 방향 및 각도로 광을 반사할 수 있다.
도 12는 본 발명의 다른 실시 예에 따른 반사 거울을 나타내는 사시도이다.
도 12를 참조하면, 반사 거울(50)의 상면(52)과 하면(53)은 대체로 사각 형상으로 제공될 수 있다. 반사 거울(50)의 상면(52) 및 하면(53)의 형상은 이에 한정되지 않으며 다양하게 변경될 수 있다. 반사 거울(50)의 측면(51)은 제1영역(51a)과 제2영역(51b)을 가질 수 있다.
제1영역(51a)은 볼록면으로 제공되며, 반사 거울(50)의 중심 축을 중심으로 360° 방향으로 제공된다.
제2영역(51b)은 오목면으로 제공되며, 반사 거울(50)의 중심 축을 중심으로 360° 방향으로 제공된다. 제2영역(51b)은 제1영역(51a)의 상부 또는 하부에 위치할 수 있다. 실시 예에 의하면, 제2영역(51b)은 제1영역(51a)의 상부에 제공된다.
제2영역(51b)은 반사 거울(50)의 상면(52)으로부터 아래로 갈수록 너비가 점차 감소하고, 제1영역(51a)은 제2영역(51b)으로부터 아래로 갈수록 너비가 점차 감소할 수 있다.
상술한 제1영역(51a)과 제2영역(51b)은 반사면으로 제공된다. 이러한 형상의 반사면(51)은 광의 가변 범위를 넓혀 다양한 방향 및 각도로 광(t1, t2, t3, …)을 반사할 수 있다. 또한, 주변 지형 및 사물에서 반사되어 되돌아오는 반사광(ta)의 집광률을 높일 수 있다.
다시 도 1을 참조하면, 집광 거울(60)은 렌즈(40)와 광 경로 가변 모듈(30) 사이 구간에 제공되며, 반사면(51)에서 반사된 반사광(ta)을 광 검출기(70) 측으로 집광한다. 집광 거울(60)은 반사광(ta)의 집광률을 높이기 위해 대면적으로 제공된다.
도 13은 본 발명의 일 실시 예에 따른 집광 거울을 나타내는 도면이다. 도 13의 (A)는 집광 거울의 단면도이고, (B)는 집광 거울의 정면도이다.
도 13을 참조하면, 집광 거울(60)은 오목한 형상의 반사면(61)을 가진다. 반사면(61)에는 투과 영역(62)이 형성된다. 투과 영역(62)은 광 경로 가변 모듈(30)에서 출력된 광이 반사 거울(50) 측으로 투과되는 영역으로, 광 경로 상에 위치하는 집광 거울(60)이 대면적의 반사면(61)을 가짐에 따라 투과 영역(62)이 별도로 제공된다.
도 14는 본 발명의 다른 실시 예에 따른 집광 거울을 나타내는 도면이다. 도 14의 (A)는 집광 거울의 단면도이고, (B)는 집광 거울의 정면도이다.
도 14를 참조하면, 집광 거울(60)은 평평한 반사면(61)을 가진다. 반사면(61)에는 투과 영역(62)이 형성된다.
집광 거울(60) 및 반사면(61)의 형상은 상술한 실시 예에 한정되지 않으며, 반사광(ta)의 집광률을 높일 수 있는 다양한 형상으로 변경될 수 있다.
다시 도 1을 참조하면, 광 검출기(70)는 집광 거울(60)에서 전달된 반사광(ta)과 광 분기 도파로(22)를 통해 전달된 샘플광(S)을 검출한다. 실시 예에 의하면, 광 검출기(70)는 증폭 광 검출기 (amplified photo detector), 가이거 모드 감지기 (Geiger-mode detector), Avalanche 광 감지기 (avalanche photo detector), 단광자 avalanche 감지기 (single-photon avalanche diode), 광 증배관 (photo multiplier tube) 중 어느 하나를 포함할 수 있다.
신호 처리부(70)는 광 검출기(70)에서 검출된 반사광(ta) 및 샘플광(S)을 신호 처리하여, 광(t)의 출력 시간 및 발사 방향, 각 지점의 반사광(ta)의 검출 시간 정보를 통해 거리를 산출하고, 측정 대상 지역의 3차원 공간의 좌표 정보를 획득함으로써, 장치 주변의 360도 전방위에 대한 공간 정보를 재구성하여 복원한다.
도 15는 본 발명의 다른 실시 예에 따른 광학식 거리계 시스템을 나타내는 도면이다.
도 15를 참조하면, 광 경로 가변 모듈(30)은 광 경로 상에 순차적으로 위치하는 적어도 두 개 이상의 줌 렌즈(31, 32)를 포함한다. 광은 줌 렌즈(31, 32)들을 순차적으로 거쳐 출력되며, 복수의 경로로 동시에 출력된다. 줌 렌즈(31, 32)의 조절에 따라, 광은 반사 거울의 중심축을 기준으로 출력되는 각도가 변경된다. 구체적으로 광은 줌 렌즈(31, 32)의 조절에 따라, 반사 거울의 중심축에 대해 큰 각도로 펼쳐져 출력될 수 있고, 좁은 각도로 출력될 수 있다. 이러한 광의 출력 각도 변경으로, 반사 거울의 반사면에서 광이 반사되는 반사 지점들이 변경된다. 이로 인해, 광은 반사 거울(50)의 중심축을 기준으로 360도 전방위 영역으로 그리고 다양한 각도로 반사될 수 있다.
도 16은 본 발명의 또 다른 실시 예에 따른 광학식 거리계 시스템을 나타내는 도면이다.
도 16을 참조하면, 광학식 거리계 시스템은 광원(10a, 10b, …), 광 도파로(20a, 20b, …), 광 경로 가변 모듈(30a, 30b, …), 렌즈(40a, 40b, …), 반사 거울(50a, 50b, …), 집광 거울(60a, 60b, …), 그리고 광 검출기(70a, 70b, …) 각각을 복수 개 포함하며, 상기 각 구성들이 하나씩 포함되어 복수의 광학식 거리계 모듈(A, B, …)을 구성한다.
광원(10a, 10b, …), 광 도파로(20a, 20b, …), 광 경로 가변 모듈(30a, 30b, …), 렌즈(40a, 40b, …), 반사 거울(50a, 50b, …), 집광 거울(60a, 60b, …), 그리고 광 검출기(70a, 70b, …)는 도 1 내지 도 15의 실시 예들에서 설명한 구성과 동일하게 제공될 수 있다.
각각의 광학식 거리계 모듈(A, B, …)에서는 광원(10a, 10b, …)에서 제공된 광이 광 도파로(20a, 20b, …), 광 경로 가변 모듈(30a, 30b, …), 렌즈(40a, 40b, …), 그리고 반사 거울(50a, 50b, …)에 순차적으로 제공된다. 반사 거울(50a, 50b, …)에서 반사된 광은 주변 공간으로 제공되며, 주변 지형 및 사물에서 반사되어 다시 반사 거울(50a, 50b, …)로 제공된다. 반사광은 반사 거울(50a, 50b, …)에서 반사되고, 집광 거울(60a, 60b, …)을 거쳐 광 검출기(70a, 70b, …)로 제공된다.
신호 처리부(70)는 광학식 거리계 모듈(A, B, …)들에서 제공된 반사광과 광원(10a, 10b, …)들에서 제공된 샘플광을 신호 처리하여, 주위 전방위에 대한 공간 정보를 재구성 및 복원한다.
광학식 거리계 모듈(A, B, …)에 포함된 반사 거울(50a, 50b, …)들은 서로 조합되어 360도의 반사면을 구성한다. 반사 거울(50a, 50b, …)의 반사면 각도 범위에 따라 광학식 거리계 모듈(A, B, …)이 제공되는 개수가 다양하게 변경될 수 있다. 실시 예에 의하면, 반사 거울(50a, 50b, …)들은 90도 범위의 반사면을 가지고, 광학식 거리계 모듈(A, B, …)이 4개 제공되어 360도의 반사면을 구성한다.
본 실시 예에서는 광학식 거리계 모듈(A, B, …) 각각에 광원(10a, 10b, …)이 제공되고, 반사 거울(50a, 50b, …)들이 360도보다 작은 각도 범위의 반사면을 가짐에 따라, 광 경로 가변 모듈(30a, 30b, …)들은 도 1 내지 도 15의 실시 예들의 광 경로 가변 모듈보다 좁은 각도 범위에서 광 경로를 변환할 수 있다. 때문에, 주변 공간으로 광이 촘촘한 경로로 제공될 수 있을 뿐만 아니라, 다양한 방향 및 각도로 광이 제공될 수 있다. 또한, 각각의 반사 거울(50a, 50b, …)에서는 광이 소정 각도 범위에서 반사되므로, 주변 지형 및 사물에서 반사되어 되돌아오는 반사광의 집광률이 향상될 수 있다. 이를 통해 주위 전방위에 대한 공간 정보를 세밀하게 재구성 및 복원할 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
100: 광학식 거리계 시스템
10: 광원
20: 광 도파로
30: 광 경로 가변 모듈
31: 광 경로부
32: 전극
33: 광 도파로
34: 압전 소자
40: 렌즈
50: 반사 거울
60: 집광 거울
70: 광 검출기

Claims (11)

  1. 광원;
    상기 광원에서 제공되는 광이 입력 및 출력되고, 상기 광의 출력 방향이 입력 방향과 상이하도록 상기 광의 경로 변경이 가능한 광 경로 가변 모듈; 및
    상기 광 경로 가변 모듈에서 출력된 광이 반사되는 반사면을 갖는 반사 거울을 포함하며,
    상기 광 경로 가변 모듈에서의 상기 광 경로의 변경으로 상기 반사면에서 상기 광의 반사 지점들이 변경되며,
    상기 광 경로 가변 모듈은
    상기 광이 통과하며, 상기 광이 출력되는 출력단을 갖는 광 도파로;
    복수 개가 서로 조합하여 상기 광 도파로를 에워싸는 압전 소자들; 및
    상기 압전 소자들에 전압을 인가하며, 인가되는 전압 크기 조절이 가능한 전원부를 포함하되,
    상기 압전 소자들에 인가되는 전압 크기에 따라 상기 광 도파로의 출력단이 향하는 방향이 변경되는 광학식 거리계 시스템.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제 1 항에 있어서,
    상기 압전 소자들은 상기 광 도파로의 둘레를 따라 상기 광 도파로의 중심 축을 중심으로 한 쌍씩 서로 마주 배열되는 광학식 거리계 시스템.
  7. 제 1 항에 있어서,
    상기 광 경로 가변 모듈은
    상기 광의 경로 상에 순차적으로 위치하는 적어도 두 개 이상의 줌 렌즈를 포함하는 광학식 거리계 시스템.
  8. 제 1 항, 제 6 항, 그리고 제 7 항 중 어느 하나의 항에 있어서,
    상기 반사면은 상기 광의 입력 방향과 동일한 축을 중심으로 360° 방향으로 제공되는 광학식 거리계 시스템.
  9. 제 8 항에 있어서,
    상기 반사면은
    상기 광의 입력 방향과 동일한 축을 중심으로 360° 방향으로 제공되며, 볼록면인 제1영역; 및
    상기 제1영역의 상부 또는 하부에 위치하고, 상기 광의 입력 방향과 동일한 축을 중심으로 360° 방향으로 제공되며 오목면인 제2영역을 포함하는 광학식 거리계 시스템.
  10. 제 1 항, 제 6 항, 그리고 제 7 항 중 어느 하나의 항에 있어서,
    상기 반사면에서 반사된 상기 광은 주변 지형 및 사물에서 반사된 후 상기 반사 거울로 재입사되고,
    상기 광학식 거리계 시스템은,
    상기 광원으로부터 상기 광 경로 가변 모듈로 제공되는 광에서 분리된 샘플광과, 상기 반사 거울로 재입사되어 상기 반사면에서 반사된 반사광을 검출되는 광 검출기; 및
    상기 샘플광의 출력 시간 정보, 상기 광 경로 가변 모듈에서 출력되는 상기 광 경로 정보, 그리고 상기 반사광의 검출 시간 정보를 통해 상기 주변 지형 및 사물의 3차원 분포를 측량하는 신호 처리부를 더 포함하는 광학식 거리계 시스템.
  11. 제 10 항에 있어서,
    상기 광 경로 가변 모듈과 상기 반사 거울 사이 구간에 위치하고, 상기 반사광을 상기 광 검출기로 반사시키는 반사면을 갖는 집광 거울을 더 포함하며,
    상기 집광 거울의 반사면은 상기 광 경로 가변 모듈에서 출력된 광이 상기 반사 거울 측으로 투과되는 투과 영역을 갖는 광학식 거리계 시스템.
KR1020160114028A 2016-09-05 2016-09-05 광학식 거리계 시스템 KR101911601B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160114028A KR101911601B1 (ko) 2016-09-05 2016-09-05 광학식 거리계 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160114028A KR101911601B1 (ko) 2016-09-05 2016-09-05 광학식 거리계 시스템

Publications (2)

Publication Number Publication Date
KR20180026997A KR20180026997A (ko) 2018-03-14
KR101911601B1 true KR101911601B1 (ko) 2018-10-24

Family

ID=61660219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160114028A KR101911601B1 (ko) 2016-09-05 2016-09-05 광학식 거리계 시스템

Country Status (1)

Country Link
KR (1) KR101911601B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225965A1 (en) 2018-05-24 2019-11-28 Samsung Electronics Co., Ltd. Lidar device
KR20230094788A (ko) * 2021-12-21 2023-06-28 삼성전자주식회사 라이더 센서 장치 및 이를 구비한 전자 장치
KR20240058475A (ko) * 2022-10-26 2024-05-07 주식회사 버츠 플래시 라이다 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005123A (ja) 2001-06-25 2003-01-08 Nissan Motor Co Ltd 光スキャナ装置及び光スキャナ装置の駆動方法
JP2013210379A (ja) * 2009-12-08 2013-10-10 Denso Wave Inc レーザレーダ装置
JP2015517094A (ja) * 2012-03-23 2015-06-18 ウインダー フォトニクス エー/エスWindar Photonics A/S 複数方向のlidarシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317329B1 (ko) * 2015-01-02 2021-10-26 삼성전자주식회사 광 스캐닝 프로브 및 이를 이용한 3차원 데이터 생성 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005123A (ja) 2001-06-25 2003-01-08 Nissan Motor Co Ltd 光スキャナ装置及び光スキャナ装置の駆動方法
JP2013210379A (ja) * 2009-12-08 2013-10-10 Denso Wave Inc レーザレーダ装置
JP2015517094A (ja) * 2012-03-23 2015-06-18 ウインダー フォトニクス エー/エスWindar Photonics A/S 複数方向のlidarシステム

Also Published As

Publication number Publication date
KR20180026997A (ko) 2018-03-14

Similar Documents

Publication Publication Date Title
CN109154552B (zh) 光学颗粒传感器
US10739460B2 (en) Time-of-flight detector with single-axis scan
JP6935007B2 (ja) Lidar送光器および受光器の共有導波路
US20210373162A1 (en) Lens and integrated beam transceiver based lidar detection device
CN110691983A (zh) 具有结构光及集成照明和检测的基于lidar的3-d成像
KR20180113924A (ko) Lidar 시스템 및 방법
CN103675831A (zh) 距离测定装置
JP2020532735A (ja) 互いに位置整合された伝送経路および受信経路を有するlidar
CN103293530A (zh) 距离测量装置
US11867808B2 (en) Waveguide diffusers for LIDARs
US11561284B2 (en) Parallax compensating spatial filters
KR101911601B1 (ko) 광학식 거리계 시스템
EP4113162A1 (en) Laser detection system and vehicle
CN110312947B (zh) 用于检测对象的激光雷达传感器
CN109342758B (zh) 测速传感器
CN109945805A (zh) 一种高精度角度传感器
US20230072058A1 (en) Omni-view peripheral scanning system with integrated mems spiral scanner
CN108885260B (zh) 具有单轴扫描的渡越时间探测器
US20230350033A1 (en) Optical measurement system and method of measuring a distance or speed of an object
US11561289B2 (en) Scanning LiDAR system with a wedge prism
CN113030912A (zh) 一种基于扫描振镜的激光雷达***
CN110045388A (zh) 一种激光雷达
WO2024075599A1 (ja) 光照射装置、光測距装置および車両
US20230073060A1 (en) Tunable laser emitter with 1d grating scanner for 2d scanning
CN111308442B (zh) 激光雷达

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant