KR101848571B1 - A TPU Resin Composite Using Halogen Free Type Flame Retardant - Google Patents

A TPU Resin Composite Using Halogen Free Type Flame Retardant Download PDF

Info

Publication number
KR101848571B1
KR101848571B1 KR1020160181114A KR20160181114A KR101848571B1 KR 101848571 B1 KR101848571 B1 KR 101848571B1 KR 1020160181114 A KR1020160181114 A KR 1020160181114A KR 20160181114 A KR20160181114 A KR 20160181114A KR 101848571 B1 KR101848571 B1 KR 101848571B1
Authority
KR
South Korea
Prior art keywords
mixed
flame retardant
thermoplastic polyurethane
polyurethane resin
weight
Prior art date
Application number
KR1020160181114A
Other languages
Korean (ko)
Inventor
이지은
이종환
한동훈
김관용
이단비
박은지
Original Assignee
한국신발피혁연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국신발피혁연구원 filed Critical 한국신발피혁연구원
Priority to KR1020160181114A priority Critical patent/KR101848571B1/en
Application granted granted Critical
Publication of KR101848571B1 publication Critical patent/KR101848571B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5377Phosphinous compounds, e.g. R2=P—OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition

Abstract

A thermoplastic polyurethane (TPU) resin composition using a non-halogen flame retardant of the present invention comprises, based on 100 parts by weight of a TPU resin, 10 to 50 parts by weight of a non-halogen flame retardant, 1 part by weight of silica, 1 part by weight of a silane coupling agent and 1 part by weight of a processing aid. An object of the present invention is to provide the TPU resin composition using the non-halogen flame retardant which does not change the mechanical strength depending on the content of the flame retardant.

Description

비 할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물{A TPU Resin Composite Using Halogen Free Type Flame Retardant}TECHNICAL FIELD [0001] The present invention relates to a thermoplastic polyurethane resin composition using a halogen-free flame retardant,

본 발명은 열가소성 폴리우레탄 수지 조성물에 관한 것으로, 더욱 상세하게는 친환경을 고려하여 난연성을 증대시키고 기계적강도의 저하가 없는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 개질방법을 제공하는 것이다. The present invention relates to a thermoplastic polyurethane resin composition, and more particularly, to provide a method for modifying a thermoplastic polyurethane resin using a non-halogen flame retardant which increases flame retardancy and does not cause a decrease in mechanical strength in consideration of environmental friendliness.

통상적으로 열가소성 폴리우레탄 수지는 우수한 마모도 등과 같은 뛰어나 기계적 물성 및 뛰어난 탄성력 등을 갖고 있을 뿐 아니라 일반적인 탄성체인 가교 고무 등과 같은 열경화성 수지와 달리 사출, 압출 등과 같은 공정을 통해 제품을 생산할 수 있는 열가소성 수지로서 제품 성형이 용이하여 자동차, 전선, 공압 호스 및 신발 등과 같은 다양한 산업 분야에서 사용되고 있다. 그러나, 열가소성 폴리우레탄 수지의 취약한 난연 특성으로 인해 매우 우수한 난연성이 요구되는 일부 분야에서는 그 사용이 제한될 수밖에 없었다. 따라서, 이러한 열가소성 폴리우레탄 수지에 난연성을 부여하기 위한 방법들이 개발되고 있는데, 열가소성 폴리우레탄 수지에 난연제를 첨가하는 방법들이 주로 사용되고 있다. 하지만 열가소성 폴리우레탄 수지의 난연성을 위하여 난연제를 첨가할 경우 인장 강도, 반발 탄성력, 탄성률 및 마모도와 같은 기계적 성질이 저하되므로 이를 최소화하기 위해서는 가능한 한 최소량의 난연제를 수지에 첨가하는 것이 바람직하다. 또한, 열가소성 폴리우레탄 수지는 연소 시 분해되어 저분자량의 용융 물질이 됨으로써 불똥(flaming drip)이 드리핑(dripping)되는 현상을 보이는데 이러한 드리핑 현상으로 인해 화재 발생시 화재가 더욱 확산될 수 있다. 따라서, 연소시 드리핑 현상을 개선하는 것도 난연 열가소성 폴리우레탄 수지 개발 시 고려해야 할 매우 중요한 사항 중 하나이다.The thermoplastic polyurethane resin generally has excellent mechanical properties such as excellent abrasion resistance and excellent elasticity, and is a thermoplastic resin which can produce a product through processes such as injection, extrusion and the like unlike a thermosetting resin such as a crosslinked rubber which is a general elastic body It is used in various industrial fields such as automobile, electric wire, pneumatic hose, and shoes. However, due to the fragile flame retardant properties of thermoplastic polyurethane resins, their use has been limited in some areas where very good flame retardancy is required. Accordingly, methods for imparting flame retardancy to such a thermoplastic polyurethane resin have been developed, and methods of adding a flame retardant to the thermoplastic polyurethane resin have been mainly used. However, when a flame retardant is added for the flame retardancy of the thermoplastic polyurethane resin, mechanical properties such as tensile strength, rebound resilience, elastic modulus, and abrasion deteriorate. Therefore, it is preferable to add a minimum amount of flame retardant to the resin in order to minimize this. In addition, the thermoplastic polyurethane resin is decomposed upon combustion and becomes a low-molecular-weight molten material, thereby causing a flaming drip to be dripped. Such a dripping phenomenon can further spread the fire when a fire occurs. Therefore, it is one of very important matters to be considered in the development of the flame retardant thermoplastic polyurethane resin to improve the dripping phenomenon in the combustion.

열가소성 폴리우레탄 수지의 난연성을 향상시키는 방법 중 하나는 할로겐계 난연제를 단독 또는 할로겐계 난연제와 안티모니 옥사이드 등과 같은 금속 옥사이드화합물을 혼합해서 사용하는 방법이다. 하지만, 이러한 할로겐계 난연제를 사용한 수지는 연소 시 발생하는 연기의 독성과 부식성으로 인해 일부 용도로는 적용하기가 어려운 문제점이 있다. 따라서, 최근에는 이러한 할로겐 난연제 사용에 대한 문제점을 해결하기 위해서 비할로겐계 난연제를 사용하는 난연 열가소성 폴리우레탄 수지에 대한 연구 개발이 이루어지고 있다.One of the methods for improving the flame retardancy of a thermoplastic polyurethane resin is a method in which a halogen-based flame retardant is used alone or in combination with a halogen-based flame retardant and a metal oxide compound such as antimony oxide. However, the resin using such a halogen-based flame retardant has a problem that it is difficult to apply it to some applications due to the toxicity and corrosiveness of the smoke generated in the combustion. Therefore, in recent years, research and development have been conducted on a flame retardant thermoplastic polyurethane resin using a non-halogen flame retardant to solve the problem of using such a halogen flame retardant.

등록특허 10-1407251Patent No. 10-1407251

상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 난연제의 함량에 따라 기계적 강도의 변화가 없는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물을 제공하는 것이다. It is an object of the present invention to provide a thermoplastic polyurethane resin composition using a non-halogen flame retardant having no change in mechanical strength depending on the content of a flame retardant.

상술한 목적을 달성하기 위하여 본 발명인 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물은, 열가소성 폴리우레탄수지 100중량부에 대하여 비할로겐계 난연제를 10 내지 50중량부, 실리카 1중량부, 실란커플링제 1중량부 및 가공조제 1중량부를 포함하는 것을 특징으로 한다. In order to achieve the above object, the thermoplastic polyurethane resin composition using the non-halogen flame retardant of the present invention comprises 10 to 50 parts by weight of a non-halogen flame retardant, 1 part by weight of silica, 1 part by weight and 1 part by weight of a processing aid.

상기 비할로겐계 난연제에 상기 실란커플링제를 표면처리한 후 적용하는 것을 특징으로 한다. The non-halogen flame retardant is surface treated with the silane coupling agent and then applied.

상기 열가소성 폴리우레탄수지는 폴리에테르 폴리올(Polyether polyol) 또는 폴리에스테르 폴리올(Polyester polyol)로 이루어진 군에서 어느 하나를 사용하는 것을 특징으로 한다. The thermoplastic polyurethane resin may be one selected from the group consisting of a polyether polyol and a polyester polyol.

상기 비할로겐난연제는, 멜라민 폴리포스페이트(Melamine Polyphosphate), 알루미늄 트리폴리포스페이트(Aluminium Tripolyphosphate), 멜라민 피로포스페이트(Melamine Pyrophosphate, MPP), 멜라민 시아누레이트(Melamine Cyanurate, MC), 암모늄 폴리포스페이트(Ammonium Polyphosphate, APP), 크래실 디페닐 포스페이트(Cresyl diphenyl phosphate, CDP), 알루미늄 하이드로사이드(Aluminum hydroxide, ATH), 트리아릴 포스페이트 이소프로필레이티드( Triaryl Phosphates Isopropylated), 멜라민 포스페이트(Malamine Phosphate) 및 서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 중 어느 하나를 이용하는 것을 특징으로 한다. The non-halogen flame retardant may be selected from the group consisting of melamine polyphosphate, aluminum tripolyphosphate, melamine pyrophosphate (MPP), melamine cyanurate (MC), ammonium polyphosphate APP, Cresyl diphenyl phosphate (CDP), Aluminum hydroxide (ATH), Triaryl Phosphates Isopropylated, Malamine Phosphate, and Surface Modified Aluminum (Surface Modified Aluminum Phosphinate) is used.

상기 실리카는 하이드로필릭 흄드 실리카(Hydrophilic fumed silica)를 액상의 상기 비할로겐계 난연제와 혼합하는 것을 특징으로 한다. The silica is characterized in that Hydrophilic fumed silica is mixed with the non-halogen flame retardant in liquid phase.

상기 실란 커플링제는 (3-메르캅토프로필)트리에톡시실란((3-Mercaptopropyl)triethoxysilane))을 사용하는 것을 특징으로 한다. The silane coupling agent is (3-mercaptopropyl) triethoxysilane (3-mercaptopropyl) triethoxysilane.

상기 가공조제는, 비스[4-(2-페닐-2-프로필]아민((Bis[4-(2-phenyl-2-propyl)phenyl]amine))을 사용하는 것을 특징으로 한다. The processing aid is characterized by using bis [4- (2-phenyl-2-propyl) amine (bis [4- (2-phenyl-2-propyl) phenyl] amine].

본 발명의 다른 실시예인 비할로겐계 난연제를 이용하는 열가소성폴리우레탄 수지 조성물의 제조과정은, 비할로겐계 난연제와 실란커플링제를 혼합하는 제 1단계와, 상기 제 1단계의 혼합물에 실리카를 혼합하는 제 2단계와, 열가소성폴리우레탄 수지와 가공조제를 혼합하는 제 3단계와, 상기 제 2단계의 혼합물과 상기 제 3단계의 혼합물을 혼합하는 제 4단계와, 상기 제 4단계의 혼합물을 압출하는 제 5단계;를 포함하여 구성되는 제조방법으로 제조되는 것을 특징으로 한다. A process for producing a thermoplastic polyurethane resin composition using a non-halogen flame retardant, which is another embodiment of the present invention, comprises a first step of mixing a halogen-free flame retardant and a silane coupling agent, a step of mixing silica in the mixture of the first step A third step of mixing the thermoplastic polyurethane resin and a processing aid, a third step of mixing the mixture of the second step and the third step, and a fourth step of extruding the mixture of the fourth step 5 is a view illustrating a method of manufacturing a semiconductor device according to an embodiment of the present invention.

본 발명에 의한 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 개질방법에서는 다음과 같은 효과가 있다. The thermoplastic polyurethane resin modifying method using the non-halogen flame retardant according to the present invention has the following effects.

난연제를 폴리우레탄수지에 혼합할 때, 난연제에 실란커플링제를 이용하여 코팅하여 혼합함으로써 제조되는 열가소성폴리우레탄 수지의 난연성과 기계적 강도가 우수해지는 효과가 있다. When the flame retardant is mixed with the polyurethane resin, the flame retardant and the mechanical strength of the thermoplastic polyurethane resin produced by coating and mixing the flame retardant with a silane coupling agent are excellent.

도 1은 본 발명에 의한 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물의 제조과정을 보인 순서도.1 is a flowchart showing a process for producing a thermoplastic polyurethane resin composition using a non-halogen flame retardant according to the present invention.

이하, 본 발명에 의한 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물의 바람직한 실시예가 첨부된 도면을 참고하여 상세하게 설명한다. Hereinafter, preferred embodiments of the thermoplastic polyurethane resin composition using the non-halogen flame retardant according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 의한 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물은, 열가소성 폴리우레탄수지 100중량부에 대하여 비할로겐계 난연제를 10 내지 50중량부, 실리카 1중량부, 실란커플링제 1중량부 및 가공조제 1중량부를 포함하여 구성될 수 있다. The thermoplastic polyurethane resin composition using the non-halogen flame retardant according to the present invention comprises 10 to 50 parts by weight of a non-halogen flame retardant, 1 part by weight of silica, 1 part by weight of a silane coupling agent, And 1 part by weight of an auxiliary agent.

먼저, 본 발명의 조성물의 기재로 열가소성폴리우레탄 수지(TPU)가 마련된다. 상기 열가소성 폴리우레탄수지는 폴리에테르 폴리올(Polyether polyol) 또는 폴리에스테르 폴리올(Polyester polyol)로 이루어진 군에서 어느 하나를 사용할 수 있다.First, a thermoplastic polyurethane resin (TPU) is provided as a base material of the composition of the present invention. The thermoplastic polyurethane resin may be selected from the group consisting of a polyether polyol and a polyester polyol.

그리고, 본 발명의 조성물에는 비할로겐계 난연제가 혼합된다. 상기 비할로겐계 난연제는, 멜라민 폴리포스페이트(Melamine Polyphosphate), 알루미늄 트리폴리포스페이트(Aluminium Tripolyphosphate), 멜라민 피로포스페이트(Melamine Pyrophosphate, MPP), 멜라민 시아누레이트(Melamine Cyanurate, MC), 암모늄 폴리포스페이트(Ammonium Polyphosphate, APP), 크래실 디페닐 포스페이트(Cresyl diphenyl phosphate, CDP), 알루미늄 하이드로사이드(Aluminum hydroxide, ATH), 트리아릴 포스페이트 이소프로필레이티드(Triaryl Phosphates Isopropylated), 멜라민 포스페이트(Malamine Phosphate) 및 서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 중 어느 하나를 이용할 수 있다.The composition of the present invention is mixed with a non-halogen flame retardant. The non-halogen flame retardant may be selected from the group consisting of melamine polyphosphate, aluminum tripolyphosphate, melamine pyrophosphate (MPP), melamine cyanurate (MC), ammonium polyphosphate , APP), Cresyl diphenyl phosphate (CDP), aluminum hydroxide (ATH), triaryl phosphate isopropylated, melamine phosphate and surface modifier Any one of Surface Modified Aluminum Phosphinate may be used.

그리고, 본 발명의 조성물에는 실란커플링제가 혼합된다. 상기 실란커플링제는, (3-메르캅토프로필)트리에톡시실란((3-Mercaptopropyl)triethoxysilane))을 사용할 수 있다. The composition of the present invention is mixed with a silane coupling agent. (3-mercaptopropyl) triethoxysilane) may be used as the silane coupling agent.

상기 실란커플링제는 상기 비할로겐계 난연제와 먼저 혼합하여, 상기 비할로겐계 난연제를 표면처리할 수 있다. 이는 상기 비할로겐계 난연제가 친수성기이므로 상기 열가소성폴리우레탄 수지와 반응이 이루어지지 않는 것을 방지하기 위함이다. 즉, 상기 비할로겐계 난연제에 상기 실란커플링제가 표면처리되어 상기 비할로겐계 난연제의 표면이 소수성기로 개질되도록 하기 위함이다. The silane coupling agent may be first mixed with the non-halogen flame retardant to surface-treat the non-halogen flame retardant. This is to prevent the non-halogen flame retardant from reacting with the thermoplastic polyurethane resin because it is a hydrophilic group. That is, the surface of the non-halogen flame retardant is treated with the silane coupling agent to modify the surface of the non-halogen flame retardant to a hydrophobic group.

그리고, 본 발명의 조성물에는 실리카가 혼합된다. 상기 실리카는 하이드로필릭 흄드 실리카(Hydrophilic fumed silica)를 사용할 수 있다. 상기 실리카는 상기 액상의 상기 비할로겐계 난연제 혼합물에 미리 혼합하여 향후 열가소성폴리우레탄 수지와 혼합될 때 상기 난연제가 고르게 분산되도록 하는 역할을 한다. The composition of the present invention is mixed with silica. Hydrophilic fumed silica may be used as the silica. The silica is preliminarily mixed with the mixture of the non-halogen flame retardant in the liquid phase and serves to disperse the flame retardant evenly when mixed with the thermoplastic polyurethane resin in the future.

그리고, 본 발명의 조성물에는 가공조제가 마련된다. 상기 가공조제는, 비스[4-(2-페닐-2-프로필]아민((Bis[4-(2-phenyl-2-propyl)phenyl]amine))을 사용할 수 있다. 상기 가공조제는 상기 열가소성폴리우레탄 수지에 미리 혼합되어 향후 전체 조성물의 열노화, 산화 및 블루밍에 대해 안정성을 확보시켜 주는 역할을 한다. The composition of the present invention is provided with a processing aid. The processing aid may be selected from the group consisting of bis [4- (2-phenyl-2-propyl) phenyl] amine) Polyurethane resin so as to secure stability against thermal aging, oxidation and blooming of the entire composition in the future.

다음으로, 본 발명에 의한 비할로겐계 난연제를 이용하는 열가소성폴리우레탄 수지 조성물의 제조과정을 살펴본다.Next, the production process of the thermoplastic polyurethane resin composition using the non-halogen flame retardant according to the present invention will be described.

비할로겐계 난연제를 이용하는 열가소성폴리우레탄 수지 조성물의 제조과정은, 비할로겐계 난연제와 실란커플링제를 혼합하는 제 1단계와, 상기 제 1단계의 혼합물에 실리카를 혼합하는 제 2단계와, 열가소성폴리우레탄 수지와 가공조제를 혼합하는 제 3단계와, 상기 제 2단계의 혼합물과 상기 제 3단계의 혼합물을 혼합하는 제 4단계와, 상기 제 4단계의 혼합물을 압출하는 제 5단계를 포함하여 구성될 수 있다. A process for producing a thermoplastic polyurethane resin composition using a non-halogen flame retardant includes a first step of mixing a non-halogen flame retardant and a silane coupling agent, a second step of mixing silica in the mixture of the first step, A third step of mixing a urethane resin and a processing aid, a fourth step of mixing the mixture of the second step and the third step, and a fifth step of extruding the mixture of the fourth step .

먼저, 제 1단계로 비할로겐계 난연제와 실란커플링제를 혼합한다. 상기 실란커플링제는 액상으로 구성되어, 상기 비할로겐계 난연제의 표면을 코팅하게 된다. 이는 상기 비할로겐계 난연제의 표면이 친수성기로 형성되어 열가소성폴리우레탄 수지와 반응이 이루어지지 않는 것을 방지하기 위해 상기 실란커플링제는 상기 비할로겐계 난연제의 표면을 소수성기로 개질시키는 역할을 한다. First, as a first step, a non-halogen flame retardant and a silane coupling agent are mixed. The silane coupling agent is in a liquid phase to coat the surface of the non-halogen flame retardant. The silane coupling agent serves to modify the surface of the non-halogen flame retardant to a hydrophobic group in order to prevent the surface of the non-halogen flame retardant from being formed as a hydrophilic group and not reacting with the thermoplastic polyurethane resin.

다음으로, 제 2단계로, 상기 제 1단계의 혼합물에 실리카를 혼합한다. 상기 실리카를 상기 액상이 제 1단계의 혼합물에 혼합하여, 상기 열가소성폴리우레탄 수지와 혼합될 때, 상기 비할로겐계 난연제가 고르게 분산될 수 있도록 한다. Next, as a second step, silica is mixed with the mixture of the first step. The silica is mixed with the mixture of the first stage and the liquid phase is mixed with the thermoplastic polyurethane resin so that the non-halogen flame retardant can be evenly dispersed.

다음으로, 제 3단계로, 열가소성폴리우레탄 수지와 가공조제를 혼합한다. 상기 열가소성폴리우레탄 수지에 가공조제를 혼합하여, 혼합된 조성물의 열노화, 산화 및 블루밍이 되는 것을 방지하는 역할을 한다. Next, as a third step, a thermoplastic polyurethane resin and a processing aid are mixed. The thermoplastic polyurethane resin is mixed with a processing aid to prevent heat aging, oxidation and blooming of the mixed composition.

다음으로, 제 4단계로, 상기 제 2단계의 혼합물과 상기 제 4단계의 혼합물을 혼합하여 반응시켜 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물을 제조한다. Next, in a fourth step, the mixture of the second step and the mixture of the fourth step are mixed and reacted to prepare a thermoplastic polyurethane resin composition using a non-halogen flame retardant.

다음으로, 본 발명에 의한 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물에서 다양한 비할로겐계 조성물을 적용하여 실험한 결과를 바탕으로 상세하게 설명한다. Next, the thermoplastic polyurethane resin composition using the non-halogen flame retardant according to the present invention will be described in detail on the basis of the results of various non-halogen compositions.

[ 비교예 1 ][Comparative Example 1]

TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 압출한다. 1 g of Naugard 445 is mixed with 100 g of TPU and extruded.

[ 실시예 1-1 ][Example 1-1]

FR-4010 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다. 10 g of FR-4010 and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed with the above mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 1-2 ][Example 1-2]

FR-4010 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다. 30 g of FR-4010 and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed with the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 1-3 ][Example 1-3]

FR-4010 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다. 50 g of FR-4010 and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 2-1 ][Example 2-1]

MPP 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다. 10 g of MPP and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed with the above mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 2-2 ][Example 2-2]

MPP 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of MPP and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed with the above mixed solution. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 2-3 ][Example 2-3]

MPP 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of MPP and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the above mixed solution. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 3-1 ][Example 3-1]

MC 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of MC and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 3-2 ][Example 3-2]

MC 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of MC and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 3-3 ][Example 3-3]

MC 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of MC and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 4-1 ][Example 4-1]

APP 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of APP and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 4-2 ][Example 4-2]

APP 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of APP and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 4-3 ][Example 4-3]

APP 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of APP and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 5-1 ][Example 5-1]

CDP 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of CDP and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 5-2 ][Example 5-2]

CDP 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of CDP and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 5-3 ][Example 5-3]

CDP 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of CDP and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 6-1 ][Example 6-1]

ATH 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of ATH and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 6-2 ][Example 6-2]

ATH 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of ATH and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the above mixed solution. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 6-3 ][Example 6-3]

ATH 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of ATH and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 7-1 ][Example 7-1]

Reofose-65(트리아릴 포스페이트 이소프로필레이티드, Triaryl Phosphates Isopropylated) 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of Reofose-65 (triarylphosphate isopropylated) and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 7-2 ][Example 7-2]

Reofose-65(트리아릴 포스페이트 이소프로필레이티드, Triaryl Phosphates Isopropylated) 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of Reofose-65 (triarylphosphate isopropylated) and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 7-3 ][Example 7-3]

Reofose-65(트리아릴 포스페이트 이소프로필레이티드, Triaryl Phosphates Isopropylated) 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of Reofose-65 (Triaryl Phosphates Isopropylated) and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 8-1 ][Example 8-1]

EPFR-300(멜라민 포스페이트(Malamine Phosphate)) 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of EPFR-300 (melamine phosphate (Malamine Phosphate)) and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 8-2 ][Example 8-2]

EPFR-300(멜라민 포스페이트(Malamine Phosphate)) 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of EPFR-300 (Malamine Phosphate) and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was added to the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 8-3 ][Example 8-3]

EPFR-300(멜라민 포스페이트(Malamine Phosphate)) 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of EPFR-300 (Malamine Phosphate) and 1 g of KH-590 are mixed, and 1 g of Aerosil-300 is mixed into the mixture. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 9-1 ][Example 9-1]

PNF-740R(서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 10g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of Surface Modified Aluminum Phosphinate and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed with the mixture. Then, 1 g of Naugard 445 was mixed with 100 g of TPU Then, the mixed liquids are mixed and extruded.

[ 실시예 9-2 ][Example 9-2]

PNF-740R(서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 30g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of Surface Modified Aluminum Phosphinate and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed with the mixture. Then, 1 g of Naugard 445 was mixed with 100 g of TPU Then, the mixed liquids are mixed and extruded.

[ 실시예 9-3 ][Example 9-3]

PNF-740R(서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 50g과 KH-590 1g 을 혼합하고, 상기 혼합액에 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of Surface Modified Aluminum Phosphinate and 1 g of KH-590 were mixed, and 1 g of Aerosil-300 was mixed with the mixture. Then, 1 g of Naugard 445 was mixed with 100 g of TPU Then, the mixed liquids are mixed and extruded.

실시예Example 비교예Comparative Example 1-11-1 1-21-2 1-31-3 2-12-1 2-22-2 2-32-3 3-13-1 3-23-2 3-33-3 1One 기재
(중량부)
materials
(Parts by weight)
TPUTPU 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100
난연제
(중량부)
Flame retardant
(Parts by weight)
FR-4010FR-4010 1010 3030 5050 -- -- -- -- -- -- --
Melamine Pyrophosphate (MPP)Melamine Pyrophosphate (MPP) -- -- -- 1010 3030 5050 -- -- -- -- Melamine Cyanurate (MC)Melamine Cyanurate (MC) -- -- -- -- -- -- 1010 3030 5050 -- 실리카
(중량부)
Silica
(Parts by weight)
Aerosil-300Aerosil-300 1One 1One 1One 1One 1One 1One 1One 1One 1One --
실란 커플링제
(중량부)
Silane coupling agent
(Parts by weight)
KH-590KH-590 1One 1One 1One 1One 1One 1One 1One 1One 1One --
가공조제
(중량부)
Processing aid
(Parts by weight)
Naugard 445Naugard 445 1One 1One 1One 1One 1One 1One 1One 1One 1One 1One

1. FR-4010 : Modified Melamine Polyphosphate (CAS:218768-84-4), Modified Melamine Pyrophosphate (CAS:15541-60-3), Modified Aluminium Tripolyphosphate (CAS:29196-72-3), Silica dioxide (CAS:7631-86-9)의 혼합물1. Modified Melamine Polyphosphate (CAS: 218768-84-4), Modified Melamine Pyrophosphate (CAS: 15541-60-3), Modified Aluminum Tripolyphosphate (CAS: 29196-72-3), Silica dioxide (CAS: 7631-86-9)

2. Aerosil-300 : Hydrophilic fumed silica2. Aerosil-300: Hydrophilic fumed silica

3. KH-590 : (3-Mercaptopropyl)triethoxysilane3. KH-590: (3-Mercaptopropyl) triethoxysilane

4. Naugard 445 : Bis[4-(2-phenyl-2-propyl)phenyl]amine4. Naugard 445: Bis [4- (2-phenyl-2-propyl) phenyl] amine

실시예Example 비교예Comparative Example 4-14-1 4-24-2 4-34-3 5-15-1 5-25-2 5-35-3 6-16-1 6-26-2 6-36-3 1One 기재
(중량부)
materials
(Parts by weight)
TPUTPU 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100
난연제
(중량부)
Flame retardant
(Parts by weight)
Ammonium Polyphosphate (APP)Ammonium Polyphosphate (APP) 1010 3030 5050 -- -- -- -- -- -- --
Cresyl diphenyl phosphate (CDP)Cresyl diphenyl phosphate (CDP) -- -- -- 1010 3030 5050 -- -- -- -- Aluminum hydroxide (ATH)Aluminum hydroxide (ATH) -- -- -- -- -- -- 1010 3030 5050 -- 실리카
(중량부)
Silica
(Parts by weight)
Aerosil-300Aerosil-300 1One 1One 1One 1One 1One 1One 1One 1One 1One --
실란 커플링제
(중량부)
Silane coupling agent
(Parts by weight)
KH-590KH-590 1One 1One 1One 1One 1One 1One 1One 1One 1One --
가공조제
(중량부)
Processing aid
(Parts by weight)
Naugard 445Naugard 445 1One 1One 1One 1One 1One 1One 1One 1One 1One 1One

실시예Example 비교예Comparative Example 7-17-1 7-27-2 7-37-3 8-18-1 8-28-2 8-38-3 9-19-1 9-29-2 9-39-3 1One 기재
(중량부)
materials
(Parts by weight)
TPUTPU 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100
난연제
(중량부)
Flame retardant
(Parts by weight)
Reofose-65Reofose-65 1010 3030 5050 -- -- -- -- -- -- --
EPFR-300AEPFR-300A -- -- -- 1010 3030 5050 -- -- -- -- PNF-740RPNF-740R -- -- -- -- -- -- 1010 3030 5050 -- 실리카
(중량부)
Silica
(Parts by weight)
Aerosil-300Aerosil-300 1One 1One 1One 1One 1One 1One 1One 1One 1One --
실란 커플링제
(중량부)
Silane coupling agent
(Parts by weight)
KH-590KH-590 1One 1One 1One 1One 1One 1One 1One 1One 1One --
가공조제
(중량부)
Processing aid
(Parts by weight)
Naugard 445Naugard 445 1One 1One 1One 1One 1One 1One 1One 1One 1One 1One

1. Reofos-65 : Triaryl Phosphates Isopropylated1. Reofos-65: Triaryl Phosphates Isopropylated

2. EPFR-300A : Melamine phosphate, Organic hypophosphite2. EPFR-300A: Melamine phosphate, Organic hypophosphite

3. PNF-740R : Surface Modified Aluminum phosphinate3. PNF-740R: Surface Modified Aluminum phosphinate

다음으로, 각각의 실험에 대한 밀도, 경도, 인강강도, 신장율 및 연소시간의 변화의 결과를 다음 표에서 나타내고 있다,Next, the results of the changes in density, hardness, tensile strength, elongation and combustion time for each experiment are shown in the following table,

평가항목Evaluation items 단위unit 실시예Example 비교예Comparative Example 1-11-1 1-21-2 1-31-3 2-12-1 2-22-2 2-32-3 3-13-1 3-23-2 3-33-3 1One 밀도density g/ccg / cc 1.1331.133 1.1661.166 1.1831.183 1.0871.087 1.1941.194 1.2531.253 1.1351.135 1.1811.181 1.2381.238 1.1141.114 경도Hardness Type AType A 8989 9191 9393 8888 9393 9494 9090 9393 9595 8888 인장강도The tensile strength kgf/cm2 kgf / cm 2 185.7185.7 144.7144.7 114.9114.9 62.862.8 81.881.8 84.484.4 216.8216.8 175.5175.5 167.0167.0 207.7207.7 신장율Elongation rate %% 755.0755.0 708.5708.5 589.7589.7 480.2480.2 349.5349.5 275.5275.5 768.5768.5 702.0702.0 661.4661.4 679.6679.6 연소시간 (1회)Burning time (1 time) secsec 1One 00 00 1One 00 88 66 00 00 3535

평가항목Evaluation items 단위unit 실시예Example 비교예Comparative Example 4-14-1 4-24-2 4-34-3 5-15-1 5-25-2 5-35-3 6-16-1 6-26-2 6-36-3 1One 밀도density g/ccg / cc 1.1381.138 1.1881.188 1.2471.247 1.1431.143 1.1761.176 1.2051.205 1.1511.151 1.2571.257 1.3451.345 1.1141.114 경도Hardness Type AType A 8888 9191 9595 8686 8484 8383 8989 9191 9393 8888 인장강도The tensile strength kgf/cm2 kgf / cm 2 111.5111.5 83.483.4 55.055.0 150.0150.0 111.8111.8 73.573.5 192.3192.3 152.6152.6 95.695.6 207.7207.7 신장율Elongation rate %% 666.7666.7 152.0152.0 74.374.3 670.6670.6 643.9643.9 520.2520.2 531.1531.1 652.6652.6 521.5521.5 679.6679.6 연소시간 (1회)Burning time (1 time) secsec 1One 1One 1One 00 1818 2727 > 60> 60 00 33 3535

평가항목Evaluation items 단위unit 실시예Example 비교예Comparative Example 7-17-1 7-27-2 7-37-3 8-18-1 8-28-2 8-38-3 9-19-1 9-29-2 9-39-3 1One 밀도density g/ccg / cc 1.1211.121 1.1771.177 1.2351.235 1.1521.152 1.2031.203 1.2761.276 1.1501.150 1.2111.211 1.3821.382 1.1141.114 경도Hardness Type AType A 8888 8686 8383 9090 9292 9494 9090 9292 9393 8888 인장강도The tensile strength kgf/cm2 kgf / cm 2 308.1308.1 286.3286.3 273.5273.5 293.7293.7 274.7274.7 250.7250.7 277.6277.6 264.1264.1 228.7228.7 207.7207.7 신장율Elongation rate %% 666.8666.8 651.3651.3 631.8631.8 649.5649.5 601.5601.5 540.2540.2 665.7665.7 598.2598.2 530.4530.4 679.6679.6 연소시간 (1회)Burning time (1 time) secsec 00 00 00 00 00 00 1515 00 00 3535

상기 표들에서 나타난 바와 같이, 비할로겐난연제를 사용하였을 때, 밀도, 경도, 인장강도의 변화가 작은 것들이 실시예 7-1 내지 실시예 8-3임을 확인할 수 있다. As shown in the Tables, it can be confirmed that when non-halogen flame retardants are used, those having small changes in density, hardness and tensile strength are Examples 7-1 to 8-3.

다음으로, 실시예 7-1 내지 실시예 8-3의 경우에서 실제 실란커플링제를 사용하지 않은 경우와 조성물의 물성의 변화가 어떻게 달라지는지 상세하게 설명한다. Next, in the case of Examples 7-1 to 8-3, the case where the actual silane coupling agent is not used and how the changes in the physical properties of the composition are different will be described in detail.

[ 실시예 7-4 ][Example 7-4]

Reofose-65(트리아릴 포스페이트 이소프로필레이티드, Triaryl Phosphates Isopropylated) 10g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of Reofose-65 (Triaryl Phosphate Isopropylated) and 1 g of Aerosil-300 are mixed. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 7-5 ][Example 7-5]

Reofose-65(트리아릴 포스페이트 이소프로필레이티드, Triaryl Phosphates Isopropylated) 30g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of Reofose-65 (triarylphosphate isopropylated) and 1 g of Aerosil-300 are mixed. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 7-6 ][Example 7-6]

Reofose-65(트리아릴 포스페이트 이소프로필레이티드, Triaryl Phosphates Isopropylated) 50g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of Reofose-65 (triarylphosphate isopropylated) and 1 g of Aerosil-300 are mixed. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 8-4 ][Example 8-4]

EPFR-300(멜라민 포스페이트(Malaione Phosphate)) 10g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of EPFR-300 (melamine phosphate (Malaione Phosphate)) and 1 g of Aerosil-300 are mixed. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 8-5 ][Example 8-5]

EPFR-300(멜라민 포스페이트(Malaione Phosphate)) 30g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of EPFR-300 (melamine phosphate (Malaione Phosphate)) and 1 g of Aerosil-300 are mixed. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 8-6 ][Example 8-6]

EPFR-300(멜라민 포스페이트(Malamine Phosphate)) 50g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of EPFR-300 (Malamine Phosphate) and 1 g of Aerosil-300 are mixed. Then, 1 g of Naugard 445 is mixed with 100 g of TPU, and the mixed solutions are mixed and extruded.

[ 실시예 9-4 ][Example 9-4]

PNF-740R(서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 10g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.10 g of Surface Modified Aluminum Phosphinate and 1 g of Aerosil-300 were mixed. Then, 1 g of Naugard 445 was mixed with 100 g of TPU, and the above mixed solutions were mixed and then extruded .

[ 실시예 9-5 ][Example 9-5]

PNF-740R(서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 30g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.30 g of Surface Modified Aluminum Phosphinate and 1 g of Aerosil-300 were mixed. Then, 1 g of Naugard 445 was mixed with 100 g of TPU, and the above mixed solutions were mixed and then extruded .

[ 실시예 9-6 ][Example 9-6]

PNF-740R(서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 50g과 Aerosil-300 1g을 혼합한다. 그리고, TPU 100g 에 Naugard 445 를 1g 을 혼합한 후 상기 각각의 혼합액들을 혼합한 후 압출한다.50 g of Surface Modified Aluminum Phosphinate and 1 g of Aerosil-300 were mixed. Then, 1 g of Naugard 445 was mixed with 100 g of TPU, and the mixed solutions were mixed and then extruded .

실시예Example 비교예Comparative Example 7-47-4 7-57-5 7-67-6 8-48-4 8-58-5 8-68-6 9-49-4 9-59-5 9-69-6 1One 기재
(중량부)
materials
(Parts by weight)
TPUTPU 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100
난연제
(중량부)
Flame retardant
(Parts by weight)
Reofose-65Reofose-65 1010 3030 5050 -- -- -- -- -- -- --
EPFR-300AEPFR-300A -- -- -- 1010 3030 5050 -- -- -- -- PNF-740RPNF-740R -- -- -- -- -- -- 1010 3030 5050 -- 실리카
(중량부)
Silica
(Parts by weight)
Aerosil-300Aerosil-300 1One 1One 1One 1One 1One 1One 1One 1One 1One --
실란 커플링제
(중량부)
Silane coupling agent
(Parts by weight)
KH-590KH-590 -- -- -- -- -- -- -- -- -- --
가공조제
(중량부)
Processing aid
(Parts by weight)
Naugard 445Naugard 445 1One 1One 1One 1One 1One 1One 1One 1One 1One 1One

다음으로, 각각의 실험에 대한 밀도, 경도, 인강강도, 신장율 및 연소시간의 변화의 결과를 다음 표에서 나타내고 있다,Next, the results of the changes in density, hardness, tensile strength, elongation and combustion time for each experiment are shown in the following table,

평가항목Evaluation items 단위unit 실시예Example 비교예Comparative Example 7-47-4 7-57-5 7-67-6 8-48-4 8-58-5 8-68-6 9-49-4 9-59-5 9-69-6 1One 밀도density g/ccg / cc 1.2061.206 1.2011.201 1.1991.199 1.2401.240 1.3181.318 1.3771.377 1.2421.242 1.3201.320 1.3831.383 1.1141.114 경도Hardness Type AType A 9393 8989 8787 9292 9393 9494 9292 9393 9494 8888 인장강도The tensile strength kgf/cm2 kgf / cm 2 295.3295.3 250.6250.6 263.5263.5 282.4282.4 256.6256.6 220.1220.1 257.7257.7 208.0208.0 192.4192.4 207.7207.7 신장율Elongation rate %% 487.4487.4 629.4629.4 658.3658.3 489.1489.1 384.9384.9 288.3288.3 484.2484.2 402.5402.5 224.0224.0 679.6679.6 연소시간 (1회)Burning time (1 time) secsec 22 00 00 55 00 00 55 00 00 3535

상기 표에서 나타난 바와 같이, 실란커플링제를 사용하지 않았을 때인 실시예 7-4 내지 실시예 9-6은, 밀도, 경도, 인장강도의 변화가 작은 것들이 실시예 7-1 내지 실시예 8-3에 비해 인장강도와 신장율이 현저하게 낮아지는 것을 확인할 수 있다.As shown in the above table, in Examples 7-4 to 9-6 when no silane coupling agent was used, those having small changes in density, hardness and tensile strength were obtained in Examples 7-1 to 8-3 The tensile strength and the elongation percentage are remarkably lowered compared with those of Comparative Example 1.

결론적으로, 실시예 7-1 내지 실시예 8-3의 경우가 비할로겐계 난연제를 이용하여도 가장 조성물의 물성의 변화가 없는 것으로 확인하 수 있다. As a result, it can be confirmed that the properties of the compositions of Examples 7-1 to 8-3 do not change most even when a non-halogen flame retardant is used.

이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As described above, it is to be understood that the technical structure of the present invention can be embodied in other specific forms without departing from the spirit and essential characteristics of the present invention.

그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, it should be understood that the above-described embodiments are to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, All changes or modifications that come within the scope of the equivalent concept are to be construed as being included within the scope of the present invention.

Claims (8)

열가소성 폴리우레탄수지 100중량부에 대하여 비할로겐계 난연제를 10 내지 50중량부, 실리카 1중량부, 실란커플링제 1중량부 및 가공조제 1중량부를 포함하고,
비할로겐계 난연제와 실란커플링제를 혼합하여, 친수성기인 상기 비할로겐계 난연제에 상기 실란커플링제를 표면처리하여 상기 비할로겐계 난연제의 표면을 소수성기화하는 제 1단계;
상기 제 1단계의 혼합물에 실리카를 혼합하는 제 2단계;
열가소성폴리우레탄 수지와 가공조제를 혼합하는 제 3단계;
상기 제 2단계의 혼합물과 상기 제 3단계의 혼합물을 혼합하는 제 4단계; 및
상기 제 4단계의 혼합물을 압출하는 제 5단계;를 포함하여 구성되는 제조방법으로 제조되는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물.
10 to 50 parts by weight of a non-halogen flame retardant, 1 part by weight of silica, 1 part by weight of a silane coupling agent and 1 part by weight of a processing aid, based on 100 parts by weight of a thermoplastic polyurethane resin,
A first step of mixing the non-halogen type flame retardant and the silane coupling agent to surface-treat the non-halogen type flame retardant having a hydrophilic group to hydrophobicize the surface of the non-halogen type flame retardant;
A second step of mixing silica in the mixture of the first step;
A third step of mixing the thermoplastic polyurethane resin and the processing aid;
A fourth step of mixing the mixture of the second step and the mixture of the third step; And
And a fifth step of extruding the mixture in the fourth step. The thermoplastic polyurethane resin composition according to claim 1,
삭제delete 제 1항에 있어서,
상기 열가소성 폴리우레탄수지는 폴리에테르 폴리올(Polyether polyol) 또는 폴리에스테르 폴리올(Polyester polyol)로 이루어진 군에서 어느 하나를 사용하는 것을 특징으로 하는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물.
The method according to claim 1,
Wherein the thermoplastic polyurethane resin is one selected from the group consisting of a polyether polyol and a polyester polyol. The thermoplastic polyurethane resin composition according to claim 1, wherein the thermoplastic polyurethane resin is selected from the group consisting of a polyether polyol and a polyester polyol.
제 1항에 있어서,
상기 비할로겐계 난연제는,
멜라민 폴리포스페이트(Melamine Polyphosphate), 알루미늄 트리폴리포스페이트(Aluminium Tripolyphosphate), 멜라민 피로포스페이트(Melamine Pyrophosphate, MPP), 멜라민 시아누레이트(Melamine Cyanurate, MC), 암모늄 폴리포스페이트(Ammonium Polyphosphate, APP), 크래실 디페닐 포스페이트(Cresyl diphenyl phosphate, CDP), 알루미늄 하이드로사이드(Aluminum hydroxide, ATH), 트리아릴 포스페이트 이소프로필레이티드( Triaryl Phosphates Isopropylated), 멜라민 포스페이트(Malamine Phosphate) 및 서피스 모디파이드 알루미늄 포스피네이트(Surface Modified Aluminum Phosphinate) 중 어느 하나를 이용하는 것을 특징으로 하는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물.
The method according to claim 1,
The non-halogen-based flame retardant includes,
Melamine polyphosphate, melamine polyphosphate, aluminum tripolyphosphate, melamine pyrophosphate (MPP), melamine cyanurate (MC), ammonium polyphosphate (APP), cresyldi Cresyl diphenyl phosphate (CDP), aluminum hydroxide (ATH), triaryl phosphate isopropylated, melamine phosphate, and surface modified aluminum phosphinate Aluminum Phosphinate) is used as the thermoplastic polyurethane resin composition.
제 1항에 있어서,
상기 실리카는 하이드로필릭 흄드 실리카(Hydrophilic fumed silica)를 액상의 상기 비할로겐계 난연제와 혼합하는 것을 특징으로 하는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물.
The method according to claim 1,
Wherein the silica is obtained by mixing hydrophilic fumed silica with the non-halogen flame retardant in a liquid phase. [5] The thermoplastic polyurethane resin composition according to claim 1,
제 1항에 있어서,
상기 실란 커플링제는 (3-메르캅토프로필)트리에톡시실란((3-Mercaptopropyl)triethoxysilane))을 사용하는 것을 특징으로 하는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물.
The method according to claim 1,
Wherein the silane coupling agent is (3-mercaptopropyl) triethoxysilane (3-mercaptopropyl) triethoxysilane. The thermoplastic polyurethane resin composition according to claim 1, wherein the silane coupling agent is (3-mercaptopropyl) triethoxysilane.
제 1항에 있어서,
상기 가공조제는,
비스[4-(2-페닐-2-프로필]아민((Bis[4-(2-phenyl-2-propyl)phenyl]amine))을 사용하는 것을 특징으로 하는 비할로겐계 난연제를 이용한 열가소성폴리우레탄 수지 조성물.

The method according to claim 1,
The processing aid contains,
The flame-retardant thermoplastic resin composition according to claim 1, wherein the thermoplastic polyurethane (B) is selected from the group consisting of bis [4- (2-phenyl-2-propyl) phenyl] Resin composition.

삭제delete
KR1020160181114A 2016-12-28 2016-12-28 A TPU Resin Composite Using Halogen Free Type Flame Retardant KR101848571B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160181114A KR101848571B1 (en) 2016-12-28 2016-12-28 A TPU Resin Composite Using Halogen Free Type Flame Retardant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160181114A KR101848571B1 (en) 2016-12-28 2016-12-28 A TPU Resin Composite Using Halogen Free Type Flame Retardant

Publications (1)

Publication Number Publication Date
KR101848571B1 true KR101848571B1 (en) 2018-05-29

Family

ID=62452913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160181114A KR101848571B1 (en) 2016-12-28 2016-12-28 A TPU Resin Composite Using Halogen Free Type Flame Retardant

Country Status (1)

Country Link
KR (1) KR101848571B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210001483A (en) 2019-06-28 2021-01-06 한국신발피혁연구원 A Thermoplastic Polyurethane Composition Having Superior Flame Retarding and Machanical Strength
CN115975376A (en) * 2022-12-12 2023-04-18 宁波聚泰新材料科技有限公司 High-water-resistance halogen-free flame-retardant polyurethane composite material and preparation method thereof
CN115975376B (en) * 2022-12-12 2024-05-14 宁波聚泰新材料科技有限公司 High-water-resistance halogen-free flame-retardant polyurethane composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201884A (en) 2007-02-20 2008-09-04 Nitsukan Kogyo Kk Flame-retardant adhesive composition, flexible copper-clad laminated plate, cover-lay, and adhesive sheet
KR100888174B1 (en) * 2008-07-11 2009-03-25 (주)티엠씨 Unarmored shipboard cable having resistance to epoxy paint for shipboard and impact
KR100985296B1 (en) 2008-07-28 2010-10-04 엘에스전선 주식회사 Non-Halogen Flame-Retardant Polyurethane Composition and Non-Shrink Tube Using the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201884A (en) 2007-02-20 2008-09-04 Nitsukan Kogyo Kk Flame-retardant adhesive composition, flexible copper-clad laminated plate, cover-lay, and adhesive sheet
KR100888174B1 (en) * 2008-07-11 2009-03-25 (주)티엠씨 Unarmored shipboard cable having resistance to epoxy paint for shipboard and impact
KR100985296B1 (en) 2008-07-28 2010-10-04 엘에스전선 주식회사 Non-Halogen Flame-Retardant Polyurethane Composition and Non-Shrink Tube Using the Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210001483A (en) 2019-06-28 2021-01-06 한국신발피혁연구원 A Thermoplastic Polyurethane Composition Having Superior Flame Retarding and Machanical Strength
KR102217471B1 (en) * 2019-06-28 2021-02-19 한국신발피혁연구원 A Thermoplastic Polyurethane Composition Having Superior Flame Retarding and Machanical Strength
CN115975376A (en) * 2022-12-12 2023-04-18 宁波聚泰新材料科技有限公司 High-water-resistance halogen-free flame-retardant polyurethane composite material and preparation method thereof
CN115975376B (en) * 2022-12-12 2024-05-14 宁波聚泰新材料科技有限公司 High-water-resistance halogen-free flame-retardant polyurethane composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101200573B (en) Halogen-free intumescent fire-retardant epoxy resin compound
CN101283032B (en) Halogen-free flame-retardant thermoplastic polyester
TWI579294B (en) Mixtures of at least one dialkylphosphinic acid with at least one other, different dialkylphosphinic acid, process for preparation thereof and use thereof
JP4757538B2 (en) Flame-retardant processed resin products
CN104004350A (en) Glass fiber reinforced halogen-free flame retardant polyamide 6 composite material and manufacturing method thereof
CN101070426A (en) Glass-fiber reinforced fire-retardant polyamide resin composition
CN109563410B (en) Flame retardant composition and flame-retardant synthetic resin composition
EP3708636A1 (en) Flame retardant composition and flame-retardant thermoplastic resin composition containing said flame retardant composition
KR101578604B1 (en) Color-resistance and high heat-resistance Polycyclohexylene-dimethyleneterephtalate resin composition containing non-halogen flame retardant and non-halogen flame retardant aid
KR20100038701A (en) Eco-friendly flame retardant thermoplastic copolyetherester elastomer resin composition for electric wire sheath
KR101848571B1 (en) A TPU Resin Composite Using Halogen Free Type Flame Retardant
KR101697814B1 (en) Polypropylene flame retardant resin composition and extrusion tubing molded product
US20100113654A1 (en) Flame-resistant resin composition
KR100985296B1 (en) Non-Halogen Flame-Retardant Polyurethane Composition and Non-Shrink Tube Using the Same
CN113683867A (en) Thermoplastic polyester elastomer composite material and preparation method thereof
KR102473869B1 (en) Thermoplastic resin composition and article produced therefrom
KR102217471B1 (en) A Thermoplastic Polyurethane Composition Having Superior Flame Retarding and Machanical Strength
KR101877796B1 (en) Composition of environment-friendly flame retardant hotmelt film and environment-friendly flame retardant hotmelt film using the same
KR102007219B1 (en) A thermoplastic polyurethane resin composite with flame retardancy and a method of producing the same
KR102059493B1 (en) Non-halogen flame-retarding polycyclohexylenedimethyleneterephtalate resin composition
KR102207187B1 (en) Silicone Rubber Sponge Composition
JP7090485B2 (en) Flame-retardant resin composition, molded body using it, insulated electric wire, cable and optical fiber cable
KR20140110267A (en) A polybutylene terethphalate resin composition
KR101891338B1 (en) Polycyclohexylenedimethyleneterephtalate resin composition comprising non-halogen flame retardant and flame retardant aid
KR20140072371A (en) Flame-retardant polyester composition and manufacturing method thereof

Legal Events

Date Code Title Description
GRNT Written decision to grant