KR101807575B1 - 9h-thioxanthen-9-one oxide derivatives, preparation method and use thereof - Google Patents

9h-thioxanthen-9-one oxide derivatives, preparation method and use thereof Download PDF

Info

Publication number
KR101807575B1
KR101807575B1 KR1020157015170A KR20157015170A KR101807575B1 KR 101807575 B1 KR101807575 B1 KR 101807575B1 KR 1020157015170 A KR1020157015170 A KR 1020157015170A KR 20157015170 A KR20157015170 A KR 20157015170A KR 101807575 B1 KR101807575 B1 KR 101807575B1
Authority
KR
South Korea
Prior art keywords
phenanthroline
comp
thioxanthone
indolyl
derivative
Prior art date
Application number
KR1020157015170A
Other languages
Korean (ko)
Other versions
KR20150085521A (en
Inventor
펭페이 왕
휘 왕
웨이민 류
잉 왕
Original Assignee
테크니컬 인스티튜트 오브 피직스 앤 케이스트리 오브 더 차이니스 아카데미 오브 사이언시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210444090.4A external-priority patent/CN103804346B/en
Priority claimed from CN201310061253.5A external-priority patent/CN104003974B/en
Application filed by 테크니컬 인스티튜트 오브 피직스 앤 케이스트리 오브 더 차이니스 아카데미 오브 사이언시스 filed Critical 테크니컬 인스티튜트 오브 피직스 앤 케이스트리 오브 더 차이니스 아카데미 오브 사이언시스
Publication of KR20150085521A publication Critical patent/KR20150085521A/en
Application granted granted Critical
Publication of KR101807575B1 publication Critical patent/KR101807575B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D335/16Oxygen atoms, e.g. thioxanthones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0072
    • H01L51/50
    • H01L51/5012
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

본 발명은 하기 구조식의 티옥산톤 옥사이드계 유도체를 제공한다.

Figure 112015054935398-pct00104
;
Figure 112015054935398-pct00105
;
Figure 112015054935398-pct00106
;
Figure 112015054935398-pct00107
;
식 (1)과 식 (2)에서 R1, R2, R3, R4, R5, R6, R7, R8은 각각 수소원자, 아릴아민기, 아릴기, 헤테로아릴기로부터 선택되는 하나이며, 식 (3)과 식 (4)에서 L은 없거나, 아릴기, 아릴아민기, 헤테로아릴기, 아릴실릴기 중 하나이다. 본 발명은 또한 상기 티옥산톤 옥사이드계 유도체의 제조 방법과 적용을 제공하며, 상기 티옥산톤 옥사이드계 유도체는 유기 전계 발광 디바이스의 유기 발광층으로 이용할 수 있다.The present invention provides a thioxanthone oxide derivative having the following structural formula.
Figure 112015054935398-pct00104
;
Figure 112015054935398-pct00105
;
Figure 112015054935398-pct00106
;
Figure 112015054935398-pct00107
;
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are selected from a hydrogen atom, an arylamine group, an aryl group or a heteroaryl group in the formulas (1) And L in formula (3) and formula (4) is absent or is one of an aryl group, an arylamine group, a heteroaryl group, and an arylsilyl group. The present invention also provides a method and an application of the thioxanthone oxide-based derivative, and the thioxanthone oxide-based derivative can be used as an organic light emitting layer of an organic electroluminescence device.

Description

티옥산톤 옥사이드계 유도체, 제조 방법 및 그 적용 {9H-THIOXANTHEN-9-ONE OXIDE DERIVATIVES, PREPARATION METHOD AND USE THEREOF}THIOXANTHEN-9-ONE OXIDE DERIVATIVES, PREPARATION METHOD AND USE THEREOF [0002]

본 발명은 티옥산톤 옥사이드계 유도체, 제조 방법 및 유기 전계 발광 디바이스에서의 상기 티옥산톤 옥사이드계 유도체의 적용에 관한 것이다.The present invention relates to a thioxanthone oxide-based derivative, a production method thereof and the application of the thioxanthone oxide-based derivative in an organic electroluminescence device.

1987년부터, 미국 코닥사의 C.W.Tang 등이 최초로 진공 증착법을 이용하여 저분자 박막의 샌드위치형 디바이스를 제조함에 따라(C.W.Tang, S.A.Vanslyke, Applied Physics Letters , 1987, 51, 913), 유기 전계 발광 재료의 연구는 새로운 시대에 들어갔다. 유기 전계 발광 디바이스는 주로 애노드 전극, 캐소드 전극 및 액티브층으로 구성된다. 여기서, 액티브층은 발광층으로서, 애노드층과 캐소드층 사이에 개재하며, 샌드위치와 유사한 샌드위치 구조를 형성한다. 캐리어의 주입과 수송을 개선하고 디바이스의 작동 효율을 향상시키기 위해, 일반적으로 캐리어(정공과 전자) 주입층, 캐리어 수송층 및 엑시톤 억제층을 도입한다. 정공과 전자는 외부 전계의 작용을 받아 각각 애노드, 캐소드로부터 유기층에 주입되며, 발광층에서 만나 재결합하여 광을 방출한다.Since 1987, CWTang, Inc. of Kodak, USA, has developed a sandwich-type device of low-molecular thin film using vacuum deposition (CWTang, SAVanslyke, Applied Physics Letters , 1987, 51, 913) Time. The organic electroluminescent device mainly consists of an anode electrode, a cathode electrode and an active layer. Here, the active layer is a light emitting layer, sandwiched between the anode layer and the cathode layer, and forms a sandwich structure similar to the sandwich. Carrier (hole and electron) injection layers, carrier transport layers, and exciton suppression layers are generally introduced to improve the injection and transport of carriers and improve the operating efficiency of the device. The holes and electrons are injected from the anode and the cathode into the organic layer under the action of an external electric field, and recombine with each other in the light emitting layer to emit light.

근래에, 고효율, 낮은 구동 전압, 높은 안정성, 서로 다른 발사 파장을 가진 유기 전계 발광 디바이스가 연이어 발표되었다(Xiao,L.X.; Kido,J.J.,Adv.Mater.2011,23(8),926; Chaskar,A.; Wong,K.-T., Adv. Mater. 2011, 23(34), 3876). 유기 전계 발광 디바이스, 특히 유기 전계 인광 디바이스는 보편적인 주목을 받아 왔다. 그 이유는 주로 이 유형의 디바이스의 인광 발광 재료가 정공과 전자의 재결합에 의해 형성되는 삼중항 엑시톤을 효율적으로 이용하여 이 유형 디바이스의 이론적 내부 양자 효율이 형광 전계 발광 디바이스의 4배인 100%에 달하도록 할 수 있기 때문이다. 그러나, 진정한 의미에서의 인광 디바이스, 특히 청색 인광 디바이스는 매우 적으며, 그 근본적인 원인은 적절한 발광층 호스트 재료가 없기 때문이다.Recently, organic electroluminescent devices with high efficiency, low driving voltage, high stability, and different emission wavelengths have been successively reported (Xiao, LX; Kido, JJ, Adv.Mater. 2011, 23 (8), 926; Chaskar, A .; Wong, K.-T., Adv. Mater., 2011, 23 (34), 3876). BACKGROUND ART [0002] Organic electroluminescent devices, and particularly organic electroluminescent devices, have received general attention. This is because the phosphorescent material of this type of device efficiently utilizes triplet excitons formed by the recombination of holes and electrons, so that the theoretical internal quantum efficiency of this type device reaches 100%, four times that of a fluorescent electroluminescent device This is because we can do it. However, in the true sense, phosphorescent devices, especially blue phosphorescent devices, are very few, and their root cause is that there is no suitable emissive layer host material.

적절한 발광층 호스트 재료는 하기 요건을 충족해야 한다. 즉 인광 발광 재료에 비해 더 높은 삼중항 에너지를 가짐으로써, 게스트 염료 분자로부터 호스트 분자로의 에너지 리턴을 억제하고, 캐리어 수송 성능이 균형을 이루고, 바람직한 성막성과 화학적 안정성을 가짐으로써 디바이스의 사용 수명을 향상해야 한다. 호스트 재료가 인광 발광 재료보다 더 높은 삼중항 에너지를 가져야 하므로, 호스트 재료의 밴드갭은 높은 삼중항 에너지를 발생하도록 상당히 넓어야 한다. 그러나 넓은 밴드갭은 재료가 짧은 공액 전자 체계를 가져야 함을 의미하며, 짧은 공액 체계는 캐리어의 주입과 수송에 불리한 것은 의심할 나위가 없다. 따라서 넓은 에너지 갭에서 높은 삼중항 에너지 레벨을 확보하는 것과 바람직한 캐리어 수송 사이에서 균형점을 찾는 것은 인광 호스트 재료 발전의 장애이다.Suitable luminescent layer host materials must meet the following requirements. In other words, by having higher triplet energy than the phosphorescent material, it restrains energy return from the guest dye molecule to the host molecule, balances the carrier transport performance, has the desired film formation and chemical stability, Should improve. Since the host material must have a higher triplet energy than the phosphorescent material, the bandgap of the host material must be fairly wide to generate high triplet energy. However, a wide band gap means that the material must have a short conjugate electronic system, and the short conjugation system is undoubtedly disadvantageous to carrier injection and transport. Thus, finding a balance between securing a high triplet energy level in a wide energy gap and desirable carrier transport is a bottleneck in phosphorescent host material development.

본 발명이 해결하고자 하는 제1 기술적 과제는 티옥산톤 옥사이드계 유도체를 제공하는 것이다.A first technical problem to be solved by the present invention is to provide a thioxanthone oxide-based derivative.

본 발명이 해결하고자 하는 제2 기술적 과제는 티옥산톤 옥사이드계 유도체의 제조 방법을 제공하는 것이다.A second object of the present invention is to provide a process for preparing a thioxanthone oxide-based derivative.

본 발명이 해결하고자 하는 제3 기술적 과제는 티옥산톤 옥사이드계 유도체의 적용을 제공하는 것이다.A third object of the present invention is to provide an application of a thioxanthone oxide-based derivative.

상기 제1 기술적 과제를 해결하기 위해, 본 발명은 아래와 같은 구조식의 티옥산톤 옥사이드계 유도체를 제공한다.
In order to solve the first technical problem, the present invention provides a thioxanthone oxide derivative of the following structural formula.

Figure 112015054935398-pct00001
;
Figure 112015054935398-pct00002
;
Figure 112015054935398-pct00001
;
Figure 112015054935398-pct00002
;

Figure 112015054935398-pct00003
;
Figure 112015054935398-pct00004
Figure 112015054935398-pct00003
;
Figure 112015054935398-pct00004

식 (1)과 식 (2)에서, R1, R2, R3, R4, R5, R6, R7, R8은 각각 수소원자, 아릴아민기, 아릴기, 헤테로아릴기로부터 선택되는 하나이며,In the formulas (1) and (2), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each represent a hydrogen atom, an arylamine group, an aryl group or a heteroaryl group It is the one chosen,

식 (3)과 식 (4)에서, L은 없거나, 아릴기, 아릴아민기, 헤테로아릴기, 아릴실릴기 중 하나이다.In the formulas (3) and (4), L is absent or is one of an aryl group, an arylamine group, a heteroaryl group and an arylsilyl group.

여기서, 본 명세서에서의 "L은 없다"는 것은 식 (3)과 식 (4)이 각각 아래와 같은 것을 가리킨다. 즉Here, the expression "L is absent" in this specification means that the equations (3) and (4) are as follows. In other words

Figure 112015054935398-pct00005
;
Figure 112015054935398-pct00006
;
Figure 112015054935398-pct00005
;
Figure 112015054935398-pct00006
;

또는or

Figure 112015054935398-pct00007
.
Figure 112015054935398-pct00007
.

L의 연결 위치는 고정되어 있지 않으며, 티옥산톤 화합물의 제2 위치 또는 제3 위치에 연결될 수 있다.The connecting position of L is not fixed and may be connected to the second position or the third position of the thioxanthone compound.

나아가, Furthermore,

상기 R1, R2, R3, R4, R5, R6, R7, R8로서 선택되는 아릴아민기는 탄소 원자수 6~30인 아릴아민기이고,The arylamine group selected as R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is an arylamine group having 6 to 30 carbon atoms,

상기 R1, R2, R3, R4, R5, R6, R7, R8로서 선택되는 아릴기는 탄소 원자수 6~30인 아릴기이며,The aryl group selected as R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is an aryl group having 6 to 30 carbon atoms,

상기 R1, R2, R3, R4, R5, R6, R7, R8로서 선택되는 헤테로아릴기는 고리 원자수 5~50인 헤테로아릴기이며,The heteroaryl group selected as R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is a heteroaryl group having 5 to 50 ring atoms,

상기 L로서 선택되는 아릴기는 탄소 원자수 6~30인 아릴기이며,The aryl group selected as L is an aryl group having 6 to 30 carbon atoms,

상기 L로서 선택되는 아릴아민기는 탄소 원자수 6~30인 아릴아민기이며,The arylamine group selected as L is an arylamine group having 6 to 30 carbon atoms,

상기 L로서 선택되는 헤테로아릴기는 고리 원자수 5~50인 헤테로아릴기이며,The heteroaryl group selected as L is a heteroaryl group having 5 to 50 ring atoms,

상기 L로서 선택되는 아릴실릴기는 탄소 원자수 12~24인 아릴실릴기이다.The arylsilyl group selected as L is an arylsilyl group having 12 to 24 carbon atoms.

상기 R1, R2, R3, R4, R5, R6, R7, R8로서 선택되는 탄소 원자수 6~30인 아릴아민기는, O-, M-, P-메틸페닐아미노, O-, M-, P-에틸페닐아미노, O-, M-, P-프로필페닐아미노, O-, M-, P-이소프로필페닐아미노, O-, M-, P-메톡시페닐아미노, O-, M-, P-에톡시페닐아미노, O-, M-, P-프로폭시페닐아미노, O-, M-, P-플루오로페닐아미노, O-, M-, P-클로로페닐아미노, O-, M-, P-브로모페닐아미노, O-, M-, P-요오도페닐아미노, 디(O-, M-, P-메틸페닐)아미노, 디(O-, M-, P-에틸페닐)아미노, 디(O-, M-, P-프로필페닐)아미노, 디(O-, M-, P-이소프로필페닐)아미노, 디(O-, M-, P-메톡시페닐)아미노, 디(O-, M-, P-에톡시페닐)아미노, 디(O-, M-, P-프로폭시페닐)아미노, 디(O-, M-, P-플루오로페닐)아미노, 디(O-, M-, P-클로로페닐)아미노, 디(O-, M-, P-브로모페닐)아미노, 디(O-, M-, P-요오도페닐)아미노인 것이 바람직하며,The arylamine group having 6 to 30 carbon atoms selected as R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is O-, M-, O-, M-, P-ethylphenylamino, O-, M-, P-propylphenylamino, O-, M-, -, M-, P-ethoxyphenylamino, O-, M-, P-propoxyphenylamino, O-, M-, P- fluorophenylamino, O-, M-, O-, M-, P-bromophenylamino, O-, M-, P-iodophenylamino, di (O-, (O-, M-, P-methoxyphenyl) amino, di (O-, M-, Amino, di (O-, M-, P-ethoxyphenyl) amino, di (O-, M-, P- (O-, M-, P-chlorophenyl) amino, di (O-, M-, P-bromophenyl) amino, di ,

상기 R1, R2, R3, R4, R5, R6, R7, R8로서 선택되는 탄소 원자수 6~30인 아릴기는, 페닐, 디페닐, 트리페닐, 나프타세닐, 피레닐, 플루오레닐기, 스피로플루오레닐기, O-, M-, P-톨릴, 크실릴, O-, M-, P-큐밀, 트리메틸페닐, 9,9'-디메틸플루오레닐, 9,9'-스피로디플루오레닐인 것이 바람직하며,The aryl group having 6 to 30 carbon atoms selected as R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is preferably phenyl, diphenyl, triphenyl, naphthacenyl, pyrenyl , A fluorenyl group, a spirofluorenyl group, O-, M-, P-tolyl, xylyl, O-, M-, P-cumyl, trimethylphenyl, 9,9'-dimethylfluorenyl, - spiroodifluorenyl,

상기 R1, R2, R3, R4, R5, R6, R7, R8로서 선택되는 고리 원자수 5~50인 헤테로아릴기는, 1-피롤릴, 2-피롤릴, 3-피롤릴, 피리딜, 2-피리딜, 3-피리딜, 4-피리딜, 1-인돌릴, 2-인돌릴, 3-인돌릴, 4-인돌릴, 5-인돌릴, 6-인돌릴, 7-인돌릴, 1-이소인돌릴, 2-이소인돌릴, 3-이소인돌릴, 4-이소인돌릴, 5-이소인돌릴, 6-이소인돌릴, 7-이소인돌릴, 2-푸릴, 3-푸릴, 2-벤조푸릴, 3-벤조푸릴, 4-벤조푸릴, 5-벤조푸릴, 6-벤조푸릴, 7-벤조푸릴, 디벤조푸란-2-일, 1-이소벤조푸릴, 3-이소벤조푸릴, 4-이소벤조푸릴, 5-이소벤조푸릴, 6-이소벤조푸릴, 7-이소벤조푸릴, 2-퀴놀릴, 3-퀴놀릴, 4-퀴놀릴, 5-퀴놀릴, 6-퀴놀릴, 7-퀴놀릴, 8-퀴놀릴, 1-이소퀴놀릴, 3-이소퀴놀릴, 4-이소퀴놀릴, 5-이소퀴놀릴, 6-이소퀴놀릴, 7-이소퀴놀릴, 8-이소퀴놀릴, 2-퀴녹살릴, 5-퀴녹살릴, 6-퀴녹살릴, 1-카르바졸릴, 2-카르바졸릴, 3-카르바졸릴, 4-카르바졸릴, 9-카르바졸릴, 1-페난트리디닐, 2-페난트리디닐, 3-페난트리디닐, 4-페난트리디닐, 6-페난트리디닐, 7-페난트리디닐, 8-페난트리디닐, 9-페난트리디닐, 10-페난트리디닐, 1-아크리디닐, 2-아크리디닐, 3-아크리디닐, 4-아크리디닐, 9-아크리디닐, 1,7-페난트롤린-2-일, 1,7-페난트롤린-3-일, 1,7-페난트롤린-4-일, 1,7-페난트롤린-5-일, 1,7-페난트롤린-6-일, 1,7-페난트롤린-8-일, 1,7-페난트롤린-9-일, 1,7-페난트롤린-10-일, 1,8-페난트롤린-2-일, 1,8-페난트롤린-3-일, 1,8-페난트롤린-4-일, 1,8-페난트롤린-5-일, 1,8-페난트롤린-6-일, 1,8-페난트롤린-7-일, 1,8-페난트롤린-9-일, 1,8-페난트롤린-10-일, 1,9-페난트롤린-2-일, 1,9-페난트롤린-3-일, 1,9-페난트롤린-4-일, 1,9-페난트롤린-5-일, 1,9-페난트롤린-6-일, 1,9-페난트롤린-7-일, 1,9-페난트롤린-8-일, 1,9-페난트롤린-10-일, 1,10-페난트롤린-2-일, 1,10-페난트롤린-3-일, 1,10-페난트롤린-4-일, 1,10-페난트롤린-5-일, 2,9-페난트롤린-1-일, 2,9-페난트롤린-3-일, 2,9-페난트롤린-4-일, 2,9-페난트롤린-5-일, 2,9-페난트롤린-6-일, 2,9-페난트롤린-7-일, 2,9-페난트롤린-8-일, 2,9-페난트롤린-10-일, 2,8-페난트롤린-1-일, 2,8-페난트롤린-3-일, 2,8-페난트롤린-4-일, 2,8-페난트롤린-5-일, 2,8-페난트롤린-6-일, 2,8-페난트롤린-7-일, 2,8-페난트롤린-9-일, 2,8-페난트롤린-10-일, 2,7-페난트롤린-1-일, 2,7-페난트롤린-3-일, 2,7-페난트롤린-4-일, 2,7-페난트롤린-5-일, 2,7-페난트롤린-6-일, 2,7-페난트롤린-8-일, 2,7-페난트롤린-9-일, 2,7-페난트롤린-10-일, 1-페나지닐, 2-페나지닐, 1-페노티아지닐, 2-페노티아지닐, 3-페노티아지닐, 4-페노티아지닐, 10-페노티아지닐, 1-페녹사지닐, 2-페녹사지닐, 3-페녹사지닐, 4-페녹사지닐, 10-페녹사지닐, 2-옥사졸릴, 4-옥사졸릴, 5-옥사졸릴, 2-옥사디졸릴, 5-옥사디졸릴, 3-푸라자닐(3-furazanyl), 2-티에닐, 3-티에닐, 디벤조티오펜-2-일, 2-메틸피리딘-1-일, 2-메틸피롤-3-일, 2-메틸피롤-4-일, 2-메틸피롤-5-일, 3-메틸피롤-1-일, 3-메틸피롤-2-일, 3-메틸피롤-4-일, 3-메틸피롤-5-일, 2-(t-부틸)피롤-4-일, 3-(2-페닐프로필)피롤-1-일, 2-메틸-1-인돌릴, 4-메틸-1-인돌릴, 2-메틸-3-인돌릴, 4-메틸-3-인돌릴, 2-(t-부틸)-1-인돌릴, 4-(t-부틸)-1-인돌릴, 2-(t-부틸)-3-인돌릴, 4-(t-부틸)-3-인돌릴인 것이 바람직하며,The heteroaryl group having 5 to 50 ring atoms selected as R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is 1-pyrrolyl, Examples of the pyrrolidinyl group include pyrrolyl, pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 1- indolyl, 2- indolyl, Isoindolyl, 2-isoindolyl, 3-isoindolyl, 4-isoindolyl, 5-isoindolyl, Benzofuryl, 5-benzofuryl, 6-benzofuryl, 7-benzofuryl, dibenzofuran-2-yl, 1-isobenzofuryl, Isobenzofuryl, isobenzofuryl, 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, Quinolyl, 6-quinolyl, 7-quinolyl, 8-quinolyl, 1-isoquinolyl, 3-isoquinolyl, , 8-isoquinolyl, 2-quinoxalyl, 5-quinoxalyl, 6-quinoxalyl, 1-carbazolyl, 2- And examples thereof include a carbazolyl group, a carbazolyl group, a carbazolyl group, a carbazolyl group, a carbazolyl group, a 9-carbazolyl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, , 7-phenanthridinyl, 8-phenanthridinyl, 9-phenanthridinyl, 10-phenanthridinyl, 1-acridinyl, 2-acridinyl, 3-acridinyl, 4-acridinyl, 9 -Acridinyl, 1,7-phenanthroline-2-yl, 1,7-phenanthroline-3-yl, 1,7-phenanthroline- 6-yl, 1,7-phenanthroline-8-yl, 1,7-phenanthroline-9-yl, 1,7-phenanthroline- , 1,8-phenanthroline-2-yl, 1,8-phenanthroline-3-yl, 1,8-phenanthroline- , 1,8-phenanthroline-9-yl, 1,8-phenanthroline-10-yl, 1,9-phenanthroline- 1, 9-phenanthroline-4-yl, 1,9-phenanthroline-5-yl, 1,9-phenanthroline- 6-yl, 1,9-phenanthroline-7-yl, 1,9-phenanthroline-8-yl, 1,9-phenan 1, 10-phenanthroline-3-yl, 1,10-phenanthroline-4-yl, 1,10-phenanthroline- 5-yl, 2,9-phenanthroline-1-yl, 2,9-phenanthroline-3-yl, 2,9- 6-yl, 2,9-phenanthroline-7-yl, 2,9-phenanthroline-8-yl, 2,9-phenanthroline- 2, 8-phenanthroline-1-yl, 2,8-phenanthroline-3-yl, 7-yl, 2,8-phenanthroline-9-yl, 2,8-phenanthroline-10-yl, 2,7-phenanthroline- 2,7-phenanthroline-4-yl, 2,7-phenanthroline-5-yl, 2,7-phenanthrol 6-yl, 2,7-phenanthroline-8-yl, 2,7-phenanthroline-9-yl, 2,7-phenanthroline- Phenothiazinyl, 1-phenothiazinyl, 1-phenoxazinyl, 2-phenoxazinyl, 3-phenoxazinyl, 2-phenothiazinyl, 4-phenoxazinyl, 1 3-furazanyl, 2-thienyl, 3-furazanyl, 2-thiazolyl, Methylpyrrol-4-yl, 2-methylpyrrol-5-yl, 3-methylpyrrolidin-1-yl, 3-methylpyrrol-4-yl, 3-methylpyrrol-5-yl, 2- (t- Indolyl, 2-methyl-3-indolyl, 4-methyl-3-indolyl, 2- ( (t-butyl) -1-indolyl, 4- (t-butyl) -1-indolyl, 2- / RTI >

상기 L은 하기 구조 중 하나이다.L is one of the following structures.

Figure 112015054935398-pct00008
Figure 112015054935398-pct00008

Figure 112015054935398-pct00009
Figure 112015054935398-pct00009

나아가, 상기 티옥산톤 옥사이드계 유도체는 하기 구조 중 하나인 것이 바람직하다.Further, the thioxanthone oxide-based derivative is preferably one of the following structures.

Figure 112015054935398-pct00010
Figure 112015054935398-pct00010

Figure 112015054935398-pct00011
Figure 112015054935398-pct00011

Figure 112015054935398-pct00012
Figure 112015054935398-pct00013
Figure 112015054935398-pct00012
Figure 112015054935398-pct00013

Figure 112015054935398-pct00014
Figure 112015054935398-pct00014

Figure 112015054935398-pct00015
Figure 112015054935398-pct00015

Figure 112015054935398-pct00016
Figure 112015054935398-pct00017
Figure 112015054935398-pct00018
Figure 112015054935398-pct00016
Figure 112015054935398-pct00017
Figure 112015054935398-pct00018

Figure 112015054935398-pct00019
Figure 112015054935398-pct00019

상기 제2 기술적 과제를 해결하기 위해, 본 발명은 하기 단계를 포함하는 티옥산톤 옥사이드계 유도체의 제조 방법을 제공한다.In order to solve the second technical problem, the present invention provides a process for producing a thioxanthone oxide-based derivative comprising the steps of:

A, 티옥산톤계 화합물과 10M보다 높지 않은 농도의 질산염 용액을 몰비 1: 0.1~100의 비율로 아세토니트릴에 용해시키고, 교반한 후, 물을 넣어 침전시키고, 여과하고, 여과액을 재결정화하여 식 (1)에 따른 티옥산톤 옥사이드계 유도체를 얻는 단계.A, a thioxanthone compound and a nitrate solution having a concentration not higher than 10M are dissolved in acetonitrile in a molar ratio of 1: 0.1-100, stirred, precipitated by adding water, filtered, and the filtrate is recrystallized A step of obtaining a thioxanthone oxide derivative according to formula (1).

아세토니트릴의 사용량이 당해 반응계에 미치는 영향이 매우 작으므로 특별히 한정하지 않으나, 실용 경제적 각도로부터 고려하면 사용량은 최대한 작아야 한다. 교반시, 필요에 따라 교반 속도, 교반 시간 등을 조절할 수 있으며, 이들 요소가 최종 티옥산톤 옥사이드계 유도체의 형성에 대해 영향을 미치지 않음을 이해해야 한다. 물의 첨가량은 실제 상황에 따라 조절하면 된다. 물을 넣은 후 식 (1)에 따른 티옥산톤 옥사이드 화합물을 포함한 조생성물을 생성하며, 이 반응은 질산염을 산화제로 하는 산화 반응이다. 상기 반응은 실온에서 진행하면 된다.Although the effect of acetonitrile on the reaction system is very small, the amount of acetonitrile is not particularly limited, but the amount of acetonitrile to be used should be as small as possible from a practical economic angle. It is to be understood that, during stirring, the stirring speed, stirring time and the like can be adjusted as necessary, and these factors do not affect the formation of the final thioxanthone oxide-based derivative. The amount of water added can be adjusted according to the actual situation. After adding water, a crude product containing a thioxanthone oxide compound according to formula (1) is produced, which is an oxidation reaction using nitrate as an oxidizing agent. The reaction may be carried out at room temperature.

또는,or,

B, 티옥산톤계 화합물과 과산화수소용액을 몰비 1: 0.1~100의 비율로 아세트산에 용해시키고, 환류하고, 냉각시켜 침전을 석출하고, 여과하고, 여과액을 재결정화하여 식 (2)에 따른 티옥산톤 옥사이드계 유도체를 얻는 단계.B, a thioxanthone compound and a hydrogen peroxide solution are dissolved in acetic acid at a molar ratio of 1: 0.1-100, refluxed, cooled to precipitate a precipitate, filtered, and the filtrate is recrystallized to obtain Ti To obtain an oxane-tone oxide derivative.

일반적으로 30% 과산화수소액을 이용한다. 아세트산의 사용량이 당해 반응계에 미치는 영향이 매우 작으므로 특별히 한정하지 않으나, 실용 경제적 각도로부터 고려하여 사용량은 최대한 작아야 한다. 냉각을 거쳐 석출되는 침전은 식 (2)에 따른 티옥산톤 옥사이드 화합물을 포함한 조생성물이며, 이 반응은 질산염을 산화제로 하는 산화 반응이다.Generally, 30% hydrogen peroxide solution is used. Since the effect of the use of acetic acid on the reaction system is very small, it is not particularly limited, but the amount to be used should be as small as possible considering the practical economic angle. The precipitation precipitated by cooling is a crude product containing a thioxanthone oxide compound according to formula (2), and this reaction is an oxidation reaction using nitrate as an oxidizing agent.

또는,or,

C, 식 (3)에 따른 티옥산톤 옥사이드계 유도체를 제조하는 단계.C, a step of producing a thioxanthone oxide derivative according to formula (3).

중간체 I, II 또는 III과 10M보다 높지 않은 농도의 질산염 용액을 몰비 1: 0.1~100의 비율로 아세토니트릴에 용해시키고, 실온에서 교반하고, 물을 넣어 침전시키고, 여과하고, 여과액을 재결정화하여 식 (3)에 따른 티옥산톤 옥사이드계 유도체를 얻는다.A solution of the intermediate I, II or III and a nitrate solution having a concentration not higher than 10M was dissolved in acetonitrile at a molar ratio of 1: 0.1-100, stirred at room temperature, precipitated by adding water, filtered and the filtrate was recrystallized To obtain a thioxanthone oxide derivative according to formula (3).

또는,or,

D, 식 (4)에 따른 티옥산톤 옥사이드계 유도체를 제조하는 단계.D, a step of preparing a thioxanthone oxide derivative according to formula (4).

중간체I, I 또는 III와 과산화수소용액을 몰비 1: 0.1~100의 비율로 아세트산에 용해시키고, 환류하고, 냉각시켜 침전을 석출하고, 여과하고, 여과액을 재결정화하여 식 (4)에 따른 티옥산톤 옥사이드계 유도체를 얻는다.The intermediate I, I or III and hydrogen peroxide solution are dissolved in acetic acid at a molar ratio of 1: 0.1-100, refluxed, cooled to precipitate a precipitate, filtered, and the filtrate is recrystallized to obtain Ti To obtain an oxane-tone oxide derivative.

상기 중간체 I는, The intermediate I,

불활성 가스의 보호 속에서, 모노할로티옥산톤(monohalo thioxanthone)과 L의 디보론산피나콜에스테르를 몰비 2~5.5: 1의 비율로 혼합하고, 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 5~10 당량의 탄산칼륨을 넣은 후 혼합물을 15~25당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 중간체 I를 얻는 단계를 통해 제조하며, In the protection of the inert gas, monohalo thioxanthone and diboronic acid pinacol ester of L were mixed at a molar ratio of 2 to 5.5: 1, and a catalytic amount of tetra (triphenylphosphine) palladium and 5 to 10 equivalents of potassium carbonate are added and the mixture is added to a mixed solvent of 15 to 25 equivalents of toluene, ethanol and water, refluxed and extracted, and the extract is subjected to column chromatography to obtain an intermediate I,

반응 일반식은 하기와 같으며,The general formula of the reaction is as follows,

Figure 112015054935398-pct00020
Figure 112015054935398-pct00020

상기 중간체 II는,The intermediate II,

불활성 가스의 보호 속에서, 모노할로티옥산톤과 티옥산톤보론산피나콜에스테르(thioxanthone boronic acid pinacol ester)를 몰비 1: 1~2.5의 비율로 혼합하고, 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 3~7 당량의 탄산칼륨을 넣은 후, 혼합물을 10~15 당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 중간체 II를 얻는 단계를 통해 제조하며, In the protection of the inert gas, the monohalothioxanone and the thioxanthone boronic acid pinacol ester were mixed in a molar ratio of 1: 1 to 2.5, and a catalytic amount of tetra (triphenylphosphine) Palladium and 3 to 7 equivalents of potassium carbonate and then the mixture is refluxed and extracted with 10 to 15 equivalents of a mixed solvent of toluene and ethanol and water and the resulting mixture is subjected to column chromatography to obtain intermediate II ≪ / RTI >

반응 일반식은 하기와 같으며,The general formula of the reaction is as follows,

Figure 112015054935398-pct00021
Figure 112015054935398-pct00021

상기 중간체 III는, The intermediate III,

불활성 가스의 보호 속에서, 디할로티옥산톤과 방향족 보론산계 화합물을 몰비 2~3.5: 1의 비율로 혼합하고, 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 3~7당량의 탄산칼륨을 혼입한 후, 혼합물을 10~15 당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 화합물a를 얻는 단계와,In the protection of the inert gas, dihalothioxanone and an aromatic boronic acid compound are mixed in a molar ratio of 2 to 3.5: 1, and a catalytic amount of tetra (triphenylphosphine) palladium and 3 to 7 equivalents of potassium carbonate After mixing, the mixture is placed in a mixed solvent of 10 to 15 equivalents of toluene, ethanol and water, refluxed and extracted, and the extract is subjected to column chromatography to obtain a compound a,

불활성 가스의 보호 속에서, 화합물 a와 화합물 a의 피나콜에스테르를 몰비 1: 2~3.5의 비율로 혼합하고 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 3~7 당량의 탄산칼륨을 혼입한 후 혼합물을 10~15 당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 중간체 III를 얻는 단계를 통해 제조한다.In the protection of the inert gas, the compound a and the pinacol ester of the compound a are mixed in a molar ratio of 1: 2 to 3.5, and a catalytic amount of tetra (triphenylphosphine) palladium and 3-7 equivalents of potassium carbonate are mixed After that, the mixture is put into a mixed solvent of 10 to 15 equivalents of toluene, ethanol and water, refluxed and extracted, and the extract is subjected to a column chromatography to obtain an intermediate III.

상기 모노할로티옥산톤의 구조식은, The structural formula of the monohalothioxane tones is as follows:

Figure 112015054935398-pct00022
;
Figure 112015054935398-pct00022
;

상기 L의 디보론산피나콜에스테르의 구조식은, The structural formula of the diboronic acid pinacol ester of L,

Figure 112015054935398-pct00023
;
Figure 112015054935398-pct00023
;

상기 티옥산톤보론산피나콜에스테르의 구조식은, The structural formula of the thioxanthone boronic acid pinacol ester is:

Figure 112015054935398-pct00024
;
Figure 112015054935398-pct00024
;

상기 디할로티옥산톤의 구조식은, The structural formula of the dihalothioxanone is as follows:

Figure 112015054935398-pct00025
;
Figure 112015054935398-pct00025
;

상기 방향족 보론산계 화합물의 구조식은, The structural formula of the aromatic boronic acid-

Figure 112015054935398-pct00026
;
Figure 112015054935398-pct00026
;

상기 화합물a의 피나콜 에스테르의 구조식은, The structural formula of the pinacol ester of the compound (a)

Figure 112015054935398-pct00027
이며,
Figure 112015054935398-pct00027
Lt;

식에서 L은 없거나, 아릴기, 아릴아민기, 헤테로아릴기, 아릴실릴기 중 하나이며, R, R'은 각각 수소원자, 아릴아민기, 아릴기, 헤테로아릴기로부터 선택되는 하나이며, X는 Cl, Br 또는 I이다.In the formula, L is absent or is one of an aryl group, an arylamine group, a heteroaryl group and an arylsilyl group, and each of R and R 'is a hydrogen atom, an arylamine group, an aryl group or a heteroaryl group, Cl, Br or I. < / RTI >

상기 식 (1), 식 (2), 식 (3)과 식 (4)는 아래와 같으며,The above equations (1), (2), (3) and (4)

Figure 112015054935398-pct00028
;
Figure 112015054935398-pct00029
;
Figure 112015054935398-pct00028
;
Figure 112015054935398-pct00029
;

Figure 112015054935398-pct00030
;
Figure 112015054935398-pct00031
;
Figure 112015054935398-pct00030
;
Figure 112015054935398-pct00031
;

식에서 R1, R2, R3, R4, R5, R6, R7, R8은 각각 수소원자, 아릴아민기, 아릴기, 헤테로아릴기로부터 선택되는 하나이며,Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each a hydrogen atom, an arylamine group, an aryl group or a heteroaryl group,

식 (3)과 식 (4)에서, L은 없거나, 아릴기, 아릴아민기, 헤테로아릴기, 아릴실릴기 중 하나이다.In the formulas (3) and (4), L is absent or is one of an aryl group, an arylamine group, a heteroaryl group and an arylsilyl group.

티옥산톤 옥사이드계 유도체에 대한 추가적인 한정은 상술한 "티옥산톤 옥사이드계 유도체" 부분과 같다.A further limitation to the thioxanthone oxide-based derivatives is the same as the above-mentioned "thioxanthone oxide-based derivatives ".

나아가, 테트라(트리페닐포스핀)팔라듐의 사용량은 일반적으로 5~15wt%이다. 상기 반응계에서 기타 물질의 사용량 비율은 모두 티옥산톤할라이드와 보론산 에스테르계 화합물의 전체 사용량에 대해 한정한 것이다. 본 명세서에서, 보론산 에스테르계 화합물은, L의 디보론산피나콜에스테르, 티옥산톤보론산피나콜에스테르, 방향족 보론산계 화합물이다.Further, the use amount of tetra (triphenylphosphine) palladium is generally 5 to 15 wt%. The amount of other substances used in the reaction system is limited to the total amount of the thioxanthone halide and the boronic acid ester compound. In the present specification, the boronic acid ester compound is a diboronic acid pinacol ester of L, a pinacol ester of thioxanthone boronic acid, or an aromatic boronic acid compound.

나아가, 톨루엔, 에탄올과 물의 혼합 용매 중 각자의 혼합 비율은 3~5: 1~3: 3~5이다. 일반적으로 30% 과산화수소 용액을 이용한다. 아세트산, 아세토니트릴, 물의 사용량이 당해 반응계에 미치는 영향이 매우 작으므로 특별히 한정하지 않으나, 실용 및 경제적 각도로부터 고려하면 사용량은 최대한 적어야 한다. 교반시, 필요에 따라 교반 속도, 교반 시간 등을 조절할 수 있으며, 이러한 요소는 최종 티옥산톤 옥사이드계 유도체의 형성에 영향을 미치지 않음을 이해해야 한다.Furthermore, the mixing ratio of toluene, ethanol and water in the mixed solvent is 3 to 5: 1 to 3: 3 to 5, respectively. Generally, 30% hydrogen peroxide solution is used. Although the effect of acetic acid, acetonitrile and water on the reaction system is very small, it is not particularly limited, but the amount to be used should be as small as possible from the practical and economical viewpoints. When stirring, the stirring speed, stirring time and the like can be adjusted as necessary, and it should be understood that these factors do not affect the formation of the final thioxanthone oxide-based derivative.

나아가, 상기 질산염 용액은 질산나트륨, 질산암모늄, 질산제2철 또는 질산제1철 등의 용액이다.Further, the nitrate solution is a solution such as sodium nitrate, ammonium nitrate, ferric nitrate or ferrous nitrate.

상기 불활성 가스는 질소 가스 또는 아르곤 가스를 가리킨다.The inert gas refers to nitrogen gas or argon gas.

상기 재결정화에 선택 사용된 용매는 메탄올, 에탄올, 디클로로메탄, 디메틸술폭사이드, 디카본아미드 등의 유기 용매 중 하나 또는 두 가지 이상의 혼합 용매이다.The solvent selected for recrystallization is one or a mixture of two or more of organic solvents such as methanol, ethanol, dichloromethane, dimethylsulfoxide, dicarbonamide and the like.

상기 환류는 25~100℃ 조건에서 2~12h 환류하는 것이다.The reflux is carried out at 25 to 100 ° C for 2 to 12 hours.

모노할로티옥산톤의 합성은 Contribution From The Chemical Laboratory Of Iowa State College, vol. 24,1914~1916; William G P, Samuel S.The interaction of aromatic disulphides and sulphuric acid[J], JSC, 1910, 19II: 640-649를 참고한다.The synthesis of the monohalotryoxane tones is described in Contribution From The Chemical Laboratory Of Iowa State College, vol. 24, 1914 to 1916; William G P, Samuel S.The interaction of aromatic disulphides and sulphuric acid [J], JSC, 1910, 19II: 640-649.

L의 디보론산피나콜에스테르의 합성은 Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009,19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438을 참고한다.L of diboronic acid pinacol ester is described in Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009, 19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438.

티옥산톤보론산피나콜에스테르의 합성은 Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009,19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438을 참고한다.The synthesis of thioxanthone boronic acid pinacol esters is described in Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009, 19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438.

디할로티옥산톤의 합성은 J. Org. Chem.2002, 67, 7641-7648; J. Chem. Soc. Perkin trans. 1 1991,1355-1359를 참고한다.The synthesis of dihalothioxanthone is described in J. Org. 2002, 67, 7641-7648; J. Chem. Soc. Perkin trans. 1, 1991, 1355-1359.

방향족 보론산계 화합물은 시중에서 구매하거나 또는 합성은 J. Mater. Chem., 2007, 17, 3714-3719; J. Med. Chem. 1998, 41, 303-310을 참고한다.Aromatic boronic acid-based compounds are commercially available or synthesized as described in J. Mater. Chem., 2007,17, 3714-3719; J. Med. Chem. 1998, 41, 303-310.

화합물a의 피나콜 에스테르의 합성은 Chem. Eur. J. 2004, 10, 2681-2688;Adv. Funct. Mater. 2009,19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438을 참고한다.The synthesis of the pinacol ester of compound a is described in Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009, 19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438.

상기 세번째 기술적 과제를 해결하기 위해, 본 발명은 티옥산톤 옥사이드계 유도체의 적용을 제공하며, 상기 티옥산톤 옥사이드계 유도체는 유기 전계 발광 디바이스의 유기 발광층으로 이용할 수 있다.In order to solve the third technical problem, the present invention provides an application of a thioxanthone oxide type derivative, and the thioxanthone oxide type derivative can be used as an organic light emitting layer of an organic electroluminescence device.

일반적으로, 상기 티옥산톤 옥사이드계 유도체는 유기 발광층의 호스트 발광 재료로 할 수 있으며, 기타 염료를 게스트 발광 재료로서 첨가할 수 있다.Generally, the thioxanthone oxide-based derivative may be a host light-emitting material of an organic light-emitting layer, and other dyes may be added as a guest light-emitting material.

유기 전계 발광 디바이스는 캐소드, 애노드와 유기 박막층을 포함하며, 유기 박막층은 캐소드와 애노드 사이에 위치한다. 상기 유기 박막층은 유기 발광층을 포함하며, 상기 티옥산톤 옥사이드계 유도체를 유기 발광층의 호스트 재료로 한다. 상기 유기 전계 발광 디바이스는 유기 집적 회로, 유기 태양전지, 유기 레이저 또는 유기 센서에 이용할 수 있다.The organic electroluminescent device includes a cathode, an anode and an organic thin film layer, and the organic thin film layer is positioned between the cathode and the anode. The organic thin film layer includes an organic light emitting layer, and the thioxanthone oxide-based derivative is used as a host material of the organic light emitting layer. The organic electroluminescent device can be used for an organic integrated circuit, an organic solar cell, an organic laser or an organic sensor.

상기 티옥산톤 옥사이드계 유도체에 인광 염료를 도핑하여 인광 전계 발광 디바이스를 제조하는 것이 바람직하다. 상기 인광 염료는 Ir(이리듐), Pt(백금), Os(오스뮴), Ru(루테늄) 등 금속의 착체로부터 선택할 수 있다. 상기 인광 염료는 Ir의 착체인 것이 바람직하다. 예를 들어, 청색광을 방출하는 비스(4,6-디플루오로페닐피리디나토-N,C2)피콜리네토이리듐(FIrpic로 약칭), 녹색광을 방출하는 트리(2-페닐피리디나토)이리듐(Ir(ppy)3으로 약칭), 적색광을 방출하는 트리[1-페닐이소퀴놀리나토-C2,N]이리듐(III)(Ir(piq)3으로 약칭)이다.It is preferable to prepare a phosphorescent electroluminescent device by doping the above-mentioned thioxanthone oxide derivative with a phosphorescent dye. The phosphorescent dye can be selected from complexes of metals such as Ir (iridium), Pt (platinum), Os (osmium), and Ru (ruthenium). The phosphorescent dye is preferably a complex of Ir. For example, bis (4,6-difluorophenylpyridinato-N, C2) picolinato iridium (abbreviated as FIrpic) which emits blue light, tri (2-phenylpyridinato) iridium (Abbreviated as Ir (ppy) 3 ), and tri [1-phenylisoquinolinato-C2, N] iridium (III) (abbreviated as Ir (piq) 3 ) emitting red light.

인광 염료의 도핑 농도는 5~15 wt%인 것이 바람직하다.The doping concentration of the phosphorescent dye is preferably 5 to 15 wt%.

상기 유기 박막층은 정공 주입층, 정공 수송층과 전자 수송층 등을 더 포함한다.The organic thin film layer may further include a hole injection layer, a hole transport layer, and an electron transport layer.

유기 전계 발광 디바이스의 구성은 기판/애노드/정공 수송층/유기 발광층/전자 수송층/캐소드인 것이 바람직하다. The structure of the organic electroluminescent device is preferably a substrate / an anode / a hole transporting layer / an organic light emitting layer / an electron transporting layer / a cathode.

기판은 투명한 것이며, 유리 또는 플렉시블 기판일 수 있다. 상기 플렉시블 기판은 폴리에스테르계, 폴리이미드계 화합물 중 한 가지 재료일 수 있다.The substrate is transparent and may be a glass or a flexible substrate. The flexible substrate may be one of a polyester-based or polyimide-based compound.

애노드층은 무기 재료 또는 유기 도전 중합체일 수 있다. 상기 무기 재료는 일반적으로 산화인듐주석(ITO), 산화아연, 산화주석아연 등 금속 산화물, 또는 금, 은, 구리 등 일함수가 높은 금속일 수 있으며, ITO가 가장 바람직하다. 상기 유기 도전 중합체는 폴리티오펜/폴리비닐벤젠술폰산나트륨(PEDOT:PSS), 폴리아닐린(PANI) 중 한 가지 재료인 것이 바람직하다.The anode layer may be an inorganic material or an organic conductive polymer. The inorganic material may generally be a metal oxide such as indium tin oxide (ITO), zinc oxide, or tin oxide, or a metal having a high work function such as gold, silver or copper, and ITO is most preferable. The organic conductive polymer is preferably one of polythiophene / sodium polyvinylbenzenesulfonate (PEDOT: PSS) and polyaniline (PANI).

캐소드층은 일반적으로 리튬, 마그네슘, 칼슘, 스트론튬, 알루미늄 또는 인듐 등 일함수가 낮은 금속, 또는 이들 중 하나와 구리, 금 또는 은의 합금, 또는 상기 금속 또는 합금과 금속 불화물이 교대로 형성된 전극층을 이용한다. 바람직하게는 순차적인 LiF층과 Mg:Ag합금층이다.The cathode layer generally uses an electrode layer in which one of these metals is low in a work function such as lithium, magnesium, calcium, strontium, aluminum or indium, or an alloy of copper, gold or silver, or an alloy of the metal or alloy and metal fluoride alternately . Preferably a sequential LiF layer and a Mg: Ag alloy layer.

정공 수송층은 일반적으로 트리아릴아민계 재료를 이용한다. 바람직하게는 N,N'-디-(1-나프틸)-N,N'-디페닐-1,1-비페닐-4,4-디아민(NPB)이다.The hole transport layer generally uses a triarylamine-based material. Preferably, it is N, N'-di- (1-naphthyl) -N, N'-diphenyl-1,1-biphenyl-4,4-diamine (NPB).

전자 수송층은 일반적으로 아조사이클계 재료를 이용한다. 바람직하게는 1,3,5-트리(1-페닐-1H-벤즈이미다졸-2-일)벤젠(TPBI)이다.The electron transport layer generally uses an azocycle-based material. Preferably 1, 3,5-tri (1-phenyl-1H-benzimidazol-2-yl) benzene (TPBI).

유기 발광층은 식 (1), (2), (3) 또는 (4)에 따른 티옥산톤 옥사이드 유도체이다. 상기 유기 발광층은 식 (1), (2), (3) 또는 (4)에 나타낸 티옥산톤 옥사이드 유도체를 호스트 재료로 하고, FIrpic, Ir(ppy)3 또는 Ir(piq)3을 게스트 발광 재료로 하는 것이 바람직하다.The organic luminescent layer is a thioxanthone oxide derivative according to the formula (1), (2), (3) or (4). The organic light-emitting layer is the formula (1), (2), (3) or (4) thioxanthone oxide to a host material, FIrpic, Ir (ppy) derivative shown in Fig. 3 or Ir (piq) the guest luminescence third material .

본 발명에 따른 티옥산톤 옥사이드 유도체를 호스트 재료로 하여 유기 전계 발광 디바이스를 제조하는 과정은 아래와 같다.The process for preparing an organic electroluminescent device using the thioxanthone oxide derivative according to the present invention as a host material is as follows.

① 통상 사용되는 세척제(바람직하게는 Decon 90 세척제를 이용), 탈이온수 및 유기 용액(바람직하게는 메탄올, 에탄올, 아세톤, 아세토니트릴, 테트라히드로퓨란 중 하나 또는 두 가지 및 그 이상의 혼합 용매를 이용)를 이용하여 애노드를 구비한 유리 기판을 다단계를 거쳐 세척한다.(1) using a commonly used detergent (preferably using a Decon 90 detergent), deionized water and an organic solution (preferably using one or two or more mixed solvents of methanol, ethanol, acetone, acetonitrile, tetrahydrofuran) The glass substrate having the anode is cleaned through the multi-step system.

② 진공 증착 방법을 이용하여 디바이스의 정공 수송층을 증착한다.(2) The hole transport layer of the device is deposited using a vacuum deposition method.

③ 디바이스의 발광층을 증착한다.(3) Deposition the light emitting layer of the device.

④ 디바이스의 전자 수송층을 증착한다.④ Deposition electron transport layer of device.

⑤ 다시 증착 또는 스퍼터링 방법으로 금속 캐소드를 제작한다.(5) A metal cathode is again formed by vapor deposition or sputtering.

예를 들어, OLED의 제조 과정은 아래와 같다.For example, the manufacturing process of an OLED is as follows.

ITO 투명 도전층이 코팅된 유리 기판을 통상 사용되는 세척제 속에서 초음파 처리를 하고, 탈이온수 속에서 린싱하고, 아세톤과 에탄올의 혼합 용매 속에서 초음파에 의한 오일 제거를 한 후 깨끗한 환경에서 수분이 완전히 제거되도록 베이킹한다. 자외선 클리너를 이용하여 1~100분간 조사하고 저에너지 양이온빔을 이용하여 표면을 충격한다.The glass substrate coated with the ITO transparent conductive layer is subjected to ultrasonic treatment in a conventional cleaning agent, rinsed in deionized water, removed with ultrasonic waves in a mixed solvent of acetone and ethanol, and then, in a clean environment, Bake to remove. The sample is irradiated for 1 to 100 minutes using an ultraviolet ray cleaner, and the surface is impacted by using a low energy ion beam.

상기 애노드를 구비한 유리 기판을 진공 챔버에 넣고, 1×10-5~9×10-3Pa가 되도록 진공 처리를 한 후 상기 애노드층 필름에 먼저 1~15nm의 CuPc를 증착하고, 계속하여 NPB를 증착하여 정공 수송층으로 하되, 증착 속도를 0.1~0.5nm/s로 제어하고 증착 필름 두께를 50~75nm로 제어한다.The glass substrate having the anode was placed in a vacuum chamber, and vacuum treatment was performed so as to have a pressure of 1 × 10 -5 to 9 × 10 -3 Pa. Then, CuPc of 1 to 15 nm was first deposited on the anode layer film, The deposition rate is controlled to 0.1 to 0.5 nm / s, and the thickness of the deposited film is controlled to 50 to 75 nm.

정공 수송층의 상부에 계속하여 한 층의 발광층을 증착한다. 발광층은 인광 발광 재료와 본 발명의 식 (1) 또는 (2) 또는 (3) 또는 (4)에 따른 티옥산톤 옥사이드 유도체를 도핑하여 이루어지며, 티옥산톤 옥사이드 유도체와 인광 발광 재료의 증착 속도 비율은 100: 1이다. 본 발명에 따른 티옥산톤 옥사이드 유도체에서의 인광 발광 재료의 도핑 농도는 x이고, x는 5~15wt%이며, 그 증착 전체 속도는 0.1nm/s, 증착 필름의 전체 두께는 30nm로 한다.And then one layer of the light emitting layer is continuously deposited on the upper portion of the hole transporting layer. The light emitting layer is formed by doping a phosphorescent light emitting material with a thioxanthone oxide derivative according to the formula (1) or (2) or (3) or (4) of the present invention. The deposition rate of the thioxanthone oxide derivative and the phosphorescent light emitting material The ratio is 100: 1. The doping concentration of the phosphorescent material in the thioxanthone oxide derivative according to the present invention is x, x is 5 to 15 wt%, the deposition rate is 0.1 nm / s, and the total thickness of the deposited film is 30 nm.

계속하여 한 층의 TPBI를 디바이스의 전자 수송층으로서 증착하되, 그 증착 속도는 0.1nm/s, 증착 필림의 전체 두께는 35nm로 한다.Subsequently, one layer of TPBI is deposited as an electron transport layer of the device, the deposition rate of which is 0.1 nm / s, and the total thickness of the deposited film is 35 nm.

마지막으로, 상기 전자 수송층의 상부에 차례로 LiF층과 Mg:Ag합금층을 디바이스의 캐소드층으로서 증착하되, 그중 LiF층의 두께는 0.5nm, Mg: Ag합금층의 증착 속도는 2.0~3.0nm/s, 두께는 100nm로 한다.Finally, the LiF layer and the Mg: Ag alloy layer were sequentially deposited on the electron transport layer as a cathode layer of the device. The LiF layer had a thickness of 0.5 nm and the Mg: Ag alloy layer had a deposition rate of 2.0 to 3.0 nm / s and a thickness of 100 nm.

본 발명의 장점은 아래와 같다.Advantages of the present invention are as follows.

1. 본 발명에 따른 티옥산톤 옥사이드계 유도체는 유기 전계 발광 디바이스의 발광층 재료로 이용할 수 있다. 그 티옥산톤 옥사이드 분자는 다수의 전자 결핍 그룹이 도입되므로, 일정한 전자 수송 능력을 가진다. 티옥산톤 화합물은 통상의 감광제이므로, 높은 삼중항 에너지와 낮은 일중항 삼중항 에너지갭을 가진다. 산화된 티옥산톤은 높은 삼중항 에너지 레벨을 계속 유지하며 다양한 치환기에 의한 개질을 통해, 산화된 티옥산톤 분자의 최고 점유 궤도(HOMO)의 에너지 레벨과 최저 비점유 궤도(LUMO)의 에너지 레벨을 변화시켜 인접 층 재료와의 에너지 장벽을 낮추어, 캐리어의 주입과 수송에 더 유리하도록 할 수 있다. 또한, 본 발명에 따른 티옥산톤 옥사이드계 유도체에 큰 치환기가 도입되어 있어 그 성막성과 화학적 안정성이 향상되며, 안정성이 더 높은 디바이스를 제조하는데 유리하다. 본 발명에 따른 유도체를 이용하여 제조된 유기 전계 발광 디바이스는 높은 디바이스 효율과 낮은 컷인 전압을 가진다.1. The thioxanthone oxide derivative according to the present invention can be used as a light emitting layer material of an organic electroluminescent device. The thioxanthone oxide molecule has a constant electron transport ability because a large number of electron deficient groups are introduced. Since the thioxanthone compound is a conventional photoresist, it has a high triplet energy and a low singlet triplet energy gap. The oxidized thioxanthone maintains a high triplet energy level and is modified by various substituents to change the energy level of the highest occupied molecular orbital (HOMO) of the oxidized thioxanthone molecule and the energy level of the lowest unoccupied molecular orbital (LUMO) Can be varied to lower the energy barrier with the adjacent layer material, making it more advantageous for carrier injection and transport. In addition, since a large substituent is introduced into the thioxanthone oxide derivative according to the present invention, the film formation property and the chemical stability are improved, and it is advantageous to manufacture a device having higher stability. The organic electroluminescent device manufactured using the derivative according to the present invention has high device efficiency and low cut-in voltage.

2. 본 발명은 간단한 방법으로 높은 전자 수송 속도를 가진 일련의 티옥산톤 옥사이드계 유도체를 합성한다.2. The present invention synthesizes a series of thioxanthone oxide-based derivatives with a high electron transporting rate in a simple manner.

3. 본 발명에 따른 티옥산톤 옥사이드계 유도체를 호스트 재료로 하고 다양한 인광 염료를 도핑하여 제조한 유기 전계 발광 디바이스는 휘도가 높고, 효율이 높은 우수한 성능을 가진다. 실험을 통해, 적절한 인광 염료를 선택하여 적색, 녹색, 청색 등의 고효율 발광을 구현할 수 있음을 발견하였다.3. Organic electroluminescent device prepared by using the thioxanthone oxide derivative according to the present invention as a host material and doping with various phosphorescent dyes has high brightness, high efficiency and excellent performance. Through experiments, we have found that a suitable phosphorescent dye can be selected to realize high-efficiency light emission such as red, green, and blue.

도 1은 본 발명에 따른 티옥산톤 옥사이드계 유도체를 호스트 재료로 하여 제조한 유기 전계 발광 디바이스의 개략적인 구성도이다.
도 2는 본 발명의 실시예 32에 따른 티옥산톤 옥사이드계 유도체의 광학·물리적 데이터이며(흡수 스펙트로그램(a), 형광 스펙트로그램 (b), 77K 인광 스펙트로그램 (c)), 흡수 스펙트럼에서 325nm 위치의 흡수 밴드가 가장 강한 바, 이는 벤젠 고리의 π-π*의 천이로 인한 것이며, 그 후의 380nm에서의 흡수는 n-π*의 천이로 인한 것이다. 후자를 이용하여 에너지갭을 추산한다. 형광 스펙트럼의 피크 값을 이용하여 분자의 일중항 에너지를 추산할 수 있으며, 저온 인광 스펙트럼의 피크 값을 이용하여 분자의 삼중항 에너지 레벨을 추산할 수 있다.
도 3은 본 발명의 실시예 32에 따른 티옥산톤 옥사이드계 유도체의 순환 전위 그래프이다.
도 4는 본 발명의 실시예 32에 따른 티옥산톤 옥사이드계 유도체의 열중량 분석 그래프이다.
도 5a는 본 발명의 실시예 32에 따른 티옥산톤 옥사이드계 유도체의, 서로 다른 휘도에 따른 색좌표 CIE값의 곡선이다.
도 5b는 본 발명의 실시예 32에 따른 티옥산톤 옥사이드계 유도체의, 서로 다른 휘도에 따른 L-V곡선도이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of an organic electroluminescent device manufactured using a thioxanthone oxide derivative according to the present invention as a host material. FIG.
2 is optical and physical data (absorption spectrogram (a), fluorescence spectrogram (b), 77K phosphorescence spectrogram (c)) of the thioxanthone oxide derivative according to Example 32 of the present invention, The absorption band at the 325 nm position is strongest because of the transition of the pi-pi * of the benzene ring, and the subsequent absorption at 380 nm is due to the transition of n-pi *. The latter is used to estimate the energy gap. The singlet energy of the molecule can be estimated using the peak value of the fluorescence spectrum and the triplet energy level of the molecule can be estimated using the peak value of the low temperature phosphorescence spectrum.
3 is a cyclic potential graph of a thioxanthone oxide-based derivative according to Example 32 of the present invention.
4 is a graph showing a thermogravimetric analysis of a thioxanthone oxide derivative according to Example 32 of the present invention.
FIG. 5A is a curve of the CIE value of the chromaticity coordinates of the thioxanthone oxide derivative according to Example 32 of the present invention according to different intensities. FIG.
5B is an LV curve of the thioxanthone oxide-based derivative according to Example 32 of the present invention according to different luminance.

본 발명의 내용을 이해하는데 도움이 되도록 하기 위해, 이하 구체적인 실시예를 통해 본 발명의 기술적 수단을 더 설명하기로 한다.In order to facilitate understanding of the present invention, technical means of the present invention will be further described by way of specific examples.

도 1은 본 발명에 따른 티옥산톤 옥사이드계 유도체를 호스트 재료로 하여 제조한 유기 전계 발광 디바이스의 개략적인 구성도이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of an organic electroluminescent device manufactured using a thioxanthone oxide derivative according to the present invention as a host material. FIG.

실시예 1 Example 1

티옥산톤 옥사이드계 유도체 Comp-1을 합성.Synthesis of thioxanthone oxide derivative Comp-1.

Figure 112015054935398-pct00032
Figure 112015054935398-pct00032

2,7-디페닐티옥산톤과 1M의 질산염 용액을, 몰비 1:4의 비율로 아세토니트릴에 용해시키고, 실온에서 4h 교반한 후, 대량의 물을 넣어 침전시키고, 여과 후, 에탄올에 의한 재결정화를 통해 티옥산톤 옥사이드계 유도체 Comp-1을 얻었으며, 수율은 약 70%였다. m/z: 380.09(100.0%), 381.09(28.0%), 382.08(4.6%), 381.08(4.2%), 382.09(1.7%). m/z는 저해상도의 질량 스펙트럼에서의 타겟 분자의 질량 대 전하의 비율이다.2,7-diphenylthioxanthone and a 1M nitrate solution were dissolved in acetonitrile in a molar ratio of 1: 4, and the mixture was stirred at room temperature for 4 hours. Thereafter, a large amount of water was added to precipitate. After filtration, Through recrystallization, a thioxanthone oxide derivative Comp-1 was obtained, and the yield was about 70%. m / z: 380.09 (100.0%), 381.09 (28.0%), 382.08 (4.6%), 381.08 (4.2%), 382.09 (1.7%). m / z is the mass to charge ratio of the target molecule in the low-resolution mass spectrum.

실시예 2Example 2

티옥산톤 옥사이드계 유도체 Comp-2를 합성.Synthesis of thioxanthone oxide derivative Comp-2.

Figure 112015054935398-pct00033
Figure 112015054935398-pct00033

2,7-디페닐티옥산톤 대신 2,7-디(2'-비페닐)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-2를 얻었으며, 수율은 약 70%였다. m/z: 532.15(100.0%), 533.15(40.8%), 534.16(8.0%), 533.14(4.8%).
(2'-biphenyl) thioxanone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp-2 was obtained in the same manner as in Example 1, About 70%. m / z: 532.15 (100.0%), 533.15 (40.8%), 534.16 (8.0%), 533.14 (4.8%).

실시예 3Example 3

티옥산톤 옥사이드계 유도체 Comp-3을 합성.Synthesis of thioxanthone oxide derivative Comp-3.

Figure 112015054935398-pct00034
Figure 112015054935398-pct00034

2,7-디페닐티옥산톤 대신 2,7-디(3',5'-트리비페닐)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-3을 얻었으며, 수율은 약 70%였다. m/z: 684.21(100.0%), 685.22(53.3%), 686.23(14.6%), 685.21(3.2%), 686.22(1.9%).
A thioxanthone oxide-based derivative Comp-3 was obtained in the same manner as in Example 1 except that 2,7-di (3 ', 5'-tribiphenyl) thioxanone was used instead of 2,7-diphenylthioxanthone , And the yield was about 70%. m / z: 684.21 (100.0%), 685.22 (53.3%), 686.23 (14.6%), 685.21 (3.2%), 686.22 (1.9%).

실시예 4 Example 4

티옥산톤 옥사이드계 유도체 Comp-4를 합성.Synthesis of thioxanthone oxide derivative Comp-4.

Figure 112015054935398-pct00035
Figure 112015054935398-pct00035

2,7-디페닐티옥산톤 대신 2,7-디(9',9'-디메틸플루오레닐)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-4를 얻었으며, 수율은 약 70%였다. m/z: 612.21(100.0%), 613.22(47.1%), 614.22(11.6%), 613.21(5.2%), 614.23(2.9%).
Except that 2,7-di (9 ', 9'-dimethylfluorenyl) thioxanone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp-4 And the yield was about 70%. m / z: 612.21 (100.0%), 613.22 (47.1%), 614.22 (11.6%), 613.21 (5.2%), 614.23 (2.9%).

실시예 5 Example 5

티옥산톤 옥사이드계 유도체 Comp-5를 합성.Synthesis of thioxanthone oxide derivative Comp-5.

Figure 112015054935398-pct00036
Figure 112015054935398-pct00036

2,7-디페닐티옥산톤 대신 2,7-디(9',9'-스피로비플루오레닐)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-5를 얻었으며, 수율은 약 70%였다. m/z: 872.27(100.0%), 873.28(69.8%), 874.28(24.9%), 873.27(5.2%).Except that 2,7-di (9 ', 9'-spirobifluorenyl) thioxanthone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp-5 And the yield was about 70%. m / z: 872.27 (100.0%), 873.28 (69.8%), 874.28 (24.9%), 873.27 (5.2%).

실시예 6 Example 6

티옥산톤 옥사이드계 유도체 Comp-6을 합성.Synthesis of thioxanthone oxide derivative Comp-6.

Figure 112015054935398-pct00037
Figure 112015054935398-pct00037

2,7-디페닐티옥산톤 대신 2,7-디(9',10'-페닐페난트레닐)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-6을 얻었으며, 수율은 약 70%였다. m/z: 712.24(100.0%), 713.25(55.8%), 714.25(16.0%), 713.27(2.3%).
Except that 2,7-di (9 ', 10'-phenylphenanthrenyl) thioxanthone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp-6 And the yield was about 70%. m / z: 712.24 (100.0%), 713.25 (55.8%), 714.25 (16.0%), 713.27 (2.3%).

실시예 7 Example 7

티옥산톤 옥사이드계 유도체 Comp-7을 합성.Synthesis of thioxanthone oxide derivative Comp-7.

Figure 112015054935398-pct00038
Figure 112015054935398-pct00038

2,7-디페닐티옥산톤 대신 3,6-디(2',4',6'-트리메틸페닐)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-7을 얻었으며, 수율은 약 70%였다. m/z: 464.18(100.0%),465.17 (34.3%), 466.17(6.0%), 466.19(5.3%), 465.18(2.5%).Except that 3,6-di (2 ', 4', 6'-trimethylphenyl) thioxanthone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp-7 And the yield was about 70%. m / z: 464.18 (100.0%), 465.17 (34.3%), 466.17 (6.0%), 466.19 (5.3%), 465.18 (2.5%).

실시예 8 Example 8

티옥산톤 옥사이드계 유도체 Comp-8을 합성.Synthesis of thioxanthone oxide derivative Comp-8.

Figure 112015054935398-pct00039
Figure 112015054935398-pct00039

2,7-디페닐티옥산톤 대신 2,7-디(3'-퀴놀릴)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-8을 얻었으며, 수율은 약 70%였다. m/z: 482.11(100.0%), 483.11(35.1%), 484.12(5.5%), 483.12(1.3%).
A thioxanthone oxide-based derivative Comp-8 was obtained in the same manner as in Example 1 except that 2,7-di (3'-quinolyl) thioxanone was used in place of 2,7-diphenylthioxanthone, About 70%. m / z: 482.11 (100.0%), 483.11 (35.1%), 484.12 (5.5%), 483.12 (1.3%).

실시예 9 Example 9

티옥산톤 옥사이드계 유도체 Comp-9를 합성.Synthesis of thioxanthone oxide derivative Comp-9.

Figure 112015054935398-pct00040
Figure 112015054935398-pct00040

2,7-디페닐티옥산톤 대신 2,7-디(2'-벤조티아졸릴)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-9를 얻었으며, 수율은 약 70%였다. m/z: 592.06(100.0%), 593.07(40.2%), 594.06(13.5%), 593.06(3.5%), 594.06(1.3%).
A thioxanthone oxide-based derivative Comp-9 was obtained in the same manner as in Example 1 except that 2,7-di (2'-benzothiazolyl) thioxanone was used in place of 2,7-diphenylthioxanthone, Was about 70%. m / z: 592.06 (100.0%), 593.07 (40.2%), 594.06 (13.5%), 593.06 (3.5%), 594.06 (1.3%).

실시예 10 Example 10

티옥산톤 옥사이드계 유도체 Comp-10을 합성.Synthesis of thioxanthone oxide derivative Comp-10.

Figure 112015054935398-pct00041
Figure 112015054935398-pct00041

2,7-디페닐티옥산톤 대신 2,7-디(2'-벤조푸릴)티옥산톤을 이용한 것 외에는 실시예 1과 동일하게 티옥산톤 옥사이드계 유도체 Comp-10얻었으며, 수율은 약 70%였다. m/z: 560.11(100.0%), 561.11(41.1%), 562.12(8.5%), 563.12(1.3%).
A thioxanthone oxide-based derivative Comp-10 was obtained in the same manner as in Example 1 except that 2,7-di (2'-benzofuryl) thioxanone was used in place of 2,7-diphenylthioxanthone, 70%. m / z: 560.11 (100.0%), 561.11 (41.1%), 562.12 (8.5%), 563.12 (1.3%).

실시예 11 Example 11

티옥산톤 옥사이드계 유도체 Comp-11을 합성.Synthesis of thioxanthone oxide derivative Comp-11.

Figure 112015054935398-pct00042
Figure 112015054935398-pct00042

2,7-디페닐티옥산톤과 30% 과산화수소용액을 몰비 1:1의 비율로 아세트산에 용해시키고, 100℃에서 환류하고, 냉각시켜 침전을 석출하고, 여과하여 에탄올에 의한 재결정화를 하여, 티옥산톤 옥사이드계 유도체 Comp-11을 얻었으며, 수율은 약 90%였다. m/z: 396.08(100.0%), 397.09(27.3%), 398.08(4.6%), 397.08(1.3%).
2,7-diphenylthioxanthone and a 30% hydrogen peroxide solution were dissolved in acetic acid at a molar ratio of 1: 1, and the solution was refluxed at 100 ° C, and the precipitate was precipitated by filtration and recrystallization with ethanol, A thioxanthone oxide derivative Comp-11 was obtained, and the yield was about 90%. m / z: 396.08 (100.0%), 397.09 (27.3%), 398.08 (4.6%), 397.08 (1.3%).

실시예 12Example 12

티옥산톤 옥사이드계 유도체 Comp-12를 합성.Synthesis of thioxanthone oxide derivative Comp-12.

Figure 112015054935398-pct00043
Figure 112015054935398-pct00043

2,7-디페닐티옥산톤 대신 3,6-디(2'-비페닐)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-12를 얻었으며, 수율은 약 90%였다. m/z: 548.14(100.0%), 549.14(40.4%), 550.15(8.9%), 549.13(4.4%), 550.14 (0.9%).
A thioxanthone oxide-based derivative Comp-12 was obtained in the same manner as in Example 11 except that 3,6-di (2'-biphenyl) thioxanone was used in place of 2,7-diphenylthioxanthone, About 90%. m / z: 548.14 (100.0%), 549.14 (40.4%), 550.15 (8.9%), 549.13 (4.4%), 550.14 (0.9%).

실시예 13Example 13

티옥산톤 옥사이드계 유도체 Comp-13을 합성.Synthesis of thioxanthone oxide derivative Comp-13.

Figure 112015054935398-pct00044
Figure 112015054935398-pct00044

2,7-디페닐티옥산톤 대신 2,7-디(3',5'-트리비페닐)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-13을 얻었으며, 수율은 약 90%였다. m/z: 700.21(100.0%), 701.21(54.3%), 702.21(14.9%), 701.23(5.0%).
A thioxanthone oxide-based derivative Comp-13 was obtained in the same manner as in Example 11 except that 2,7-di (3 ', 5'-tribiphenyl) thioxanone was used in place of 2,7-diphenylthioxanthone , And the yield was about 90%. m / z: 700.21 (100.0%), 701.21 (54.3%), 702.21 (14.9%), 701.23 (5.0%).

실시예 14Example 14

티옥산톤 옥사이드계 유도체 Comp-14를 합성.Synthesis of thioxanthone oxide derivative Comp-14.

Figure 112015054935398-pct00045
Figure 112015054935398-pct00045

2,7-디페닐티옥산톤 대신 2,7-디(9',9'-디메틸플루오레닐)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-14를 얻었으며, 수율은 약 90%였다. m/z: 628.21(100.0%), 629.21(47.8%), 630.21(11.6%), 629.20(4.7%), 630.22(1.1%).
Except that 2,7-di (9 ', 9'-dimethylfluorenyl) thioxanthone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp-14 And the yield was about 90%. m / z: 628.21 (100.0%), 629.21 (47.8%), 630.21 (11.6%), 629.20 (4.7%), 630.22 (1.1%).

실시예 15Example 15

티옥산톤 옥사이드계 유도체 Comp-15를 합성.Synthesis of thioxanthone oxide derivative Comp-15.

Figure 112015054935398-pct00046
Figure 112015054935398-pct00046

2,7-디페닐티옥산톤 대신 2,7-디(9',9'-스피로비플루오레닐)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-15를 얻었으며, 수율은 약 90%였다. m/z: 888.27(100.0%), 889.27(70.1%), 890.28(24.1%), 889.28(2.7%).
Except that 2,7-di (9 ', 9'-spirobifluorenyl) thioxanthone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp-15 And the yield was about 90%. m / z: 888.27 (100.0%), 889.27 (70.1%), 890.28 (24.1%), 889.28 (2.7%).

실시예 16Example 16

티옥산톤 옥사이드계 유도체 Comp-16을 합성.Synthesis of thioxanthone oxide derivative Comp-16.

Figure 112015054935398-pct00047
Figure 112015054935398-pct00047

2,7-디페닐티옥산톤 대신 2,7-디(9',10'-페닐페난트레닐)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-16을 얻었으며, 수율은 약 90%였다. m/z: 728.24(100.0%), 729.24(70.1%), 730.25(24.1%), 729.23(2.7%), 730.25(1.2%).
Except that 2,7-di (9 ', 10'-phenylphenanthrenyl) thioxanthone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide-based derivative Comp- And the yield was about 90%. m / z: 728.24 (100.0%), 729.24 (70.1%), 730.25 (24.1%), 729.23 (2.7%), 730.25 (1.2%).

실시예 17 Example 17

티옥산톤 옥사이드계 유도체 Comp-17을 합성.Synthesis of thioxanthone oxide derivative Comp-17.

Figure 112015054935398-pct00048
Figure 112015054935398-pct00048

2,7-디페닐티옥산톤 대신 3,6-디(2',4',6'-트리메틸페닐)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-17을 얻었으며, 수율은 약 90%였다. m/z: 480.18(100.0%), 481.18(34.8%), 482.19(6.4%), 482.18(1.5%).
Except that 3,6-di (2 ', 4', 6'-trimethylphenyl) thioxanthone was used in place of 2,7-diphenylthioxanthone, a thioxanthone oxide derivative Comp-17 And the yield was about 90%. m / z: 480.18 (100.0%), 481.18 (34.8%), 482.19 (6.4%), 482.18 (1.5%).

실시예 18 Example 18

티옥산톤 옥사이드계 유도체 Comp-18을 합성.Synthesis of thioxanthone oxide derivative Comp-18.

Figure 112015054935398-pct00049
Figure 112015054935398-pct00049

2,7-디페닐티옥산톤 대신 2,7-디(3'-퀴놀릴)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-18을 얻었으며, 수율은 약 90%였다. m/z: 498.10(100.0%), 499.10(33.9%), 500.11(6.4%), 499.11(3.5%), 500.12(1.3%).
A thioxanthone oxide-based derivative Comp-18 was obtained in the same manner as in Example 11 except that 2,7-di (3'-quinolyl) thioxanone was used instead of 2,7-diphenylthioxanthone, About 90%. m / z: 498.10 (100.0%), 499.10 (33.9%), 500.11 (6.4%), 499.11 (3.5%), 500.12 (1.3%).

실시예 19 Example 19

티옥산톤 옥사이드계 유도체 Comp-19를 합성.Synthesis of thioxanthone oxide derivative Comp-19.

Figure 112015054935398-pct00050
Figure 112015054935398-pct00050

2,7-디페닐티옥산톤 대신 2,7-디(2'-벤조티아졸릴)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-19를 얻었으며, 수율은 약 90%였다. m/z: 608.06(100.0%), 609.06(42.8%), 610.05(13.7%), 609.05(4.7%), 610.04.12(1.7%).
A thioxanthone oxide-based derivative Comp-19 was obtained in the same manner as in Example 11 except that 2,7-di (2'-benzothiazolyl) thioxanone was used in place of 2,7-diphenylthioxanthone, Was about 90%. m / z: 608.06 (100.0%), 609.06 (42.8%), 610.05 (13.7%), 609.05 (4.7%), 610.04.12 (1.7%).

실시예 20 Example 20

티옥산톤 옥사이드계 유도체 Comp-20을 합성.Synthesis of thioxanthone oxide derivative Comp-20.

Figure 112015054935398-pct00051
Figure 112015054935398-pct00051

2,7-디페닐티옥산톤 대신 2,7-디(2'-벤조푸릴)티옥산톤을 이용한 것 외에는 실시예 11과 동일하게 티옥산톤 옥사이드계 유도체 Comp-20을 얻었으며, 수율은 약 90%였다. m/z: 576.10(100.0%), 577.11(40.4%), 578.11(9.3%), 577.10(2.0%).
A thioxanthone oxide-based derivative Comp-20 was obtained in the same manner as in Example 11 except that 2,7-di (2'-benzofuryl) thioxanone was used in place of 2,7-diphenylthioxanthone, About 90%. m / z: 576.10 (100.0%), 577.11 (40.4%), 578.11 (9.3%), 577.10 (2.0%).

실시예 21 Example 21

티옥산톤 옥사이드계 유도체 Comp-21을 합성.Synthesis of thioxanthone oxide derivative Comp-21.

2-브로모티옥산톤의 합성은 Contribution From The Chemical Laboratory Of Iowa State College, vol. 24,1914~1916;William G P, Samuel S.The interaction of aromatic disulphides and sulphuric acid[J], JSC, 1910, 19II: 640-649를 참고한다.The synthesis of 2-bromothioxanthone is described in Contribution From The Chemical Laboratory Of Iowa State College, vol. 24, 1914 to 1916; William G P, Samuel S.The interaction of aromatic disulphides and sulphuric acid [J], JSC, 1910, 19II: 640-649.

1,4-페닐디보론산피나콜에스테르의 합성은 Chem. Eur. J. 2004, 10, 2681-2688;Adv. Funct. Mater. 2009,19, 277-284;Adv. Funct. Mater. 2007, 17, 2432-2438을 참고한다.Synthesis of 1,4-phenyldiboronic acid pinacol ester is described in Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009, 19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438.

(1) 불활성 가스의 보호 속에서, 2-브로모티옥산톤과 1,4-페닐디보론산피나콜에스테르를 몰비 2.5: 1의 비율로 혼합하고, 0.05당량의 테트라(트리페닐포스핀)팔라듐과 5당량의 탄산칼륨을 넣은 후, 혼합물을 톨루엔, 에탄올 및 물의 체적비가 4:3:2인 혼합 용매에서 96℃에서 8시간 환류하고, 생성물을 추출했다. 칼럼크로마토그래프(석유에테르와 에틸아세테이트의 체적비가 6: 1인 혼합 용매를 용리액으로 함)를 거쳐 중간체를 얻었으며, 수율은 63%였다. (1) In the protection of an inert gas, 2-bromothioxanthone and 1,4-phenyldiboronic acid pinacol ester were mixed at a molar ratio of 2.5: 1, and 0.05 equivalent of tetra (triphenylphosphine) palladium After adding 5 equivalents of potassium carbonate, the mixture was refluxed in a mixed solvent of toluene, ethanol and water at a volume ratio of 4: 3: 2 at 96 DEG C for 8 hours, and the product was extracted. An intermediate was obtained through a column chromatograph (a mixed solvent having a volume ratio of petroleum ether and ethyl acetate of 6: 1 as an eluent), and the yield was 63%.

Figure 112015054935398-pct00052
Figure 112015054935398-pct00052

(2) 수득한 중간체와 M의 질산암모늄 용액을 몰비 1:4의 비율로 아세토니트릴에 용해시키고, 교반하고, 대량의 물을 넣어 침전시키고 여과한 후 에탄올에 의한 재결정화를 진행하여 티옥산톤 옥사이드계 유도체 Comp-21을 얻었으며, 수율은 약 80%였다.(2) The intermediate obtained and the ammonium nitrate solution of M were dissolved in acetonitrile in a molar ratio of 1: 4, stirred, and precipitated by adding a large amount of water. After filtration, recrystallization with ethanol was carried out, The oxide-based derivative Comp-21 was obtained, and the yield was about 80%.

Figure 112015054935398-pct00053
Figure 112015054935398-pct00053

Comp-21Comp-21

EI-MS, m/z: 530.07(100.0%), 531.07(34.7%), 532.06(9.0%).
EI-MS, m / z: 530.07 (100.0%), 531.07 (34.7%), 532.06 (9.0%).

실시예 22 Example 22

티옥산톤 옥사이드계 유도체 Comp-22를 합성.Synthesis of thioxanthone oxide derivative Comp-22.

Figure 112015054935398-pct00054
Figure 112015054935398-pct00054

Comp-22Comp-22

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용하고, 1,4-페닐디보론산피나콜에스테르 대신 1,3-페닐디보론산피나콜에스테르를 이용한 것 외에는 실시예 21과 동일하게 티옥산톤 옥사이드계 유도체 Comp-22를 얻었으며, 수율은 약 71%였다. EI-MS, m/z: 530.06(100.0%), 531.07(34.2%), 532.06(8.4%).
Except that 3-bromothioxanone was used instead of 2-bromothioxanone and 1,3-phenyldiboronic acid pinacol ester was used instead of 1,4-phenyldiboronic acid pinacol ester, thioxanthone The yield of the tone-oxide derivative Comp-22 was about 71%. EI-MS, m / z: 530.06 (100.0%), 531.07 (34.2%), 532.06 (8.4%).

실시예 23 Example 23

티옥산톤 옥사이드계 유도체 Comp-23을 합성.Synthesis of thioxanthone oxide derivative Comp-23.

Figure 112015054935398-pct00055
Figure 112015054935398-pct00055

Comp-23Comp-23

1,4-페닐디보론산피나콜에스테르 대신1,1'-비스페닐디보론산피나콜에스테르를 이용한 것 외에는 실시예 21과 동일하게 티옥산톤 옥사이드계 유도체 Comp-23을 얻었으며, 수율은 약 70%였다. EI-MS, m/z: 606.10(100.0%), 607.09(43.1%), 608.11(9.2%)
A thioxanthone oxide-based derivative Comp-23 was obtained in the same manner as in Example 21 except that 1,1'-biphenyldiboronic acid pinacol ester was used instead of 1,4-phenyldiboronic acid pinacol ester, and the yield was about 70 %. EI-MS, m / z: 606.10 (100.0%), 607.09 (43.1%), 608.11 (9.2%

실시예 24 Example 24

티옥산톤 옥사이드계 유도체 Comp-24를 합성.Synthesis of thioxanthone oxide derivative Comp-24.

Figure 112015054935398-pct00056
Figure 112015054935398-pct00056

Comp-24Comp-24

1,4-페닐디보론산피나콜에스테르 대신 3,3’-디메틸-4,4'-비페닐-디보론산피나콜에스테르를 이용한 것 외에는 실시예 21과 동일하게 티옥산톤 옥사이드계 유도체 Comp-24를 얻었으며, 수율은 약 70%였다.
Except that 3,3'-dimethyl-4,4'-biphenyl-diboronic acid pinacol ester was used in place of 1,4-phenyl diboronic acid pinacol ester, a thioxanthone oxide derivative Comp-24 And the yield was about 70%.

실시예 25Example 25

티옥산톤 옥사이드계 유도체 Comp-25를 합성.Synthesis of thioxanthone oxide derivative Comp-25.

Figure 112015054935398-pct00057
Figure 112015054935398-pct00057

Comp-25Comp-25

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용하고, 1,4-페닐디보론산피나콜에스테르 대신 3,7-디벤조푸릴-디보론산피나콜에스테르를 이용한 것 외에는 실시예 21과 동일하게 티옥산톤 옥사이드계 유도체 Comp-25를 얻었으며, 수율은 약 70%였다. EI-MS, m/z: 634.13(100.0%), 635.12(45.2%), 636.12(10.2%).
Was obtained in the same manner as in Example 21 except that 3-bromothioxanone was used instead of 2-bromothioxanone and 3,7-dibenzofuryl-diboronic acid pinacol ester was used instead of 1,4-phenyldiboronic acid pinacol ester. Gt; Comp-25 < / RTI > was obtained with a yield of about 70%. EI-MS, m / z: 634.13 (100.0%), 635.12 (45.2%), 636.12 (10.2%).

실시예 26Example 26

티옥산톤 옥사이드계 유도체 Comp-26을 합성.Synthesis of thioxanthone oxide derivative Comp-26.

Figure 112015054935398-pct00058
Figure 112015054935398-pct00058

Comp-26Comp-26

1,4-페닐디보론산피나콜에스테르 대신 N-페닐-3,7-카르바졸릴-디보론산피나콜에스테르를 이용한 것 외에는 실시예 21과 동일하게 티옥산톤 옥사이드계 유도체 Comp-26을 얻었으며, 수율은 약 74%였다. EI-MS, m/z: 695.12(100.0%), 696.13(48.7%), 697.13(12.1%).
A thioxanthone oxide derivative Comp-26 was obtained in the same manner as in Example 21 except that N-phenyl-3,7-carbazolyl-diboronic acid pinacol ester was used in place of 1,4-phenyldiboronic acid pinacol ester , And the yield was about 74%. EI-MS, m / z: 695.12 (100.0%), 696.13 (48.7%), 697.13 (12.1%).

실시예 27Example 27

티옥산톤 옥사이드계 유도체 Comp-27을 합성.Synthesis of thioxanthone oxide derivative Comp-27.

Figure 112015054935398-pct00059
Figure 112015054935398-pct00059

Comp-27Comp-27

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용하고, 1,4-페닐디보론산피나콜에스테르 대신 4,4'-테트라페닐실란-디보론산피나콜에스테르를 이용한 것 외에는 실시예 21과 동일하게 티옥산톤 옥사이드계 유도체 Comp-27을 얻었으며, 수율은 약 70%였다. EI-MS, m/z: 788.15(100.0%), 789.16(60.7%), 790.15(16.2%).Example 21 was repeated except that 3-bromothioxanone was used instead of 2-bromothioxanone and 4,4'-tetraphenylsilane-diboronic acid pinacol ester was used instead of 1,4-phenyldiboronic acid pinacol ester. Similarly, a thioxanthone oxide-based derivative Comp-27 was obtained, and the yield was about 70%. EI-MS, m / z: 788.15 (100.0%), 789.16 (60.7%), 790.15 (16.2%).

실시예 28Example 28

티옥산톤 옥사이드계 유도체 Comp-28을 합성.Synthesis of thioxanthone oxide derivative Comp-28.

(1) 실시예 21과 동일하다.(1) The same as in Example 21.

(2) 수득한 중간체와 30% 과산화수소용액을 몰비 1:1의 비율로 아세트산에 용해시키고, 100℃에서 환류하고, 냉각시켜 침전을 석출하고, 여과한 후 에탄올에 의한 재결정화를 진행하여 티옥산톤 옥사이드계 유도체 Comp-28을 얻었으며, 수율은 약 90%였다.(2) The obtained intermediate and a 30% hydrogen peroxide solution were dissolved in acetic acid at a molar ratio of 1: 1, refluxed at 100 占 폚, cooled to precipitate a precipitate, filtered and then recrystallized with ethanol to obtain thioxane A tone-oxide derivative Comp-28 was obtained, and the yield was about 90%.

Figure 112015054935398-pct00060
Figure 112015054935398-pct00060

Comp-28Comp-28

EI-MS, m/z: 562.07(100.0%), 563.07(34.9%), 564.06(8.8%).
EI-MS, m / z: 562.07 (100.0%), 563.07 (34.9%), 564.06 (8.8%).

실시예 29Example 29

티옥산톤 옥사이드계 유도체 Comp-29를 합성.Synthesis of thioxanthone oxide derivative Comp-29.

Figure 112015054935398-pct00061
Figure 112015054935398-pct00061

Comp-29Comp-29

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용하고, 1,4-페닐디보론산피나콜에스테르 대신 1,3-페닐디보론산피나콜에스테르를 이용한 것 외에는 실시예 28과 동일하게 티옥산톤 옥사이드계 유도체 Comp-29를 얻었다. EI-MS, m/z: 562.07(100.0%), 563.07(35.1%), 564.06(9.1%).
Except that 3-bromothioxanone was used instead of 2-bromothioxanone and 1,3-phenyldiboronic acid pinacol ester was used instead of 1,4-phenyldiboronic acid pinacol ester, thioxanthone Thereby obtaining a tone-oxide derivative Comp-29. EI-MS, m / z: 562.07 (100.0%), 563.07 (35.1%), 564.06 (9.1%).

실시예 30Example 30

티옥산톤 옥사이드계 유도체 Comp-30을 합성.Synthesis of thioxanthone oxide derivative Comp-30.

Figure 112015054935398-pct00062
Figure 112015054935398-pct00062

Comp-30Comp-30

1,4-페닐디보론산피나콜에스테르 대신 1,1'-비스페닐디보론산피나콜에스테르를 이용한 것 외에는 실시예 28과 동일하게 티옥산톤 옥사이드계 유도체 Comp-30을 얻었다. EI-MS, m/z: 638.09(100.0%), 639.09(43.2%), 640.08(10.1%).
A thioxanthone oxide-based derivative Comp-30 was obtained in the same manner as in Example 28 except that 1,1'-biphenyldiboronic acid pinacol ester was used instead of 1,4-phenyldiboronic acid pinacol ester. EI-MS, m / z: 638.09 (100.0%), 639.09 (43.2%), 640.08 (10.1%).

실시예 31Example 31

티옥산톤 옥사이드계 유도체 Comp-31을 합성.Synthesis of thioxanthone oxide derivative Comp-31.

Figure 112015054935398-pct00063
Figure 112015054935398-pct00063

Comp-31Comp-31

1,4-페닐디보론산피나콜에스테르 대신 3,3’-디메틸-4,4'-비페닐-디보론산피나콜에스테르를 이용한 것 외에는 실시예 28과 동일하게 티옥산톤 옥사이드계 유도체 Comp-31을 얻었다. EI-MS, m/z: 666.12(100.0%), 667.12(45.7%), 668.13(11.8%).
Except that 3,3'-dimethyl-4,4'-biphenyl-diboronic acid pinacol ester was used in place of 1,4-phenyl diboronic acid pinacol ester, a thioxanthone oxide derivative Comp-31 ≪ / RTI > EI-MS, m / z: 666.12 (100.0%), 667.12 (45.7%), 668.13 (11.8%).

실시예 32Example 32

티옥산톤 옥사이드계 유도체 Comp-32를 합성.Synthesis of thioxanthone oxide derivative Comp-32.

Figure 112015054935398-pct00064
Figure 112015054935398-pct00064

Comp-32Comp-32

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용하고, 1,4-페닐디보론산피나콜에스테르 대신 3,7-디벤조푸릴-디보론산피나콜에스테르를 이용한 것 외에는 실시예 28과 동일하게 티옥산톤 옥사이드계 유도체 Comp-32를 얻었다. EI-MS, m/z: 652.07(100.0%), 653.07(45.1%), 654.06(12.3%).
Was obtained in the same manner as in Example 28 except that 3-bromothioxanone was used instead of 2-bromothioxanone and 3,7-dibenzofuryl-diboronic acid pinacol ester was used in place of 1,4-phenyldiboronic acid pinacol ester. To obtain a thioxanthone oxide-based derivative Comp-32. EI-MS, m / z: 652.07 (100.0%), 653.07 (45.1%), 654.06 (12.3%).

실시예 33Example 33

티옥산톤 옥사이드계 유도체 Comp-33을 합성.Synthesis of thioxanthone oxide derivative Comp-33.

Figure 112015054935398-pct00065
Figure 112015054935398-pct00065

Comp-33Comp-33

1,4-페닐디보론산피나콜에스테르 대신 N-페닐-3,7-카르바졸릴-디보론산피나콜에스테르를 이용한 것 외에는 실시예 28과 동일하게 티옥산톤 옥사이드계 유도체 Comp-33을 얻었다. EI-MS, m/z: 727.11(100.0%), 728.11(47.9%), 729.12(14.4%).
A thioxanthone oxide-based derivative Comp-33 was obtained in the same manner as in Example 28 except that N-phenyl-3,7-carbazolyl-diboronic acid pinacol ester was used in place of 1,4-phenyldiboronic acid pinacol ester. EI-MS, m / z: 727.11 (100.0%), 728.11 (47.9%), 729.12 (14.4%).

실시예 34Example 34

티옥산톤 옥사이드계 유도체 Comp-34를 합성.Synthesis of thioxanthone oxide derivative Comp-34.

Figure 112015054935398-pct00066
Figure 112015054935398-pct00066

Comp-34Comp-34

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용하고, 1,4-페닐디보론산피나콜에스테르 대신 4,4'-테트라페닐실란-디보론산피나콜에스테르를 이용한 것 외에는 실시예 28과 동일하게 티옥산톤 옥사이드계 유도체 Comp-34를 얻었다. EI-MS, m/z: 729.13(100.0%), 730.13(54.1%), 731.12(11.5%).
Example 28 was repeated except that 3-bromothioxanone was used instead of 2-bromothioxanone and 4,4'-tetraphenylsilane-diboronic acid pinacol ester was used instead of 1,4-phenyldiboronic acid pinacol ester. A thioxanthone oxide-based derivative Comp-34 was obtained in the same manner. EI-MS, m / z: 729.13 (100.0%), 730.13 (54.1%), 731.12 (11.5%).

실시예 35Example 35

티옥산톤 옥사이드계 유도체 Comp-35를 합성.Synthesis of thioxanthone oxide derivative Comp-35.

티옥산톤보론산피나콜에스테르의 합성은 Chem. Eur. J. 2004, 10, 2681-2688;Adv. Funct. Mater. 2009,19, 277-284;Adv. Funct. Mater. 2007, 17, 2432-2438을 참고한다.The synthesis of thioxanthone boronic acid pinacol esters is described in Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009, 19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438.

(1) 불활성 가스의 보호 속에서, 2-브로모티옥산톤과 2-티옥산톤-보론산피나콜에스테르를 몰비 1:1의 비율로 혼합하고, 0.05당량의 테트라(트리페닐포스핀)팔라듐과 5당량의 탄산칼륨을 넣은 후, 혼합물을 톨루엔, 에탄올 및 물의 체적비가 4:3:2인 혼합 용매(10당량)에 넣고 96℃에서 8h 환류하고, 생성물을 추출했다. 칼럼크로마토그래프(석유에테르와 에틸아세테이트의 체적비가 6: 1인 혼합 용매를 용리액으로 함)를 거쳐 중간체를 얻었으며, 수율은 약 60%였다.(1) In the protection of an inert gas, 2-bromothioxanthone and 2-thioxanthone-boronic acid pinacol ester were mixed at a molar ratio of 1: 1 and 0.05 equivalent of tetra (triphenylphosphine) palladium And 5 equivalents of potassium carbonate, the mixture was added to a mixed solvent (10 equivalents) having a volume ratio of toluene, ethanol and water of 4: 3: 2, refluxed at 96 占 폚 for 8 hours, and the product was extracted. An intermediate was obtained through a column chromatograph (a mixed solvent having a volume ratio of petroleum ether and ethyl acetate of 6: 1 as an eluent), and the yield was about 60%.

Figure 112015054935398-pct00067
Figure 112015054935398-pct00067

(2) 수득한 중간체와 2M의 질산염 용액을 몰비 1:4의 비율로 아세토니트릴에 용해시키고, 교반하고, 대량의 물을 넣어 침전시키고 여과한 후, 에탄올에 의한 재결정화를 진행하여 티옥산톤 옥사이드계 유도체 B-1을 얻었으며, 수율은 약 70%였다.(2) The obtained intermediate and a 2 M nitrate solution were dissolved in acetonitrile in a molar ratio of 1: 4, stirred, and precipitated by adding a large amount of water. After filtration, recrystallization with ethanol was carried out, The oxide-based derivative B-1 was obtained, and the yield was about 70%.

Figure 112015054935398-pct00068
Figure 112015054935398-pct00068

Comp-35Comp-35

EI-MS,m/z: 454.03(100.0%), 455.03(28.4%), 456.04(9.0%), 456.03(1.3%).
EI-MS, m / z: 454.03 (100.0%), 455.03 (28.4%), 456.04 (9.0%), 456.03 (1.3%).

실시예 36Example 36

티옥산톤 옥사이드계 유도체 Comp-36을 합성.Synthesis of thioxanthone oxide derivative Comp-36.

Figure 112015054935398-pct00069
Figure 112015054935398-pct00069

Comp-36Comp-36

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용한 것 외에는 실시예 35와 동일하게 티옥산톤 옥사이드계 유도체 Comp-36을 얻었다. EI-MS, m/z: 454.03(100.0%), 455.03(29.7%), 456.04(9.3%).
A thioxanthone oxide-based derivative Comp-36 was obtained in the same manner as in Example 35 except that 3-bromothioxanone was used instead of 2-bromothioxanone. EI-MS, m / z: 454.03 (100.0%), 455.03 (29.7%), 456.04 (9.3%).

실시예 37Example 37

티옥산톤 옥사이드계 유도체 Comp-37을 합성.Synthesis of thioxanthone oxide derivative Comp-37.

(1) 실시예 35와 동일하다.(1) The same as in Example 35.

(2) 수득한 중간체와 30% 과산화수소용액을 몰비 1:1의 비율로 아세트산에 용해시키고, 100℃에서 환류하고, 냉각시켜 침전을 석출하고 여과한 후, 에탄올에 의한 재결정화를 진행하여 티옥산톤 옥사이드계 유도체 Comp-37을 얻었으며, 수율은 약 90%였다.(2) The obtained intermediate and a 30% hydrogen peroxide solution were dissolved in acetic acid at a molar ratio of 1: 1, refluxed at 100 占 폚, and the precipitate was precipitated by cooling and recrystallization with ethanol was carried out, A tone-oxide derivative Comp-37 was obtained, and the yield was about 90%.

Figure 112015054935398-pct00070
Figure 112015054935398-pct00070

Comp-37Comp-37

EI-MS,m/z: 486.02(100.0%), 487.03(28.5%), 488.02(9.0%), 488.03(1.2%).
EI-MS, m / z: 486.02 (100.0%), 487.03 (28.5%), 488.02 (9.0%), 488.03 (1.2%).

실시예 38Example 38

티옥산톤 옥사이드계 유도체 Comp-38을 합성.Synthesis of thioxanthone oxide derivative Comp-38.

Figure 112015054935398-pct00071
Figure 112015054935398-pct00071

Comp-38Comp-38

2-브로모티옥산톤 대신 3-브로모티옥산톤을 이용한 것 외에는 실시예 37과 동일하게 티옥산톤 옥사이드계 유도체 Comp-38을 얻었다. EI-MS, m/z: 486.02(100.0%), 487.03 (31.7%), 488.04(9.4%).
A thioxanthone oxide-based derivative Comp-38 was obtained in the same manner as in Example 37 except that 3-bromothioxanone was used instead of 2-bromothioxanone. EI-MS, m / z: 486.02 (100.0%), 487.03 (31.7%), 488.04 (9.4%).

실시예 39Example 39

티옥산톤 옥사이드계 유도체 Comp-39를 합성.Synthesis of thioxanthone oxide derivative Comp-39.

2,7-브로모티옥산톤의 합성은 J. Org. Chem. 2002, 67, 7641-7648;J. Chem. Soc. Perkin trans. 1 1991,1355-1359를 참고한다.The synthesis of 2,7-bromothioxanone is described in J. Org. Chem. 2002, 67, 7641-7648; Chem. Soc. Perkin trans. 1, 1991, 1355-1359.

Figure 112015054935398-pct00072
는 시중에서 구매하였다.
Figure 112015054935398-pct00072
Were purchased on the market.

Figure 112015054935398-pct00073
의 합성은 Chem. Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009,19, 277-284;Adv. Funct. Mater. 2007, 17, 2432-2438을 참고한다.
Figure 112015054935398-pct00073
Lt; / RTI > Eur. J. 2004, 10, 2681-2688; Adv. Funct. Mater. 2009, 19, 277-284; Adv. Funct. Mater. 2007, 17, 2432-2438.

(1) 불활성 가스의 보호 속에서, 2,7-디브로모티옥산톤과 페닐보론산을 몰비 1: 1의 비율로 혼합하고, 0.05당량의 테트라(트리페닐포스핀)팔라듐과 5당량의 탄산칼륨을 넣은 후 혼합물을 톨루엔, 에탄올 및 물의 체적비가 4:3:2인 혼합 용매(15당량)에서 96℃에서 8시간 환류하고 생성물을 추출했다. 칼럼크로마토그래프(석유에테르와 에틸아세테이트의 체적비가 6: 1인 혼합 용매를 용리액으로 함)를 거쳐 화합물a를 얻었으며, 수율은 약 50%였다.(1) In the protection of the inert gas, 2,7-dibromothioxantone and phenylboronic acid were mixed in a molar ratio of 1: 1, and 0.05 equivalent of tetra (triphenylphosphine) palladium and 5 equivalent of carbonic acid After the potassium was added, the mixture was refluxed at 96 ° C for 8 hours in a mixed solvent (15 equivalents) having a volume ratio of toluene, ethanol and water of 4: 3: 2, and the product was extracted. Compound a was obtained through a column chromatograph (a mixed solvent having a volume ratio of petroleum ether and ethyl acetate of 6: 1 as an eluent), and the yield was about 50%.

(2) 불활성 가스의 보호 속에서, 화합물a와 화합물a의 피나콜에스테르를 몰비 1: 2.5의 비율로 혼합하고 0.05당량의 테트라(트리페닐포스핀)팔라듐과 5당량의 탄산칼륨을 넣은 후, 혼합물을 톨루엔, 에탄올 및 물의 체적비가 4:3:2인 혼합 용매(10당량)에서 96℃로 8h 환류하고 생성물을 추출했다. 칼럼크로마토그래프(석유에테르와 에틸아세테이트의 체적비가 7: 1인 혼합 용매를 용리액으로 함)를 거쳐 중간체를 얻었으며, 수율은 약 50%였다.(2) In the protection of the inert gas, the compound a and the pinacol ester of the compound a were mixed at a molar ratio of 1: 2.5, 0.05 equivalent of tetra (triphenylphosphine) palladium and 5 equivalent of potassium carbonate were added, The mixture was refluxed at 96 占 폚 for 8 hours in a mixed solvent of toluene, ethanol and water in a volume ratio of 4: 3: 2 (10 equivalents), and the product was extracted. An intermediate was obtained through a column chromatograph (a mixed solvent having a volume ratio of petroleum ether and ethyl acetate of 7: 1 as an eluent), and the yield was about 50%.

Figure 112015054935398-pct00074
Figure 112015054935398-pct00074

(3) 수득한 중간체와 2M의 질산염 용액을 몰비 1:4의 비율로 아세토니트릴에 용해시키고, 교반하고, 대량의 물을 넣어 침전시키고 여과한 후, 에탄올에 의한 재결정화를 진행하여 티옥산톤 옥사이드계 유도체 Comp-39를 얻었으며, 수율은 약 70%였다.(3) The obtained intermediate and a 2 M nitrate solution were dissolved in acetonitrile in a molar ratio of 1: 4, stirred, and precipitated by adding a large amount of water. After filtration, recrystallization with ethanol was carried out, The oxide-based derivative Comp-39 was obtained, and the yield was about 70%.

Figure 112015054935398-pct00075
Figure 112015054935398-pct00075

Comp-39Comp-39

EI-MS,m/z: 606.10(100.0%), 607.11(43.0%), 608.11(9.9%).
EI-MS, m / z: 606.10 (100.0%), 607.11 (43.0%), 608.11 (9.9%).

실시예 40Example 40

티옥산톤 옥사이드계 유도체 Comp-40을 합성.Synthesis of thioxanthone oxide derivative Comp-40.

Figure 112015054935398-pct00076
Figure 112015054935398-pct00076

Comp-40Comp-40

페닐보론산 대신 9,9-디메틸플루오렌-2-보론산을 이용한 것 외에는 실시예 39와 동일하게 티옥산톤 옥사이드계 유도체 Comp-40을 얻었다. EI-MS, m/z: 838.22(100.0%), 839.22(65.3%), 840.23(21.2%).
Boronic acid Comp-40 was obtained in the same manner as in Example 39 except that 9,9-dimethylfluorene-2-boronic acid was used instead of phenylboronic acid. EI-MS, m / z: 838.22 (100.0%), 839.22 (65.3%), 840.23 (21.2%).

실시예 41Example 41

티옥산톤 옥사이드계 유도체 Comp-41을 합성.Synthesis of thioxanthone oxide derivative Comp-41.

Figure 112015054935398-pct00077
Figure 112015054935398-pct00077

Comp-41Comp-41

페닐보론산 대신 디벤조퓨란-3-보론산을 이용한 것 외에는 실시예 39와 동일하게 티옥산톤 옥사이드계 유도체 Comp-41을 얻었다. EI-MS, m/z: 786.12(100.0%), 787.13(57.9%), 788.13(16.8%).
A thioxanthone oxide-based derivative Comp-41 was obtained in the same manner as in Example 39 except that dibenzofuran-3-boronic acid was used instead of phenylboronic acid. EI-MS, m / z: 786.12 (100.0%), 787.13 (57.9%), 788.13 (16.8%).

실시예 42Example 42

티옥산톤 옥사이드계 유도체 Comp-42를 합성.Synthesis of thioxanthone oxide derivative Comp-42.

Figure 112015054935398-pct00078
Figure 112015054935398-pct00078

Comp-42Comp-42

페닐보론산 대신 4-(디페닐아미노)페닐보론산을 이용한 것 외에는 실시예 39와 동일하게 티옥산톤 옥사이드계 유도체 Comp-42를 얻었다. EI-MS, m/z: 940.24(100.0%), 941.24(67.7%), 942.25(28.7%).
A thioxanthone oxide-based derivative Comp-42 was obtained in the same manner as in Example 39 except that 4- (diphenylamino) phenylboronic acid was used in place of phenylboronic acid. EI-MS, m / z: 940.24 (100.0%), 941.24 (67.7%), 942.25 (28.7%).

실시예 43Example 43

티옥산톤 옥사이드계 유도체 Comp-43을 합성.Synthesis of thioxanthone oxide derivative Comp-43.

(1) 실시예 39와 동일하며;(1) Same as Example 39;

(2) 실시예 39와 동일하며;(2) Same as Example 39;

(3) 수득한 중간체와 30%과산화수소용액을 몰비 1:1의 비율로 아세트산에 용해시키고, 100℃에서 환류하고, 냉각시켜 침전을 석출하고, 여과한 후 에탄올에 의한 재결정화를 진행하여 티옥산톤 옥사이드계 유도체 Comp-43을 얻었으며, 수율은 약 90%였다.(3) The obtained intermediate and a 30% hydrogen peroxide solution were dissolved in acetic acid in a molar ratio of 1: 1, refluxed at 100 占 폚, and the precipitate was precipitated by cooling. After filtration, recrystallization with ethanol was carried out, A tone-oxide derivative Comp-43 was obtained, and the yield was about 90%.

Figure 112015054935398-pct00079
Figure 112015054935398-pct00079

Comp-43Comp-43

EI-MS,m/z: 638.10(100.0%), 639.10(43.1%), 640.11(10.2%).
EI-MS, m / z: 638.10 (100.0%), 639.10 (43.1%), 640.11 (10.2%).

실시예 44Example 44

티옥산톤 옥사이드계 유도체 Comp-44를 합성.Synthesis of thioxanthone oxide derivative Comp-44.

Figure 112015054935398-pct00080
Figure 112015054935398-pct00080

Comp-44Comp-44

페닐보론산 대신 9,9-디메틸플루오렌-2-보론산을 이용한 것 외에는 실시예 43과 동일하게 티옥산톤 옥사이드계 유도체 Comp-44를 얻었다. EI-MS, m/z: 870.21(100.0%), 871.21(62.6%), 872.22(19.3%).Boronic acid Comp-44 was obtained in the same manner as in Example 43 except that 9,9-dimethylfluorene-2-boronic acid was used instead of phenylboronic acid. EI-MS, m / z: 870.21 (100.0%), 871.21 (62.6%), 872.22 (19.3%).

실시예 45Example 45

티옥산톤 옥사이드계 유도체 Comp-45를 합성.Synthesis of thioxanthone oxide derivative Comp-45.

Figure 112015054935398-pct00081
Figure 112015054935398-pct00081

Comp-45Comp-45

페닐보론산 대신 디벤조퓨란-3-보론산을 이용한 것 외에는 실시예 43과 동일하게 티옥산톤 옥사이드계 유도체 Comp-45를 얻었다. EI-MS, m/z: 818.11(100.0%), 819.12(56.4%), 820.11(17.0%).
-3-boronic acid was used in place of phenylboronic acid, a thioxanthone oxide-based derivative Comp-45 was obtained in the same manner as in Example 43. EI-MS, m / z: 818.11 (100.0%), 819.12 (56.4%), 820.11 (17.0%).

실시예 46Example 46

티옥산톤 옥사이드계 유도체 Comp-46을 합성.Synthesis of thioxanthone oxide derivative Comp-46.

Figure 112015054935398-pct00082
Figure 112015054935398-pct00082

Comp-46Comp-46

페닐보론산 대신 N-페닐카르바졸-4’-보론산을 이용한 것 외에는 실시예 43과 동일하게 티옥산톤 옥사이드계 유도체 Comp-46을 얻었다. EI-MS, m/z: 968.20(100.0%), 969.20(69.6%), 970.21(24.5%).
A thioxanthone oxide-based derivative Comp-46 was obtained in the same manner as in Example 43 except that N-phenylcarbazole-4'-boronic acid was used in place of phenylboronic acid. EI-MS, m / z: 968.20 (100.0%), 969.20 (69.6%), 970.21 (24.5%).

실시예 47Example 47

실시예 1에서 수득한 유도체 Comp-1을 이용하여 유기 전계 발광 디바이스를 제조.An organic electroluminescent device was manufactured using the derivative Comp-1 obtained in Example 1.

ITO 투명 도전층이 코팅된 유리 기판을 통상 사용되는 세척제 속에서 초음파 처리를 하고 탈이온수 속에서 린싱하고, 아세톤:에탄올 혼합 용매 속에서 초음파에 의한 오일 제거를 한 후, 깨끗한 환경에서 수분이 완전히 제거되도록 베이킹하였다. 자외선 클리너를 이용하여 10분간 조사하고 저에너지 양이온빔을 이용하여 표면을 충격했다.The glass substrate coated with the ITO transparent conductive layer is ultrasonicated in a conventional cleaning agent, rinsed in deionized water, removed with ultrasonic waves in an acetone: ethanol mixed solvent, and completely removed in a clean environment . And the surface was irradiated with a low energy ion beam for 10 minutes using an ultraviolet ray cleaner.

상기 애노드를 구비한 유리 기판을 진공 챔버에 넣고, 1×10-5~9×10-3Pa가 되도록 진공 처리를 한 후 상기 애노드층 필름에 먼저 15nm의 CuPc를 증착하고, 계속하여 NPB를 증착하여 정공 수송층으로 하되, 증착 속도를 0.1nm/s로 제어하고 증착 필름 두께를 75nm로 제어했다.The glass substrate having the anode was placed in a vacuum chamber, and vacuum treatment was performed so as to have a pressure of 1 × 10 -5 to 9 × 10 -3 Pa. Then, 15 nm of CuPc was first deposited on the anode layer film, followed by deposition of NPB To control the deposition rate to 0.1 nm / s and control the deposition film thickness to 75 nm.

정공 수송층의 상부에 계속하여 Comp-1가 도핑된 한 층의 Ir(ppy)3을 증착하여 디바이스의 유기 발광층으로 하되, Comp-1과 Ir(ppy)3의 증착 속도비는 1:100로 하고, Comp-1에서의 Ir(ppy)3의 도핑 농도는 7wt%로 하였으며, 그 증착 전체 속도는 0.1nm/s로 하고, 증착 필림의 전체 두께는 30nm로 하였다.One layer of Ir (ppy) 3 doped with Comp-1 was deposited on top of the hole transport layer to form an organic light emitting layer of the device. The deposition rate ratio of Comp-1 and Ir (ppy) 3 was 1: 100 , The doping concentration of Ir (ppy) 3 in Comp-1 was 7 wt%, the total deposition rate was 0.1 nm / s, and the total thickness of the deposited film was 30 nm.

계속하여 한 층의 TPBI를 디바이스의 전자 수송층으로서 증착하되, 그 증착 속도는 0.1nm/s, 증착 필림의 전체 두께는 35nm로 하였다.Subsequently, one layer of TPBI was deposited as an electron transport layer of the device, with a deposition rate of 0.1 nm / s and a total thickness of the deposited film of 35 nm.

마지막으로, 상기 전자 수송층의 상부에 차례로 LiF층과 Mg:Ag 합금층을 디바이스의 캐소드층으로 증착하되, 그중 LiF층의 두께는 0.5nm, Mg: Ag 합금층의 증착 속도는 2.0~3.0nm/s, 두께는 100nm로 하였다.Finally, a LiF layer and a Mg: Ag alloy layer were sequentially deposited on the electron transport layer as a cathode layer of the device. The LiF layer had a thickness of 0.5 nm and the Mg: Ag alloy layer had a deposition rate of 2.0 to 3.0 nm / s and a thickness of 100 nm.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 7wt% Ir(ppy)3 Comp-1(30nm)/ TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)(30 nm) / TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.27, Y=0.63);Chromaticity coordinates: (X = 0.27, Y = 0.63);

턴온 전압: 3.5V;Turn-on voltage: 3.5V;

최대 휘도: 11786 cd/㎡ (8.2V);Maximum luminance: 11786 cd / m < 2 >(8.2V);

발광 효율: 14.63cd/A.
Luminous efficiency: 14.63 cd / A.

실시예 48Example 48

실시예 3에서 수득한 유도체 Comp-3을 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-3 obtained in Example 3 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-3을 이용한 것 외에는 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.An organic EL device was manufactured according to the same steps as in Example 47 except that Comp-3 was used instead of Comp-1, and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 7wt% Ir(ppy)3:Comp-3 (30nm)/TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)(30 nm) / TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.28, Y=0.63);Chromaticity coordinates: (X = 0.28, Y = 0.63);

턴온 전압: 3.2V;Turn-on voltage: 3.2V;

최대 휘도: 11845 cd/m2 (9.5V);Maximum luminance: 11845 cd / m 2 (9.5V);

발광 효율: 14.91cd/A.
Luminous efficiency: 14.91 cd / A.

실시예 49Example 49

실시예 5에서 수득한 유도체 Comp-5를 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-5 obtained in Example 5 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-5를 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-5 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-5(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-5 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.15, Y=0.35);Chromaticity coordinates: (X = 0.15, Y = 0.35);

턴온 전압: 3.7V;Turn-on voltage: 3.7V;

최대 휘도: 9995 cd/m2 (9.1V);Maximum luminance: 9995 cd / m 2 (9.1V);

발광 효율: 21.47cd/A.
Luminous efficiency: 21.47 cd / A.

실시예 50Example 50

실시예 6에서 수득한 유도체 Comp-6을 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-6 obtained in Example 6 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-6을 이용하고 Ir(ppy)3 대신 Ir(piq)3을 이용한 것 외에는 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-6 was used instead of Comp-1 and Ir (piq) 3 was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 5wt% Ir(piq)3:Comp-6(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 5 wt% Ir (piq) 3:

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.66, Y=0.33);Chromaticity coordinates: (X = 0.66, Y = 0.33);

턴온 전압: 4.2V;Turn-on voltage: 4.2V;

최대 휘도: 8720 cd/㎡ (10.2V);Maximum luminance: 8720 cd / m < 2 >(10.2V);

발광 효율: 28.39 cd/A.
Luminous efficiency: 28.39 cd / A.

실시예 51Example 51

실시예 7에서 수득한 유도체 Comp-7을 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-7 obtained in Example 7 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-7을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-7 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-7(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-7 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.14, Y=0.33);Chromaticity coordinates: (X = 0.14, Y = 0.33);

턴온 전압: 3.5V;Turn-on voltage: 3.5V;

최대 휘도: 8776 cd/㎡(8.8V);Maximum luminance: 8776 cd / m < 2 > (8.8 V);

발광 효율: 19.82cd/A.
Luminous efficiency: 19.82 cd / A.

실시예 52Example 52

실시예 8에서 수득한 유도체 Comp-8을 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-8 obtained in Example 8 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-8을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-8 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-8(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-8 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.15, Y=0.34);Chromaticity coordinates: (X = 0.15, Y = 0.34);

턴온 전압: 3.7V;Turn-on voltage: 3.7V;

최대 휘도: 8835 cd/㎡(9.4V);Maximum luminance: 8835 cd / m < 2 >(9.4V);

발광 효율: 15.43cd/A.
Luminous efficiency: 15.43 cd / A.

실시예 53Example 53

실시예 10에서 수득한 유도체 Comp-10을 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-10 obtained in Example 10 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-10을 이용하여, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.An organic EL device was manufactured according to the same steps as in Example 47 using Comp-10 instead of Comp-1, and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/ NPB(75nm)/ 7wt%Ir(ppy)3:Comp-10(30nm)/ TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)10: 1 100 nm). The device structure was as follows: ITO / CuPc (15 nm) / NPB (75 nm) / 7 wt% Ir (ppy) 3: Comp-10 30 nm / TPBI 35 nm / LiF 0.5 nm /

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.28, Y=0.64);Chromaticity coordinates: (X = 0.28, Y = 0.64);

턴온 전압: 3.1V;Turn-on voltage: 3.1V;

최대 휘도: 12642 cd/㎡(9.6V);Maximum luminance: 12642 cd / m < 2 >(9.6V);

발광 효율: 25.69cd/A.
Luminous efficiency: 25.69 cd / A.

실시예 54Example 54

실시예 12에서 수득한 유도체 Comp-12를 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-12 obtained in Example 12 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-12를 이용하여, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Using Comp-12 instead of Comp-1, the organic EL device was manufactured according to the same steps as in Example 47 and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 7wt% Ir(ppy)3:Comp-12(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 7 wt% Ir (ppy) 3:

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.27, Y=0.65);Chromaticity coordinates: (X = 0.27, Y = 0.65);

턴온 전압: 4.4V;Turn-on voltage: 4.4V;

최대 휘도: 10578 cd/㎡(8.8V);Maximum luminance: 10578 cd / m < 2 >(8.8V);

발광 효율: 16.83cd/A.
Luminous efficiency: 16.83 cd / A.

실시예 55Example 55

실시예 14에서 수득한 유도체 Comp-14를 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-14 obtained in Example 14 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-14를 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-14 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-14(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-14 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.15, Y=0.37);Chromaticity coordinates: (X = 0.15, Y = 0.37);

턴온 전압: 3.7V;Turn-on voltage: 3.7V;

최대 휘도: 11465 cd/㎡(8.7V);Maximum luminance: 11465 cd / m < 2 >(8.7V);

발광 효율: 26.83cd/A.
Luminous efficiency: 26.83 cd / A.

실시예 56Example 56

실시예 16에서 수득한 유도체 Comp-16을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-16 obtained in Example 16 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-16을 이용하고 Ir(ppy)3 대신 Ir(piq)3을 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-16 was used instead of Comp-1 and Ir (piq) 3 was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 5wt% Ir(piq)3:Comp-16(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 5 wt% Ir (piq) 3:

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.66, Y=0.32);Chromaticity coordinates: (X = 0.66, Y = 0.32);

턴온 전압: 4.5V;Turn-on voltage: 4.5V;

최대 휘도: 8733 cd/㎡(9.3V);Maximum luminance: 8733 cd / m < 2 >(9.3V);

발광 효율: 27.23cd/A.
Luminous efficiency: 27.23 cd / A.

실시예 57Example 57

실시예 18에서 수득한 유도체 Comp-18을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-18 obtained in Example 18 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-18을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-18 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-18(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-18 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.15, Y=0.33);Chromaticity coordinates: (X = 0.15, Y = 0.33);

턴온 전압: 3.5V;Turn-on voltage: 3.5V;

최대 휘도: 8671 cd/㎡(8.7V);Maximum luminance: 8671 cd / m < 2 >(8.7V);

발광 효율: 16.37cd/A.
Luminous efficiency: 16.37 cd / A.

실시예 58Example 58

실시예 19에서 수득한 유도체 Comp-19를 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-19 obtained in Example 19 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-19를 이용하여, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.An organic EL device was manufactured according to the same steps as in Example 47 using Comp-19 instead of Comp-1, and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 7wt% Ir(ppy)3:Comp-19(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 7 wt% Ir (ppy) 3:

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.27, Y=0.64);Chromaticity coordinates: (X = 0.27, Y = 0.64);

턴온 전압: 3.4V;Turn-on voltage: 3.4V;

최대 휘도: 12575 cd/㎡(8.3V);Maximum luminance: 12575 cd / m < 2 >(8.3V);

발광 효율: 23.88cd/A.
Luminous efficiency: 23.88 cd / A.

실시예 59Example 59

실시예 23에서 수득한 유도체 Comp-23을 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-23 obtained in Example 23 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-23을 이용하고 Ir(ppy)3 대신 FIrpic 를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-23 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-23(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-23

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.13, Y=0.30);Chromaticity coordinates: (X = 0.13, Y = 0.30);

턴온 전압: 3.9V;Turn-on voltage: 3.9V;

최대 휘도: 8327 cd/㎡(9.3V);Maximum luminance: 8327 cd / m < 2 >(9.3V);

발광 효율: 17.73cd/A.
Luminous efficiency: 17.73 cd / A.

실시예 60Example 60

실시예 24에서 수득한 유도체 Comp-24를 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-24 obtained in Example 24 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-24를 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-24 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-24(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-24 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.15, Y=0.34);Chromaticity coordinates: (X = 0.15, Y = 0.34);

턴온 전압: 4.1V;Turn-on voltage: 4.1V;

최대 휘도: 8548 cd/㎡(9.9V);Maximum luminance: 8548 cd / m < 2 >(9.9V);

발광 효율: 16.53cd/A.
Luminous efficiency: 16.53 cd / A.

실시예 61Example 61

실시예 26에서 수득한 유도체 Comp-26을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-26 obtained in Example 26 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-26을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-26 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-26(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-26 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.14, Y=0.32);Chromaticity coordinates: (X = 0.14, Y = 0.32);

턴온 전압: 3.0V;Turn-on voltage: 3.0V;

최대 휘도: 9376 cd/㎡(8.1V);Maximum luminance: 9376 cd / m < 2 > (8.1 V);

발광 효율: 28.01cd/A.
Luminous efficiency: 28.01 cd / A.

실시예 62Example 62

실시예 28에서 수득한 유도체 Comp-28을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-28 obtained in Example 28 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-28을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-28 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3, and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-28(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-28 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다.The performance indicators of the device were as follows.

색도 좌표: (X=0.14, Y=0.29);Chromaticity coordinates: (X = 0.14, Y = 0.29);

턴온 전압: 3.8V;Turn-on voltage: 3.8V;

최대 휘도: 8970 cd/㎡(10.3V);Maximum luminance: 8970 cd / m < 2 >(10.3V);

발광 효율: 17.84cd/A.
Luminous efficiency: 17.84 cd / A.

실시예 63Example 63

실시예 31에서 수득한 유도체 Comp-31을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-31 obtained in Example 31 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-31을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-31 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-31(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-31 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.14, Y=0.29);Chromaticity coordinates: (X = 0.14, Y = 0.29);

턴온 전압: 3.8V;Turn-on voltage: 3.8V;

최대 휘도: 8970 cd/㎡(10.3V);Maximum luminance: 8970 cd / m < 2 >(10.3V);

발광 효율: 17.84cd/A.
Luminous efficiency: 17.84 cd / A.

실시예 64Example 64

실시예 33에서 수득한 유도체 Comp-33을 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-33 obtained in Example 33 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-33을 이용하고 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.An organic EL device was manufactured according to the same steps as in Example 47 using Comp-33 instead of Comp-1, and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 7wt% Ir(ppy)3: Comp-33 (30nm)/TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 ,100nm)The device structure is as follows: Device: ITO / CuPc (15 nm) / NPB (75 nm) / 7 wt% Ir (ppy) 3: Comp-33 30 nm / TPBI 35 nm / LiF 0.5 nm / )

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.13, Y=0.25);Chromaticity coordinates: (X = 0.13, Y = 0.25);

턴온 전압: 3.5V;Turn-on voltage: 3.5V;

최대 휘도: 10970 cd/㎡(11.3V);Maximum luminance: 10970 cd / m < 2 >(11.3V);

발광 효율: 19.27cd/A.Luminous efficiency: 19.27 cd / A.

실시예 65Example 65

실시예 34에서 수득한 유도체 Comp-34를 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-34 obtained in Example 34 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-34를 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-34 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic:Comp-34(30nm)/Device configuration: ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-34 (30 nm) /

TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 100nm)TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.14, Y=0.33);Chromaticity coordinates: (X = 0.14, Y = 0.33);

턴온 전압: 3.1V;Turn-on voltage: 3.1V;

최대 휘도: 9545 cd/㎡(9.4V);Maximum luminance: 9545 cd / m < 2 >(9.4V);

발광 효율: 26.32cd/A.
Luminous efficiency: 26.32 cd / A.

실시예 66Example 66

실시예 35에서 수득한 유도체 Comp-35를 선택하여 유기 전계 발광 디바이스를 제조.And the derivative Comp-35 obtained in Example 35 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-35를 이용하여, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Using Comp-35 instead of Comp-1, the organic EL device was manufactured according to the same steps as in Example 47, and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 7wt% Ir(ppy)3: Comp-35 (30nm) /TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 ,100nm)The composition of the device is as follows: ITO / CuPc (15 nm) / NPB (75 nm) / 7 wt% Ir (ppy) 3: Comp-35 30 nm / TPBI 35 nm / LiF 0.5 nm / )

디바이스의 성능 지표는 아래와 같았다.. The performance indicators of the device were as follows.

색도 좌표: (X=0.28, Y=0.66);Chromaticity coordinates: (X = 0.28, Y = 0.66);

턴온 전압: 4.5V;Turn-on voltage: 4.5V;

최대 휘도: 8378 cd/㎡(11.9V);Maximum luminance: 8378 cd / m < 2 >(11.9V);

발광 효율: 19.22cd/A.
Luminous efficiency: 19.22 cd / A.

실시예 67Example 67

실시예 36에서 수득한 유도체 Comp-36을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-36 obtained in Example 36 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-36을 이용하여, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.An organic EL device was manufactured according to the same steps as in Example 47 using Comp-36 instead of Comp-1, and the performance of the device was tested.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 7wt% Ir(ppy)3: Comp-36 (30nm) /TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 ,100nm)The device configuration is as follows: Device: ITO / CuPc (15 nm) / NPB (75 nm) / 7 wt% Ir (ppy) 3: Comp-36 30 nm / TPBI 35 nm / LiF 0.5 nm / )

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.27, Y=0.64);Chromaticity coordinates: (X = 0.27, Y = 0.64);

턴온 전압: 5.5V;Turn-on voltage: 5.5V;

최대 휘도: 9378 cd/㎡(10.3V);Maximum luminance: 9378 cd / m < 2 >(10.3V);

발광 효율: 17.31cd/A.
Luminous efficiency: 17.31 cd / A.

실시예 68Example 68

실시예 38에서 수득한 유도체 Comp-38을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-38 obtained in Example 38 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-38을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-38 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic: C-1 (30nm)/TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 ,100nm)(30 nm) / TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1, 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.14, Y=0.28);Chromaticity coordinates: (X = 0.14, Y = 0.28);

턴온 전압: 5.5V;Turn-on voltage: 5.5V;

최대 휘도: 7970 cd/㎡(9.4V);Maximum luminance: 7970 cd / m < 2 >(9.4V);

발광 효율: 15.47cd/A.
Luminous efficiency: 15.47 cd / A.

실시예 69Example 69

실시예 40에서 수득한 유도체 Comp-40을 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-40 obtained in Example 40 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-40을 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-40 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic: Comp-40 (30nm) /TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 ,100nm)Comprised of ITO / CuPc (15 nm) / NPB (75 nm) / 8 wt% FIrpic: Comp-40 (30 nm) / TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10:

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.15, Y=0.37);Chromaticity coordinates: (X = 0.15, Y = 0.37);

턴온 전압: 3.7V;Turn-on voltage: 3.7V;

최대 휘도: 11465 cd/㎡(8.7V);Maximum luminance: 11465 cd / m < 2 >(8.7V);

발광 효율: 26.83cd/A.
Luminous efficiency: 26.83 cd / A.

실시예 70Example 70

실시예 44에서 수득한 유도체 Comp-44를 선택하여 유기 전계 발광 디바이스를 제조.The derivative Comp-44 obtained in Example 44 was selected to manufacture an organic electroluminescent device.

Comp-1 대신 Comp-44를 이용하고 Ir(ppy)3 대신 FIrpic를 이용한 것 외에는, 실시예 47과 같은 단계에 따라 유기EL디바이스를 제조하고 디바이스의 성능을 시험했다.Organic EL devices were manufactured according to the same steps as in Example 47 except that Comp-44 was used instead of Comp-1 and FIrpic was used instead of Ir (ppy) 3.

디바이스 구성: ITO/CuPc(15nm)/NPB(75nm)/ 8wt% FIrpic: Comp-44 (30nm) /TPBI (35nm)/LiF(0.5nm)/Mg:Ag(10:1 ,100nm)(30 nm) / TPBI (35 nm) / LiF (0.5 nm) / Mg: Ag (10: 1, 100 nm)

디바이스의 성능 지표는 아래와 같았다. The performance indicators of the device were as follows.

색도 좌표: (X=0.13, Y=0.33);Chromaticity coordinates: (X = 0.13, Y = 0.33);

턴온 전압: 3.5V;Turn-on voltage: 3.5V;

최대 휘도: 10330 cd/㎡(8.7V);Maximum luminance: 10330 cd / m < 2 >(8.7V);

발광 효율: 23.79cd/A.본 발명의 상기 실시예는 단지 본 발명을 명료하게 설명하기 위한 예시일 뿐, 본 발명의 실시형태를 한정하는 것이 아님이 명확하다. 본 분야의 기술자는, 상기 설명을 토대로 다양한 형태의 기타 변화 또는 변동을 할 수 있다. 여기서 모든 실시형태를 열거할 수 없다. 본 발명으로부터 유도되는 자명한 변화 또는 변동은 여전히 본 발명의 보호 범위에 속한다.Luminous efficiency: 23.79 cd / A It should be clear that the above-described embodiment of the present invention is merely an example for clarifying the present invention only and does not limit the embodiment of the present invention. Those skilled in the art can make various other changes or variations based on the above description. All embodiments can not be listed here. Obvious changes or variations derived from the present invention are still within the scope of protection of the present invention.

Claims (12)

하기 일반식 (1) 또는 (2)의 티옥산톤 옥사이드계 유도체.
Figure 112017078366293-pct00114
Figure 112017078366293-pct00115

[상기 식중, R1, R2, R3, R4, R5, R6, R7, R8은 각각
수소원자;
(올토-, 메타-, 또는 파라-)C1-3알킬페닐아미노, (올토-, 메타-, 또는 파라-)C1-3알콕시페닐아미노, (올토-, 메타-, 또는 파라-)할로페닐아미노(할로는 Cl, Br 또는 I를 의미함), 디(올토-, 메타-, 또는 파라-)C1-3알킬페닐)아미노, 디(올토-, 메타-, 또는 파라-)C1-3알콕시페닐)아미노 및 디(올토-, 메타-, 또는 파라-)할로페닐)아미노(할로는 Cl, Br 또는 I를 의미함)로 이루어진 군에서 선택되는 탄소수 6~30의 아릴아민기;
페닐, 디페닐, 트리페닐, 나프타세닐, 피레닐, 플루오레닐, 스피로플루오레닐기, (올토-, 메타-, 또는 파라-)톨릴, 크실릴, (올토-, 메타-, 또는 파라-)큐밀, 트리메틸페닐, 9,9'-디메틸플루오레닐 및 9,9'-스피로디플루오레닐기로 이루어진 군에서 선택되는 탄소수 6~30의 아릴기;
1-피롤릴, 2-피롤릴, 3-피롤릴, 1-피리딜, 2-피리딜, 3-피리딜, 4-피리딜, 1-인돌릴, 2-인돌릴, 3-인돌릴, 4-인돌릴, 5-인돌릴, 6-인돌릴, 7-인돌릴, 1-이소인돌릴, 2-이소인돌릴, 3-이소인돌릴, 4-이소인돌릴, 5-이소인돌릴, 6-이소인돌릴, 7-이소인돌릴, 2-푸라닐, 3-푸라닐, 2-벤조푸라닐, 3-벤조푸라닐, 4-벤조푸라닐, 5-벤조푸라닐, 6-벤조푸라닐, 7-벤조푸라닐, 디벤조푸란-2-일, 1-이소벤조푸라닐, 3-이소벤조푸라닐, 4-이소벤조푸라닐, 5-이소벤조푸라닐, 6-이소벤조푸라닐, 7-이소벤조푸라닐, 2-퀴놀릴, 3-퀴놀릴, 4-퀴놀릴, 5-퀴놀릴, 6-퀴놀릴, 7-퀴놀릴, 8-퀴놀릴, 1-이소퀴놀릴, 3-이소퀴놀릴, 4-이소퀴놀릴, 5-이소퀴놀릴, 6-이소퀴놀릴, 7-이소퀴놀릴, 8-이소퀴놀릴, 2-퀴녹사리닐릴, 5-퀴녹사리닐, 6-퀴녹사리닐, 1-카르바졸릴, 2-카르바졸릴, 3-카르바졸릴, 4-카르바졸릴, 9-카르바졸릴, 1-페난트리디닐, 2-페난트리디닐, 3-페난트리디닐, 4-페난트리디닐, 6-페난트리디닐, 7-페난트리디닐, 8-페난트리디닐, 9-페난트리디닐, 10-페난트리디닐, 1-아크리디닐, 2-아크리디닐, 3-아크리디닐, 4-아크리디닐, 9-아크리디닐, 1,7-페난트롤린-2-일, 1,7-페난트롤린-3-일, 1,7-페난트롤린-4-일, 1,7-페난트롤린-5-일, 1,7-페난트롤린-6-일, 1,7-페난트롤린-8-일, 1,7-페난트롤린-9-일, 1,7-페난트롤린-10-일, 1,8-페난트롤린-2-일, 1,8-페난트롤린-3-일, 1,8-페난트롤린-4-일, 1,8-페난트롤린-5-일, 1,8-페난트롤린-6-일, 1,8-페난트롤린-7-일, 1,8-페난트롤린-9-일, 1,8-페난트롤린-10-일, 1,9-페난트롤린-2-일, 1,9-페난트롤린-3-일, 1,9-페난트롤린-4-일, 1,9-페난트롤린-5-일, 1,9-페난트롤린-6-일, 1,9-페난트롤린-7-일, 1,9-페난트롤린-8-일, 1,9-페난트롤린-10-일, 1,10-페난트롤린-2-일, 1,10-페난트롤린-3-일, 1,10-페난트롤린-4-일, 1,10-페난트롤린-5-일, 2,9-페난트롤린-1-일, 2,9-페난트롤린-3-일, 2,9-페난트롤린-4-일, 2,9-페난트롤린-5-일, 2,9-페난트롤린-6-일, 2,9-페난트롤린-7-일, 2,9-페난트롤린-8-일, 2,9-페난트롤린-10-일, 2,8-페난트롤린-1-일, 2,8-페난트롤린-3-일, 2,8-페난트롤린-4-일, 2,8-페난트롤린-5-일, 2,8-페난트롤린-6-일, 2,8-페난트롤린-7-일, 2,8-페난트롤린-9-일, 2,8-페난트롤린-10-일, 2,7-페난트롤린-1-일, 2,7-페난트롤린-3-일, 2,7-페난트롤린-4-일, 2,7-페난트롤린-5-일, 2,7-페난트롤린-6-일, 2,7-페난트롤린-8-일, 2,7-페난트롤린-9-일, 2,7-페난트롤린-10-일, 1-페나지닐, 2-페나지닐, 1-페노티아지닐, 2-페노티아지닐, 3-페노티아지닐, 4-페노티아지닐, 10-페노티아지닐, 1-페녹사지닐, 2-페녹사지닐, 3-페녹사지닐, 4-페녹사지닐, 10-페녹사지닐, 2-옥사졸릴, 4-옥사졸릴, 5-옥사졸릴, 2-옥사디졸릴, 5-옥사디졸릴, 3-푸라자닐, 2-티에닐, 3-티에닐, 디벤조티오펜-2-일, 2-메틸피리딘-1-일, 2-메틸피롤-3-일, 2-메틸피롤-4-일, 2-메틸피롤-5-일, 3-메틸피롤-1-일, 3-메틸피롤-2-일, 3-메틸피롤-4-일, 3-메틸피롤-5-일, 2-(t-부틸)피롤-4-일, 3-(2-페닐프로필)피롤-1-일, 2-메틸-1-인돌릴, 4-메틸-1-인돌릴, 2-메틸-3-인돌릴, 4-메틸-3-인돌릴, 2-(t-부틸)-1-인돌릴, 4-(t-부틸)-1-인돌릴, 2-(t-부틸)-3-인돌릴 및 4-(t-부틸)-3-인돌릴로 이루어진 군에서 선택되는 탄소수 5~50의 헤테로아릴기를 나타내며,
L은 하기 식
Figure 112017078366293-pct00116

으로부터 선택된 1종이다.]
A thioxanthone oxide derivative represented by the following general formula (1) or (2).
Figure 112017078366293-pct00114
Figure 112017078366293-pct00115

Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are
A hydrogen atom;
(Ortho, meta- or para-) C 1-3 alkylphenylamino, (ortho-, meta- or para-) C 1-3 alkoxyphenylamino, phenylamino (halo is Cl, Br or I meaning a), di (olto, meta-, or para -) C 1-3 alkyl) amino, di (olto, meta-, or para -) C 1 -3 alkoxyphenyl) amino and di (olto, meta-, or para-) halophenyl) amino (optionally substituted by halo is Cl, Br or I means a) having a carbon number of 6 to 30 arylamine group is selected from the group consisting of;
(Ortho, meta-, or para-) tolyl, xylyl, (ortho-, meta- or para-) phenyl, diphenyl, triphenyl, naphthacenyl, pyrenyl, fluorenyl, spirofluorenyl group, An aryl group having 6 to 30 carbon atoms selected from the group consisting of cumyl, trimethylphenyl, 9,9'-dimethylfluorenyl, and 9,9'-spirodifluorenyl group;
Pyridyl, 4-pyridyl, 1-indolyl, 2-indolyl, 3-indolyl, 2-pyrrolyl, Isoindolinyl, 4-indolyl, 5-indolyl, 5-indolyl, 6-indolyl, 7-indolyl, 1-isoindolyl, Benzofuranyl, 5-benzofuranyl, 6-benzofuranyl, 4-benzofuranyl, 4-benzofuranyl, 2-yl, 1-isobenzofuranyl, 3-isobenzofuranyl, 4-isobenzofuranyl, 5-isobenzofuranyl, 6-isobenzofuranyl , 7-isobenzofuranyl, 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, 6-quinoxalinyl, 5-quinoxalinyl, 5-quinoxalinyl, 6-quinoxalinyl, 8-isoquinolyl, Oxalyl, 1-carbazolyl, 2-carbazolyl, 3-carbazolyl, 4-carbazolyl, 9- And examples thereof include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, isobutyl, isobutyl, isobutyl, Acridinyl, 9-acridinyl, 1, 7-phenanthroline-2-yl, 1, 2-acridinyl, 4-yl, 1,7-phenanthroline-5-yl, 1,7-phenanthroline-6-yl, 1,7-phenanthroline- Yl, 1,7-phenanthroline-10-yl, 1,8-phenanthroline-2-yl, 1,8-phenanthrol Yl, 1,8-phenanthroline-6-yl, 1,8-phenanthroline-4-yl, 7-yl, 1,8-phenanthroline-9-yl, 1,8-phenanthroline-10-yl, 1,9-phenanthroline- Yl, 1,9-phenanthroline-6-yl, 1,9-phenanthroline-7-yl, 1,9-phenanthroline-8-yl, 1,9-phenanthroline-10-yl, 1,10-phenanthroline- 3-yl, 1,10-phenanthroline-4-yl, 1,10-phenanthroline-5-yl, 2,9-phenanthroline- 2,9-phenanthroline-6-yl, 2,9-phenanthroline-7-yl, , 2,9-phenanthroline-8-yl, 2,9-phenanthroline-10-yl, 2,8-phenanthroline- , 2,8-phenanthroline-6-yl, 2,8-phenanthroline-7-yl, 2,8-phenanthroline- 2,7-phenanthroline-1-yl, 2,7-phenanthroline-3-yl, 2,7-phenanthroline- 5-yl, 2,7-phenanthroline-6-yl, 2,7-phenanthroline-8-yl, 2,7-phenanthroline 2-phenothiazinyl, 2-phenothiazinyl, 3-phenothiazinyl, 4-phenothiazinyl, Phenoxazinyl, 10-phenoxazinyl, 1-phenoxazinyl, 2-phenoxazinyl, 3-phenoxazinyl, Sleepy , 2-oxadiazolyl, 5-oxadiazolyl, 3-furazanyl, 2-thienyl, 3-thienyl, dibenzothiophen- Yl, 3-methylpyrrol-4-yl, 3-methylpyrrol-4-yl, (2-phenylpropyl) pyrrol-1-yl, 2-methyl-1-indolyl, 4-methyl-1 Indolyl, 2-methyl-3-indolyl, 4-methyl-3-indolyl, 2- (t- (t-butyl) -3-indolyl and 4- (t-butyl) -3-indolyl,
L is the following formula
Figure 112017078366293-pct00116

.]
삭제delete 삭제delete 제1항에 있어서, 상기 티옥산톤 옥사이드계 유도체가 하기 구성 중 하나인 것을 특징으로 하는 티옥산톤 옥사이드계 유도체.
Figure 112017026425911-pct00088

Figure 112017026425911-pct00089


Figure 112017026425911-pct00090
Figure 112017026425911-pct00091

Figure 112017026425911-pct00092

Figure 112017026425911-pct00093

Figure 112017026425911-pct00094
Figure 112017026425911-pct00095
Figure 112017026425911-pct00096

Figure 112017026425911-pct00097
The thioxanthone oxide-based derivative according to claim 1, wherein the thioxanthone oxide-based derivative is one of the following constituents.
Figure 112017026425911-pct00088

Figure 112017026425911-pct00089


Figure 112017026425911-pct00090
Figure 112017026425911-pct00091

Figure 112017026425911-pct00092

Figure 112017026425911-pct00093

Figure 112017026425911-pct00094
Figure 112017026425911-pct00095
Figure 112017026425911-pct00096

Figure 112017026425911-pct00097
하기 일반식 (1) 또는 (2)
Figure 112017078366293-pct00117
Figure 112017078366293-pct00118

[상기 식중, R1, R2, R3, R4, R5, R6, R7, R8은 및 L은 상기 청구항 1에서 정의한 바와 같다.]의 티옥산톤 옥사이드계 유도체의 제조방법에 있어서,
A, 식 (1)의 티옥산톤 옥사이드계 유도체를 제조하는 단계로서,
중간체 I, II 또는 III과 10M보다 높지 않은 농도의 질산염 용액을 몰비 1: 0.1~100의 비율로 아세토니트릴에 용해시키고, 실온에서 교반하고, 물을 넣어 침전시키고, 여과하고, 여과액을 재결정화하여 식 (1)의 티옥산톤 옥사이드계 유도체를 얻는 단계; 또는
B, 식 (2)의 티옥산톤 옥사이드계 유도체를 제조하는 단계로서,
전술한 중간체 I, I 또는 III과 과산화수소용액을 몰비 1: 0.1~100의 비율로 아세트산에 용해시키고, 환류하고, 냉각시켜 침전을 석출하고, 여과하고, 여과액을 재결정화하여 식 (2)의 티옥산톤 옥사이드계 유도체를 얻는 단계;
를 포함하되,
상기 중간체 I은,
불활성 가스의 보호 속에서, 모노할로티옥산톤(monohalo thioxanthone)과 L의 디보론산피나콜에스테르를 몰비 2~5.5: 1의 비율로 혼합하고, 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 5~10 당량의 탄산칼륨을 넣은 후, 혼합물을 15~25당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 중간체 I를 얻는 단계를 통해 제조하며,
상기 중간체 II는,
불활성 가스의 보호 속에서, 모노할로티옥산톤과 티옥산톤보론산피나콜에스테르(thioxanthone boronic acid pinacol ester)를 몰비 1: 1~2.5의 비율로 혼합하고, 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 3~7 당량의 탄산칼륨을 넣은 후 혼합물을 10~15 당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 중간체 II를 얻는 단계를 통해 제조하며,
상기 중간체 III은,
불활성 가스의 보호 속에서, 디할로티옥산톤과 방향족 보론산계 화합물을 몰비 2~3.5: 1의 비율로 혼합하고, 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 3~7당량의 탄산칼륨을 혼입한 후, 혼합물을 10~15 당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 화합물a를 얻는 단계와,
불활성 가스의 보호 속에서, 화합물 a [
Figure 112017078366293-pct00119
] 와 이 화합물 a의 피나콜에스테르를 몰비 1: 2~3.5의 비율로 혼합하고, 그 속에 촉매량의 테트라(트리페닐포스핀)팔라듐과 3~7 당량의 탄산칼륨을 혼입한 후 혼합물을 10~15 당량의 톨루엔, 에탄올과 물의 혼합 용매에 넣고, 환류, 추출하고, 추출물을 칼럼크로마토그래프를 거쳐 중간체 III를 얻는 단계를 통해 제조하는 것을 특징으로 하는 티옥산톤 옥사이드계 유도체의 제조방법.
(1) or (2)
Figure 112017078366293-pct00117
Figure 112017078366293-pct00118

A method for producing a thioxanthone oxide derivative of the above formula wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and L are the same as defined in the above- In this case,
A, a step of producing a thioxanthone oxide derivative of formula (1)
A solution of the intermediate I, II or III and a nitrate solution having a concentration not higher than 10M was dissolved in acetonitrile at a molar ratio of 1: 0.1-100, stirred at room temperature, precipitated by adding water, filtered and the filtrate was recrystallized To obtain a thioxanthone oxide derivative of formula (1); or
B, a step of producing a thioxanthone oxide derivative of formula (2)
The intermediate I, I or III and the hydrogen peroxide solution are dissolved in acetic acid at a molar ratio of 1: 0.1-100, refluxed, cooled to precipitate a precipitate, filtered, and the filtrate is recrystallized to obtain To obtain a thioxanthone oxide-based derivative;
, ≪ / RTI &
The intermediate I,
In the protection of the inert gas, monohalo thioxanthone and diboronic acid pinacol ester of L were mixed at a molar ratio of 2 to 5.5: 1, and a catalytic amount of tetra (triphenylphosphine) palladium and After adding 5 to 10 equivalents of potassium carbonate, the mixture is added to a mixed solvent of 15 to 25 equivalents of toluene, ethanol and water, refluxed and extracted, and the extract is subjected to column chromatography to obtain an intermediate I,
The intermediate II,
In the protection of the inert gas, the monohalothioxanone and the thioxanthone boronic acid pinacol ester were mixed in a molar ratio of 1: 1 to 2.5, and a catalytic amount of tetra (triphenylphosphine) Palladium and 3 to 7 equivalents of potassium carbonate, and then adding the mixture to a mixed solvent of 10 to 15 equivalents of toluene, ethanol and water, refluxing and extraction, and obtaining the intermediate II through an extraction column chromatography Manufacturing,
The intermediate III,
In the protection of the inert gas, dihalothioxanone and an aromatic boronic acid compound are mixed in a molar ratio of 2 to 3.5: 1, and a catalytic amount of tetra (triphenylphosphine) palladium and 3 to 7 equivalents of potassium carbonate After mixing, the mixture is placed in a mixed solvent of 10 to 15 equivalents of toluene, ethanol and water, refluxed and extracted, and the extract is subjected to column chromatography to obtain a compound a,
In the protection of the inert gas, the compound a [
Figure 112017078366293-pct00119
] And a pinacol ester of the compound a are mixed in a molar ratio of 1: 2 to 3.5, a catalytic amount of tetra (triphenylphosphine) palladium and 3 to 7 equivalents of potassium carbonate are mixed, In a mixed solvent of 15 equivalents of toluene, ethanol and water, refluxing and extracting the mixture, and extracting the intermediate through a column chromatography to obtain an intermediate III.
제5항에 있어서,
상기 모노할로티옥산톤의 구조식은,
Figure 112017078366293-pct00098
이고;
상기 L의 디보론산피나콜에스테르의 구조식은,
Figure 112017078366293-pct00099
이고;
상기 티옥산톤보론산피나콜에스테르의 구조식은,
Figure 112017078366293-pct00100
이며;
상기 디할로티옥산톤의 구조식은,
Figure 112017078366293-pct00101
이며;
상기 방향족 보론산계 화합물의 구조식은,
Figure 112017078366293-pct00102
이며;
상기 화합물a의 피나콜 에스테르의 구조식은,
Figure 112017078366293-pct00103
이며,
식에서 L은 없거나,
하기 식
Figure 112017078366293-pct00120

으로부터 선택된 1종이고,
R, R'은 각각 수소원자, 아릴아민기, 아릴기, 헤테로아릴기로부터 선택되는 하나이며, X는 Cl, Br 또는 I인 것을 특징으로 하는 티옥산톤 옥사이드계 유도체의 제조 방법.
6. The method of claim 5,
The structural formula of the monohalothioxane tones is as follows:
Figure 112017078366293-pct00098
ego;
The structural formula of the diboronic acid pinacol ester of L,
Figure 112017078366293-pct00099
ego;
The structural formula of the thioxanthone boronic acid pinacol ester is:
Figure 112017078366293-pct00100
;
The structural formula of the dihalothioxanone is as follows:
Figure 112017078366293-pct00101
;
The structural formula of the aromatic boronic acid-
Figure 112017078366293-pct00102
;
The structural formula of the pinacol ester of the compound (a)
Figure 112017078366293-pct00103
Lt;
In the formula, L is absent,
The following formula
Figure 112017078366293-pct00120

, And the like.
R and R 'are each a hydrogen atom, an arylamine group, an aryl group or a heteroaryl group, and X is Cl, Br or I.
제5항에 있어서,
상기 테트라(트리페닐포스핀)팔라듐의 사용량은 5~15wt%이며; 상기 톨루엔, 에탄올과 물의 혼합 용매 중 각각의 혼합 비율이 체적비로 3~5: 1~3: 3~5인 것을 특징으로 하는 티옥산톤 옥사이드계 유도체의 제조방법.
6. The method of claim 5,
The amount of tetra (triphenylphosphine) palladium used is 5 to 15 wt%; Wherein the mixing ratio of the toluene, ethanol and water in the mixed solvent is 3: 5: 1 to 3: 3: 5 in volume ratio.
제5항에 있어서,
상기 질산염 용액은 질산나트륨, 질산암모늄, 질산제2철 또는 질산제1철의 용액이며; 상기 불활성 가스는 질소 가스 또는 아르곤 가스를 가리키며, 상기 재결정화에서 선택한 용매는 메탄올, 에탄올, 디클로로메탄, 디메틸술폭사이드 및 디카본아미드로 이루어진 군에서 선택된 1종 또는 2종 이상의 혼합 용매이며, 상기 환류는 25~100℃ 조건에서 2~12h 환류하는 것을 특징으로 하는 티옥산톤 옥사이드계 유도체의 제조방법.
6. The method of claim 5,
The nitrate solution is a solution of sodium nitrate, ammonium nitrate, ferric nitrate or ferrous nitrate; Wherein the inert gas refers to nitrogen gas or argon gas, and the solvent selected in the recrystallization is a mixed solvent of one or more selected from the group consisting of methanol, ethanol, dichloromethane, dimethylsulfoxide and dicarbonamide, Is refluxed at 25 to 100 ° C for 2 to 12 hours.
삭제delete 삭제delete 삭제delete 기판의 내측으로부터 외측으로 순차적으로 애노드, 정공 수송층, 유기 발광층, 전자 수송층 및 캐소드로 이루어지고,
상기에서 기판은 유리, 폴리에스테르계 또는 폴리이미드계 화합물이며,
애노드는 산화인듐주석, 산화아연, 산화주석아연, 금, 은, 구리, 폴리티오펜과 폴리비닐벤젠술폰산나트륨 또는 폴리아닐린 중 1종이며,
캐소드는 리튬, 마그네슘, 칼슘, 스트론튬, 알루미늄 또는 인듐, 또는 이들 중 하나와 구리, 금 또는 은의 합금, 또는 상기 금속 또는 합금과 금속 불화물이 교대로 형성된 전극층이며,
정공 수송층은 트리아릴아민계 재료이며,
전자 수송층은 아조사이클계 재료이며,
유기 발광층은 상기 청구항 1 기재의 일반식(1) 또는 (2)의 티옥산톤 옥사이드 유도체인 것을 특징으로 하는
유기 전계 발광 디바이스.
A hole transporting layer, an organic light emitting layer, an electron transporting layer and a cathode sequentially from the inside to the outside of the substrate,
The substrate is a glass, polyester or polyimide compound,
The anode is one of indium tin oxide, zinc oxide, zinc tin oxide, gold, silver, copper, polythiophene and sodium polyvinylbenzenesulfonate or polyaniline,
The cathode is an electrode layer in which lithium, magnesium, calcium, strontium, aluminum or indium, or an alloy of copper, gold or silver, or the metal or alloy and metal fluoride are alternately formed,
The hole transport layer is a triarylamine-based material,
The electron transport layer is an azo cycle material,
Wherein the organic luminescent layer is a thioxanthone oxide derivative represented by the general formula (1) or (2)
Organic electroluminescent device.
KR1020157015170A 2012-11-08 2013-11-06 9h-thioxanthen-9-one oxide derivatives, preparation method and use thereof KR101807575B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201210444090.4A CN103804346B (en) 2012-11-08 2012-11-08 Oxidation thioxanthone analog derivative, preparation method and application thereof
CN201210444090.4 2012-11-08
CN201310061253.5 2013-02-27
CN201310061253.5A CN104003974B (en) 2013-02-27 2013-02-27 Oxidation thioxanthone analog derivative, preparation method and applications
PCT/CN2013/086594 WO2014071836A1 (en) 2012-11-08 2013-11-06 9h-thioxanthen-9-one oxide derivative, preparation method and use thereof

Publications (2)

Publication Number Publication Date
KR20150085521A KR20150085521A (en) 2015-07-23
KR101807575B1 true KR101807575B1 (en) 2018-01-18

Family

ID=50684052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157015170A KR101807575B1 (en) 2012-11-08 2013-11-06 9h-thioxanthen-9-one oxide derivatives, preparation method and use thereof

Country Status (3)

Country Link
JP (1) JP6091636B2 (en)
KR (1) KR101807575B1 (en)
WO (1) WO2014071836A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530318B2 (en) * 2013-11-28 2019-06-12 株式会社Kyulux Luminescent material, organic light emitting device and compound
KR101520278B1 (en) * 2014-07-01 2015-05-19 벽산페인트 주식회사 The Host Compounds for Phosphorescent Emitter and Organic Light-Emitting Diodes Using This
WO2016091887A2 (en) * 2014-12-09 2016-06-16 Cynora Gmbh Ambipolar host materials and use thereof
CN104761547A (en) * 2015-03-26 2015-07-08 深圳市华星光电技术有限公司 Thioxanthone-aromatic amine compound and organic light-emitting device using same
CN108218831B (en) * 2018-04-17 2020-07-07 吉林大学 Thioxanthone compound crystal with room-temperature phosphorescence property and preparation method and application thereof
KR20230078950A (en) * 2020-09-30 2023-06-05 세키스이가가쿠 고교가부시키가이샤 Thioxanthone compound, photopolymerization initiator, curable resin composition, display element composition, liquid crystal display element sealant, upper and lower conduction material, and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060774A2 (en) * 2004-12-02 2006-06-08 Board Of Regents, The University Of Texas System Agents that inhibit flavivirus replication and uses thereof
WO2012026623A1 (en) * 2010-08-27 2012-03-01 住友化学株式会社 Polymer electrolyte composition and polymer electrolyte membrane
WO2012063751A1 (en) 2010-11-08 2012-05-18 Canon Kabushiki Kaisha Thioxanthone compound and organic light emitting element having the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244279A (en) * 1996-03-11 1997-09-19 Matsushita Electric Ind Co Ltd Electrophotographic photoreceptor
US7365193B2 (en) * 2004-02-04 2008-04-29 Abbott Laboratories Amino-substituted tricyclic derivatives and methods of use
JP2006069928A (en) * 2004-08-31 2006-03-16 Kyocera Mita Corp Thioxanthene derivative and electrophotographic photoreceptor using the same
CN1746200A (en) * 2004-09-09 2006-03-15 徐良衡 Electroluminescent polymer containing multifunctional group and use thereof
JP2006098699A (en) * 2004-09-29 2006-04-13 Kyocera Mita Corp Thioxanthene derivative and electrophotographic photoreceptor using the same
US7541131B2 (en) * 2005-02-18 2009-06-02 Fujifilm Corporation Resist composition, compound for use in the resist composition and pattern forming method using the resist composition
JP4929186B2 (en) * 2005-12-27 2012-05-09 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060774A2 (en) * 2004-12-02 2006-06-08 Board Of Regents, The University Of Texas System Agents that inhibit flavivirus replication and uses thereof
WO2012026623A1 (en) * 2010-08-27 2012-03-01 住友化学株式会社 Polymer electrolyte composition and polymer electrolyte membrane
WO2012063751A1 (en) 2010-11-08 2012-05-18 Canon Kabushiki Kaisha Thioxanthone compound and organic light emitting element having the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bioorg Med Chem Lett. 2007 Nov 1; 17(21): 5940-5943.
J. Med. Chem., 1996, 39 (9), pp 1857-186
Journal of Fluorine Chemistry, Volume 132, Issue 8, August 2011, Pages 554-557

Also Published As

Publication number Publication date
WO2014071836A1 (en) 2014-05-15
JP6091636B2 (en) 2017-03-08
JP2016504274A (en) 2016-02-12
KR20150085521A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
CN111153919B (en) Luminescent material, application thereof and organic electroluminescent device comprising luminescent material
CN112174992B (en) Luminescent material, application thereof and organic electroluminescent device comprising luminescent material
CN109912619A (en) Electroluminescent organic material and device
KR101807575B1 (en) 9h-thioxanthen-9-one oxide derivatives, preparation method and use thereof
EP2112702A1 (en) Organic field emitting element and method for manufacturing organic device
WO2021077810A1 (en) Organic electroluminescent device and display apparatus
CN104716268A (en) Organic electroluminescence device and preparing method thereof
Park et al. Bipolar host materials with carbazole and dipyridylamine groups showing high triplet energy for blue phosphorescent organic light emitting diodes
Ouyang et al. Enhanced efficiency in nondoped, blue organic light-emitting diodes utilizing simultaneously local excition and two charge-transfer exciton from benzimidazole-based donor–acceptor molecules
KR20140015240A (en) Organic electroluminescent element
CN113683575A (en) Organic compound and application thereof
KR101628438B1 (en) NITROGEN-CONTAINING HETEROCYCLIC COMPOUNDS AND ORGANIC ElECTRONIC DEVICE COMPRISING THE SAME
KR20130070431A (en) Multicyclic aromatic compound and organic light emitting device including the same
Xu et al. Novel deep-blue hot exciton material for high-efficiency nondoped organic light-emitting diodes
CN114773210B (en) Organic compound and application thereof
CN115677743A (en) Organic boron semiconductor compound and application thereof
Jia et al. New bipolar host materials based on methyl substituted pyridazine for high-performance green and red phosphorescent OLEDs
Kumar et al. Functional pyrene–pyridine-integrated hole-transporting materials for solution-processed OLEDs with reduced efficiency roll-off
Zhou et al. tert-Butyl-substituted bicarbazole as a bipolar host material for efficient green and yellow PhOLEDs
CN110551054B (en) Maleimide derivative, and preparation method and application thereof
KR101883665B1 (en) Organic electroluminescent compound, producing method of the same and organic electroluminescent device including the same
CN112390811B (en) Dithia-anthrone derivative and preparation method and application thereof
KR102297637B1 (en) Novel organic electroluminescent compound, organic electroluminescent device including the same and electric apparatus
KR102615534B1 (en) Novel organic electroluminescent compound, organic electroluminescent device including the same and electric apparatus
CN114394999B (en) Organic metal iridium complex, electroluminescent material and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant