KR101807284B1 - Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof - Google Patents

Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof Download PDF

Info

Publication number
KR101807284B1
KR101807284B1 KR1020170118074A KR20170118074A KR101807284B1 KR 101807284 B1 KR101807284 B1 KR 101807284B1 KR 1020170118074 A KR1020170118074 A KR 1020170118074A KR 20170118074 A KR20170118074 A KR 20170118074A KR 101807284 B1 KR101807284 B1 KR 101807284B1
Authority
KR
South Korea
Prior art keywords
photostabilizer
organic
same
branched
present
Prior art date
Application number
KR1020170118074A
Other languages
Korean (ko)
Other versions
KR20170106641A (en
Inventor
김봉수
김홍곤
고민재
이도권
김진영
손해정
신나라
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020170118074A priority Critical patent/KR101807284B1/en
Publication of KR20170106641A publication Critical patent/KR20170106641A/en
Application granted granted Critical
Publication of KR101807284B1 publication Critical patent/KR101807284B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0043
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 공액 고분자 광안정성 향상을 위한 첨가제들, 그 제조방법 및 이를 포함하는 유기 태양전지에 관한 것이다. 본 발명의 여러 구현예에 따르면, 본 발명의 첨가제들은 공액 고분자의 광안정성을 향상시키므로 유기 태양전지 소자(OPV)에 적용가능하며, 좀 더 넓게는 전도성 유기물을 기반으로 하는 유기 광센서(OPD), 유기 박막트랜지스터(OTFT), 유기 발광다이오드(OLED) 등 다양한 분야에 적용할 수 있는 유기 광전자 소자용 재료들이다.The present invention relates to additives for improving the light stability of conjugated polymers, a method for producing the same, and an organic solar battery including the same. According to various embodiments of the present invention, the additives of the present invention can be applied to organic solar cell devices (OPV) because they improve the light stability of conjugated polymers, and more broadly, organic optical sensors (OPD) based on conductive organic materials, , Organic thin film transistors (OTFTs), and organic light emitting diodes (OLEDs).

Description

광안정화제, 이를 포함하는 유기 태양전지 및 이의 제조방법{Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof}A photostabilizer, an organic solar cell including the same, and a method for manufacturing the same,

본 발명은 공액 고분자의 광안정성을 향상시킬 수 있는 광안정화제 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 높은 광자 흡수능을 지닌 낮은 밴드갭 공액 고분자의 빛/산소 조건에서 광산화 진행을 막아주는 광안정화제와 이를 포함하는 유기 태양전지 및 그 제조방법에 관한 것이다.The present invention relates to a photostabilizer capable of improving the photostability of a conjugated polymer and a method for producing the same, and more particularly, to a photostabilizer capable of preventing the progress of photooxidation in a light / oxygen condition of a low bandgap conjugated polymer having high photon absorption capacity An organic solar cell including the same, and a method of manufacturing the same.

최근 대표적 에너지원인 화석원료의 유한성과 화석원료 연소에 따른 이산화탄소 배출은 온실효과와 같은 환경 문제를 야기하며, 환경 친화적 대체에너지 개발의 필요성을 부각시켰다. 이러한 문제점을 극복하기 위한 노력의 일환으로 수력과 풍력 등 다양한 에너지원들이 연구되고 있으며, 무한한 사용이 가능한 태양광 역시 신 재생에너지의 에너지원으로서 연구되고 있다.Recently, the finite nature of fossil raw materials and carbon dioxide emissions from fossil raw material combustion have caused environmental problems such as greenhouse effect and highlighted the need for environmentally friendly alternative energy development. As part of efforts to overcome these problems, various energy sources such as hydroelectric power and wind power have been studied, and solar energy that can be used infinitely is being studied as an energy source of renewable energy.

태양광을 이용한 태양전지는 크게 실리콘과 같은 무기물을 이용한 태양전지와 유기물을 사용한 태양전지로 나눌 수 있는데, 특히 고분자를 이용한 유기 박막 태양전지는 실리콘을 사용하는 무기 태양전지에 비해 낮은 생산 단가와 경량성, 롤투롤 또는 잉크젯 프린팅 등을 통한 여러 생산방식에 적용 가능하다는 점, 자유자재로 구부릴 수 있는 플렉서블한 소자를 대면적화할 수 있다는 장점 둥으로 인하여 많은 연구가 진행되고 있다.Solar cells using solar light can be largely divided into solar cells using inorganic materials such as silicon and solar cells using organic materials. In particular, organic thin film solar cells using polymer have lower production cost and light weight than inorganic solar cells using silicon The present invention can be applied to various production methods such as casting, roll-to-roll, or ink-jet printing, and the advantage of being able to flexibly flexibly flexibly bend freely.

유기 박막 태양전지의 광변환 활성층에 사용되는 대표적인 물질로는 [4,8-bis-substituted-benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b]thiophene-2,6-diyl] (PBDTTT)-derived polymers: (PTB7) (Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv . Energy Mater., 2010, 22, E135-E138), PBDTTT-C (H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photon. 2009, 3, 649-653) 등이 있으며, 이러한 공액 고분자와 관련된 광전 변환 효율은 7% 이상의 높은 값을 보고하고 있다.[4,8-bis-substituted-benzo [1,2- b : 4,5- b '] dithiophene-2,6-diyl-alt-4 -substituted-thieno [3,4-b] thiophene-2,6-diyl] (PBDTTT) -derived polymers: (PTB7) (Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y (H.-Y. Chen, J. Hou, S. Zhang, Y. Wu, G. Li, C. Ray, L. Yu, Adv . Energy Mater. , 2010,22, E135-E138), PBDTTT- The photoelectric conversion efficiency associated with the conjugated polymer is 7% or more, and the photoelectric conversion efficiency of the conjugated polymer is 7% or less, Or more.

하지만 이러한 공액 고분자는 광안정성이 아주 취약하여 궁극적으로 광전소자의 광안정성이 매우 떨어지는 커다란 문제점을 야기한다. 이러한 문제를 극복하고 고효율 유기 태양전지 소자의 광안정성 확보를 위해서는 광활성층에 포함시킬 수 있는 광안정화 첨가제를 개발할 필요성이 긴급히 대두되고 있다.However, such a conjugated polymer has a very weak light stability, which ultimately causes a great problem in that the optical stability of the photoelectric device is very poor. In order to overcome these problems and to secure the optical stability of a high-efficiency organic solar cell device, it is urgently required to develop a photostabilizing additive that can be included in the photoactive layer.

Adv. Energy Mater., 2010, 22, E135-E138Adv. Energy Mater., 2010, 22, E135-E138 Nat. Photon. 2009, 3, 649-653Nat. Photon. 2009, 3, 649-653

본 발명이 해결하고자 하는 과제는 높은 광자 흡수능을 지닌 낮은 밴드갭 공액 고분자의 빛/산소 조건에서 광산화 진행을 막아주는 첨가제들과 그 제조방법을 제공하는 것이다.The present invention provides a low bandgap conjugated polymer having high photon absorption capability and a method for preparing the same, which prevents the photooxidation progress under light / oxygen conditions.

또한, 본 발명이 해결하고자 하는 다른 과제는 상기 광안정화 첨가제를 포함하는 고안정 고효율 유기태양전지를 제공하는 것이다.Another object of the present invention is to provide a high-stability, high-efficiency organic solar cell comprising the photostabilizing additive.

본 발명의 일 측면은 하기 화학식 1의 구조를 가지는 광안정화제에 관한 것이다.One aspect of the present invention relates to a photostabilizer having a structure represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

R1-Ar1-NH-Ar2-NH-Ar3-R2 R 1 -Ar 1 -NH-Ar 2 -NH-Ar 3 -R 2

본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 광안정화제를 포함하는 광활성층에 관한 것이다.Another aspect of the invention is directed to a photoactive layer comprising a photostabilizer according to various embodiments of the present invention.

본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 광안정화제를 포함하는 광전자 소자에 관한 것이다.Another aspect of the present invention relates to an optoelectronic device comprising a photostabilizer according to various embodiments of the present invention.

본 발명의 또 다른 측면은 상기 화학식 1의 구조를 갖는 광안정화제의 제조방법에 관한 것이다.Another aspect of the present invention relates to a method for producing a photostabilizer having the structure of Formula (1).

본 발명의 여러 구현예에 따르면, 본 발명의 첨가제는 광안정성 향상에 도움을 주므로, 유기 태양전지(OPV, organic photovoltaic cell), 유기 광센서(Organic photodiode, OPD), 유기 박막트랜지스터(Organic thin film transistor, OTFT), 유기 발광다이오드(Organic light emitting diode, OLED) 등 다양한 분야에 적용할 수 있는 유기 광전자소자용 재료로 유용하게 사용될 수 있다.According to various embodiments of the present invention, the additive of the present invention can improve the light stability. Therefore, it is preferable to use an organic photovoltaic cell (OPV), an organic photodiode (OPD), an organic thin film such as organic light emitting diodes (OLEDs), transistors, OTFTs, and organic light emitting diodes (OLEDs).

도 1은 PTB7 고분자 필름 상에서의 흡광도와 100 mW/cm2 세기의 태양광을 조사했을 때 조사 시간에 따른 흡광도 변화를 나타낸 그래프이다.
도 2는 PTB7 고분자 필름 상에서의 흡광도와 100 mW/cm2 세기의 태양광을 조사했을 때 조사 시간에 따른 흡광도 변화를 나타낸 그래프이다. PTB7 고분자 필름 형성 시, 고분자 용액에 3 부피%의 1,8-다이아오도옥테인(DIO, 1,8-diiodooctane) 첨가하여 필름을 형성하였다.
도 3은 본 발명의 일 구현예에 따른 PTB7 고분자 필름 상에서의 흡광도와 100 mW/cm2 세기의 태양광을 조사했을 때 조사 시간에 따른 흡광도 변화를 나타낸 그래프이다. PTB7 고분자 필름 형성 시 고분자 용액에 1,8-다이아오도옥테인(DIO, 1,8-diiodooctane)과 광안정화제 1a을 고분자 대비 1 중량% 첨가한 후 필름을 형성하였다.
도 4는 본 발명의 일 구현예에 따른 PTB7 고분자 필름 상에서의 흡광도와 100 mW/cm2 세기의 태양광을 조사했을 때 조사 시간에 따른 흡광도 변화를 나타낸 그래프이다. PTB7 고분자 필름 형성시 고분자 용액에 3 부피%의 1,8-다이아오도옥테인(DIO, 1,8-diiodooctane)과 광안정화제 1c을 고분자 대비 1 중량% 첨가한 후 필름을 형성하였다.
도 5는 본 발명의 일 구현예에 따른 PTB7 필름 대비 1,8-다이아오도옥테인(DIO, 1,8-diiodooctane) 및 광안정화제 1a 또는 1c를 포함할 때 상대적인 광안정성 안정도를 시간에 따라 표시한 그래프이다. 상대적 광안정도는 주어진 시간에서, 첨가 포함 PTB7 필름의 흡광도를 첨가제 불포함 PTB7 필름의 흡광도로 나눈 값이다.
도 6은 (i) 반사방지막/ITO 유리/TiO2/PTB7:PC71BM/MoO3/Ag 소자와 (ii) 반사방지막/ITO 유리/TiO2/PTB7:PC71BM:1c(1 중량%)/MoO3/Ag 소자 각각에 대하여 100 mW/cm2 세기의 태양광 하에서 시간에 따른 광전 변환 효율의 변화 추이를 나타낸 그래프이다. 첨가제 1c가 포함되지 않은 소자와 포함된 소자의 초기 광전 변환 효율은 각각 6.52%와 6.18%이었다.
FIG. 1 is a graph showing the absorbance on PTB7 polymer film and the change in absorbance according to irradiation time when irradiated with sunlight of 100 mW / cm 2 intensity. FIG.
FIG. 2 is a graph showing the absorbance on the PTB7 polymer film and the change in absorbance according to irradiation time when irradiated with sunlight of 100 mW / cm 2 intensity. FIG. In forming the PTB7 polymer film, 3 volume% of 1,8-diiodooctane (DIO, 1,8-diiodooctane) was added to the polymer solution to form a film.
FIG. 3 is a graph showing the absorbance on the PTB7 polymer film according to one embodiment of the present invention and the change in absorbance according to the irradiation time when irradiated with sunlight of 100 mW / cm 2 intensity. When PTB7 polymer film was formed, 1 wt% of 1,8-diiodooctane (DIO, 1,8-diiodooctane) and photostabilizer 1a was added to the polymer solution to form a film.
4 is a graph showing the absorbance on the PTB7 polymer film according to one embodiment of the present invention and the change in absorbance according to irradiation time when irradiated with sunlight of 100 mW / cm 2 intensity. When PTB7 polymer film was formed, 3% by volume of 1,8-diiodooctane (DIO, 1,8-diiodooctane) and 1c of photostabilizer 1c were added to the polymer solution in an amount of 1% by weight based on the polymer.
Figure 5 shows the relative stability of light stability over time when containing 1,8-diiodooctane (DIO, 1,8-diiodooctane) and photostabilizer 1a or 1c versus the PTB7 film according to one embodiment of the present invention Graph. Relative light intensity is the absorbance of the PTB7 film with addition divided by the absorbance of the PTB7 film without additives at a given time.
Figure 6 is (i) an anti-reflection film / ITO glass / TiO 2 / PTB7: PC 71 BM / MoO 3 / Ag element and (ii) an anti-reflection film / ITO glass / TiO 2 / PTB7: PC 71 BM: 1c (1% by weight ) / MoO 3 / Ag device under a sun light of 100 mW / cm 2 intensity over time. The initial photoelectric conversion efficiencies of the devices not including additive 1c and the devices included were 6.52% and 6.18%, respectively.

이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다.Hereinafter, various aspects and various embodiments of the present invention will be described in more detail.

본 발명의 일 측면은 하기 화학식 1의 구조를 가지는 광안정화제에 관한 것이다.One aspect of the present invention relates to a photostabilizer having a structure represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

R1-Ar1-NH-Ar2-NH-Ar3-R2 R 1 -Ar 1 -NH-Ar 2 -NH-Ar 3 -R 2

상기 Ar1과 상기 Ar2 및 상기 Ar3는 서로 동일하거나 상이하고, 각각 독립적으로 하기 구조 중에서 선택된 1종이다.Ar 1 , Ar 2, and Ar 3 are the same or different from each other, and each independently is one selected from the following structures.

Figure 112017089631436-pat00001
Figure 112017089631436-pat00001

상기 R1과 R2는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 중에서 선택된 1종이다.Wherein R 1 and R 2 are the same or different from each other and each independently represents a linear or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a linear or branched C 1 -C 7 alkoxy group, C 8 -C 20 is one selected from an alkoxy group.

일 구현예에 따르면, 상기 Ar1과 상기 Ar3는 서로 동일하다.According to one embodiment, Ar 1 and Ar 3 are identical to each other.

이때, Ar1과 상기 Ar3가 서로 다른 구조에 비하여 물질 합성이 용이한 점에 유리할 뿐만 아니라, 광전 변환 효율의 시간에 따른 저하 정도가 향상될 수 있음을 확인하였다.
At this time, it is advantageous in that the synthesis of the material is easier than the structure in which Ar 1 and Ar 3 are different from each other, and it is confirmed that the degree of photoelectric conversion efficiency with time can be improved.

*다른 구현예에 따르면, 상기 Ar1과 상기 Ar2 및 상기 Ar3는 서로 동일하거나 상이하고, 각각 독립적으로

Figure 112017089631436-pat00002
,
Figure 112017089631436-pat00003
,
Figure 112017089631436-pat00004
,
Figure 112017089631436-pat00005
,
Figure 112017089631436-pat00006
,
Figure 112017089631436-pat00007
,
Figure 112017089631436-pat00008
중에서 선택되는 1종이다.According to another embodiment, Ar 1 , Ar 2 and Ar 3 are the same or different and each independently
Figure 112017089631436-pat00002
,
Figure 112017089631436-pat00003
,
Figure 112017089631436-pat00004
,
Figure 112017089631436-pat00005
,
Figure 112017089631436-pat00006
,
Figure 112017089631436-pat00007
,
Figure 112017089631436-pat00008
≪ / RTI >

이때, Ar1과 상기 Ar2 및 상기 Ar3이 안트라센 계열이나 티오펜 계열 또는 티에노티오펜 계열인 경우에 비해, 화합물들의 HOMO 레벨(가장 높이 채워져 있는 분자 궤도 함수의 에너지 준위)이 낮아 화합물 자체 빛/산소/수분에 대해 안정한 효과를 보인다.At this time, the HOMO level of the compounds (energy level of the molecular orbit function which is filled to the highest level) is low compared with the case where Ar 1 , Ar 2 and Ar 3 are anthracene-based, thiophene-based or thienothiophene- / Oxygen / water.

또 다른 구현예에 따르면, 상기 Ar1과 상기 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로

Figure 112017089631436-pat00009
,
Figure 112017089631436-pat00010
,
Figure 112017089631436-pat00011
중에서 선택되는 1이고, 상기 Ar2
Figure 112017089631436-pat00012
,
Figure 112017089631436-pat00013
,
Figure 112017089631436-pat00014
,
Figure 112017089631436-pat00015
중에서 선택되는 1종이다.According to another embodiment, Ar 1 and Ar 3 are the same or different from each other, and each independently
Figure 112017089631436-pat00009
,
Figure 112017089631436-pat00010
,
Figure 112017089631436-pat00011
1 > and Ar < 2 > is
Figure 112017089631436-pat00012
,
Figure 112017089631436-pat00013
,
Figure 112017089631436-pat00014
,
Figure 112017089631436-pat00015
≪ / RTI >

또 다른 구현예에 따르면, 상기 Ar1과 상기 Ar3

Figure 112017089631436-pat00016
이고, 상기 Ar2
Figure 112017089631436-pat00017
또는
Figure 112017089631436-pat00018
이다.According to another embodiment, Ar < 1 > and Ar < 3 &
Figure 112017089631436-pat00016
, And Ar < 2 >
Figure 112017089631436-pat00017
or
Figure 112017089631436-pat00018
to be.

위 두 가지 구조는 화학식 1에 속하는 다른 구조들에 비해 나프탈렌 구조가 지니는 적절한 전자양에 의해 광안정성 효과가 크다는 점에서 유리하다.The above two structures are advantageous in that the light stability effect is great due to the appropriate electromagnetic field having the naphthalene structure as compared with other structures belonging to the general formula (1).

또 다른 구현예에 따르면, 상기 R1과 상기 R2는 서로 동일하다.According to another embodiment, R < 1 > and R < 2 >

이때, R1과 상기 R2이 서로 다른 구조에 비하여 화합물 합성이 용이하다는 점이 유리할 뿐만 아니라, 광전 변환 효율의 시간에 따른 저하 정도가 향상될 수 있음을 확인하였다.At this time, it is advantageous in that the compound is easy to synthesize as compared with the structure in which R 1 and R 2 are different from each other, and it is confirmed that the degree of photoelectric conversion efficiency can be improved with time.

또 다른 구현예에 따르면, 상기 R1과 상기 R2는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기이다.According to another embodiment, R 1 and R 2 are the same or different and are each independently a straight or branched C 1 -C 7 alkyl group.

상기 R1과 상기 R2이 특히 직쇄 또는 측쇄 C1-C7 알킬기인 경우, 알킬기가 없거나 기타 치환기에 비해서 용해도가 높아, 전도성 물질(특히 고분자)과 필름 형성 시 골고루 섞이도록 하여 광안정성 향상에 도움을 준다는 점에서 유리하다.When R 1 and R 2 are particularly straight or branched C 1 -C 7 alkyl groups, the alkyl group is not present or the solubility is higher than other substituents, so that it can be uniformly mixed with a conductive material (particularly, a polymer) It is advantageous in that it helps.

또 다른 구현예에 따르면, 상기 R1과 상기 R2는 서로 동일한 직쇄 또는 측쇄 C1-C7 알킬기이다.According to another embodiment, R 1 and R 2 are the same straight-chain or branched C 1 -C 7 alkyl group.

또 다른 구현예에 따르면, 상기 R1과 상기 R2는 헥실이다.According to another embodiment, R < 1 > and R < 2 > are hexyl.

또 다른 구현예에 따르면, 상기 광안정화제는 하기 화학식 중 하나의 구조를 가진다.According to another embodiment, the photostabilizer has the structure of one of the following formulas.

Figure 112017089631436-pat00019
Figure 112017089631436-pat00019

본 발명의 다른 측면은 공액 고분자 및 본 발명의 여러 구현예에 따른 광안정화제를 포함하는 광활성층에 관한 것이다.Another aspect of the invention relates to a photoactive layer comprising a conjugated polymer and a photo stabilizer according to various embodiments of the present invention.

일 구현예에 따르면, 상기 광안정화제는 상기 공액 고분자 중량을 기준으로 0.1 내지 5 중량%로 포함될 수 있다. 이와 같이, 상기 광안정화제는 상기 공액 고분자 중량을 기준으로 0.1 내지 5 중량%, 바람직하게는 0.5 내지 3 중량%로 포함될 수 있다.According to one embodiment, the photostabilizer may be included in an amount of 0.1 to 5% by weight based on the weight of the conjugated polymer. Thus, the photostabilizer may be contained in an amount of 0.1 to 5% by weight, preferably 0.5 to 3% by weight based on the weight of the conjugated polymer.

상기 광안정화제 함량의 바람직한 수치 범위에 대하여, 상기 하한 값 미만인 경우에는 상기 바람직한 수치 범위 내에 있는 경우에 비하여 광안정화 효과가 미미하다는 점에서 바람직하지 않다. 또한, 상기 상한 값을 초과하는 경우에는 상기 바람직한 수치 범위 내에 있는 경우에 비하여 초기 광전 소자의 특성을 저해할 수 있다는 점(예를 들면, 유기 태양전지 효율 감소)에서 바람직하지 않다.`With respect to the preferable numerical range of the photostabilizer content, when it is less than the lower limit value, it is not preferable because the photostabilizing effect is insignificant as compared with the case where it is within the preferable numerical value range. In addition, when the upper limit value is exceeded, it is undesirable in that the characteristics of the initial photoelectric device can be inhibited (for example, the efficiency of the organic solar battery is reduced) as compared with the case where the value is within the preferable numerical range.

다른 구현예에 따르면, 상기 광활성층은 광분해 억제제를 추가로 포함할 수 있다.According to another embodiment, the photoactive layer may further comprise a photo decomposition inhibitor.

본 발명의 일부 구현예에 따른 광안정화제의 경우 몇몇 환경 하에서는 광분해 억제제가 추가로 포함되어야 광안정화 효과가 발현될 수 있고, 본 발명의 나머지 구현예에 따른 광안정화의 경우에도 광분해 억제제가 추가로 포함되는 경우 광안정화 효과가 향상된다는 점에서, 광분해 억제제가 추가로 포함되는 것이 바람직하다.In the case of the photostabilizer according to some embodiments of the present invention, a photostabilization effect may be exhibited when the photostabilizer is additionally contained under some circumstances, and in the case of the photostabilization according to the remaining embodiments of the present invention, , It is preferable that the photodegradation inhibitor is further contained in that the photostabilization effect is improved.

다만, 위 일부 구현예에 따른 광안정화제의 경우 다른 환경 하에서는 광분해 억제제가 추가로 포함되지 않더라도 광안정화 효과가 발현될 수 있고, 또한 위 나머지 구현예에 따른 광안정화의 경우에도 광분해 억제제가 추가로 포함되지 않더라도 여전히 광안정화 효과가 발현된다는 점에서, 위 광분해 억제제를 본 발명의 필수 성분으로 해석할 수는 없다.However, in the case of the photostabilizer according to some embodiments above, the photostabilization effect can be expressed even if the photostabilizer is not further contained under other circumstances, and in the photostabilization according to the above embodiments, The photocatalytic decomposition inhibitor can not be interpreted as an essential component of the present invention.

이러한 광분해 억제제의 예에는 1,8-다이아오도옥테인, 1,6-다이아오도헥세인, 1-클로로나프탈렌, 1,8-옥테인다이싸이올 및 이들 2종 이상의 혼합물 등이 포함되나, 이에 한정되지 않는다.Examples of such photodegradation inhibitors include 1,8-diiodooxane, 1,6-diiodohexane, 1-chloronaphthalene, 1,8-octane dithiol, and mixtures of two or more thereof. It does not.

또 다른 구현예에 따르면, 이러한 광분해 억제제는 상기 공액 고분자 필름 형성을 위한 공액 고분자 용액에 기본 용매(예: 클로로벤젠)의 1 내지 10 부피%로 포함될 수 있다.According to another embodiment, the photopolymerization inhibitor may be contained in the conjugated polymer solution for forming the conjugated polymer film in an amount of 1 to 10% by volume of the base solvent (e.g., chlorobenzene).

최종 형성된 광활성층 내에서 분석한 결과에 의하면, 위 광분해 억제제는 상기 공액 고분자 100 중량부를 기준으로 하였을 때에는 0.1 내지 0.3 중량부로 포함될 수 있다. According to the results of the analysis in the final photoactive layer, the upper photodecomposition inhibitor may be contained in an amount of 0.1 to 0.3 parts by weight based on 100 parts by weight of the conjugated polymer.

광분해 억제제에 대한 위 수치 범위의 하한 값 미만인 경우에는 위 수치 범위 내의 경우에 비해 광안정화 효과가 미미할 수 있다는 점에서 바람직하지 않다. 또한, 위 수치 범위의 상한 값을 초과하는 경우에는 위 수치 범위 내의 경우에 비해 형성된 고분자 필름의 균일도와 표면 거칠기가 악화될 수 있다는 점에서 바람직하지 않다.In the case where the lower limit of the above-mentioned numerical range for the photodecomposition inhibitor is less than the lower limit of the above-mentioned numerical range, the photostabilization effect may be insufficient. In addition, when the upper limit of the above numerical range is exceeded, the uniformity and surface roughness of the formed polymer film may be deteriorated as compared with the case in the above numerical range.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 광안정화제를 포함하는 광전자 소자에 관한 것이다. 이때, 상기 광전자 소자의 예에는 유기 태양전지, 유기 광센서, 유기 발광다이오드, 유기 박막 트랜지스터 등이 포함될 수 있으나, 이에 한정되지 않는다.Another aspect of the present invention relates to an optoelectronic device comprising a photostabilizer according to various embodiments of the present invention. Examples of the optoelectronic device include an organic solar cell, an organic light sensor, an organic light emitting diode, and an organic thin film transistor. However, the present invention is not limited thereto.

본 발명의 또 다른 측면은 (A) 하기 화학식 2의 화합물 및 하기 화학식 3의 화합물을 반응시키는 단계를 포함하는 하기 화학식 1의 화합물 제조방법에 관한 것이다(반응식 1 참조).Another aspect of the present invention relates to a process for preparing a compound represented by the following general formula (1), comprising the steps of: (A) reacting a compound represented by the following general formula (2) and a compound represented by the following general formula (3).

[화학식 2](2)

Figure 112017089631436-pat00020
Figure 112017089631436-pat00020

[화학식 3](3)

Figure 112017089631436-pat00021
Figure 112017089631436-pat00021

[화학식 1][Chemical Formula 1]

R-Ar1-NH-Ar2-NH-Ar3-RR-Ar 1 -NH-Ar 2 -NH-Ar 3 -R

이때, 상기 Ar1과 상기 Ar3

Figure 112017089631436-pat00022
이고,
At this time, Ar 1 and Ar 3
Figure 112017089631436-pat00022
ego,

*상기 Ar2

Figure 112017089631436-pat00023
,
Figure 112017089631436-pat00024
,
Figure 112017089631436-pat00025
,
Figure 112017089631436-pat00026
중에서 선택되는 1종이며, * Ar < 2 >
Figure 112017089631436-pat00023
,
Figure 112017089631436-pat00024
,
Figure 112017089631436-pat00025
,
Figure 112017089631436-pat00026
, ≪ / RTI >

상기 R은 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 중에서 선택된 1종이다.Wherein R is a straight or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a straight chain or branched C 1 -C 7 alkoxy group, a straight chain or branched C 8 -C 20 alkoxy group.

[반응식 1][Reaction Scheme 1]

Figure 112017089631436-pat00027
Figure 112017089631436-pat00027

또 다른 구현예에 따르면, 상기 (A) 단계는 요오드(I2) 존재 하에서 수행된다.According to another embodiment, step (A) is carried out in the presence of iodine (I 2 ).

요오드 존재 하에서 수행하는 경우 반응이 간단하고 정제가 쉽다는 점에서 유리하다.When the reaction is carried out in the presence of iodine, it is advantageous in that the reaction is simple and the purification is easy.

위 반응은 상기 화학식 2의 화합물, 상기 화학식 3의 화합물, 요오드를 혼합한 후 가열함으로써 수행될 수 있다. 특히, 190 내지 200 ℃에서 8 내지 9 시간 동안 가열하여 반응을 수행하는 것이 바람직하다.The above reaction can be carried out by mixing the compound of Formula 2, the compound of Formula 3, and iodine, followed by heating. In particular, it is preferable to carry out the reaction by heating at 190 to 200 DEG C for 8 to 9 hours.

본 발명의 또 다른 측면은 (A') 하기 화학식 4의 화합물 및 하기 화학식 3의 화합물을 반응시키는 단계를 포함하는 하기 화학식 1의 화합물 제조방법에 관한 것이다(반응식 2).According to another aspect of the present invention, there is provided a process for preparing a compound represented by the following formula (A '): (A') reacting a compound represented by the following formula (4) and a compound represented by the following formula (3).

[화학식 4][Chemical Formula 4]

Figure 112017089631436-pat00028
Figure 112017089631436-pat00028

[화학식 3](3)

Figure 112017089631436-pat00029
Figure 112017089631436-pat00029

[화학식 1][Chemical Formula 1]

R-Ar1-NH-Ar2-NH-Ar3-RR-Ar 1 -NH-Ar 2 -NH-Ar 3 -R

이때, 상기 Ar1과 상기 Ar3

Figure 112017089631436-pat00030
이고,At this time, Ar 1 and Ar 3
Figure 112017089631436-pat00030
ego,

상기 Ar2

Figure 112017089631436-pat00031
,
Figure 112017089631436-pat00032
,
Figure 112017089631436-pat00033
중에서 선택되는 1이며,Wherein Ar < 2 &
Figure 112017089631436-pat00031
,
Figure 112017089631436-pat00032
,
Figure 112017089631436-pat00033
1 < / RTI >

상기 R은 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 중에서 선택된 1종이다.Wherein R is a straight or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a straight chain or branched C 1 -C 7 alkoxy group, a straight chain or branched C 8 -C 20 alkoxy group.

[반응식 2][Reaction Scheme 2]

Figure 112017089631436-pat00034
Figure 112017089631436-pat00034

위 반응은 물, 톨루엔, 아세톤, 메탄올, 에탄올, 테트라하이드로퓨란(THF), 클로로벤젠, 디메틸포름아미드(DMF) 또는 이들 2종 이상의 혼합 용매에서 수행될 수 있다.The above reaction can be carried out in water, toluene, acetone, methanol, ethanol, tetrahydrofuran (THF), chlorobenzene, dimethylformamide (DMF) or a mixed solvent of two or more thereof.

또 다른 구현예에 따르면, 상기 (A') 단계는 팔라듐 촉매 존재 하에서 수행될 수 있다.According to another embodiment, the step (A ') may be carried out in the presence of a palladium catalyst.

팔라듐 촉매 존재 하에서 수행하는 경우 화학 반응의 수율이 높다는 점에서 유리하다.It is advantageous in that the yield of the chemical reaction is high when carried out in the presence of the palladium catalyst.

또 다른 구현예에 따르면, 상기 팔라듐 촉매는 PdCl2, Pd(OAc)2, Pd(CH3CN)2Cl2, Pd(PhCN)2Cl2, Pd2dba3, Pd(PPh3)4 및 이들 2종 이상의 혼합물 중에서 선택된다.According to yet another embodiment, the palladium catalyst is PdCl 2, Pd (OAc) 2 , Pd (CH 3 CN) 2 Cl 2, Pd (PhCN) 2 Cl 2, Pd 2 dba 3, Pd (PPh 3) 4 and And a mixture of two or more thereof.

위 반응은 상기 화학식 3의 화합물과 상기 화학식 4의 화합물을 용매에 용해시킨 후, 상기 팔라듐 촉매를 첨가함으로써 수행될 수 있다.
The above reaction can be performed by dissolving the compound of Formula 3 and the compound of Formula 4 in a solvent and then adding the palladium catalyst.

이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope and content of the present invention can not be construed to be limited or limited by the following Examples. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the present invention as set forth in the following claims. It is natural that it belongs to the claims.

실시예Example

실시예Example 1-1:  1-1: NN 22 ,, NN 77 -- 비스(4-헥실페닐)나프탈렌Bis (4-hexylphenyl) naphthalene -2,7--2,7- 디아민Diamine 제조 Produce

Figure 112017089631436-pat00035
Figure 112017089631436-pat00035

2,7-디히드록시 나프탈렌(354 mg, 2.21 mmol), I2(24 mg, 0.09 mmol)과 4-n-헥실아닐린(1 g, 5.64 mmol)을 혼합한 후 190 ℃ 에서 8 시간 동안 가열하였다. 반응 완결 후 실온으로 냉각하고 실리카겔 컬럼으로(전개액: EtOAc/n-Hex=1/10) 정제하여 표제 화합물(430 mg, 수율: 40.6%)을 얻었다(화합물 1a).After mixing 2,7-dihydroxynaphthalene (354 mg, 2.21 mmol) and I 2 (24 mg, 0.09 mmol) with 4-n-hexyl aniline (1 g, 5.64 mmol) and heating at 190 ° C for 8 hours Respectively. After completion of the reaction, the reaction mixture was cooled to room temperature and purified by silica gel column (eluent: EtOAc / n-Hex = 1/10) to obtain the title compound (430 mg, yield 40.6%) (compound 1a).

1H NMR(400 MHz, CDCl3): δ 7.602-7.580 (d, 2H), 7.167-7.162 (d, 2H), 7.128-7.072 (m, 8H), 6.980-6.953 (dd, 2H), 5.731 (s, 2H), 2.586-2.547 (t, 4H), 1.623-1.586 (m, 4H), 1.319 (m, 12H), 0.907-0.873 (t, 6H) 1 H NMR (400 MHz, CDCl 3): δ 7.602-7.580 (d, 2H), 7.167-7.162 (d, 2H), 7.128-7.072 (m, 8H), 6.980-6.953 (dd, 2H), 5.731 ( s, 2H), 2.586-2.547 (t, 4H), 1.623-1.586 (m, 4H), 1.319 (m, 12H), 0.907-0.873

실시예Example 1-2:  1-2: NN 1One ,, NN 55 -- 비스(4-헥실페닐)나프탈렌Bis (4-hexylphenyl) naphthalene -1,5--1,5- 디아민Diamine 제조 Produce

Figure 112017089631436-pat00036
Figure 112017089631436-pat00036

1,5-디히드록시 나프탈렌(354 mg, 2.21 mmol), I2(24 mg, 0.09 mmol)과 4-n-헥실아닐린(1 g, 5.64 mmol)을 혼합한 후 200 ℃ 에서 8 시간 동안 가열하였다. 반응 완결 후 실온으로 냉각하고 실리카겔 컬럼으로(전개액: EtOAc/n-Hex=1/10) 정제하여 표제 화합물(63 mg, 수율: 6.0%)을 얻었다(화합물 1b).(35 mg, 2.21 mmol), I 2 (24 mg, 0.09 mmol) and 4-n-hexyl aniline (1 g, 5.64 mmol) were mixed and heated at 200 ° C. for 8 hours Respectively. After completion of the reaction, the reaction mixture was cooled to room temperature and purified by silica gel column (eluent: EtOAc / n-Hex = 1/10) to obtain the title compound (63 mg, yield: 6.0%).

1H NMR(400 MHz, CDCl3): δ 7.668-7.646 (dd, 2H), 7.370-7.255 (m, 4H), 7.115-7.093 (d, 4H), 7.008-6.987 (dt, 4H), 5.933 (s, 2H), 2.585-2.546 (t, 4H), 1.642-1.567 (m, 4H), 1.321 (m, 12H), 0.908-0.874 (t, 6H) 1 H NMR (400 MHz, CDCl 3 ):? 7.668-7.646 (dd, 2H), 7.370-7.255 (m, 4H), 7.115-7.093 (d, 4H), 7.008-6.987 (s, 2H), 2.585-2.546 (t, 4H), 1.642-1.567 (m, 4H), 1.321 (m, 12H), 0.908-0.874

실시예Example 1-3:  1-3: NN 22 ,, NN 66 -- 비스(4-헥실페닐)나프탈렌Bis (4-hexylphenyl) naphthalene -2,6--2,6- 디아민Diamine 제조 Produce

Figure 112017089631436-pat00037
Figure 112017089631436-pat00037

2,6-디히드록시 나프탈렌(500 mg, 3.21 mmol), I2(31 mg, 0.12 mmol)과 4-n-헥실아닐린(1.37 g, 7.73 mmol)을 혼합한 후 190 ℃ 에서 8 시간 동안 가열하였다. 반응 완결 후 실온으로 냉각하고 실리카겔 컬럼으로(전개액: EtOAc/n-Hex=1/5) 정제하여 표제 화합물(86 mg, 수율: 5.6%)을 얻었다(화합물 1c).4-n-hexyl aniline (1.37 g, 7.73 mmol) was mixed with 2,6-dihydroxynaphthalene (500 mg, 3.21 mmol) and I 2 Respectively. After completion of the reaction, the reaction mixture was cooled to room temperature and purified by silica gel column (eluent: EtOAc / n-Hex = 1/5) to obtain the title compound (86 mg, yield: 5.6%).

1H NMR(400 MHz, DMSO): δ 8.054 (s, 2H), 7.564-7.542 (d, 2H), 7.323-7.317 (d, 2H), 7.162-7.135 (dd, 2H), 7.079-7.027 (m, 8H), 2.509-2.473 (m, 4H), 1.556-1.520 (m, 4H), 1.286-1.276 (m, 12H), 0.879-0.845 (t, 6H) 1 H NMR (400 MHz, DMSO ): δ 8.054 (s, 2H), 7.564-7.542 (d, 2H), 7.323-7.317 (d, 2H), 7.162-7.135 (dd, 2H), 7.079-7.027 (m , 8H), 2.509-2.473 (m, 4H), 1.556-1.520 (m, 4H), 1.286-1.276 (m, 12H), 0.879-0.845

실시예Example 1-4:  1-4: NN 1One ,, NN 33 -- 비스(4-헥실페닐)벤젠Bis (4-hexylphenyl) benzene -1,3--1,3- 디아민Diamine 제조 Produce

Figure 112017089631436-pat00038
Figure 112017089631436-pat00038

1,3-디브로모벤젠(0.5 g, 2.1 mmol)을 1,4-다이옥세인에 용해시키고 4-헥실아닐린(0.88 mL, 4.5 mmol), Pd2(dba)3 (0.061 mg, 0.1 mmol), XPhos(0.1 g, 0.21 mmol)과 t-BuONa (0.6 g, 6.4 mmol)을 혼합한 후 100 ℃ 에서 18 시간 동안 가열하였다. 반응 완결 후 실온으로 냉각하고 물을 가하였다. MC로 추출하고 Na2SO4로 건조한 후 농축하고 n-헥산에서 현탁하여 표제 화합물(0.42 g, 수율: 47%)을 얻었다(화합물 1d).Dibromobenzene (0.5 g, 2.1 mmol) was dissolved in 1,4-dioxane and treated with 4-hexyl aniline (0.88 mL, 4.5 mmol), Pd 2 (dba) 3 (0.061 mg, , XPhos (0.1 g, 0.21 mmol) and t-BuONa (0.6 g, 6.4 mmol) were mixed and heated at 100 ° C for 18 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and water was added thereto. The mixture was extracted with MC, dried over Na 2 SO 4 , concentrated, and suspended in n-hexane to obtain the title compound (0.42 g, yield 47%) (compound 1d).

1H NMR(400 MHz, CDCl3): δ 7.100-7.073 (m, 5H), 7.028-7.007 (m, 4H), 6.682-6.672 (t, 1H), 6.560-6.534 (m, 2H), 5.568 (s, 2H), 2.572-2.533 (t, 4H), 1.612-1.576 (m, 4H), 1.322-1.318 (m, 12H), 0.911-0.877 (t, 6H) 1 H NMR (400 MHz, CDCl 3): δ 7.100-7.073 (m, 5H), 7.028-7.007 (m, 4H), 6.682-6.672 (t, 1H), 6.560-6.534 (m, 2H), 5.568 ( s, 2H), 2.572-2.533 (t, 4H), 1.612-1.576 (m, 4H), 1.322-1.318 (m, 12H), 0.911-0.877

실시예Example 1-5:  1-5: NN 1One ,, NN 44 -- 비스(4-헥실페닐)벤젠Bis (4-hexylphenyl) benzene -1,4--1,4- 디아민Diamine 제조 Produce

Figure 112017089631436-pat00039
Figure 112017089631436-pat00039

1,4-디브로모벤젠(0.5 g, 2.1 mmol)을 1,4-다이옥세인에 용해시키고 4-헥실아닐린(0.88 mL, 4.5 mmol), Pd2(dba)3 (0.061 mg, 0.1 mmol), XPhos(0.1 g, 0.21 mmol)과 t-BuONa (0.6 g, 6.4 mmol)을 혼합한 후 100 ℃ 에서 18 시간 동안 가열하였다. 반응 완결 후 실온으로 냉각하고 물을 가하였다. MC로 추출하고 Na2SO4로 건조한 후 농축하고 MeOH에서 현탁하여 표제 화합물(0.68 g, 수율: 75%)을 얻었다(화합물 1e).Dibromobenzene (0.5 g, 2.1 mmol) was dissolved in 1,4-dioxane and treated with 4-hexyl aniline (0.88 mL, 4.5 mmol), Pd 2 (dba) 3 (0.061 mg, , XPhos (0.1 g, 0.21 mmol) and t-BuONa (0.6 g, 6.4 mmol) were mixed and heated at 100 ° C for 18 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and water was added thereto. Extracted with MC, dried over Na 2 SO 4 , concentrated and suspended in MeOH to give the title compound (0.68 g, yield 75%) (Compound 1e).

1H NMR(400 MHz, CDCl3): δ 7.065-7.044 (d, 4H), 7.006 (s, 4H), 6.925-6.905 (d, 2H), 5.464 (s, 2H), 2.555-2.516 (t, 4H), 1.600-1.547 (m, 4H), 1.312-1.308 (m, 12H), 0.905-0.872 (t, 6H)
1 H NMR (400 MHz, CDCl 3): δ 7.065-7.044 (d, 4H), 7.006 (s, 4H), 6.925-6.905 (d, 2H), 5.464 (s, 2H), 2.555-2.516 (t, 4H), 1.300-1.530 (m, 12H), 0.905-0.872 (t, 6H)

비교예Comparative Example 2-1:  2-1: 광활성층Photoactive layer (( 광변환Photoconversion 활성층) 제조 Active layer) manufacture

ITO 기판은 아이소프로필 알코올에서 10 분, 아세톤에서 10 분, 마지막으로 아이소프로필알코올에서 10 분간 세척 후, 건조하여 사용하였다. 건조한 ITO 기판 위에 클로로벤젠 용매(1 mL)에 고분자 PTB7(10 mg)과 각 광안정화제(1 mg)를 녹인 용액을 1500 rpm의 속도로 스핀코팅하였다.The ITO substrate was washed with isopropyl alcohol for 10 minutes, acetone for 10 minutes, finally with isopropyl alcohol for 10 minutes, and dried. A solution of PTB7 (10 mg) and each photostabilizer (1 mg) in a chlorobenzene solvent (1 mL) was spin-coated on a dry ITO substrate at a speed of 1500 rpm.

비교예Comparative Example 2-2:  2-2: 광활성층Photoactive layer 제조 Produce

ITO 기판은 아이소프로필 알코올에서 10 분, 아세톤에서 10 분, 마지막으로 아이소프로필알코올에서 10 분간 세척 후, 건조하여 사용하였다. 건조한 ITO 기판 위에 클로로벤젠과 1,8-다이요오도옥테인(DIO)을 부피비 97 : 3로 혼합한 용매(1 mL)에 고분자 PTB7(10 mg)를 녹인 용액을 제조한 후, 이를 1,500 rpm의 속도로 스핀 코팅하였다.The ITO substrate was washed with isopropyl alcohol for 10 minutes, acetone for 10 minutes, finally with isopropyl alcohol for 10 minutes, and dried. A solution obtained by dissolving PTB7 (10 mg) in a solvent (1 mL) mixed with chlorobenzene and 1,8-diyoiodoctane (DIO) in a volume ratio of 97: 3 was prepared on a dry ITO substrate at a rate of 1,500 rpm Lt; / RTI >

실시예Example 2-1 및 2-2:  2-1 and 2-2: 광활성층Photoactive layer 제조 Produce

ITO 기판은 아이소프로필 알코올에서 10 분, 아세톤에서 10 분, 마지막으로 아이소프로필알코올에서 10 분간 세척 후, 건조하여 사용하였다. 건조한 ITO 기판 위에 클로로벤젠과 1,8-다이요오도옥테인(DIO)을 부피비 97 : 3로 혼합한 용매(1 mL)에 고분자 PTB7(10 mg)과 더불어서 실시예 1-1에서 제조한 1a 화합물 1 mg 또는 실시예 1-1에서 제조한 1c 화합물 1 mg을 각각 녹인 용액을 제조한 후, 이를 1,500 rpm의 속도로 스핀 코팅하였다. 이때, 최종 형성된 광활성층 내에서 분석한 결과에 의하면, 위 DIO는 상기 공액 고분자 100 중량부를 기준으로 하였을 때 각각 모두 약 0.2 중량부 (실시예 2-1 및 실시예 2-2)로 포함됨을 확인하였다.The ITO substrate was washed with isopropyl alcohol for 10 minutes, acetone for 10 minutes, finally with isopropyl alcohol for 10 minutes, and dried. To a solvent (1 mL) having a volume ratio of 97: 3 of chlorobenzene and 1,8-diyoiodoctane (DIO) on a dry ITO substrate was added 100 mg of the polymer compound PTB7 (10 mg) mg or 1 mg of the compound 1c prepared in Example 1-1, respectively, were spin-coated at a rate of 1,500 rpm. As a result of the analysis in the final photoactive layer, it was confirmed that the above DIO was contained as about 0.2 parts by weight (Examples 2-1 and 2-2), based on 100 parts by weight of the conjugated polymer Respectively.

비교예Comparative Example 3-1: ITO/ 3-1: ITO / TiOTiO 22 // PTB7PTB7 :: PCPC 7171 BMBM (1:1.5)/(1: 1.5) / MoOMoO 33 // AgAg 구조의 태양전지 제조 Structure solar cell manufacturing

ITO 기판은 아이소프로필 알코올에서 10 분, 아세톤에서 10 분, 마지막으로 아이소프로필 알코올에서 10 분간 세척 후, 건조하여 사용하였다. 건조한 ITO 기판 위에 TiO2 나노파티클이 담긴 에탄올 용액을 스핀코팅한 후, 60 ℃에서 10 분 동안 건조하였다. 건조된 기판 위에 The ITO substrate was washed with isopropyl alcohol for 10 minutes, acetone for 10 minutes, finally with isopropyl alcohol for 10 minutes, and dried. An ethanol solution containing TiO 2 nanoparticles was spin-coated on a dry ITO substrate and dried at 60 ° C for 10 minutes. On a dried substrate

클로로벤젠과 1,8-다이요오도옥테인(DIO)을 부피비 97 : 3로 혼합한 용매(1 mL)에 고분자 PTB7(10 mg)과 PC71BM(15 mg)이 1 : 1.5 중량비로 제조된 용액을 1500 rpm의 속도로 스핀코팅한 후, 4 nm MoO3 층과 100 nm Ag 전극을 증착하여 태양전지 소자를 완성하였다. 최종 소자 제작 후 반사 방지 필름 투명전극 쪽 바깥 면에 부착하였다.A solution prepared by mixing 1: 1.5 weight ratio polymer PTB7 (10 mg) and PC 71 BM (15 mg) in a solvent (1 mL) mixed with chlorobenzene and 1,8-diyoiodoctane (DIO) in a volume ratio of 97: Was spin-coated at a speed of 1500 rpm, and a 4 nm MoO 3 layer and a 100 nm Ag electrode were deposited to complete the solar cell device. After fabrication of the final device, the antireflective film was attached to the outside of the transparent electrode side.

실시예 3-1: ITO/ TiO 2 / PTB7 : PC 71 BM (1:1.5)+1c(0.1)/ MoO 3 / Ag 구조의 태양전지 제조 Example 3-1: Production of solar cell with ITO / TiO 2 / PTB 7 : PC 71 BM (1: 1.5) + 1c (0.1) / MoO 3 / Ag structure

클로로벤젠과 1,8-다이요오도옥테인(DIO)을 부피비 97 : 3로 혼합한 용매(1 mL)에 고분자 PTB7(10 mg)과 PC71BM(15 mg)이 1 : 1.5 중량비로 제조된 용액을 사용하는 대신, 클로로벤젠과 1,8-다이요오도옥테인을 부피비 97 : 3로 혼합한 용매(1 mL)에 고분자 PTB7(10 mg), PC71BM(15 mg), 및 위 실시예 1-3에서 제조한 화합물 1c가 1 mg 첨가된 용액을 이용하는 것을 제외하고는, 위 비교예 3-1과 동일한 방법으로 구조의 태양전지를 제작하였다.
A solution prepared by mixing 1: 1.5 weight ratio polymer PTB7 (10 mg) and PC 71 BM (15 mg) in a solvent (1 mL) mixed with chlorobenzene and 1,8-diyoiodoctane (DIO) in a volume ratio of 97: (10 mg), PC 71 BM (15 mg), and the compound of Example 1- (1) were added to a solvent (1 mL) mixed with chlorobenzene and 1,8-diiodooxane in a volume ratio of 97: A solar cell having a structure was fabricated in the same manner as in Comparative Example 3-1, except that 1 mg of the compound 1c prepared in Example 3 was added.

비교시험예 1-1과 1-2 및 시험예 1-1과 1-2: 고분자 화합물의 광학적 밴드갭 측정 Comparative Test Examples 1-1 and 1-2 and Test Examples 1-1 and 1-2: Optical bandgap of polymer compound Measure

위 비교예 2-1과 2-2 및 실시예 2-1과 2-2에서 제조한 광성층 필름에 대해서, 분광 광도계(UV-vis spectrometer)를 이용하여 측정하였으며, (i) 흡광도 및 (ii) PTB7 고분자 필름의 광분해 진행(즉, 흡광 스펙트럼 변화)을 시간의 함수로 측정하였다. 위 비교예 2-1, 비교예 2-2, 실시예 2-1, 실시예 2-2에서 제조한 광성층 필름에 대한 결과를 각각 도 1 내지 도 4에 제시하였다.The optical layer films prepared in Comparative Examples 2-1 and 2-2 and 2-2 and 2-2 were measured using a UV-vis spectrometer. ) The progress of photolysis (i.e., change in absorption spectrum) of the PTB7 polymer film was measured as a function of time. The results of the optical layer film prepared in Comparative Example 2-1, Comparative Example 2-2, Example 2-1, and Example 2-2 are shown in Figs. 1 to 4, respectively.

도 1에 나타낸 바와 같이, 전도성 고분자 PTB7은 대략 700 nm에서 가장 큰 흡광을 나타내며, 750 nm까지 빛을 흡수하는 것을 확인하였다. PTB7 필름은 100 mW/cm2 세기의 1-Sun spectrum 빛 조건 하에서 조사 시간이 늘어남에 따라 장파장 쪽(600 내지 750 nm)의 흡수가 급격히 감소함을 발견하였다.As shown in Fig. 1, the conductive polymer PTB7 exhibited the largest absorption at about 700 nm, and it was confirmed that it absorbed light up to 750 nm. PTB7 films found that the absorption at long wavelength (600 to 750 nm) sharply decreases with increasing irradiation time under 1-Sun spectrum light conditions of 100 mW / cm 2 intensity.

도 2에서 보는 것처럼, 광분해 억제제인 DIO만을 첨가한 경우에도 PTB7 필름의 광안정성 증가가 거의 관찰되지 않았다.As shown in FIG. 2, even when DIO, which is a photodecomposition inhibitor, was added, there was almost no increase in the light stability of the PTB7 film.

그러나, 도 3 및 도 4에 제시한 바와 같이, 실시예 1-1과 1-3에서 제조한 광안정화제를 소량(1 중량%) 첨가함으로써(각각 실시예 2-1과 실시예 2-2), 시간에 따른 흡광도 저하가 크게 감소하는 것을 확인하였다.However, as shown in Figs. 3 and 4, by adding a small amount (1 wt%) of the photostabilizer prepared in Examples 1-1 and 1-3 (Examples 2-1 and 2-2, respectively) , And the decrease in absorbance with time was significantly reduced.

또한, 본 발명에 명시적으로 비교 실험 결과를 제시하지는 않았지만, 화합물 1a과 1c는 화합물 1b와 1d 및 1e에 비해서도 광안정화 효과가 우수함을 확인하였다.In addition, although the results of the comparative experiment are not explicitly disclosed in the present invention, the compounds 1a and 1c are superior to the compounds 1b, 1d and 1e in photostabilizing effect.

따라서, 이러한 전도성 고분자의 광안정성을 증대시키는 첨가제는 유기 태양전지의 신뢰성 향상을 위해 유용하게 쓰일 것이며, 유기 광센서(OPD), 유기발광다이오드(OLED), 유기박막트랜지스터(OTFT) 중에서 선택되는 어느 하나의 광전자소자용 재료로도 유용하게 사용될 수 있다.
Therefore, the additive for enhancing the light stability of such a conductive polymer will be useful for improving the reliability of the organic solar cell, and the additive selected from organic optical sensors (OPD), organic light emitting diodes (OLED) It can be also useful as a material for one optoelectronic device.

비교시험예Comparative test example 2-1 및  2-1 and 시험예Test Example 2-1: 고분자 유기 태양전지의 특성 평가 2-1: Characterization of polymer organic solar cell

위 비교예 3-1 및 실시예 3-1에서 제조된 유기 태양전지 소자에 대하여, 100 mW/cm2 세기의 태양광 하에서 시간에 따른 측정 값 및 아래 수학식 1과 수학식 2을 이용하여, 필 팩터와 에너지 전환 효율을 구하였으며, 도 6에 에너지 전환 효율(광전 변환 효율)의 변화 추이를 제시하였다.With respect to the organic solar cell elements prepared in Comparative Examples 3-1 and 3-1, the measured values with time under the sunlight of 100 mW / cm 2 intensity and the following equations (1) and (2) The fill factor and the energy conversion efficiency were obtained, and FIG. 6 shows a trend of the energy conversion efficiency (photoelectric conversion efficiency).

도 6에 제시한 바와 같이, 위 비교예 3-1과 실시예 3-1에서 제조한 태양전지 소자는 초기 광전 변환 효율이 각각 6.52%과 6.18%로 비슷한 값을 보이고 있다. 다만, 광전 변환 효율의 추이를 살펴보면, 위 실시예 3-1에서 제조한 태양전지 소자가 비교예 3-1에 비하여 초기 효율을 유지하는 정도가 크게 향상되었음을 보여준다.As shown in FIG. 6, the initial photoelectric conversion efficiencies of the solar cell devices manufactured in Comparative Examples 3-1 and 3-1 were 6.52% and 6.18%, respectively. However, the change of the photoelectric conversion efficiency shows that the solar cell device manufactured in Example 3-1 has greatly improved the efficiency of maintaining the initial efficiency as compared with Comparative Example 3-1.

[수학식 1][Equation 1]

Figure 112017089631436-pat00040
Figure 112017089631436-pat00040

상기에서, Vmp는 최대 전력점에서 전압값이고, Imp는 최대 전력점에서의 전류 값이며, Voc는 광개방 전압이고, Isc는 광 단락 전류이다.V mp is the voltage value at the maximum power point, I mp is the current value at the maximum power point, V oc is the optical open-circuit voltage, and I sc is the optical short-circuit current.

[수학식 2]&Quot; (2) "

Figure 112017089631436-pat00041
Figure 112017089631436-pat00041

상기에서, Jsc는 광 단락 전류밀도이고, Voc는 광개방 전압이다.In the above, J sc is the optical short-circuit current density and V oc is the optical open-circuit voltage.

이러한 결과는 본 발명의 광안정성 향상 첨가제가 유기 태양전지용으로 적합하고, 특히 유기 태양전지의 광안정성이 높아졌음을 확인하는 결과이다. 따라서, 상기에서 살펴본 바와 같이 본 발명에 따른 광안정화제는 전도성 고분자를 이용하는 유기 태양전지 소자의 안정성 향상제로 유용하게 사용될 수 있을 뿐만 아니라, 전도성 공액 분자를 기반으로 하는 유기 광센서(OPD), 유기 박막트랜지스터(OTFT), 유기 발광다이오드(OLED), 유기 태양전지 등의 분야에 적용할 수 있는 유기 광전자소자용 재료로도 유용하게 사용될 수 있다.These results confirm that the photostability-enhancing additive of the present invention is suitable for organic solar cells, and that the photostability of organic solar cells is particularly improved. Accordingly, as described above, the photostabilizer according to the present invention can be effectively used as a stability improver for an organic solar cell device using a conductive polymer, as well as an organic optical sensor (OPD) based on conductive conjugated molecules, But also as a material for organic optoelectronic devices that can be applied to fields such as transistors (OTFTs), organic light emitting diodes (OLED), and organic solar cells.

Claims (12)

하기 화학식 1의 구조를 가지는 광안정화제:
[화학식 1]
R1-Ar1-NH-Ar2-NH-Ar3-R2
상기 Ar1과 상기 Ar3
Figure 112017089631436-pat00042
이고, 상기 Ar2
Figure 112017089631436-pat00043
또는
Figure 112017089631436-pat00044
이며,
상기 R1과 R2는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 중에서 선택된 1종인 것을 특징으로 하는 광안정화제.
A photostabilizer having a structure represented by the following formula (1):
[Chemical Formula 1]
R 1 -Ar 1 -NH-Ar 2 -NH-Ar 3 -R 2
It said Ar 1 and said Ar 3 is
Figure 112017089631436-pat00042
, And Ar < 2 >
Figure 112017089631436-pat00043
or
Figure 112017089631436-pat00044
Lt;
Wherein R 1 and R 2 are the same or different from each other and each independently represents a linear or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a linear or branched C 1 -C 7 alkoxy group, C 8 -C 20 alkoxy light stabilizer, characterized in that one member selected from the group.
제1항에 있어서, 상기 R1과 상기 R2는 서로 동일한 것을 특징으로 하는 광안정화제.The photostabilizer according to claim 1, wherein R 1 and R 2 are the same. 제1항에 있어서, 상기 R1과 상기 R2는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기인 것을 특징으로 하는 광안정화제.The photostabilizer of claim 1, wherein R 1 and R 2 are the same or different from each other, and each independently is a linear or branched C 1 -C 7 alkyl group. 제1항에 있어서, 상기 R1과 상기 R2는 서로 동일한 직쇄 또는 측쇄 C1-C7 알킬기인 것을 특징으로 하는 광안정화제.The photostabilizer of claim 1, wherein R 1 and R 2 are the same linear or branched C 1 -C 7 alkyl group. 제1항에 있어서, 상기 R1과 상기 R2는 헥실인 것을 특징으로 하는 광안정화제.The photostabilizer of claim 1, wherein R 1 and R 2 are hexyl. 제1항에 있어서, 상기 광안정화제는 하기 화학식 중 하나의 구조를 가지는 것을 특징으로 하는 광안정화제:
Figure 112017089631436-pat00045
Figure 112017089631436-pat00046
.
The photostabilizer according to claim 1, wherein the photostabilizer has one of the following structures:
Figure 112017089631436-pat00045
Figure 112017089631436-pat00046
.
공액 고분자 및 제1항 내지 제6항 중 어느 한 항에 따른 광안정화제를 포함하는 광활성층.A photoactive layer comprising a conjugated polymer and a photostabilizer according to any one of claims 1 to 6. 제7항에 있어서, 상기 광안정화제는 상기 공액 고분자 중량을 기준으로 0.1 내지 5 중량%로 포함되는 것을 특징으로 하는 광활성층.The photoactive layer according to claim 7, wherein the photostabilizer is contained in an amount of 0.1 to 5 wt% based on the weight of the conjugated polymer. 제7항에 있어서, 상기 광활성층은 광분해 억제제를 추가로 포함하는 것을 특징으로 하는 광활성층.8. The photoactive layer of claim 7, wherein the photoactive layer further comprises a photodegradation inhibitor. 제9항에 있어서, 상기 광분해 억제제는 1,8-다이아오도옥테인, 1,6-다이아오도헥세인, 1-클로로나프탈렌, 1,8-옥테인다이싸이올 및 이들 2종 이상의 혼합물 중에서 선택되는 것을 특징으로 하는 광활성층.The photocatalyst according to claim 9, wherein the photocatalytic decomposition inhibitor is selected from 1,8-diiodooxethane, 1,6-diiodohexane, 1-chloronaphthalene, 1,8-octane dithiol and mixtures of two or more thereof Lt; / RTI > 제9항에 있어서, 상기 광분해 억제제는 상기 공액 고분자의 중량을 기준으로 0.1 내지 0.3 중량%로 포함되는 것을 특징으로 하는 광활성층.10. The photoactive layer according to claim 9, wherein the photo-decomposition inhibitor is contained in an amount of 0.1 to 0.3% by weight based on the weight of the conjugated polymer. 제1항 내지 제6항 중 어느 한 항에 따른 광안정화제를 포함하는 광전자 소자로서,
상기 광전자 소자는 유기 태양전지, 유기 광센서, 유기 발광다이오드, 유기 박막 트랜지스터 중에서 선택되는 광전자 소자.
7. An optoelectronic device comprising a photostabilizer according to any one of claims 1 to 6,
Wherein the optoelectronic device is selected from an organic solar cell, an organic light sensor, an organic light emitting diode, and an organic thin film transistor.
KR1020170118074A 2017-09-14 2017-09-14 Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof KR101807284B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170118074A KR101807284B1 (en) 2017-09-14 2017-09-14 Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170118074A KR101807284B1 (en) 2017-09-14 2017-09-14 Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140124089A Division KR20160033392A (en) 2014-09-18 2014-09-18 Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof

Publications (2)

Publication Number Publication Date
KR20170106641A KR20170106641A (en) 2017-09-21
KR101807284B1 true KR101807284B1 (en) 2018-01-18

Family

ID=60034637

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170118074A KR101807284B1 (en) 2017-09-14 2017-09-14 Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof

Country Status (1)

Country Link
KR (1) KR101807284B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080392A (en) 2020-12-07 2022-06-14 한국화학연구원 Method for enhancing light stability of conjugated polymer and conjugated polymer with high light stability prepared using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220159906A (en) 2021-05-25 2022-12-05 주식회사 클랩 Organic electronic device with improved stability and method of preparation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026084A (en) 2003-07-02 2005-01-27 Mitsubishi Chemicals Corp Organic electroluminescent element and manufacturing method of the same
JP2013256655A (en) 2012-05-16 2013-12-26 Sumitomo Chemical Co Ltd Polymer compound and light emitting element using the same
JP2014088559A (en) 2007-10-31 2014-05-15 Merck Patent Gmbh Processing additive for manufacturing organic photovoltaic cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026084A (en) 2003-07-02 2005-01-27 Mitsubishi Chemicals Corp Organic electroluminescent element and manufacturing method of the same
JP2014088559A (en) 2007-10-31 2014-05-15 Merck Patent Gmbh Processing additive for manufacturing organic photovoltaic cell
JP2013256655A (en) 2012-05-16 2013-12-26 Sumitomo Chemical Co Ltd Polymer compound and light emitting element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080392A (en) 2020-12-07 2022-06-14 한국화학연구원 Method for enhancing light stability of conjugated polymer and conjugated polymer with high light stability prepared using the same

Also Published As

Publication number Publication date
KR20170106641A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
Yao et al. Conformational and compositional tuning of phenanthrocarbazole-based dopant-free hole-transport polymers boosting the performance of perovskite solar cells
Lin et al. New helicene-type hole-transporting molecules for high-performance and durable perovskite solar cells
Sun et al. Understanding the halogenation effects in diketopyrrolopyrrole-based small molecule photovoltaics
Liu et al. A simple carbazole-triphenylamine hole transport material for perovskite solar cells
Chen et al. Tetraphenylbutadiene-based symmetric 3D hole-transporting materials for perovskite solar cells: a trial trade-off between charge mobility and film morphology
Xu et al. N, N-Di-Para-Methylthiophenylamine-Substituted (2-Ethylhexyl)-9 H-Carbazole: A Simple, Dopant-Free Hole-Transporting Material for Planar Perovskite Solar Cells
KR102385317B1 (en) Three component copolymers for semiconductor, Preparation method thereof and Organic semiconductor device comprising the same
KR20160033392A (en) Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof
CN107793435B (en) Conjugated organic small molecule solar cell receptor material compound and preparation method and application thereof
Jiang et al. Charge transfer in cross conjugated 4, 8-dithienylbenzo [1, 2-b: 4, 5-b′] dithiophene based organic sensitizers
Cheon et al. DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices
KR101807284B1 (en) Light stabilizer, organic photovoltaic cell comprising the same, and the preparation method thereof
KR101484007B1 (en) new organic semiconductor compound and a method for manufacturing the same
JP2021113184A (en) Non-fullerene acceptor compound containing benzoselenadiazole, and organic optoelectronic device including the same
KR20130027284A (en) Manufacuring method of fullerene derivatives, fullerene derivatives made by the same, and organic photovoltaic device containing the same
Jia et al. New D–π–A dyes incorporating dithieno [3, 2-b: 2′, 3′-d] pyrrole (DTP)-based π-spacers for efficient dye-sensitized solar cells
Yu et al. Effect of Alkyl Side Chains of Polymer Donors on Photovoltaic Performance of All-Polymer Solar Cells
KR101758061B1 (en) organic semiconductor compound, process for producing the organic semiconductor compound and organic solar cells using the Same
Luo et al. A Multifunctional Fluorinated Polymer Enabling Efficient MAPbI3-Based Inverted Perovskite Solar Cells
Li et al. Diindolotriazatruxene-based hole-transporting materials for high-efficiency planar perovskite solar cells
KR101514207B1 (en) Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
Xia et al. Isomeric imidazole functionalized bithiophene-based hole transporting materials for stable perovskite solar cells
KR20080109318A (en) Fullerene derivatives and its use for organic photovoltaic cells
Kumavat et al. Synthesis of D–D–A-type small organic molecules with an enlarged linker system towards organic solar cells and the effect of co-adsorbents on cell performance
CN109354674B (en) Semi-fluoroalkyl dovetail side chain substituted naphthalene diimide-based copolymer, preparation method and application thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant