KR20080109318A - Fullerene derivatives and its use for organic photovoltaic cells - Google Patents

Fullerene derivatives and its use for organic photovoltaic cells Download PDF

Info

Publication number
KR20080109318A
KR20080109318A KR1020070057488A KR20070057488A KR20080109318A KR 20080109318 A KR20080109318 A KR 20080109318A KR 1020070057488 A KR1020070057488 A KR 1020070057488A KR 20070057488 A KR20070057488 A KR 20070057488A KR 20080109318 A KR20080109318 A KR 20080109318A
Authority
KR
South Korea
Prior art keywords
alkyl
aryl
organic
fullerene
integer
Prior art date
Application number
KR1020070057488A
Other languages
Korean (ko)
Other versions
KR100907752B1 (en
Inventor
윤성철
이학성
임종선
김동욱
이창진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020070057488A priority Critical patent/KR100907752B1/en
Publication of KR20080109318A publication Critical patent/KR20080109318A/en
Application granted granted Critical
Publication of KR100907752B1 publication Critical patent/KR100907752B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

A material having a property of an excellent n-type of organic semiconductor is provided to have an excellent electron mobility at a thin film state and to supply an effective photoelectric conversion element. A fullerene compound substituted as 1,3-diketone derivative is represented by a formula 1. In the formula 1; R1 and R2 are independently a hydrogen atom, a saturation (C1-C30) alkyl or an unsaturation (C1-C30) alkyl, (C6-C30)aryl or (C4-C30)heteroaryl; alkyl, aryl or heteroaryl are one or more selected from a saturation (C1-C30) alkyl or an unsaturation (C1-C30) alkyl, (C1-C30) alkoxy, (C6-C30)aryl, (C6-C30)are(C1-C30) alkyl, (C1-C30)alkyl(C6-C30)aryl, (C6-C30)are(C1-C30)alkoxy, (C4-C30)heteroaryl, (C3-C30)cycloalkyl, hydroxy, carboxylic acid, amino, mono or di (C1-C30)alkyl amino, (C1-C30)alkylcarbonyl, (C1-C30)alkoxycarbonyl, benzoyl, phenoxy, and cyano.

Description

신규 플러렌 유도체 및 이를 이용한 유기태양전지 소자{Fullerene derivatives and its use for Organic Photovoltaic Cells}New fullerene derivative and organic solar cell device using same {Fullerene derivatives and its use for Organic Photovoltaic Cells}

도 1은 본 발명에 따른 1,3-디케톤 유도체가 치환된 플러렌 화합물을 이용한 유기태양전지의 모식도를 나타낸 것이다.1 shows a schematic diagram of an organic solar cell using a fullerene compound substituted with a 1,3-diketone derivative according to the present invention.

도 2는 제조예 1에서 제조된 1,3-디케톤 유도체가 치환된 플러렌 화합물(화합물 1: mC60-1)의 UV 흡수 스펙트럼을 나타낸 것이다.Figure 2 shows the UV absorption spectrum of the fullerene compound (Compound 1: mC60-1) substituted with the 1,3-diketone derivative prepared in Preparation Example 1.

도 3은 제조예 1에서 제조된 1,3-디케톤 유도체가 하나 치환된 플러렌 화합물(화합물 1: mC60-1)과 PCBM의 CV를 통한 전기화학적 특성을 비교한 것이다.Figure 3 is a comparison of the electrochemical characteristics through the CV of the PCBM with a fullerene compound (Compound 1: mC60-1) substituted with one 1,3-diketone derivative prepared in Preparation Example 1.

도 4는 제조예 1에서 제조된 1,3-디케톤 유도체가 하나 치환된 플러렌 화합물(화합물 1: mC60-1)과 P3HT를 이용한 소자의 annealing 시간별 전류-전압 곡선의 변화를 나타낸다.Figure 4 shows the change in the current-voltage curve of the device annealing time using the fullerene compound (Compound 1: mC60-1) and P3HT substituted with one 1,3-diketone derivative prepared in Preparation Example 1.

도 5는 제조예 1에서 제조된 1,3-디케톤 유도체가 하나 치환된 플러렌 화합물(화합물 1: mC60-1)과 P3HT를 이용한 소자의 annealing 시간별 Fill Factor의 변화를 나타낸다.FIG. 5 shows the change of the Fill Factor according to the annealing time of the device using a fullerene compound (Compound 1: mC60-1) substituted with one 1,3-diketone derivative prepared in Preparation Example 1 and P3HT.

도 6은 제조예 1에서 제조된 1,3-디케톤 유도체가 하나 치환된 플러렌 화합물(화합물 1: mC60-1)과 P3HT를 이용한 소자의 annealing 시간별 에너지변환효율의 변화를 나타낸다.FIG. 6 shows a change in energy conversion efficiency of annealing device according to annealing time using a fullerene compound (Compound 1: mC60-1) substituted with one 1,3-diketone derivative prepared in Preparation Example 1 and P3HT.

본 발명은 신규한 1,3-디케톤 유도체가 치환된 플러렌(fullerene) 화합물 및 이를 포함하는 유기전자소자에 관한 것이다.The present invention relates to a fullerene compound substituted with a novel 1,3-diketone derivative and an organic electronic device including the same.

지난 25 년여 동안 단분자, 고분자를 이용한 유기반도체 재료들은 비약적인 발전을 거듭하여 왔다. 기존의 무기물을 이용한 반도체 재료들은 우수한 특성과 신뢰성을 확보하고 있지만, 제조공정상 고가의 비용이 드는 단점과 고온 등의 극심한 조건으로 인해 점점 그 역할을 유기 반도체 재료 쪽으로 이양하고 있는 게 사실이다. 유기 반도체 재료들은 무기 반도체 재료와 비교하여 제조공정이 단순하고 소자제작시 저가공정이 가능하며, 유기물의 특성상 간단한 구조의 변경을 통해 보다 우수한 특성을 발현하는 재료의 개발이 용이하다는 데서 그 원인을 찾을 수 있다.For the past 25 years, organic semiconductor materials using single molecules and polymers have made rapid progress. Conventional semiconductor materials using inorganic materials have excellent characteristics and reliability, but due to the costly disadvantages of the manufacturing process and extreme conditions such as high temperature, the role is gradually transferred to organic semiconductor materials. Compared with inorganic semiconductor materials, organic semiconductor materials are simpler in manufacturing process and lower cost process in device manufacturing, and due to the characteristics of organic materials, it is easy to develop materials that express superior characteristics through simple structure change. Can be.

통상의 유기반도체 재료는 정공과 전자의 이동도면에서 큰 차이를 보이는데, 대부분의 경우 정공의 이동도가 전자의 이동도에 비해 적게는 10배에서 많게는 1000배정도 빠른 것으로 보고되어 있다. 그러므로, OTFT 등의 채널 (channel) 재료로 이용되는 유기반도체 및 유기태양전지 (Organic Photovoltaic Cells)의 acceptor 재료들 중에서 전자이동을 이용한 n-형 재료에 대한 결과는 상대적으로 적은 연구결과들이 보고되고 있다. 대표적인 n-형 유기반도체 재료로는 하기의 구조를 갖는 재료들이 있다.Conventional organic semiconductor materials show a big difference in the mobility of holes and electrons. In most cases, the mobility of holes is reported to be 10 to 1000 times faster than electron mobility. Therefore, relatively few studies have been reported on n -type materials using electron transfer among acceptor materials of organic semiconductors and organic photovoltaic cells used as channel materials such as OTFT. . Representative n -type organic semiconductor materials include materials having the following structure.

Figure 112007042566240-PAT00002
Figure 112007042566240-PAT00002

1995년 Fred Wudl 그룹에서는 1995년 PCBM으로 잘 알려진 메타노플러렌 (methanofullerene) 유도체인 {6}-1-(3-(메톡시카보닐)프로필)-{5}-1-페닐[5,6]C61 ({6}-l-(3-(Methoxycarbonyl)propyl)-{5}-l-phenyl[5,6]C61)를 보고하였다. (J. Org. Chem ., 1995, 60, 532). 이 PCBM은 MEH-PPV, MDMO-PPV 및 P3HT 등의 고분자 도너 (donor, 전자주게) 재료들과의 혼합을 통해 유기태양전지로 활용될 수 있는데, 초기에는 PPV 유도체와 1:3 정도의 혼합비로 소자화되었으며, 최근 들어 PCBM은 P3HT와의 혼합을 통해 제작된 소자를 고온에서 annealing하거나 유기박막 생성시 용매의 증발속도를 조절함을 통하여 약 5%정도의 높은 에너지 변환 효율을 보여준다. 하지만, 최근 대부분의 연구결과들이 P3HT와 PCBM 재료만을 이용한 것이어서 2%대에서 5%대로 에너지변환효율의 향상은 이루어졌지만, 보다 높은 수준의 에너지 변환 효율이 요구된다고 하겠다. In 1995, Fred Wudl Group used {6} -1- (3- (methoxycarbonyl) propyl)-{5} -1-phenyl [5,6], a metafullerene derivative known as PCBM in 1995. C61 ({6} -l- (3- (Methoxycarbonyl) propyl)-{5} -l-phenyl [5,6] C61) was reported. ( J. Org. Chem . , 1995 , 60 , 532). The PCBM can be used as an organic solar cell by mixing with polymer donor materials such as MEH-PPV, MDMO-PPV and P3HT. In recent years, PCBM shows high energy conversion efficiency of about 5% through annealing of devices manufactured by mixing with P3HT at high temperature or controlling evaporation rate of solvent when organic thin film is formed. However, most of the recent research results are using only P3HT and PCBM materials, but the energy conversion efficiency has been improved from 2% to 5%, but a higher level of energy conversion efficiency is required.

한편, 플러렌 화합물은 탄소수 6개인 고리의 연결부위에 부가반응을 하는 것으로 알려져 있어서 [6,6]-이성질체가 주로 생성되는 것으로 알려져 있었다 [A. Hirsch, I.Lamparth, and H. R. Karfunkel, Angew. Chem . Ink . Ed . Engl . 33, 437 (1994), C. Bingel, Chem . Ber . 126, 1957 (1993)].On the other hand, it is known that the fullerene compound reacts additionally at the linking position of the ring having 6 carbon atoms, so that the [6,6] -isomer is mainly produced [A. Hirsch, I. Lamparth, and HR Karfunkel, Angew. Chem . Ink . Ed . Engl . 33 , 437 (1994), C. Bingel, Chem . Ber . 126 , 1957 (1993).

이에, 본 발명자들은 상기 문제점을 해결하기 위하여 연구한 결과, 플러렌에 1,3-디케톤 유도체를 도입함으로써, 용해도를 일부 개선하고, 전기화학적으로 전자의 이동도를 증대시킬 수 있는 신규 n-형 유기반도체 화합물을 새로이 밝혀내어, 유기 태양전지 (organic photovoltaic), 유기 박막 트랜지스터 (OTFT) 및 유기메모리 등의 활성 성분으로서의 용도에 적용함으로써 본 발명을 완성하게 되었다. Therefore, the present inventors have studied to solve the above problems, by introducing a 1,3-diketone derivative into the fullerene, a new n -type that can improve the solubility and electrochemically increase the mobility of electrons in part The present invention has been completed by newly discovering an organic semiconductor compound and applying it to an active component such as an organic photovoltaic, an organic thin film transistor (OTFT), and an organic memory.

따라서, 본 발명은 신규한 1,3-디케톤 유도체가 치환된 플러렌 화합물을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a fullerene compound substituted with a novel 1,3-diketone derivative.

또한, 본 발명은 플러렌 화합물에 1,3-디케톤 유도체를 도입함으로써, 박막상태에서 보다 우수한 전자이동도를 가지게 되어 우수한 n-형 유기반도체의 특성을 가질 수 있는 재료를 제공하는 데 그 목적이 있다.In addition, the present invention by introducing a 1,3-diketone derivative to the fullerene compound, to have a more excellent electron mobility in the thin film state to provide a material that can have excellent properties of n- type organic semiconductor have.

또한, 본 발명은 일반적인 도너(donor) 즉 전자주게 재료와의 조합을 통해 높은 에너지 전환효율을 갖는 유기태양전지용 억셉터(acceptor), 즉 전자받게 소재를 제공하는데 또 다른 목적이 있다.In addition, another object of the present invention is to provide an acceptor for an organic solar cell, that is, an electron acceptor material, having a high energy conversion efficiency through a combination with a general donor, that is, an electron donor material.

본 발명은 하기 화학식 1로 표시되는 신규한 플러렌 화합물 및 이를 포함하는 유기전자소자에 관한 것으로, 더욱 상세하게는 상기 플러렌 화합물은 1,3-디케톤 유도체가 치환되어 있는 것을 특징으로 한다.The present invention relates to a novel fullerene compound represented by the following Chemical Formula 1 and an organic electronic device including the same, and more particularly, the fullerene compound is characterized in that a 1,3-diketone derivative is substituted.

[화학식 1][Formula 1]

Figure 112007042566240-PAT00003
Figure 112007042566240-PAT00003

[상기 식에서,[Wherein,

R1 및 R2는 서로 독립적으로 수소원자, 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C6-C30)아릴 또는 (C4-C30)헤테로아릴이고, 상기 알킬, 아릴 또는 헤테로아릴은 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C1-C30)알콕시, (C6-C30)아릴, (C6-C30)아르(C1-C30)알킬, (C1-C30)알킬(C6-C30)아릴, (C6-C30)아르(C1-C30)알콕시, (C4-C30)헤테로아릴, (C3-C30)시클로알킬, 산소, 질소 또는 황을 헤테로고리 안에 포함하는 3원 내지 7원의 포화 또는 불포화 헤테로시클로알킬, 히드록시, 카르복실산, 아미노, 모노 또는 디 (C1-C30)알킬아미노, (C1-C30)알킬카보닐, (C1-C30)알콕시카 보닐, 벤조일, 페녹시, 시아노 또는 니트로로터 선택된 하나 이상의 치환기로 더 치환될 수 있으며; R 1 and R 2 independently of one another are a hydrogen atom, a straight or branched saturated or unsaturated (C 1 -C 30 ) alkyl, (C 6 -C 30 ) aryl or (C 4 -C 30 ) heteroaryl, the alkyl , Aryl or heteroaryl is straight or branched saturated or unsaturated (C 1 -C 30 ) alkyl, (C 1 -C 30 ) alkoxy, (C 6 -C 30 ) aryl, (C 6 -C 30 ) 1 -C 30 ) alkyl, (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkoxy, (C 4 -C 30 ) heteroaryl , 3- to 7-membered saturated or unsaturated heterocycloalkyl, hydroxy, carboxylic acid, amino, mono or di (C 1 -C) containing (C 3 -C 30 ) cycloalkyl, oxygen, nitrogen or sulfur in the heterocycle -C 30 ) alkylamino, (C 1 -C 30 ) alkylcarbonyl, (C 1 -C 30 ) alkoxycarbonyl, benzoyl, phenoxy, cyano or nitro rotor may be further substituted with one or more substituents selected from;

A는 플러렌 (fullerene) 유도체로서 C60, C72, C76, C78 또는 C84로부터 선택되며;A is selected from C60, C72, C76, C78 or C84 as a fullerene derivative;

n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]

상기 (C6-C30)아릴의 구체적인 예로서는 페닐, 나프틸, 비페닐, 테트라히드로나프틸, 인다닐(indanyl), 플루오레닐, 페난트레닐, 안트라세닐, 트라이페닐레닐, 피레닐, 크라이세닐, 나프타세닐과 같은 방향족 그룹을 포함한다.Specific examples of the (C 6 -C 30 ) aryl include phenyl, naphthyl, biphenyl, tetrahydronaphthyl, indanyl, fluorenyl, phenanthrenyl, anthracenyl, triphenylenyl, pyrenyl, cry Aromatic groups such as cenyl, naphthacenyl.

상기 (C4-C30)헤테로아릴은 방향족 고리 골격 원자로서 N, O, P 또는 S 중에서 선택된 1 내지 3개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미한다. 상기 헤테로아릴은 고리내 헤테로원자가 산화되거나 사원화되어, 예를 들어 N-옥사이드 또는 4차 염을 형성하는 2가 아릴 그룹을 포함한다. 대표적인 예로는 퓨릴, 피란일, 아이소벤조퓨란일, 피롤릴, 이미다졸릴, 피라졸릴, 아이소티아졸릴, 아이속사졸릴, 테트라졸릴, 피리딜, 피라진일, 피리미딘일, 피리다진일, 인돌리진일, 아이소인돌릴, 인돌릴, 인다졸릴, 퀴놀리진일, 아이소퀴놀릴, 퀴놀릴, 카바졸릴, 페난트리딘일 및 이들의 상응하는 N-옥사이드 (예를 들어, 피리딜 N-옥사이드, 퀴놀릴 N-옥사이드), 이들의 4차 염 등을 포함하지만, 이에 한정되지 않는다.The (C 4 -C 30 ) heteroaryl means an aryl group containing 1 to 3 heteroatoms selected from N, O, P or S as an aromatic ring skeleton atom, and the remaining aromatic ring skeleton atoms are carbon. The heteroaryl includes divalent aryl groups in which heteroatoms in the ring are oxidized or quaternized to form, for example, N -oxides or quaternary salts. Representative examples include furyl, pyranyl, isobenzofuranyl, pyrrolyl, imidazolyl, pyrazolyl, isothiazolyl, isoxazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizine 1, isoindolyl, indolyl, indazolyl, quinolizinyl, isoquinolyl, quinolyl, carbazolyl, phenantridinyl and their corresponding N -oxides (eg, pyridyl N -oxides, quinolyl N -oxides), quaternary salts thereof, and the like, but is not limited thereto.

상기 R1 및 R2의 아릴 또는 헤테로아릴은 단일고리 또는 융합고리로서, 각 고리에 대하여 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C1-C30)알콕시, (C6-C30)아릴, (C6-C30)아르(C1-C30)알킬, (C1-C30)알킬(C6-C30)아릴, (C6-C30)아르(C1-C30)알콕시, (C4-C30)헤테로아릴, (C3-C30)시클로알킬, 산소, 질소 또는 황을 헤테로고리 안에 포함하는 3원 내지 7원의 포화 또는 불포화 헤테로시클로알킬, 히드록시, 카르복실산, 아미노, 모노 또는 디 (C1-C30)알킬아미노, (C1-C30)알킬카보닐, (C1-C30)알콕시카보닐, 벤조일, 페녹시, 시아노 또는 니트로로터 선택된 하나 이상의 치환기가 치환될 수 있으며, 구체적으로는 하기의 아릴 또는 헤테로아릴 화합물로서 예시될 수 있으나, 하기의 아릴 또는 헤테로아릴 화합물이 본 발명의 범위를 한정하는 것은 아니다.The aryl or heteroaryl of R 1 and R 2 is a monocyclic or fused ring, for each ring, straight or branched, saturated or unsaturated (C 1 -C 30 ) alkyl, (C 1 -C 30 ) alkoxy, (C 6- C 30 ) aryl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkyl, (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl, (C 6 -C 30 ) ar ( C 1 -C 30 ) alkoxy, (C 4 -C 30 ) heteroaryl, (C 3 -C 30 ) cycloalkyl, oxygen, nitrogen or sulfur, containing from 3 to 7 membered saturated or unsaturated heterocyclo Alkyl, hydroxy, carboxylic acid, amino, mono or di (C 1 -C 30 ) alkylamino, (C 1 -C 30 ) alkylcarbonyl, (C 1 -C 30 ) alkoxycarbonyl, benzoyl, phenoxy One or more substituents selected from cyano or nitro rotor may be substituted, and specifically, may be exemplified as the following aryl or heteroaryl compound, but the following aryl or heteroaryl compound limits the scope of the present invention. It is not.

Figure 112007042566240-PAT00004
Figure 112007042566240-PAT00004

[상기 식에서, X, Y 및 Z는 서로 독립적으로 수소, 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C6-C30)아르(C1-C30)알킬 또는 (C1-C30)알킬(C6-C30)아릴이고; m은 1 내지 5의 정수이고; p는 1 내지 3의 정수이고; q는 1 내지 4의 정수이 고; r은 1 내지 3의 정수이고; s는 1 또는 2의 정수이고; t는 1 내지 3의 정수이다.][Wherein X, Y and Z independently of one another are hydrogen, linear or branched saturated or unsaturated (C 1 -C 30 ) alkyl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkyl or (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl; m is an integer from 1 to 5; p is an integer from 1 to 3; q is an integer from 1 to 4; r is an integer from 1 to 3; s is an integer of 1 or 2; t is an integer of 1 to 3.]

본 발명에 따른 1,3-디케톤 유도체가 치환된 플러렌 화합물은 [5,6]이성체 및 [6,6]이성체를 포함하며, 구체적으로는 하기의 화합물로서 예시될 수 있으나, 하기의 화합물이 본 발명의 범위를 한정하는 것은 아니다.The fullerene compound substituted with the 1,3-diketone derivative according to the present invention includes the [5,6] isomer and the [6,6] isomer, and specifically, may be exemplified as the following compound. It does not limit the scope of the invention.

Figure 112007042566240-PAT00005
Figure 112007042566240-PAT00005

Figure 112007042566240-PAT00006
Figure 112007042566240-PAT00006

Figure 112007042566240-PAT00007
Figure 112007042566240-PAT00007

Figure 112007042566240-PAT00008
Figure 112007042566240-PAT00008

Figure 112007042566240-PAT00009
Figure 112007042566240-PAT00009

Figure 112007042566240-PAT00010
Figure 112007042566240-PAT00010

Figure 112007042566240-PAT00011
Figure 112007042566240-PAT00011

Figure 112007042566240-PAT00012
Figure 112007042566240-PAT00012

Figure 112007042566240-PAT00013
Figure 112007042566240-PAT00013

Figure 112007042566240-PAT00014
Figure 112007042566240-PAT00014

Figure 112007042566240-PAT00015
Figure 112007042566240-PAT00015

Figure 112007042566240-PAT00016
Figure 112007042566240-PAT00016

Figure 112007042566240-PAT00017
Figure 112007042566240-PAT00017

Figure 112007042566240-PAT00018
Figure 112007042566240-PAT00018

Figure 112007042566240-PAT00019
Figure 112007042566240-PAT00019

Figure 112007042566240-PAT00020
Figure 112007042566240-PAT00020

Figure 112007042566240-PAT00021
Figure 112007042566240-PAT00021

Figure 112007042566240-PAT00022
Figure 112007042566240-PAT00022

본 발명에 따른 상기 화학식 1의 1,3-디케톤 유도체가 치환된 플러렌 화합물의 제조방법을 하기 반응식 1에 C60의 플러렌을 예를 들어 도시하였으며, 하기 반응식 1에 도시된 바와 같이, 1,3-디케톤 유도체를 사브롬화탄소(CBr4)를 이용해 브롬화반응을 시킨 후, 1,8-디아자비사이클로[5.4.0]운데-7-센(DBU) 존재하에서 플러렌 C60과 반응시켜 1,3-디케톤 유도체가 하나 또는 두 개 치환된 화합물의 혼합물을 제조할 수 있으며, 상기 혼합물은 플러렌 (Fullerene)의 탄소수가 5개인 고리와 6개인 고리의 연결부위에 1,3-디케톤 유도체가 하나 또는 두개 결합된 형태의 [5,6]-이성질체와 6개 고리간의 연결부위에 1,3-디케톤 유도체가 하나 또는 두개 결합된 형태인 [6,6]-이성질체를 포함하고 있으나, 1,3-디케톤 유도체가 하나 또는 두개 결합된 [6,6]-이성질체가 주로 생성된다. 한편, 상기 [5,6]-이성질체와 [6,6]-이성질체 중에서 1,3-디케톤 유도체가 하나 또는 두개 치환된 플러렌 화합물을 컬럼 크로마토그래피로 정제하여 분리할 수 있으나, [5,6]-이성질체와 [6,6]-이성질체의 혼합물로 분리된다.The method for preparing a fullerene compound substituted with the 1,3-diketone derivative of Chemical Formula 1 according to the present invention is illustrated in Scheme 1, for example, with fullerene of C60. As shown in Scheme 1, 1,3 -Diketone derivatives were brominated with carbon tetrabromide (CBr 4 ) and then reacted with fullerene C60 in the presence of 1,8-diazabicyclo [5.4.0] unde-7-cene (DBU) to 1,3 It is possible to prepare a mixture of compounds in which one or two diketone derivatives are substituted, and the mixture has one 1,3-diketone derivative at a linking point of a ring having 5 carbon atoms and a ring having 6 carbon atoms of fullerene. Or [6,6] -isomers in which one or two 1,3-diketone derivatives are bonded at the linkage between the two [5,6] -isomers in the two bonded forms and the six rings, but 1, [6,6] -isomers are mainly produced in which one or two 3-diketone derivatives are bonded. Meanwhile, the fullerene compound in which one or two diketone derivatives are substituted in the [5,6] -isomer and the [6,6] -isomer can be separated by purification by column chromatography, but [5,6] ] -Isomer and [6,6] -isomer.

[반응식 1]Scheme 1

Figure 112007042566240-PAT00023
Figure 112007042566240-PAT00023

본 발명에 따른 화학식 1의 1,3-디케톤 유도체로 치환된 플러렌 화합물을 포함하는 유기전자소자는 유기발광소자, 유기태양전지, 유기감광체(OPC), 유기메모리 및 유기트랜지스터로 이루어진 군에서 선택되는 것을 특징으로 한다.An organic electronic device comprising a fullerene compound substituted with a 1,3-diketone derivative of Formula 1 according to the present invention is selected from the group consisting of an organic light emitting device, an organic solar cell, an organic photoconductor (OPC), an organic memory, and an organic transistor It is characterized by.

이하, 본 발명의 상세한 이해를 위하여 본 발명의 대표적인 화합물을 들어 본 발명에 따른 플러렌 화합물 및 이의 제조방법 및 소자의 특성을 설명하나, 이는 단지 그 실시 양태를 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, a fullerene compound according to the present invention and a method of preparing the same and the characteristics of the device are described for a detailed understanding of the present invention, but only for the purpose of illustrating the embodiments, and the scope of the present invention. It is not intended to be limiting.

[[ 제조예Production Example 1] 화합물 1 ( 1] Compound 1 ( mC60mC60 -1)과 화합물 2 (-1) and compound 2 ( mC60mC60 -2)의 제조-2) Preparation

Figure 112007042566240-PAT00024
Figure 112007042566240-PAT00024

2-2- acetylacetyl -5--5- hexylhexyl thiophenethiophene 의 제조Manufacture

3구 둥근바닥 플라스크에 질소대기 하에서 2-헥실 티오펜 (2-hexyl thiophene)을 디에틸 에테르에 녹여 -15 ℃로 냉각한 후, 1.2 당량의 BuLi (2.5M 헥산용액)을 서서히 주입시켰다. 2시간 동안 -15 ℃에서 교반한 후, 1 당량의 디메틸 아세트아미드 (dimethyl acetyl amide)을 서서히 적가하고 상온으로 승온시켰다. 2시간 동안 교반한 후, 증류수를 넣어 반응을 종결하고 디클로로메탄으로 추출한 후, 증류수로 세척하였다. 유기층을 무수 황산마그네슘으로 건조하고 진공하에서 농축한 후, 컬럼 크로마토그래피하여 78%의 수득율로 2-아세틸-5-헥실 티오펜을 얻었다.2-hexyl thiophene (2-hexyl thiophene) was dissolved in diethyl ether under nitrogen atmosphere in a three-necked round bottom flask, and then cooled to -15 ° C, and 1.2 equivalents of BuLi (2.5M hexane solution) was slowly added thereto. After stirring at −15 ° C. for 2 hours, 1 equivalent of dimethyl acetyl amide was slowly added dropwise and warmed to room temperature. After stirring for 2 hours, distilled water was added to terminate the reaction, extracted with dichloromethane, and washed with distilled water. The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo and then column chromatography gave 2-acetyl-5-hexyl thiophene at a yield of 78%.

1H-NMR (300 MHz, CDCl3) δ 7.53 (d, 1H, thiophenyl), 6.80 (d, 1H, thiophenyl), 2.83 (t, 2H, CH2), 2.50 (s, 3H, CH3), 1.78 - 1.63 (m, 2H, CH2), 1.41 - 1.27 (m, 6H, CH2), 0.88 (t, 3H, CH3). 1 H-NMR (300 MHz, CDCl 3 ) δ 7.53 (d, 1H, thiophenyl), 6.80 (d, 1H, thiophenyl), 2.83 (t, 2H, CH 2 ), 2.50 (s, 3H, CH 3 ), 1.78-1.63 (m, 2H, CH 2 ), 1.41-1.27 (m, 6H, CH 2 ), 0.88 (t, 3H, CH 3 ).

ethyl 5-hexylthiophene-2-carboxylate의 제조Preparation of ethyl 5-hexylthiophene-2-carboxylate

2구 둥근바닥 플라스크에 2당량의 Mg을 무수 THF에 넣어 0 ℃에서 교반한 후, 여기에 3-브로모-5-헥실티오펜을 서서히 적가하였다. 1 시간동안 교반한 후, 반응 혼합물을 에틸 클로로 포르메이트를 녹인 THF 용액에 서서히 적가시켰다. 2시간동안 상온에서 교반한 후, 물을 넣어 반응을 종료하고, 헥산으로 추출하여 컬럼 크로마토그래피를 이용해 정제하여 70%의 수율로 에틸 5-헥실티오펜-2-카르복실레이트를 얻었다.Two equivalents of Mg was added to anhydrous THF in a two-necked round bottom flask and stirred at 0 ° C., and then 3-bromo-5-hexylthiophene was slowly added dropwise thereto. After stirring for 1 hour, the reaction mixture was slowly added dropwise to a THF solution in which ethyl chloro formate was dissolved. After stirring for 2 hours at room temperature, water was added to terminate the reaction, extracted with hexane and purified by column chromatography to give ethyl 5-hexylthiophene-2-carboxylate in a yield of 70%.

1H-NMR (300 MHz, CDCl3) δ 7.62 (d, 1H, thiophenyl), 6.77 (t, 1H, thiophenyl), 4.32 (m, 2H, CH2), 2.82 (t, 2H, CH2 ), 1.76 - 1.68 (m, 2H, CH2), 1.38 - 1.29 (m, 9H, CH2, CH3), 0.88 (t, 3H, CH3). 1 H-NMR (300 MHz, CDCl 3 ) δ 7.62 (d, 1H, thiophenyl), 6.77 (t, 1H, thiophenyl), 4.32 (m, 2H, CH 2 ), 2.82 (t, 2H, CH 2 ), 1.76-1.68 (m, 2H, CH 2 ), 1.38-1.29 (m, 9H, CH 2, CH 3 ), 0.88 (t, 3H, CH 3 ).

1,3-bis-(2’-hexylthiophenyl)propane-1,3-dione의 제조Preparation of 1,3-bis- (2'-hexylthiophenyl) propane-1,3-dione

에틸 5-헥실티오펜-2-카르복실레이트 (10 mmol)과 1.2당량의 NaNH2을 THF에 녹여 교반시켰다. 여기에 1당량의 2-아세틸-5-헥실티오펜을 첨가한 후, 60 ℃에서 24시간동안 교반시켰다. 반응이 종결된 후, 진공 하에서 용매를 농축하고 6M 염산수용액으로 산성화한 후, 이염화메탄으로 추출하였다. 추출된 유기층은 무수 황산마그네슘으로 건조한 후, 용매를 제거하고, 에탄올로 재결정하여 노란 고체상의 생성물인 1,3-비스(2‘헥실티오페닐)프로판-1,3-디온을 40%의 수율로 얻었다.Ethyl 5-hexylthiophene-2-carboxylate (10 mmol) and 1.2 equivalents of NaNH 2 were dissolved in THF and stirred. One equivalent of 2-acetyl-5-hexylthiophene was added thereto, followed by stirring at 60 ° C for 24 hours. After the reaction was completed, the solvent was concentrated in vacuo and acidified with 6M aqueous hydrochloric acid solution, and then extracted with methane dichloride. The extracted organic layer was dried over anhydrous magnesium sulfate, and then the solvent was removed. The organic layer was recrystallized with ethanol to give 1,3-bis (2'hexylthiophenyl) propane-1,3-dione as a yellow solid in 40% yield. Got it.

1H-NMR (300 MHz, CDCl3) δ 7.58 (d, 2H, thiophenyl), 6.83 (d, 2H, thiophenyl), 6.39 (s, 1H, OH), 4.36 (s, 1H, CH), 2.85 (t, 4H, CH2), 1.68 (m, 4H, CH2), 1.35 (m, 12H, CH2), 0.89 (t, 6H, CH3). 1 H-NMR (300 MHz, CDCl 3 ) δ 7.58 (d, 2H, thiophenyl), 6.83 (d, 2H, thiophenyl), 6.39 (s, 1H, OH), 4.36 (s, 1H, CH), 2.85 ( t, 4H, CH 2 ), 1.68 (m, 4H, CH 2 ), 1.35 (m, 12H, CH 2 ), 0.89 (t, 6H, CH 3 ).

화합물 1 (Compound 1 ( mC60mC60 -1)과 화합물 2 (-1) and compound 2 ( mC60mC60 -2)의 제조-2) Preparation

1 mmol의 플러렌(C60)을 30mL의 1,3,5-트리메틸벤젠에 분산시켜 교반하고, 여기에 1.3당량의 1,3-비스(2‘-헥실티오페닐)프로판-1,3-디온과 1.5당량의 사브롬화 탄소 (CBr4)를 첨가하였다. 2시간동안 교반한 후, 3.9 당량의 DBU (1,8-diazabicyclo[5,4,0]undec-7-ene)을 주입하였다. 반응 혼합물을 2 시간동안 더 교반한 후, 워-컵(work up)하고 컬럼크로마토그래피를 이용해 정제하여 화합물 1 (mC60-1)과 화합물 2 (mC60-2)를 각각 40%와 17%의 수득율로 얻었다.1 mmol of fullerene (C 60 ) was dispersed in 30 mL of 1,3,5-trimethylbenzene and stirred, and 1.3 equivalents of 1,3-bis (2'-hexylthiophenyl) propane-1,3-dione was added thereto. And 1.5 equivalents of carbon tetrabromide (CBr 4 ) were added. After stirring for 2 hours, 3.9 equivalents of DBU (1,8-diazabicyclo [5,4,0] undec-7-ene) was injected. The reaction mixture was further stirred for 2 hours, then worked up and purified by column chromatography to yield 40% and 17% of Compound 1 (mC60-1) and Compound 2 (mC60-2), respectively. Got it.

(1) 화합물 1 (mC60 -1, Mono-substituted fullerene)(1) Compound 1 ( mC60 -1 , Mono-substituted fullerene)

1H-NMR (300 MHz, CDCl3) δ 8.66 (d, 2H, thiophenyl), 7.00 (d, 2H, thiophenyl), 2.90 (t, 4H, CH2), 1.76-1.68(m, 4H, CH2), 1.42-1.25(m, 12H ), 0.88 (t, 6H, CH3). 1 H-NMR (300 MHz, CDCl 3 ) δ 8.66 (d, 2H, thiophenyl), 7.00 (d, 2H, thiophenyl), 2.90 (t, 4H, CH 2 ), 1.76-1.68 (m, 4H, CH 2 ), 1.42-1.25 (m, 12H), 0.88 (t, 6H, CH 3 ).

13C-NMR (500 MHz, CDCl3) δ 178.86 (s), 158.83 (s), 145.91 141.10 (m), 137.89 (d), 126.93 (s), 31.12 (t), 28.78 (s), 22.47 (s), 14.04 (s). 13 C-NMR (500 MHz, CDCl 3 ) δ 178.86 (s), 158.83 (s), 145.91 141.10 (m), 137.89 (d), 126.93 (s), 31.12 (t), 28.78 (s), 22.47 ( s), 14.04 (s).

(2) 화합물 2 (mC60 -2, Di-substituted fullerene)(2) Compound 2 ( mC60 -2 , Di-substituted fullerene)

1H-NMR (300 MHz, CDCl3) δ 8.66 (d, J = 3.9 Hz, 4H, thiophenyl), 7.00 (d, 4H, thiophenyl), 2.88 (m, 8H, CH2), 1.74-1.71 (m, 8H, CH2), 1.42-1.26 (m, 24H, CH2), 0.88 (t, 12H, CH3). 1 H-NMR (300 MHz, CDCl 3 ) δ 8.66 (d, J = 3.9 Hz, 4H, thiophenyl), 7.00 (d, 4H, thiophenyl), 2.88 (m, 8H, CH 2 ), 1.74-1.71 (m , 8H, CH 2 ), 1.42-1.26 (m, 24H, CH 2 ), 0.88 (t, 12H, CH 3 ).

13C-NMR (500 MHz, CDCl3): δ 178.86 (s), 158.83 (s), 145.91 141.10 (m), 137.78 (d), 126.93 (s), 31.12 (t), 28.79 (s), 22.47 (s), 14.03 (s). 13 C-NMR (500 MHz, CDCl 3 ): δ 178.86 (s), 158.83 (s), 145.91 141.10 (m), 137.78 (d), 126.93 (s), 31.12 (t), 28.79 (s), 22.47 (s), 14.03 (s).

[실시예 1] 본 발명에 따른 1,3-디케톤 유도체가 치환된 플러렌 화합물의 광학적 특성Example 1 Optical Properties of Fullerene Compounds Substituted with 1,3-diketone Derivatives According to the Present Invention

본 발명의 상기 제조예 1에서 제조된 1,3-디케톤 유도체가 치환된 플러렌 화합물들(화합물 1: mC60-1과 화합물 2: mC60-2)과 PCBM의 광학적 특성을 비교하기 위해 UV/Vis 분광기를 이용하였으며 그 결과를 도 2에 도시하였다.UV / Vis to compare the optical properties of the fullerene compounds substituted with 1,3-diketone derivatives prepared in Preparation Example 1 of the present invention (Compound 1 : mC60-1 and Compound 2 : mC60-2) and PCBM The spectrometer was used and the results are shown in FIG. 2.

도 2의 UV 흡수 스펙트럼상에서 본 발명의 1,3-디케톤가 치환된 플러렌 화합물(화합물 1: mC60-1 및 화합물 2: mC60-2)은 기존의 PCBM([6,6] phenyl-C61-butyric acid methyl ester), methanofullerene의 일종)과 거의 동일한 흡수특성을 보여주었다.The fullerene compound substituted with 1,3-diketone of the present invention (Compound 1: mC60-1 and Compound 2 : mC60-2) in the UV absorption spectrum of Figure 2 is a conventional PCBM ([6,6] phenyl-C61-butyric acid methyl ester, methanofullerene).

[[ 실시예Example 2] 본 발명에 따른 1,3- 2] 1,3- in accordance with the present invention 디케톤Diketone 유도체가 치환된  Derivatives substituted 플러렌Fullerene 화합물의 광학적 특성 Optical properties of compounds

본 발명의 상기 제조예 1에서 제조된 1,3-디케톤 유도체가 치환된 플러렌 화합물 (화합물 1: mC60 -1)의 전기화학적 특성을 관찰하기 위해 Cyclovoltameter를 이용한 산화/환원 특성을 관찰하였다. CV 장비는 BAS 100 cyclovoltametry를 이용 하였으며, 전해질로는 0.1 M의 Bu4NBF4를 아세토니트릴 용매를 사용하였고, 시료는 10-3 M의 농도로 1,2-디클로로벤젠에 녹였다. 상온에서 Ar하에서 100 mW/s의 스캔속도로 측정하였고, 유리탄소전극 (직경 0.3 mm)을 워킹 전극으로 사용하였으며, Pt과 Ag/AgCl 전극을 카운터 전극과 레퍼런스 전극으로 사용하여 그 결과를 도 3에 도시하였다. Of the 1,3-diketone derivative prepared in Preparative Example 1 of the present invention substituted fullerene compounds was observed that the electrochemical oxidation / reduction characteristic properties to observe using Cyclovoltameter (Compound 1 mC60 -1). The CV equipment was subjected to BAS 100 cyclovoltametry, 0.1 M Bu 4 NBF 4 was used as an acetonitrile solvent, and the sample was dissolved in 1,2-dichlorobenzene at a concentration of 10 -3 M. Measured at a scan rate of 100 mW / s under Ar at room temperature, a glass carbon electrode (0.3 mm in diameter) was used as a working electrode, Pt and Ag / AgCl electrode as a counter electrode and a reference electrode and the results are shown in Figure 3 Shown in

도 3으로부터 본 발명에 따른 1,3-디케톤 유도체가 치환된 플러렌 화합물은 0V에서 -2.0V의 구간에서 PCBM과 유사한 4개의 quasireversible 환원 준위들을 보여주었는데, PCBM대비 다소 양(+)의 값을 나타냈다. 이러한 결과는 도입된 1,3-디케톤 유도체의 electron withdrawing 특성에서 기인하는 것으로서 보다 전자 친화도가 우수하여 전자를 받을 수 있는 특성이 우수하고, 이를 통해 보다 우수한 n-형 유기반도체 재료임을 확인 할 수 있었다. 또한, 전자의 이송특성도 향상될 수 있을 것으로 예측된다.The fullerene compound substituted with the 1,3-diketone derivative according to the present invention from FIG. 3 showed four quasireversible reduction levels similar to PCBM in the range of 0V to -2.0V, but showed a slightly positive value compared to PCBM. Indicated. These results are due to the electron withdrawing characteristics of the introduced 1,3-diketone derivatives, which have excellent electron affinity and excellent electron accepting characteristics, thereby confirming that they are excellent n -type organic semiconductor materials. Could. In addition, it is expected that the electron transfer characteristics can be improved.

[[ 실시예Example 3] 본 발명에 따른 1,3- 3] 1,3- in accordance with the present invention 디케톤Diketone 유도체가 치환된  Derivatives substituted 플러렌Fullerene 화합물을 포함하는 유기태양전지 소자 제작, 에너지 변환효율 측정,  Fabrication of organic solar cell device comprising a compound, measurement of energy conversion efficiency, annealingannealing 및 열적 안정성 비교 And thermal stability

세척된 ITO 유리기판 상에 PEDOT-PSS (Bayer Baytron P, Al 4083)을 40 nm정도 스핀코팅한 후, 폴리(3-헥실티오펜) [Poly-3-(hexylthiophene)]과 본 발명에서 제조된 1,3-디케톤 유도체가 치환된 플러렌(화합물 1: mC60 -1, 화합물 2: mC60 -2) 중의 한 가지를 선택하여 1,2-디클로로벤젠이나 클로로벤젠, 클로로포름 단독 혹은 이들의 혼합용매에 녹여 스핀코팅 등의 방법을 통해 유기 박막을 형성하였다. 여기서, 스핀코팅시 회전속도를 800, 1000, 1200 rpm으로 조절하여 각각 120, 100, 85 nm의 유기박막을 얻을 수 있었다. 이렇게 형성된 유기막 위에 LiF/Al을 전극으로 진공 하에서 증착한 후, 흡습제를 부착한 유리 캡으로 봉지하였다. 제조된 유기태양전지 소자의 annealing을 통한 특성변화와 열적 안정성을 알아보기 위하여 160℃에서 각각 0분, 5분, 15분 및 30분간 열처리하여 광전변환특성을 파악하였으며, 그 결과는 하기 표 1에 나타낸 바와 같다.After spin coating PEDOT-PSS (Bayer Baytron P, Al 4083) by 40 nm on the washed ITO glass substrate, poly (3-hexylthiophene) [Poly-3- (hexylthiophene)] and the present invention prepared in one option to 1,2-dichlorobenzene or chlorobenzene, chloroform alone or a mixed solvent thereof in the (-2 mC60 compound 1:: mC60 -1, compound 2) 1,3-diketone derivative of the substituted fullerene Melt was formed to form an organic thin film by spin coating or the like. Here, the spin rate was adjusted to 800, 1000 and 1200 rpm to achieve the organic thin film of 120, 100, 85 nm respectively. LiF / Al was deposited on the organic film thus formed under vacuum with an electrode, and then sealed with a glass cap with a moisture absorbent. In order to investigate the characteristics change and thermal stability through annealing of the manufactured organic solar cell device, the photoelectric conversion characteristics were determined by heat treatment at 160 ° C. for 0, 5, 15 and 30 minutes, respectively, and the results are shown in Table 1 below. As shown.

[표 1] P3HT와의 혼합을 통해 제작된 유기태양전지 소자의 특성 비교.[Table 1] Comparison of characteristics of organic solar cell devices manufactured by mixing with P3HT.

Figure 112007042566240-PAT00025
Figure 112007042566240-PAT00025

상기 표 1에 나타낸 바와 같이, PCBM의 경우, 열처리전에 1.63%의 에너지변환효율을 보여주었으며, 160 ℃에서 열처리 시간을 늘려줌에 따라 각각 4.2%, 3.4%, 2.2%로, 5분간 처리하였을때 가장 높은 효율을 보여준 후 점차 감소하는 특성을 보여주었다. 본 발명의 1,3-디케톤 유도체가 치환된 플러렌 화합물 1(mC60 -1)을 이용한 소자의 경우, 100 nm의 두께에서 2.13%의 에너지변환효율을 보여주어 PCBM을 이용한 경우와 비교하여 보다 우수한 결과를 보여주었다. 별도의 annealing 을 통해 3.4%의 에너지변환효율까지 도달할 수 있었다. 또한, 두 개의 1,3-디케톤 유도체가 치환된 플러렌 화합물 2(mC60-2)의 경우, annealing전 1.3%에서 160℃에서 5분간 annealing하여 약 2.8%의 에너지 변환효율을 얻을 수 있어 1,3-디케톤 유도체가 하나 또는 둘 치환된 플러렌 화합물의 경우 유기태양전지의 전자받게재료로서 매우 우수한 특성을 보여줌을 알 수 있었다.As shown in Table 1, in the case of PCBM, the energy conversion efficiency of 1.63% was shown before heat treatment, and the treatment time was increased to 4.2%, 3.4% and 2.2% for 5 minutes as the heat treatment time was increased at 160 ° C., respectively. After showing the highest efficiency, the characteristics gradually decreased. If the device using the 1,3-diketone fullerene compound 1 (mC60 -1) The derivatives are substituted according to the present invention, more excellent as compared with the case by showing the 2.13% of energy conversion efficiency at the thickness of 100 nm using a PCBM Showed results. By separate annealing, the energy conversion efficiency of 3.4% was reached. In addition, in the case of fullerene compound 2 ( mC60-2 ) substituted with two 1,3-diketone derivatives, energy conversion efficiency of about 2.8% can be obtained by annealing at 1.3 ° C for 5 minutes at 1.3% before annealing. In the case of the fullerene compound in which one or two 3-diketone derivatives are substituted, it can be seen that the electron accepting material of the organic solar cell shows very excellent characteristics.

이 중에서 화합물 1(mC60-1)과 P3HT를 이용한 유기태양전지 소자의 annealing 전/후의 전류-전압곡선의 변화, annealing 시간별 fill factor의 변화 및 를 annealing 시간별 에너지변화효율의 변화를 각각 도 4, 도 5 및 도 6에 도시하였다.Among these, compounds 1 ( mC60-1 ) and P3HT were used to change the current-voltage curve before and after annealing, the change of fill factor for each annealing time, and the change in energy change efficiency for each annealing time, respectively. 5 and 6.

이상에서 상술한 바와 같이, 본 발명에 따른 1,3-디케톤 유도체가 치환된 플러렌 화합물은 플러렌에 1,3-디케톤계 치환기를 도입함으로써, 용해도를 개선하여 P3HT 등의 전자주게 재료와의 혼합을 통해 효과적인 광전변환소자를 제공할 수 있었다. 이러한 신규 화합물들은 유기발광소자의 전자수송층, 유기태양전지의 전자받게 (acceptor), 유기감광체 (OPC)의 전자수송층, 유기메모리 및 유기트랜지스터의 n-형 유기반도체 등으로서의 용도에 유용하다.As described above, the fullerene compound substituted with the 1,3-diketone derivative according to the present invention is introduced into the fullerene by introducing a 1,3-diketone-based substituent, thereby improving solubility and mixing with an electron donor material such as P3HT. Through it was possible to provide an effective photoelectric conversion device. These novel compounds are useful for use as electron transport layers of organic light emitting devices, electron acceptors of organic solar cells, electron transport layers of organic photoconductors (OPCs), n -type organic semiconductors of organic memories and organic transistors, and the like.

Claims (7)

하기 화학식 1로 표시되는 1,3-디케톤 유도체로 치환된 플러렌 화합물.Fullerene compound substituted with 1,3-diketone derivative represented by the formula (1). [화학식 1][Formula 1]
Figure 112007042566240-PAT00026
Figure 112007042566240-PAT00026
[상기 식에서,[Wherein, R1 및 R2는 서로 독립적으로 수소원자, 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C6-C30)아릴 또는 (C4-C30)헤테로아릴이고, 상기 알킬, 아릴 또는 헤테로아릴은 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C1-C30)알콕시, (C6-C30)아릴, (C6-C30)아르(C1-C30)알킬, (C1-C30)알킬(C6-C30)아릴, (C6-C30)아르(C1-C30)알콕시, (C4-C30)헤테로아릴, (C3-C30)시클로알킬, 산소, 질소 또는 황을 헤테로고리 안에 포함하는 3원 내지 7원의 포화 또는 불포화 헤테로시클로알킬, 히드록시, 카르복실산, 아미노, 모노 또는 디 (C1-C30)알킬아미노, (C1-C30)알킬카보닐, (C1-C30)알콕시카보닐, 벤조일, 페녹시, 시아노 또는 니트로로터 선택된 하나 이상의 치환기로 더 치환될 수 있으며; R 1 and R 2 independently of one another are a hydrogen atom, a straight or branched saturated or unsaturated (C 1 -C 30 ) alkyl, (C 6 -C 30 ) aryl or (C 4 -C 30 ) heteroaryl, the alkyl , Aryl or heteroaryl is straight or branched saturated or unsaturated (C 1 -C 30 ) alkyl, (C 1 -C 30 ) alkoxy, (C 6 -C 30 ) aryl, (C 6 -C 30 ) 1 -C 30 ) alkyl, (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkoxy, (C 4 -C 30 ) heteroaryl , 3- to 7-membered saturated or unsaturated heterocycloalkyl, hydroxy, carboxylic acid, amino, mono or di (C 1 -C) containing (C 3 -C 30 ) cycloalkyl, oxygen, nitrogen or sulfur in the heterocycle -C 30 ) alkylamino, (C 1 -C 30 ) alkylcarbonyl, (C 1 -C 30 ) alkoxycarbonyl, benzoyl, phenoxy, cyano or nitrorot may be further substituted with one or more substituents; A는 플러렌 (fullerene) 유도체로서 C60, C72, C76, C78 또는 C84로부터 선택되며;A is selected from C60, C72, C76, C78 or C84 as a fullerene derivative; n은 1 또는 2의 정수이다.]n is an integer of 1 or 2.]
제 1 항에 있어서, The method of claim 1, R1 및 R2는 서로 독립적으로 수소원자, 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C6-C30)아르(C1-C30)알킬, (C1-C30)알킬(C6-C30)아릴, 또는 하기 구조의 치환체인 것을 특징으로 하는 플러렌 화합물.R 1 and R 2 are independently of each other a hydrogen atom, straight or branched, saturated or unsaturated (C 1 -C 30 ) alkyl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkyl, (C 1 -C 30 ) Alkyl (C 6 -C 30 ) aryl, or a fullerene compound characterized by the following structure.
Figure 112007042566240-PAT00027
Figure 112007042566240-PAT00027
[상기 식에서, X, Y 및 Z는 서로 독립적으로 수소, 직쇄 또는 분쇄의 포화 또는 불포화 (C1-C30)알킬, (C6-C30)아르(C1-C30)알킬 또는 (C1-C30)알킬(C6-C30)아릴이고; m은 1 내지 5의 정수이고; p는 1 내지 3의 정수이고; q는 1 내지 4의 정수이고; r은 1 내지 3의 정수이고; s는 1 또는 2의 정수이고; t는 1 내지 3의 정수이다.][Wherein X, Y and Z independently of one another are hydrogen, linear or branched saturated or unsaturated (C 1 -C 30 ) alkyl, (C 6 -C 30 ) ar (C 1 -C 30 ) alkyl or (C 1 -C 30 ) alkyl (C 6 -C 30 ) aryl; m is an integer from 1 to 5; p is an integer from 1 to 3; q is an integer from 1 to 4; r is an integer from 1 to 3; s is an integer of 1 or 2; t is an integer of 1 to 3.]
제 1 항에 있어서,The method of claim 1, 하기 화합물로부터 선택되는 것을 특징으로 하는 플러렌 화합물.Fullerene compound characterized in that it is selected from the following compounds.
Figure 112007042566240-PAT00028
Figure 112007042566240-PAT00028
Figure 112007042566240-PAT00029
Figure 112007042566240-PAT00029
Figure 112007042566240-PAT00030
Figure 112007042566240-PAT00030
Figure 112007042566240-PAT00031
Figure 112007042566240-PAT00031
Figure 112007042566240-PAT00032
Figure 112007042566240-PAT00032
Figure 112007042566240-PAT00033
Figure 112007042566240-PAT00033
Figure 112007042566240-PAT00034
Figure 112007042566240-PAT00034
제 1 항에 있어서,The method of claim 1, 하기 화합물로부터 선택되는 것을 특징으로 하는 플러렌 화합물.Fullerene compound characterized in that it is selected from the following compounds.
Figure 112007042566240-PAT00035
Figure 112007042566240-PAT00035
Figure 112007042566240-PAT00036
Figure 112007042566240-PAT00036
Figure 112007042566240-PAT00037
Figure 112007042566240-PAT00037
Figure 112007042566240-PAT00038
Figure 112007042566240-PAT00038
Figure 112007042566240-PAT00039
Figure 112007042566240-PAT00039
Figure 112007042566240-PAT00040
Figure 112007042566240-PAT00040
Figure 112007042566240-PAT00041
Figure 112007042566240-PAT00041
제 1 항에 있어서,The method of claim 1, 하기 화합물로부터 선택되는 것을 특징으로 하는 플러렌 화합물.Fullerene compound characterized in that it is selected from the following compounds.
Figure 112007042566240-PAT00042
Figure 112007042566240-PAT00042
Figure 112007042566240-PAT00043
Figure 112007042566240-PAT00043
Figure 112007042566240-PAT00044
Figure 112007042566240-PAT00044
Figure 112007042566240-PAT00045
Figure 112007042566240-PAT00045
제 1 항 내지 제 5항에서 선택되는 어느 한 항에 따른 플러렌 화합물을 포함하는 유기전자소자.An organic electronic device comprising the fullerene compound according to any one of claims 1 to 5. 제 6항에 있어서,The method of claim 6, 상기 유기전자소자는 유기발광소자, 유기태양전지, 유기감광체(OPC), 유기메모리 및 유기트랜지스터로 이루어진 군에서 선택되는 것을 특징으로 하는 유기전자소자.The organic electronic device is an organic electronic device, characterized in that selected from the group consisting of an organic light emitting device, an organic solar cell, an organic photoconductor (OPC), an organic memory and an organic transistor.
KR1020070057488A 2007-06-12 2007-06-12 New fullerene derivative and organic solar cell device using same KR100907752B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070057488A KR100907752B1 (en) 2007-06-12 2007-06-12 New fullerene derivative and organic solar cell device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070057488A KR100907752B1 (en) 2007-06-12 2007-06-12 New fullerene derivative and organic solar cell device using same

Publications (2)

Publication Number Publication Date
KR20080109318A true KR20080109318A (en) 2008-12-17
KR100907752B1 KR100907752B1 (en) 2009-07-14

Family

ID=40368642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070057488A KR100907752B1 (en) 2007-06-12 2007-06-12 New fullerene derivative and organic solar cell device using same

Country Status (1)

Country Link
KR (1) KR100907752B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468714A (en) * 2009-03-20 2010-09-22 Schlumberger Holdings Derivatisation of a carbon substrate
KR101535186B1 (en) * 2014-05-19 2015-07-24 한국화학연구원 fullerene derivative having pyrrolidine and organic electronic devices containing them
KR20150092724A (en) * 2014-02-05 2015-08-13 주식회사 엘지화학 Fullerene derivatives, organic solar cell using the same and fabricating method thereof
CN115838480A (en) * 2022-10-18 2023-03-24 南京大学 Poly-fullerene high polymer material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492163B1 (en) 2013-02-27 2015-02-10 건국대학교 산학협력단 Water-soluble photoelectric material and the manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313481A1 (en) * 1993-04-24 1994-10-27 Hoechst Ag Fullerene derivatives, process for their preparation and their use
JP2005053832A (en) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fullerene derivative and fullerene-composite resist

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468714A (en) * 2009-03-20 2010-09-22 Schlumberger Holdings Derivatisation of a carbon substrate
GB2468714B (en) * 2009-03-20 2012-11-28 Schlumberger Holdings Derivatisation of carbon
US9630851B2 (en) 2009-03-20 2017-04-25 Schlumberger Technology Corporation Derivatisation of carbon
US10407379B2 (en) 2009-03-20 2019-09-10 Schlumberger Technology Corporation Derivatisation of carbon
KR20150092724A (en) * 2014-02-05 2015-08-13 주식회사 엘지화학 Fullerene derivatives, organic solar cell using the same and fabricating method thereof
WO2015119436A1 (en) * 2014-02-05 2015-08-13 주식회사 엘지화학 Fullerene derivative, organic solar cell using same, and preparation method therefor
CN105980300A (en) * 2014-02-05 2016-09-28 株式会社Lg化学 Fullerene derivative, organic solar cell using same, and preparation method therefor
CN105980300B (en) * 2014-02-05 2017-09-15 株式会社Lg化学 Fullerene derivate, organic solar batteries and its manufacture method using it
US10270038B2 (en) 2014-02-05 2019-04-23 Lg Chem, Ltd. Fullerene derivative, organic solar cell using same, and preparation method therefor
KR101535186B1 (en) * 2014-05-19 2015-07-24 한국화학연구원 fullerene derivative having pyrrolidine and organic electronic devices containing them
CN115838480A (en) * 2022-10-18 2023-03-24 南京大学 Poly-fullerene high polymer material and preparation method and application thereof
CN115838480B (en) * 2022-10-18 2024-03-22 南京大学 Polyfullerene polymer material and preparation method and application thereof

Also Published As

Publication number Publication date
KR100907752B1 (en) 2009-07-14

Similar Documents

Publication Publication Date Title
US20210043845A1 (en) Inert solution-processable molecular chromophores for organic electronic devices
TWI511997B (en) Conjugated polymers and their use in optoelectronic devices
US7754847B2 (en) Soluble polythiophene derivatives
WO2015096797A1 (en) Polymer/fullerene formations and their use in electronic/photonic devices
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
Dutta et al. Novel naphtho [1, 2-b: 5, 6-b′] dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells
JP2007091714A (en) New nitrogen-based semiconductor compound, organic thin membrane transistor, organic solar photovoltaic cell and organic electric field light-emitting element by using the same
Yadagiri et al. D− π–A− π–D structured diketopyrrolopyrrole-based electron donors for solution-processed organic solar cells
KR100907752B1 (en) New fullerene derivative and organic solar cell device using same
Alam et al. New energetic indandione based planar donor for stable and efficient organic solar cells
Javed et al. Solution processable quinacridone based materials as acceptor for organic heterojunction solar cells
US20110132439A1 (en) Fullerene compounds for solar cells and photodetectors
KR101043639B1 (en) Methanofullerene Compounds Having Etyleneoxy Substituents and Its Use for Organic Electronics
KR100907753B1 (en) Metanofullerene compound substituted with fluorine group and organic electronic device using same
CN113666953A (en) Benzothiadiazole boron-nitrogen derivative material and application thereof in organic electronic device
KR20090061613A (en) Methanofullerene compounds having fluorinated substituents and its use for organic electronics
KR101553806B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
Lu et al. Synthesis of oligofluorene modified C 60 derivatives for organic solar cell applications
KR20100062855A (en) Fullerene derivatives, organic photovoltaic cell including the derivatives, and organic tft including the derivatives
KR101678580B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronic device and organic photovoltaic device containing the same
KR101535066B1 (en) Double junction organic photovoltaic device fabricated using organic semiconductor compound, and organic electronic device that contains it
CN110003245B (en) Alkyl/thioalkyl nitrogen heterocyclic aromatic ring end D (A-Ar)2Conjugated compound, preparation method and application thereof
Lu et al. Effects of cyano (CN)-groups on the planarity, film morphology and photovoltaic performance of benzodithiophene-based polymers
KR101303083B1 (en) Novel fullerene derivatives and photovoltaic device using the same
Hundal et al. Improvement of the optoelectronic and photovoltaic properties of a cyanopyrid-2, 6-dione-based donor via molecular engineering

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee