KR101758436B1 - Composition for forming solar cell electrode and electrode prepared using the same - Google Patents

Composition for forming solar cell electrode and electrode prepared using the same Download PDF

Info

Publication number
KR101758436B1
KR101758436B1 KR1020140159130A KR20140159130A KR101758436B1 KR 101758436 B1 KR101758436 B1 KR 101758436B1 KR 1020140159130 A KR1020140159130 A KR 1020140159130A KR 20140159130 A KR20140159130 A KR 20140159130A KR 101758436 B1 KR101758436 B1 KR 101758436B1
Authority
KR
South Korea
Prior art keywords
group
composition
solar cell
electrode
glass frit
Prior art date
Application number
KR1020140159130A
Other languages
Korean (ko)
Other versions
KR20160058353A (en
Inventor
문성일
김은경
남희인
박형석
이영실
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020140159130A priority Critical patent/KR101758436B1/en
Publication of KR20160058353A publication Critical patent/KR20160058353A/en
Application granted granted Critical
Publication of KR101758436B1 publication Critical patent/KR101758436B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 은(Ag) 분말, 유리프릿, 유기바인더 및 용매를 포함하고, 상기 유기바인더는 하기 화학식 1로 표시되는 반복단위를 포함하는 화합물을 포함하는 것인 태양전지 전극 형성용 조성물에 관한 것이다. 상기 태양전지 전극 형성용 조성물은 분산성 및 저장안정성이 우수하며, 미세패턴의 형성이 가능하고 인쇄성이 우수하다.
[화학식 1]

Figure 112014110050422-pat00014

(상기 화학식 1에서, R1 내지 R3 및 n은 명세서 중에 정의된 내용과 동일하다.)The present invention relates to a composition for forming a solar cell electrode, which comprises a silver (Ag) powder, a glass frit, an organic binder and a solvent, and the organic binder includes a compound containing a repeating unit represented by the following formula . The composition for forming a solar cell electrode is excellent in dispersibility and storage stability, capable of forming a fine pattern, and excellent in printing property.
[Chemical Formula 1]
Figure 112014110050422-pat00014

(Wherein R1 to R3 and n are the same as defined in the specification).

Description

태양전지 전극 형성용 조성물 및 이로부터 제조된 전극{COMPOSITION FOR FORMING SOLAR CELL ELECTRODE AND ELECTRODE PREPARED USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a composition for forming a solar cell electrode, and an electrode made therefrom. BACKGROUND ART [0002]

본 발명은 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극에 관한 것이다.
The present invention relates to a composition for forming a solar cell electrode and an electrode made therefrom.

태양전지는 태양광의 포톤(photon)을 전기로 변환시키는 pn 접합의 광전 효과를 이용하여 전기 에너지를 발생시킨다. 태양전지는 pn 접합이 구성되는 반도체 웨이퍼 또는 기판 상·하면에 각각 전면 전극과 후면 전극이 형성되어 있다. 태양전지는 반도체 웨이퍼에 입사되는 태양광에 의해 pn 접합의 광전 효과가 유도되고, 이로부터 발생된 전자들이 전극을 통해 외부로 흐르는 전류를 제공한다. 이러한 태양전지의 전극은 태양전지 전극 형성용 조성물의 도포, 패터닝 및 소성에 의해, 웨이퍼 표면에 형성될 수 있다.Solar cells generate electrical energy by using the photoelectric effect of pn junction that converts photon of sunlight into electricity. The solar cell is formed with a front electrode and a rear electrode on a semiconductor wafer or a substrate on which a pn junction is formed. The photovoltaic effect of the pn junction is induced in the solar cell by the sunlight incident on the semiconductor wafer, and the electrons generated from the pn junction provide a current flowing to the outside through the electrode. The electrode of such a solar cell can be formed on the surface of the wafer by applying, patterning and firing a composition for forming a solar cell electrode.

태양전지 전극의 변환효율을 향상시키기 위하여 웨이퍼와 접촉성을 향상하여 접촉저항(Rc)과 직렬저항(Rs)을 최소화시키거나 유기물로 스크린 마스크(Screen mask)의 패턴 선폭을 작게 조절함으로써 미세 선폭(Fine line)을 형성하여 단락전류(Isc)를 높임으로써 효율을 개선하는 태양전지 전극 형성용 조성물에 관한 종래 기술이 존재하나, 스크린 마스크를 이용하여 전극의 패턴 선폭을 감소시키는 방법은 직렬저항(Rs)의 상승을 유발할 수 있고, 미세 패턴의 연속 인쇄성을 저하시킬 수 있다는 문제점이 존재한다.In order to improve the conversion efficiency of the solar cell electrode, the contact resistance (Rc) and the series resistance (Rs) can be minimized by improving the contact with the wafer, or the line width of the screen mask There is a prior art related to a composition for forming a solar cell electrode which improves the efficiency by increasing the short circuit current Isc by forming a fine line, but a method of reducing the pattern line width of the electrode using a screen mask is a method of reducing the line resistance Rs ), And the continuous printing property of the fine pattern can be lowered.

태양전지 전극 형성용 조성물은 인쇄에 적합한 점도 및 유변학적 특성을 부여하기 위하여 유기 비히클을 사용하는데, 상기 유기 비히클은 통상적으로 유기바인더와 용제 등을 포함할 수 있다. 유기바인더로는 셀룰로오스계 및 아크릴계 바인더 수지가 사용되고 있으며, 특히 에틸셀룰로오스 수지를 사용하고 있다. 그러나, 유기바인더는 용매의 용해성을 고려하여야 한다는 점에서 유기바인더 선택에 한계가 있다. The composition for forming a solar cell electrode uses an organic vehicle to impart viscosity and rheological properties suitable for printing, and the organic vehicle may typically include an organic binder, a solvent, and the like. Cellulosic and acrylic binder resins are used as the organic binder, and ethyl cellulose resin is used in particular. However, organic binders have limitations in the selection of organic binders in that solvent solubility must be considered.

분산성과 저장안정성을 높이기 위한 방안으로 유기바인더의 함량을 높이거나, 고분자량의 유기바인더를 사용할 수 있다. In order to improve dispersibility and storage stability, the content of the organic binder may be increased or a high molecular weight organic binder may be used.

유기바인더의 함량을 높이는 경우에는 전극 형성시 저항이 높아질 수 있으며, 고분자량의 유기바인더를 사용하는 경우에는 고전단속도(high shear rate)에서도 점도가 높아져 테일링(tailing) 현상 및 인쇄 불량이 발생할 수 있다는 문제점이 있다.When the content of the organic binder is increased, the resistance of the electrode may be increased. When a high molecular weight organic binder is used, the viscosity may increase even at a high shear rate, causing tailing phenomenon and printing failure .

특히, 분산성과 저장안정성을 높이기 위하여 첨가제를 사용할 수 있으나, 폴리비닐피롤리돈(poly vinyl pyrrolidone)과 같은 분산제는 유기 용매와 용해성이 저하되는 문제가 있으며, 가소제 등과 같은 저분자량의 첨가제들은 장기 저장시 페이스트(paste)상과 상분리가 일어나 페이스트의 저장 안정성에 치명적이라는 문제점이 있다. Particularly, it is possible to use an additive to improve dispersibility and storage stability, but a dispersant such as polyvinyl pyrrolidone has a problem of lowering solubility with an organic solvent, and a low molecular weight additive such as a plasticizer, There is a problem that phase separation with the paste phase occurs and the storage stability of the paste is fatal.

따라서, 별도의 첨가제 사용 없이도 분산성과 저장안정성을 높일 수 있고 용매와의 용해성을 충분히 확보할 수 있는 유기바인더에 대한 연구개발이 절실히 필요한 실정이다.
Therefore, there is an urgent need for research and development of an organic binder capable of increasing dispersibility and storage stability without using any additive and sufficiently securing solubility with a solvent.

본 발명이 해결하고자 하는 과제는 분산성 및 저장안정성이 우수한 태양전지 전극 형성용 조성물을 제공하기 위함이다.The object of the present invention is to provide a composition for forming a solar cell electrode which is excellent in dispersibility and storage stability.

본 발명이 해결하고자 하는 다른 과제는 미세패턴의 형성이 가능하고 인쇄성이 우수한 태양전지 전극 형성용 조성물을 제공하기 위함이다.Another object of the present invention is to provide a composition for forming a solar cell electrode capable of forming a fine pattern and having excellent printability.

본 발명이 해결하고자 하는 또 다른 과제는 상기 조성물로 제조된 전극을 제공하기 위함이다.
Another object of the present invention is to provide an electrode made of the composition.

본 발명의 일 관점은 은(Ag) 분말, 유리프릿, 유기바인더 및 용매를 포함하고, 상기 유기바인더는 하기 화학식 1로 표시되는 반복단위를 포함하는 화합물을 포함하는 것인 태양전지 전극 형성용 조성물에 관한 것이다:One aspect of the present invention is a composition for forming a solar cell electrode comprising a silver (Ag) powder, a glass frit, an organic binder and a solvent, wherein the organic binder includes a compound containing a repeating unit represented by the following formula Lt; / RTI >

[화학식 1][Chemical Formula 1]

Figure 112014110050422-pat00001
Figure 112014110050422-pat00001

상기 화학식 1에서 R1 내지 R3는 각각 독립적으로 수소 원자, 하이드록시기, 아세틸기, 탄소수 1 내지 6의 알킬기, 탄소수 2 내지 6의 알케닐기, 니트로기, 또는 하기 화학식 2 내지 4로 표시되고, Wherein R 1 to R 3 in the general formula (1) are each independently a hydrogen atom, a hydroxyl group, an acetyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a nitro group,

R1 내지 R3 중 하나 이상은 하기 화학식 2 내지 4로 표시되며, At least one of R 1 to R 3 is represented by the following formulas (2) to (4)

n은 5 내지 1,000의 정수이다;n is an integer from 5 to 1,000;

[화학식 2](2)

Figure 112014110050422-pat00002
Figure 112014110050422-pat00002

[화학식 3](3)

Figure 112014110050422-pat00003
Figure 112014110050422-pat00003

[화학식 4][Chemical Formula 4]

Figure 112014110050422-pat00004
Figure 112014110050422-pat00004

상기 화학식 2 내지 4에서 *는 결합부위이다.In the above formulas 2 to 4, * is a bonding site.

상기 조성물은 은(Ag) 분말 60 내지 95 중량%; 유리프릿 0.5 내지 20 중량%; 유기바인더 0.1 내지 30 중량%; 및 용매 1 내지 30 중량%를 포함할 수 있다.Said composition comprising 60 to 95 wt% silver (Ag) powder; 0.5 to 20% by weight of glass frit; 0.1 to 30% by weight of an organic binder; And 1 to 30% by weight of a solvent.

상기 유리프릿은 납(Pb), 텔루륨(Te), 비스무스(Bi) 리튬(Li), 인(P), 게르마늄(Ge), 갈륨(Ga), 세륨(Ce), 철(Fe), 규소(Si), 아연(Zn), 텅스텐(W), 마그네슘(Mg), 세슘(Cs), 스트론튬(Sr), 몰리브덴(Mo), 티타늄(Ti), 주석(Sn), 인듐(In), 바나듐(V), 바륨(Ba), 니켈(Ni), 구리(Cu), 나트륨(Na), 칼륨(K), 비소(As), 코발트(Co), 지르코늄(Zr), 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 1종 이상의 금속 원소를 포함할 수 있다.The glass frit may be made of at least one selected from the group consisting of Pb, Tell, Bi, P, Ge, Ga, (Si), Zn (Zn), W, Mg, Cs, Sr, Mo, Ti, (V), barium, nickel, copper, sodium, potassium, arsenic, cobalt, zirconium, manganese and aluminum And aluminum (Al).

상기 용매는 메틸 셀로솔브(Methyl Cellosolve), 에틸 셀로솔브(Ethyl Cellosolve), 부틸 셀로솔브(Butyl Cellosolve), 지방족 알코올(Alcohol), α-터피네올(Terpineol), β-터피네올, 다이하이드로 터피네올(Dihydro-terpineol), 에틸렌 글리콜(Ethylene Grycol), 에틸렌 글리콜 모노 부틸에테르(Ethylene glycol mono butyl ether), 부틸셀로솔브 아세테이트(Butyl Cellosolve acetate) 및 텍사놀(Texanol)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The solvent may be selected from the group consisting of methyl cellosolve, ethyl cellosolve, butyl cellosolve, alcohols, alpha-terpineol, beta-terpineol, dihydro Selected from the group consisting of Dihydro-terpineol, Ethylene Grycol, Ethylene glycol mono butyl ether, Butyl Cellosolve acetate and Texanol. And may include one or more species.

상기 유리프릿은 평균입경(D50)이 0.1㎛ 내지 10㎛일 수 있다.The glass frit may have an average particle diameter (D50) of 0.1 占 퐉 to 10 占 퐉.

상기 조성물은 요변제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1종 이상 더 포함할 수 있다.The composition may further include at least one additive selected from the group consisting of a thixotropic agent, a viscosity stabilizer, a defoamer, a pigment, a UV stabilizer, an antioxidant and a coupling agent.

본 발명의 다른 관점은 상기 태양전지 전극 형성용 조성물로 제조된 태양전지 전극에 관한 것이다.
Another aspect of the present invention relates to a solar cell electrode made of the composition for forming a solar cell electrode.

본 발명의 태양전지 전극 형성용 조성물은 분산성 및 저장안정성이 우수하며, 미세패턴의 형성이 가능하고 인쇄성이 우수하다.
The composition for forming a solar cell electrode of the present invention is excellent in dispersibility and storage stability, capable of forming a fine pattern, and excellent in printing property.

태양전지 전극 형성용 조성물Composition for forming solar cell electrode

본 발명의 태양전지 전극 형성용 조성물은 은(Ag) 분말; 유리프릿; 유기바인더; 및 용매를 포함할 수 있다. 이하, 본 발명을 상세히 설명하면 다음과 같다.The composition for forming a solar cell electrode according to the present invention comprises silver (Ag) powder; Glass frit; Organic binders; And a solvent. Hereinafter, the present invention will be described in detail.

(A) 은 분말 (A) is powder

본 발명의 태양전지 전극 형성용 조성물은 도전성 분말로서 은(Ag) 분말을 사용한다. 상기 은 분말은 나노 사이즈 또는 마이크로 사이즈의 입경을 갖는 분말일 수 있는데, 예를 들어 수십 내지 수백 나노미터 크기의 은 분말, 수 내지 수십 마이크로미터의 은 분말일 수 있으며, 2 이상의 서로 다른 사이즈를 갖는 은 분말을 혼합하여 사용할 수도 있다.The composition for forming a solar cell electrode of the present invention uses silver (Ag) powder as the conductive powder. The silver powder may be a nano-sized or micro-sized powder, for example, a silver powder having a size of several tens to several hundreds of nanometers, a silver powder of several to several tens of micrometers, Silver powder may be mixed and used.

은 분말은 입자 형상이 구형, 판상, 무정형 형상을 가질 수 있다The silver powder may have a spherical shape, a plate shape, and an amorphous shape as the particle shape

은 분말은 평균입경(D50)은 바람직하게는 0.1㎛ 내지 10㎛이며, 더 바람직하게는 0.5㎛ 내지 5㎛이 될 수 있다. 상기 평균입경은 이소프로필알코올(IPA)에 도전성 분말을 초음파로 25℃에서 3분 동안 분산시킨 후 CILAS社에서 제작한 1064LD 모델을 사용하여 측정된 것이다. 상기 범위 내에서, 접촉저항과 선 저항이 낮아지는 효과를 가질 수 있다. The average particle diameter (D50) of the silver powder is preferably 0.1 to 10 mu m, more preferably 0.5 to 5 mu m. The average particle diameter was measured using a 1064 LD model manufactured by CILAS after dispersing the conductive powder in isopropyl alcohol (IPA) by ultrasonication at 25 캜 for 3 minutes. Within this range, the contact resistance and line resistance can be lowered.

은 분말은 조성물 전체 중량 대비 60 내지 95 중량%로 포함될 수 있다. 상기 범위에서, 저항의 증가로 변환 효율이 낮아지는 것을 막을 수 있고, 유기비히클 양의 상대적인 감소로 페이스트화가 어려워지는 것을 막을 수 있다. 바람직하게는 70 내지 90 중량%로 포함될 수 있다. The silver powder may be included in an amount of 60 to 95% by weight based on the total weight of the composition. In this range, it is possible to prevent the conversion efficiency from being lowered by increasing the resistance, and to prevent the paste from becoming difficult due to the relative reduction in the amount of the organic vehicle. Preferably 70 to 90% by weight.

(B) 유리프릿(B) glass frit

유리프릿(glass frit)은 태양전지 전극 형성용 조성물의 소성 공정 중 반사 방지막을 에칭(etching)하고, 은 입자를 용융시켜 저항이 낮아질 수 있도록 에미터 영역에 은 결정 입자를 생성시키고, 전도성 분말과 웨이퍼 사이의 접착력을 향상시키고 소결시에 연화하여 소성 온도를 보다 낮추는 효과를 유도한다.The glass frit is produced by etching an antireflection film during a sintering process of a composition for forming a solar cell electrode, melting silver particles to produce silver crystal grains in the emitter region so that resistance can be lowered, The adhesion between the wafers is improved and softening at the time of sintering induces an effect of lowering the firing temperature.

태양전지의 효율을 증가시키기 위하여 태양전지의 면적을 증가시키면 태양전지의 접촉저항이 높아질 수 있으므로 pn 접합(pn junction)에 대한 피해를 최소화함과 동시에 직렬저항을 최소화시켜야 한다. 또한, 다양한 면저항의 웨이퍼의 증가에 따라 소성 온도가 변동폭이 커지므로 넓은 소성 온도에서도 열안정성을 충분히 확보될 수 있는 유리프릿을 사용하는 것이 바람직하다. Increasing the area of the solar cell in order to increase the efficiency of the solar cell may increase the contact resistance of the solar cell. Therefore, the damage to the pn junction should be minimized and the series resistance should be minimized. In addition, it is preferable to use a glass frit which can sufficiently secure thermal stability even at a wide firing temperature because the range of variation in firing temperature becomes large as wafers of various sheet resistances increase.

상기 유리 프릿은 통상적으로 태양전지 전극 형성용 조성물에 사용되는 유연 유리 프릿 또는 무연 유리 프릿 중 어느 하나 이상이 사용될 수 있다.The glass frit may be typically at least one of a flexible glass frit or a lead-free glass frit used in a composition for forming a solar cell electrode.

상기 유리프릿은 납(Pb), 텔루륨(Te), 비스무스(Bi) 리튬(Li), 인(P), 게르마늄(Ge), 갈륨(Ga), 세륨(Ce), 철(Fe), 규소(Si), 아연(Zn), 텅스텐(W), 마그네슘(Mg), 세슘(Cs), 스트론튬(Sr), 몰리브덴(Mo), 티타늄(Ti), 주석(Sn), 인듐(In), 바나듐(V), 바륨(Ba), 니켈(Ni), 구리(Cu), 나트륨(Na), 칼륨(K), 비소(As), 코발트(Co), 지르코늄(Zr), 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 1종 이상의 금속 원소를 포함할 수 있다. The glass frit may be made of at least one selected from the group consisting of Pb, Tell, Bi, P, Ge, Ga, (Si), Zn (Zn), W, Mg, Cs, Sr, Mo, Ti, (V), barium, nickel, copper, sodium, potassium, arsenic, cobalt, zirconium, manganese and aluminum And aluminum (Al).

유리 프릿은 통상의 방법을 사용하여 상기 기술된 금속 원소의 산화물로부터 유래된 것일 수 있다. 예를 들면, 상기 기술된 금속 원소의 산화물을 특정 조성으로 혼합한다. 혼합은 볼 밀(ball mill) 또는 플라네터리 밀(planetary mill)을 사용하여 혼합할 수 있다. 혼합된 조성물을 700℃ 내지 1300℃의 조건에서 용융시키고, 25℃에서 ??칭(quenching)한다. 얻은 결과물을 디스크 밀(disk mill), 플라네터리 밀 등에 의해 분쇄하여 유리 프릿을 얻을 수 있다. The glass frit may be derived from an oxide of the metallic element described above using conventional methods. For example, oxides of the above-described metal elements are mixed in a specific composition. The blend can be mixed using a ball mill or a planetary mill. The mixed composition is melted at 700 ° C to 1300 ° C and quenched at 25 ° C. The resulting product is pulverized by a disk mill, a planetary mill or the like to obtain a glass frit.

상기 유리 프릿은 평균입경(D50)이 0.1 내지 10㎛인 것이 사용될 수 있으며, 조성물 전체 중량 대비 0.5 내지 20 중량% 포함될 수 있다. 상기 유리 프릿의 형상은 구형이어도 부정형상이어도 무방하다. 구체예에서는, 전이점이 상이한 2종의 유리 프릿을 사용할 수도 있다. 예를 들면, 전이점이 200℃ 이상 350 ℃ 이하인 제1 유리 프릿과 전이점이 350℃ 초과 550℃ 이하인 제2 유리 프릿을 1 : 0.2 내지 1 : 1의 중량비로 혼합하여 사용할 수 있다. The glass frit may have an average particle diameter (D50) of 0.1 to 10 mu m and may be contained in an amount of 0.5 to 20 wt% based on the total weight of the composition. The shape of the glass frit may be spherical or irregular. In a specific example, two kinds of glass frit having different transition points may be used. For example, a first glass frit having a transition temperature of 200 ° C or higher and 350 ° C or lower and a second glass frit having a transition point of 350 ° C or higher and 550 ° C or lower may be mixed at a weight ratio of 1: 0.2 to 1: 1.

(C) 유기바인더(C) Organic binder

본 발명의 일 구체예에 따른 유기바인더는 하기 화학식 1로 표시되는 반복단위를 포함하는 화합물 및 그 유도체를 포함할 수 있다.The organic binder according to one embodiment of the present invention may include a compound containing a repeating unit represented by the following formula (1) and a derivative thereof.

상기 유기바인더는 하기 화학식 1로 표시되는 반복단위를 포함하는 화합물을 포함할 수 있다.The organic binder may include a compound containing a repeating unit represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112014110050422-pat00005
Figure 112014110050422-pat00005

상기 화학식 1에서 R1 내지 R3는 각각 독립적으로 수소 원자, 하이드록시기, 아세틸기, 탄소수 1 내지 6의 알킬기, 탄소수 2 내지 6의 알케닐기, 니트로기, 하기 화학식 2 내지 4로 표시되고, Wherein R 1 to R 3 in the general formula (1) are each independently a hydrogen atom, a hydroxy group, an acetyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a nitro group,

R1 내지 R3 중 하나 이상은 하기 화학식 2 내지 4로 표시되며, At least one of R 1 to R 3 is represented by the following formulas (2) to (4)

n은 5 내지 1,000의 정수이다;n is an integer from 5 to 1,000;

[화학식 2](2)

Figure 112014110050422-pat00006
Figure 112014110050422-pat00006

[화학식 3](3)

Figure 112014110050422-pat00007
Figure 112014110050422-pat00007

[화학식 4][Chemical Formula 4]

Figure 112014110050422-pat00008
Figure 112014110050422-pat00008

상기 화학식 2 내지 4에서 *는 결합부위이다.In the above formulas 2 to 4, * is a bonding site.

상기 화학식 2 내지 4로 표시되는 치환기는 셀룰로오스 화합물의 입체 장애도를 높이고, 셀룰로오스 화합물의 내부 사슬(interchain) 또는 화합물 반복단위 간에 수소결합 등의 상호작용을 유도하고, 은(Ag) 입자 표면 또는 웨이퍼 표면과의 수소결합이나 이온결합 등의 상호작용을 유도할 수 있다. 구체적으로, 스크린인쇄 공정 중 숙신산(succinic acid), 아비에트산(abietic acid), 또는 카프로락탐(caprolactam)으로 치환된 화학식 1로 표시되는 셀룰로오스계 화합물은 내부 사슬간, 또는 외부의 다른 셀룰로오스 화합물간, Ag 입자간 또는 웨이퍼(wafer)와의 젖음성을 향상시켜 결과적으로 인쇄공정 중 페이스트의 번짐(width 증가)이나 두께(thickness) 감소를 방지할 수 있다.The substituents represented by the formulas (2) to (4) increase the steric hindrance of the cellulose compound and induce interactions such as hydrogen bonding between the interchain or compound repeating units of the cellulose compound, It is possible to induce interaction such as hydrogen bonding or ion bonding with the surface. Specifically, the cellulose-based compound represented by the formula (1) substituted with succinic acid, abietic acid, or caprolactam in the screen printing process may be added to the inside chain or between the other cellulose compounds , The wettability between the Ag particles and the wafer can be improved, and as a result, it is possible to prevent the paste from spreading (increase in width) or decrease in thickness in the printing process.

상기 화학식 1로 표시되는 화합물의 중량평균분자량(Mw)은 5,000 내지 200,000g/mol일 수 있다.The weight average molecular weight (Mw) of the compound represented by Formula 1 may be 5,000 to 200,000 g / mol.

상기 유기바인더는 태양전지 전극 형성용 조성물 전체 중량 대비 0.1 내지 30 중량%로, 바람직하게는 0.5 내지 15 중량%로 포함될 수 있다. 유기바인더의 함량이 0.1중량% 미만인 경우, 조성물 제조 후 점도가 너무 낮아지거나 기판과의 접착력이 저하될 수 있고, 유기바인더의 함량이 30 중량%를 초과하면, 유기바인더가 과다하게 존재하여 소성 시 유기바인더의 분해가 원활히 이뤄지지 않아 저항이 상승하고, 소성 시 전극의 갈라짐, 오픈, 핀홀 발생 등의 문제점이 발생할 수 있다.The organic binder may be contained in an amount of 0.1 to 30% by weight, preferably 0.5 to 15% by weight based on the total weight of the composition for forming a solar cell electrode. If the content of the organic binder is less than 0.1% by weight, viscosity of the composition may become too low or adhesion to the substrate may be decreased. If the content of the organic binder is more than 30% by weight, The decomposition of the organic binder is not smoothly performed, resistance is increased, and problems such as cracking, opening, pinholes, and the like may occur during firing.

(D) 용매(D) Solvent

상기 용매로는 100℃ 이상의 비점을 갖는 것으로, 메틸 셀로솔브(Methyl Cellosolve), 에틸 셀로솔브(Ethyl Cellosolve), 부틸 셀로솔브(Butyl Cellosolve), 지방족 알코올(Alcohol), α-터피네올(Terpineol), β-터피네올, 다이하이드로 터피네올(Dihydro-terpineol), 에틸렌 글리콜(Ethylene Grycol), 에틸렌 글리콜 모노 부틸에테르(Ethylene glycol mono butyl ether), 부틸셀로솔브 아세테이트(Butyl Cellosolve acetate), 또는 텍사놀(Texanol) 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다. The solvent may be selected from the group consisting of methyl cellosolve, ethyl cellosolve, butyl cellosolve, aliphatic alcohol, alpha-terpineol, ,? -terpineol, dihydro-terpineol, ethylene glycol, ethylene glycol mono butyl ether, butyl cellosolve acetate, or Texanol, etc. may be used alone or in combination of two or more.

상기 유기용매는 태양전지 전극 형성용 조성물 전체 중량 대비 1 내지 30 중량%로 포함될 수 있다. 상기 범위에서 충분한 접착강도와 우수한 인쇄성을 확보할 수 있다. The organic solvent may be contained in an amount of 1 to 30% by weight based on the total weight of the composition for forming a solar cell electrode. Within this range, sufficient adhesive strength and excellent printability can be ensured.

(E) 첨가제(E) Additive

본 발명의 태양전지 전극 형성용 조성물은 상기에서 기술한 구성 요소 외에 유동 특성, 공정 특성 및 안정성을 향상시키기 위하여 필요에 따라 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제는 요변제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제, 커플링제 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다. 이들은 태양전지 전극 형성용 조성물 전체 중량 대비 0.1 내지 5 중량%로 포함될 수 있지만 필요에 따라 함량을 변경할 수 있다.
The composition for forming a solar cell electrode of the present invention may further include conventional additives as needed in order to improve flow characteristics, process characteristics, and stability in addition to the above-described components. The additive may be used alone or as a mixture of two or more of a thixotropic agent, a viscosity stabilizer, a defoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant and a coupling agent. These may be contained in an amount of 0.1 to 5% by weight based on the total weight of the composition for forming a solar cell electrode, but the content can be changed as necessary.

태양전지 전극 및 이를 포함하는 태양전지Solar cell electrode and solar cell comprising same

본 발명의 다른 관점은 상기 태양전지 전극 형성용 조성물로부터 형성된 전극 및 이를 포함하는 태양전지에 관한 것이다. Another aspect of the present invention relates to an electrode formed from the composition for forming a solar cell electrode and a solar cell including the same.

p층(또는 n층) 및 에미터로서의 n층(또는 p층)을 포함하는 웨이퍼 또는 기판 상에, 전극 형성용 조성물을 인쇄하고 소성하여 후면 전극 및 전면 전극을 형성할 수 있다. 예컨대, 전극 형성용 조성물을 웨이퍼의 후면에 인쇄 도포한 후, 대략 200℃ 내지 400℃ 온도로 대략 10 내지 60초 정도 건조하여 후면 전극을 위한 사전 준비 단계를 수행할 수 있다. 또한, 웨이퍼의 전면에 전극 형성용 조성물을 인쇄한 후 건조하여 전면 전극을 위한 사전 준비단계를 수행할 수 있다. 이후에, 400℃ 내지 980℃, 바람직하게는 700℃ 내지 980℃에서 약 30초 내지 210초 소성하는 소성 과정을 수행하여 전면 전극 및 후면 전극을 형성할 수 있다. the rear electrode and the front electrode can be formed by printing and firing the electrode forming composition on a wafer or a substrate including a p-layer (or n-layer) and an n-layer (or p-layer) as an emitter. For example, the electrode forming composition may be applied to the rear surface of the wafer by printing and then dried at a temperature of about 200 캜 to 400 캜 for about 10 to 60 seconds to perform a preliminary preparation step for the rear electrode. In addition, a preparation step for the front electrode can be performed by printing a composition for electrode formation on the entire surface of the wafer and then drying it. Thereafter, the front electrode and the rear electrode can be formed by performing a sintering process by sintering at 400 to 980 ° C, preferably 700 to 980 ° C for about 30 seconds to 210 seconds.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
Hereinafter, the present invention will be described in more detail by way of examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.

유기바인더 합성예Synthesis Example of Organic Binder

합성예 1 Synthesis Example 1

1L 둥근 플라스크에 1,4-다이옥산 500ml와 에틸셀룰로오스(ethylcellulose, Dow chemical社, STD200) 50g을 투입하고 50℃ 까지 천천히 승온 후 30분 동안 교반하여 에틸셀룰로오스를 완전히 용해시킨 후, 실온으로 온도를 낮추어 질소가스(N2) 분위기 하에서 숙신산 무수물(succinic anhydride) 111g과 DMAP(Dimethylamino pyridine) 17g을 첨가하여 서서히 110℃까지 온도를 상승시켜 온도 도달 후 1시간 동안 교반 후 분리, 세정 및 건조하여 숙신산으로 개질된 에틸셀룰로오스(ECSA)를 수득하였다.500 ml of 1,4-dioxane and 50 g of ethylcellulose (Dow chemical, STD200) were added to a 1 L round bottom flask, and the temperature was slowly raised to 50 ° C. After stirring for 30 minutes to completely dissolve the ethylcellulose, 111 g of succinic anhydride and 17 g of DMAP (dimethylamine pyridine) were added in a nitrogen gas (N 2 ) atmosphere, and the temperature was gradually raised to 110 ° C. After the temperature was reached, the mixture was stirred for 1 hour and then separated, washed, Of ethylcellulose (ECSA).

합성예 2 Synthesis Example 2

1L 둥근 플라스크에 TFAA(trifluoroacetic anhydride) 90g과 테트라하이드로아비에트산(tetrahydroabietic acid, Eastman社, Foral AX-E) 87g을 투입하고 50℃ 까지 서서히 승온 하여 30분 동안 교반후 TFAA와 테트라하이드로아비에트산의 혼합산을 제조하고 에틸셀룰로오스(ethylcellulose, Dow chemical社, STD200) 50g과 1,4-다이옥산 500ml를 추가로 투입한 후 반응온도 50℃를 유지하며 5시간 동안 교반 후 분리, 세정 및 건조하여 테트라하이드로아비에트산으로 개질된 에틸셀룰로오스(ECAA)를 수득하였다.90 g of TFAA (trifluoroacetic anhydride) and 87 g of tetrahydroabietic acid (Eastman, Foral AX-E) were added to a 1 L round-bottomed flask, and the temperature was gradually raised to 50 캜. After stirring for 30 minutes, TFAA and tetrahydroabietic acid 50 g of ethyl cellulose (STD200, Dow chemical) and 500 ml of 1,4-dioxane were further added thereto. The reaction mixture was stirred at a reaction temperature of 50 ° C for 5 hours, separated, washed and dried to obtain tetra Ethylcellulose (ECAA) modified with hydroxyacetic acid was obtained.

합성예 3 Synthesis Example 3

1L 둥근 플라스크에 자일렌(xylene) 500ml와 에틸셀룰로오스(ethylcellulose, Dow chemical社, STD200) 50g을 투입하고 50℃ 까지 천천히 승온 후 30분 동안 교반하여 에틸셀룰로오스를 완전히 용해시킨 후, 실온으로 온도를 낮추어 질소가스(N2) 분위기 하에서 카프로락탐(caprolactam) 19.23g과 촉매(dibutyltin dilaurate) 0.9g을 투입하여 반응온도 120℃를 유지하며 5시간 동안 교반 후 분리, 세정 및 건조하여 카프로락탐으로 개질된 에틸셀룰로오스(ECCLT)를 수득하였다.500 ml of xylene and 50 g of ethylcellulose (Dow chemical, STD200) were added to a 1 L round-bottomed flask, and the temperature was slowly raised to 50 ° C. After stirring for 30 minutes to completely dissolve the ethylcellulose, the temperature was lowered to room temperature 19.23 g of caprolactam and 0.9 g of dibutyltin dilaurate were placed in a nitrogen gas (N 2 ) atmosphere. The mixture was stirred at the reaction temperature of 120 ° C for 5 hours, separated, washed, and dried to obtain ethyl caprolactam Cellulose (ECCLT) was obtained.

실시예 1Example 1

유기바인더로서 상기 합성예 1로부터 제조된 숙신산 무수물로 개질된 에틸셀룰로오스(ECSA) 0.8 중량%를 용매인 텍사놀(Texanol) 8.5 중량%에 60℃에서 충분히 용해한 후 평균입경이 2.0㎛인 구형의 은 분말(Dowa Hightech CO. LTD, 4-8F) 87.0 중량%, 평균 입경이 1.0 ㎛이고 전이점이 341℃인 저융점 유연 유리(유연 Glass, (주)파티클로지, CI-124) 프릿 3 중량%, 첨가제로서 분산제 BYK102(BYK-chemie) 0.2 중량% 및 요변제 Thixatrol ST (Elementis co.) 0.5 중량% 투입하여 골고루 믹싱 후 3롤 혼련기로 혼합 분산시켜 태양전지 전극 형성용 조성물을 준비하였다.0.8% by weight of ethylcellulose (ECSA) modified with succinic anhydride prepared in Synthesis Example 1 was dissolved in 8.5% by weight of Texanol as a solvent at 60 占 폚 to obtain a spherical silver powder having an average particle diameter of 2.0 占 퐉 3% by weight of low melting point flexible glass (Flexible Glass, particle size, CI-124) frit having 87.0% by weight of powder (Dowa Hightech CO. LTD. 4-8F), an average particle size of 1.0 탆 and a transition point of 341 캜, 0.2 wt% of a dispersant BYK102 (BYK-chemie) and 0.5 wt% of a thixotropic agent Thixatrol ST (Elementis co.) As additives were mixed and dispersed by a three roll kneader to prepare a composition for forming a solar cell electrode.

실시예 2Example 2

유기바인더로서 상기 합성예 2로부터 제조된 아비에트산 개질 에틸셀룰로오스(ECAA)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 태양전지 전극 형성용 조성물을 준비하였다.A composition for forming a solar cell electrode was prepared in the same manner as in Example 1, except that abietic acid modified ethyl cellulose (ECAA) prepared from Synthesis Example 2 was used as an organic binder.

실시예 3Example 3

유기바인더로서 상기 합성예 3으로부터 제조된 카프로락탐 개질 에틸셀룰로오스(ECCLT)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 태양전지 전극 형성용 조성물을 준비하였다.A composition for forming a solar cell electrode was prepared in the same manner as in Example 1, except that caprolactam-modified ethylcellulose (ECCLT) prepared from Synthesis Example 3 was used as an organic binder.

비교예 1Comparative Example 1

유기바인더로서 합성예 1-3으로부터 제조된 ECSA, ECAA, ECCLT 대신 에틸셀룰로오스(Dow chemical社, STD200)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 태양전지 전극 형성용 조성물을 준비하였다.
A composition for forming a solar cell electrode was prepared in the same manner as in Example 1, except that ethylcellulose (Dow chemical, STD200) was used instead of ECSA, ECAA and ECCLT prepared from Synthesis Example 1-3 as an organic binder.

물성 평가 방법Property evaluation method

(1) 저장 안정성(%) : 하기 식 1에 의거하여 제조된 전극형성 조성물의 보관 전후의 점도 변화율로 저장 안정성을 평가하였으며, 그 결과를 하기 표 1에 나타내었다. (1) Storage stability (%) : The storage stability of the electrode-forming composition prepared according to the following formula 1 was evaluated according to the viscosity change ratio before and after storage, and the results are shown in Table 1 below.

[식 1][Formula 1]

Figure 112014110050422-pat00009
Figure 112014110050422-pat00009

(F0: 전극 형성용 조성물을 25℃, 50±5% 상대 습도 조건에서 1일 보관 후, (F0: composition for electrode formation was stored for 1 day at 25 DEG C and 50 +/- 5% relative humidity,

상온에서 측정한 점도 값    Viscosity value measured at room temperature

F1: 전극 형성용 조성물을 25℃, 50±5% 상대 습도 상태에서 30일 보관 후,  F1: After the composition for electrode formation was stored for 30 days at 25 占 폚 and 50? 5% relative humidity,

상온에서 측정한 점도 값)
Viscosity value measured at room temperature)

※ 점도 측정: Brookfield社의 점도계(HBDV-2+pro)를 사용하여 SC4-14 스핀들과 SC4-6RP 챔버를 장착하여 25℃에서 10rpm으로 30초간 preshear를 가한 뒤 그 값을 측정하였다.* Viscosity measurement: Using a Brookfield viscometer (HBDV-2 + pro), a SC4-14 spindle and an SC4-6RP chamber were mounted, and the preshear was applied for 30 seconds at 25 ° C at 10 rpm.

(2) 미세패턴 평가 : 준비된 태양전지 전극 형성용 조성물을 면 저항 90Ω인 폴리 P 타입 실리콘 웨이퍼(Wafer) 전면에 스크린 마스크를 이용하여 각각 스크린 프린팅하여 전극 패턴(finger bar)을 인쇄하고, 적외선 건조로를 사용하여 건조시켰다. 이후 웨이퍼의 후면에 알루미늄을 포함하는 전극 형성용 조성물을 후면 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 400 내지 950℃사이로 30초에서 50초간 소성을 행하였으며, 제조된 전극(finger bar)의 단선 여부를 확인하기 위하여 EL tester(MV tech 社)를 이용하여 Line open 개수를 측정하였으며, 전극 라인의 선폭 및 두께는 VK 장비(KEYENCE社 VK9710)를 이용하여 측정하였으며, 그 결과를 하기 표 2에 나타내었다. (2) Evaluation of fine pattern : The prepared composition for forming a solar cell electrode was screen-printed on the entire surface of a polyP type silicon wafer having a surface resistance of 90? Using a screen mask to print an electrode pattern (finger bar) ≪ / RTI > Thereafter, a composition for forming an electrode containing aluminum was printed on the rear surface of the wafer by back printing and then dried by the same method. The cells thus formed were fired at 400 to 950 DEG C for 30 seconds to 50 seconds using a belt-type firing furnace. An EL tester (MV tech) was used to confirm whether or not the finger bar was cut off. The line width and thickness of the electrode line were measured using a VK instrument (KEYENCE VK9710). The results are shown in Table 2 below.

* 스크린 마스크 : SUS325 type / Emulsion 두께 15㎛ / 핑거바 선폭 35㎛, 핑거바 개수 90개* Screen mask: SUS325 type / Emulsion thickness 15㎛ / Finger bar line width 35㎛, Number of finger bars 90

  실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 조성
 
(wt%)
Furtherance

(wt%)
은 분말Silver powder 8787 8787 8787 8787
유리 프릿Glass frit 33 33 33 33 유기바인더Organic binder 0.8
(ECSA)
0.8
(ECSA)
0.8
(ECAA)
0.8
(ECAA)
0.8
(ECCLT)
0.8
(ECCLT)
0.8
(STD 200)
0.8
(STD 200)
유기용매Organic solvent 8.58.5 8.58.5 8.58.5 8.58.5 첨가제additive 0.70.7 0.70.7 0.70.7 0.70.7 물성Properties 저장안정성 (%)Storage stability (%) 66 22 33 77 인쇄 후 선폭 L1 (㎛)Line width after printing L1 (占 퐉) 5454 6060 5656 6565 건조 후 선폭 L2 (㎛)Line width after drying L2 (占 퐉) 5959 6666 6060 7474 소성 후 선폭 L3 (㎛)Line width after firing L3 (占 퐉) 6666 7272 6868 9595 소성 후 두께 D1 (㎛)Thickness after firing D1 (占 퐉) 2222 1919 2020 1717 선폭△ (L1-L2) (㎛)Line width? (L1-L2) (占 퐉) 55 66 44 99 종횡비 (D1/L3)Aspect ratio (D1 / L3) 0.330.33 0.260.26 0.290.29 0.180.18

상기 표 1의 결과값에서 보듯이, 유기바인더로서 숙신산, 테트라하이드로아비에트산, 및 카프로락탐으로 각각 개질된 에틸셀룰로오스를 사용한 실시예 1-3의 태양전지 전극 형성용 조성물은 에틸셀룰로오스를 사용한 비교예 1 대비 저장안정성이 우수하고 종횡비가 우수하여 미세선폭의 구현이 가능한 것을 알 수 있다.As shown in the results of Table 1, the composition for forming a solar cell electrode of Example 1-3 using ethyl cellulose modified with succinic acid, tetrahydroabietic acid, and caprolactam as organic binders was compared with a comparison using ethylcellulose It can be seen that the fine line width can be realized because the storage stability is excellent and the aspect ratio is excellent.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (7)

은(Ag) 분말, 유리프릿, 유기바인더 및 용매를 포함하고,
상기 유기바인더는 하기 화학식 1로 표시되는 반복단위를 포함하는 화합물을 포함하는 것인 태양전지 전극 형성용 조성물:
[화학식 1]
Figure 112014110050422-pat00010

상기 화학식 1에서 R1 내지 R3는 각각 독립적으로 수소 원자, 하이드록시기, 아세틸기, 탄소수 1 내지 6의 알킬기, 탄소수 2 내지 6의 알케닐기, 니트로기, 또는 하기 화학식 2 내지 4로 표시되고,
R1 내지 R3 중 하나 이상은 하기 화학식 2 내지 4로 표시되며,
n은 5 내지 1,000의 정수이다;
[화학식 2]
Figure 112014110050422-pat00011

[화학식 3]
Figure 112014110050422-pat00012

[화학식 4]
Figure 112014110050422-pat00013

상기 화학식 2 내지 4에서 *는 결합부위이다.
Silver (Ag) powder, glass frit, organic binder and solvent,
Wherein the organic binder comprises a compound containing a repeating unit represented by the following formula (1): < EMI ID =
[Chemical Formula 1]
Figure 112014110050422-pat00010

Wherein R 1 to R 3 in the general formula (1) are each independently a hydrogen atom, a hydroxyl group, an acetyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a nitro group,
At least one of R 1 to R 3 is represented by the following formulas (2) to (4)
n is an integer from 5 to 1,000;
(2)
Figure 112014110050422-pat00011

(3)
Figure 112014110050422-pat00012

[Chemical Formula 4]
Figure 112014110050422-pat00013

In the above formulas 2 to 4, * is a bonding site.
제1항에 있어서,
상기 은(Ag) 분말 60 내지 95 중량%;
상기 유리프릿 0.5 내지 20 중량%;
상기 유기바인더 0.1 내지 30 중량%; 및
상기 용매 1 내지 30 중량%를 포함하는 태양전지 전극 형성용 조성물.
The method according to claim 1,
60 to 95 wt% of the silver (Ag) powder;
0.5 to 20% by weight of the glass frit;
0.1 to 30% by weight of the organic binder; And
And 1 to 30% by weight of the solvent.
제1항에 있어서,
상기 유리프릿은 납(Pb), 텔루륨(Te), 비스무스(Bi) 리튬(Li), 인(P), 게르마늄(Ge), 갈륨(Ga), 세륨(Ce), 철(Fe), 규소(Si), 아연(Zn), 텅스텐(W), 마그네슘(Mg), 세슘(Cs), 스트론튬(Sr), 몰리브덴(Mo), 티타늄(Ti), 주석(Sn), 인듐(In), 바나듐(V), 바륨(Ba), 니켈(Ni), 구리(Cu), 나트륨(Na), 칼륨(K), 비소(As), 코발트(Co), 지르코늄(Zr), 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 1종 이상의 금속 원소를 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
The method according to claim 1,
The glass frit may be made of at least one selected from the group consisting of Pb, Tell, Bi, P, Ge, Ga, (Si), Zn (Zn), W, Mg, Cs, Sr, Mo, Ti, (V), barium, nickel, copper, sodium, potassium, arsenic, cobalt, zirconium, manganese and aluminum And at least one metal element selected from the group consisting of aluminum (Al).
제1항에 있어서,
상기 용매는 메틸 셀로솔브(Methyl Cellosolve), 에틸 셀로솔브(Ethyl Cellosolve), 부틸 셀로솔브(Butyl Cellosolve), 지방족 알코올(Alcohol), α-터피네올(Terpineol), β-터피네올, 다이하이드로 터피네올(Dihydro-terpineol), 에틸렌 글리콜(Ethylene Grycol), 에틸렌 글리콜 모노 부틸에테르(Ethylene glycol mono butyl ether), 부틸셀로솔브 아세테이트(Butyl Cellosolve acetate) 및 텍사놀(Texanol)로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
The method according to claim 1,
The solvent may be selected from the group consisting of methyl cellosolve, ethyl cellosolve, butyl cellosolve, alcohols, alpha-terpineol, beta-terpineol, dihydro Selected from the group consisting of Dihydro-terpineol, Ethylene Grycol, Ethylene glycol mono butyl ether, Butyl Cellosolve acetate and Texanol. Wherein the composition comprises at least one member selected from the group consisting of a metal oxide and a metal oxide.
제1항에 있어서,
상기 유리프릿은 평균입경(D50)이 0.1㎛ 내지 10㎛인 것을 특징으로 하는 태양전지 전극 형성용 조성물.
The method according to claim 1,
Wherein the glass frit has an average particle diameter (D50) of 0.1 占 퐉 to 10 占 퐉.
제1항에 있어서,
상기 조성물은 요변제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1종 이상 더 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
The method according to claim 1,
Wherein the composition further comprises at least one additive selected from the group consisting of a thixotropic agent, a viscosity stabilizer, a defoamer, a pigment, an ultraviolet stabilizer, an antioxidant and a coupling agent.
제1항 내지 제6항 중 어느 한 항의 태양전지 전극 형성용 조성물로 제조된 태양전지 전극.A solar cell electrode made of the composition for forming a solar cell electrode according to any one of claims 1 to 6.
KR1020140159130A 2014-11-14 2014-11-14 Composition for forming solar cell electrode and electrode prepared using the same KR101758436B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140159130A KR101758436B1 (en) 2014-11-14 2014-11-14 Composition for forming solar cell electrode and electrode prepared using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140159130A KR101758436B1 (en) 2014-11-14 2014-11-14 Composition for forming solar cell electrode and electrode prepared using the same

Publications (2)

Publication Number Publication Date
KR20160058353A KR20160058353A (en) 2016-05-25
KR101758436B1 true KR101758436B1 (en) 2017-07-17

Family

ID=56114292

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140159130A KR101758436B1 (en) 2014-11-14 2014-11-14 Composition for forming solar cell electrode and electrode prepared using the same

Country Status (1)

Country Link
KR (1) KR101758436B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009334B (en) * 2019-12-27 2020-12-15 刘荣华 Conductive silver paste for solar cell and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335872A (en) * 2003-05-09 2004-11-25 Fujitsu Ltd Thermally conductive material and thermally conductive junction using same and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335872A (en) * 2003-05-09 2004-11-25 Fujitsu Ltd Thermally conductive material and thermally conductive junction using same and method for manufacturing the same

Also Published As

Publication number Publication date
KR20160058353A (en) 2016-05-25

Similar Documents

Publication Publication Date Title
KR101696985B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI651289B (en) Composition for solar cell electrode and electrode fabricated using the same
KR20150010512A (en) Composition for forming solar cell electrode and electrode prepared using the same
CN108630337B (en) Composition for forming electrode, electrode manufactured using the same, and solar cell
KR101816236B1 (en) Composition forforming electrode, electrode manufactured using the same and solar cell
KR101716549B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR101888933B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR101758436B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR101748008B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR101940170B1 (en) Composition forforming electrode, electrode manufactured using the same and solar cell
CN109962116B (en) Composition for forming electrode, electrode manufactured using the same, and solar cell
KR101748006B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR101965463B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20170061023A (en) Composition for forming solar cell electrode, electrode manufactured using the same and solar cell
KR101991976B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
CN111354502A (en) Composition for forming solar cell electrode and solar cell electrode
US9966480B2 (en) Electrode composition, electrode manufactured using the same, and solar cell
CN107068775B (en) Composition for forming electrode, electrode and solar cell using the same
KR101854743B1 (en) Composition forforming electrode, electrode manufactured using the same and solar cell
KR102151673B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR102020918B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR101863246B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR20170105887A (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR101863247B1 (en) Composition for forming electrode, electrode manufactured using the same and solar cell
KR101816235B1 (en) Composition forforming electrode, electrode manufactured using the same and solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant