KR101693010B1 - Method of manufacturing aluminum nitride basic material being formed diffusioin layer and aluminum nitride basic material thereof - Google Patents

Method of manufacturing aluminum nitride basic material being formed diffusioin layer and aluminum nitride basic material thereof Download PDF

Info

Publication number
KR101693010B1
KR101693010B1 KR1020160051140A KR20160051140A KR101693010B1 KR 101693010 B1 KR101693010 B1 KR 101693010B1 KR 1020160051140 A KR1020160051140 A KR 1020160051140A KR 20160051140 A KR20160051140 A KR 20160051140A KR 101693010 B1 KR101693010 B1 KR 101693010B1
Authority
KR
South Korea
Prior art keywords
diffusion
layer
aluminum nitride
base material
reaction layer
Prior art date
Application number
KR1020160051140A
Other languages
Korean (ko)
Inventor
강승동
최원철
Original Assignee
(주)씨엠코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨엠코리아 filed Critical (주)씨엠코리아
Priority to KR1020160051140A priority Critical patent/KR101693010B1/en
Application granted granted Critical
Publication of KR101693010B1 publication Critical patent/KR101693010B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface

Abstract

The present invention relates to a preparation method of an aluminum nitride base material forming a diffusion reaction layer, and to the aluminum nitride base material. In the present invention, a primary diffusion reaction layer is formed by applying a diffusion medium on a coating layer formed on an aluminum nitride ceramic base material, and by heating the same to a predetermined temperature. Simultaneously, a new liquid is generated with the formation of the primary diffusion reaction layer, and is diffused into the aluminum nitride base material, thereby forming a secondary diffusion reaction layer on the aluminum nitride base material. A diffusion medium layer and the primary diffusion reaction layer are removed, and the secondary diffusion reaction layer is ultimately left on the aluminum nitride base material.

Description

확산 반응층이 형성되는 질화알루미늄 모재 제조방법 및 그 질화알루미늄 모재{METHOD OF MANUFACTURING ALUMINUM NITRIDE BASIC MATERIAL BEING FORMED DIFFUSIOIN LAYER AND ALUMINUM NITRIDE BASIC MATERIAL THEREOF}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an aluminum nitride base material and a method of manufacturing the aluminum nitride base material,

본 발명은 확산 반응층이 형성되는 질화알루미늄 모재 제조방법 및 그 질화알루미늄 모재에 관한 것이다.The present invention relates to a method of manufacturing an aluminum nitride base material in which a diffusion reaction layer is formed and an aluminum nitride base material.

더 구체적으로 본 발명은, 질화알루미늄 세라믹 모재 위에 형성된 코팅층 위에 확산 매개체를 도포하여 이를 소정 온도로 가열함에 따라 1차 확산 반응층이 형성됨과 동시에, 새롭게 생성되는 액상이 질화알루미늄 모재 내부로 확산됨으로써 질화알루미늄 모재에 2차 확산 반응층이 형성되도록 한 것이다.More particularly, the present invention relates to a method for manufacturing a nitride-based aluminum nitride base material by applying a diffusion medium on a coating layer formed on an aluminum nitride ceramic base material and heating it to a predetermined temperature to form a first diffusion reaction layer, And a secondary diffusion reaction layer is formed on the aluminum base material.

더 구체적으로 본 발명은, 확산 매개체층과 1차 확산 반응층을 제거하여 최종적으로 질화알루미늄 모재 위에 2차 확산 반응층만 남겨두도록 한 것이다.More specifically, in the present invention, the diffusion medium layer and the first diffusion reaction layer are removed to leave only the second diffusion reaction layer on the aluminum nitride base material.

반도체 제조장치의 경우, 에칭 가스나 클리닝 가스로서 NF3, ClF3 등의 할로겐계 부식성 가스를 많이 사용하는데, 이러한 부식성 가스는 질화알루미늄(ALN) 등의 재질로 제조되는 히터의 부식을 야기하여 불화알루미늄(ALF3)이 발생토록 함으로써 반도체 제조장치를 오염시키는 문제를 유발하였다.In the case of a semiconductor manufacturing apparatus, a halogen-based corrosive gas such as NF 3 or ClF 3 is often used as an etching gas or a cleaning gas. Such a corrosive gas induces corrosion of a heater made of aluminum nitride (ALN) ), Thereby causing a problem of contamination of the semiconductor manufacturing apparatus.

또한, 이러한 문제를 해결하기 위해서, 질화알루미늄 위에 할로겐계 부식성 가스에 대하여 내식성이 강한 산화이트륨(Y2O3)을 용사 또는 에어로졸 등의 방법으로 코팅하여 사용하기도 하였으나, 이 또한 장시간 사용시 부식을 피할 수 없어 결국 반도체 제조장치를 오염시키는 동일한 문제를 유발하였다. In order to solve such a problem, yttria (Y 2 O 3) having a high corrosion resistance to halogen-based corrosive gas is coated on aluminum nitride by spraying or aerosol method. However, corrosion can not be avoided during long- Causing the same problem of contamination of semiconductor manufacturing equipment.

구체적인 종래기술로는 한국특허공개 제10-2008-0036806호가 있다.A specific prior art is Korean Patent Publication No. 10-2008-0036806.

이 공개기술은, 금속(알루미늄)분말, 활성제 및 소결방지제로 혼합된 혼합분말을 장치로에 채우는 제1단계; 상기 혼합분말로 채워진 장치로 내부에 코팅하고자 하는 니켈금속히터를 위치시키는 제2단계; 상기 니켈금속히터를 아르곤 또는 수소 분위기에서 확산 열처리하는 제3단계; 상기 확산 열처리 중 금속분말과 활성제가 반응하여 형성되는 가스가 코팅 분말과 니켈금속히터 표면 사이에서 가스 분압의 구배에 의해 니켈금속히터 표면으로 이동하는 제4단계; 상기 니켈금속히터 표면으로 이동된 가스가 니켈금속히터 표면에서 분해와 교환반응 등에 의해 확산 코팅막인 알루미늄층(NiAl)을 형성하는 제5단계; 상기 표면에 알루미늄층이 형성된 니켈금속히터를 산화 열처리장치내에 위치시키는 제6단계; 및 상기 산화 열처리장치 내에 위치한 니켈금속히터를 대기와 같은 산소 분위기의 공간에서 일정온도로 일정시간 동안 열처리하여 산화막인 산화알루미늄층(NiAl2O3)을 형성하는 제7단계로 이루어진다.The disclosed technique includes a first step of filling a device furnace with a mixed powder mixed with a metal (aluminum) powder, an activator, and an anti-sintering agent; A second step of placing a nickel metal heater to be coated on the inside with a device filled with the mixed powder; A third step of diffusing heat treatment of the nickel metal heater in an argon or hydrogen atmosphere; A fourth step in which the gas formed by the reaction of the metal powder and the activator during the diffusion heat treatment moves to the surface of the nickel metal heater by a gradient of the gas partial pressure between the coating powder and the surface of the nickel metal heater; A fifth step of forming an aluminum layer (NiAl) as a diffusion coating layer by decomposition and exchange reaction on the surface of the nickel metal heater, A sixth step of placing a nickel metal heater having an aluminum layer on the surface thereof in an oxidation heat treatment apparatus; And a seventh step of forming an aluminum oxide layer (NiAl 2 O 3) as an oxide layer by heat-treating the nickel metal heater located in the oxidation heat treatment apparatus in a space of oxygen atmosphere such as atmospheric air at a predetermined temperature for a certain period of time.

본 발명은 종래 세라믹 히터에 관련된 문제를 해결하기 위해 창안된 것으로, 본 발명의 목적은 질화알루미늄 세라믹 모재 위에 1차 확산 반응층을 형성하고, 그 위에 다시 확산 매개체를 도포하여 이를 소정 온도로 가열함으로써 2차 확산 반응층이 형성되도록 한, 질화알루미늄 모재 제조방법 및 그 질화알루미늄 모재를 제공하는데 있다.An object of the present invention is to solve the problems associated with conventional ceramic heaters, and it is an object of the present invention to provide a method of manufacturing a ceramic heater by forming a primary diffusion reaction layer on an aluminum nitride ceramic base material, applying a diffusion medium thereon, A second diffusion reaction layer is formed on the aluminum nitride base material, and the aluminum nitride base material.

본 발명의 다른 목적은, 1차 확산 반응층 및 확산 매개체층을 제거하여 내부식성을 향상시킨, 질화알루미늄 모재 제조방법 및 그 질화알루미늄 모재를 제공하는데 있다.Another object of the present invention is to provide an aluminum nitride base material manufacturing method and an aluminum nitride base material which have improved corrosion resistance by removing a diffusion diffusion layer and a diffusion medium layer.

본 발명의 다른 목적들은 이하에서 설명되는 바로부터 유추 가능할 것이다. Other objects of the present invention will become apparent from the following description.

상기 목적을 달성하기 위한 본 발명의 확산 반응층이 형성되는 질화알루미늄 모재 제조방법 및 그 질화알루미늄 모재 제조방법은, 질화알루미늄 세라믹 모재에 에어로졸 방식으로 코팅층이 형성되는 제1단계; 상기 코팅층 위에 확산 매개체가 도포되어 확산 매개체층이 형성되는 제2단계; 상기 코팅층 내부로 확산되어 1차 확산 반응층이 형성되고, 새로운 액상이 생성되도록 상기 확산 매개체층이 가열되는 제3단계; 및 상기 새로운 액상이 질화알루미늄 세라믹 모재 내부로 확산되어 2차 확산 반응층이 형성되는 제4단계로 이루어진 것을 특징으로 한다. In order to accomplish the above object, the present invention provides a method of manufacturing an aluminum nitride base material and a method of manufacturing the aluminum nitride base material, the method including: a first step of forming a coating layer on an aluminum nitride ceramic base material by an aerosol method; A second step in which a diffusion medium is applied on the coating layer to form a diffusion medium layer; A third step of diffusing into the coating layer to form a first diffusion reaction layer and heating the diffusion mediator layer to generate a new liquid phase; And a fourth step in which the new liquid phase is diffused into the aluminum nitride ceramic base material to form a second diffusion reaction layer.

코팅층은, 산화이트륨 코팅층인 것을 특징으로 한다.The coating layer is an yttrium oxide coating layer.

확산 매개체는, 알칼리토류 금속 불소화합물 또는 희토류 금속 불소화합물인 것을 특징으로 한다.The diffusion medium is characterized by being an alkaline earth metal fluorine compound or a rare earth metal fluorine compound.

1차 확산 반응층은, 산화이트륨 코팅층에 형성되는 것을 특징으로 한다.The first diffusion-reactive layer is characterized in that it is formed on the yttrium oxide coating layer.

2차 확산 반응층은, YOF, Y4Al209(YAM)층인 것을 특징으로 한다.And the second diffusion-reactive layer is a YOF or Y4Al209 (YAM) layer.

확산 매개체가 산화이트륨 코팅층에 확산됨에 따라 생성되는 액상은, Y 원소, O 원소, F 원소를 포함하는 액상인 것을 특징으로 한다. Characterized in that the liquid phase generated as the diffusion medium diffuses into the yttria coating layer is a liquid phase containing element Y, element O and element F.

확산 매개체층과 1차 확산 반응층은, 케미칼, 샌드프라스터, 폴리싱 중 어느 하나에 의해 제거되는 것을 특징으로 한다. The diffusion medium layer and the first diffusion reaction layer are characterized in that they are removed by any one of chemical, sandblasting and polishing.

상기 목적을 달성하기 위한 본 발명의 확산 반응층이 형성되는 질화알루미늄 세라믹 모재는, 질화알루미늄 세라믹 모재에 에어로졸 방식으로 1차 확산 반응층인 코팅층이 형성되고, 상기 코팅층 위에 확산 매개체가 도포되어 확산 매개체층이 형성되고, 상기 확산 매개체층이 코팅층 내부로 확산되어 1차 확산 반응층이 형성됨과 동시에, 새로운 액상이 생성되도록 상기 확산 매개체층이 가열되고, 상기 새로운 액상이 모재 내부로 확산되어 2차 확산 반응층이 형성됨에 따라 제조되는 것을 특징으로 한다.In order to accomplish the above object, the aluminum nitride ceramic base material in which the diffusion-reactive layer of the present invention is formed is characterized in that a coating layer, which is a primary diffusion reaction layer, is formed in an aluminum nitride ceramic base material by an aerosol method and a diffusion medium is applied on the coating layer, Layer is formed, the diffusion medium layer is diffused into the coating layer to form a first diffusion reaction layer, the diffusion medium layer is heated so that a new liquid phase is generated, the new liquid phase diffuses into the base material, And the reaction layer is formed.

또한, 상기 목적을 달성하기 위한 본 발명의 확산 반응층이 형성되는 질화알루미늄 세라믹 모재는, 질화알루미늄 세라믹 모재에 에어로졸 방식으로 1차 확산 반응층인 코팅층이 형성되고, 상기 코팅층 위에 확산 매개체가 도포되어 확산 매개체층이 형성되고, 상기 확산 매개체층이 코팅층 내부로 확산되어 1차 확산 반응층이 형성됨과 동시에, 새로운 액상이 생성되도록 상기 확산 매개체층이 가열되고, 상기 새로운 액상이 모재 내부로 확산되어 2차 확산 반응층이 형성되면, 상기 1차 확산반응층과 확산 매개체층이 모두 또는 선택적으로 제거됨에 따라 제조되는 것을 특징으로 한다.In order to accomplish the above object, the aluminum nitride ceramic base material in which the diffusion-reactive layer of the present invention is formed is characterized in that a coating layer, which is a primary diffusion reaction layer, is formed in an aluminum nitride ceramic base material by an aerosol method and a diffusion medium is applied on the coating layer The diffusion medium layer is formed and the diffusion medium layer is diffused into the coating layer to form a first diffusion reaction layer and the diffusion medium layer is heated so that a new liquid phase is formed, And the first diffusion-reactive layer and the diffusion medium layer are both removed or selectively removed when the second diffusion-reactive layer is formed.

또한, 상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 확산 반응층이 형성되는 질화알루미늄 모재 제조방법은, 질화알루미늄 모재에 확산 매개체가 도포되어 확산 매개체층이 형성되는 제1단계; 상기 질화알루미늄 모재 내부로 확산되어 1차 확산 반응층이 형성되고, 새로운 액상이 생성되도록 상기 확산 매개체층이 가열되는 제2단계; 및 상기 새로운 액상이 질화알루미늄 세라믹 모재 내부로 확산되어 2차 확산 반응층이 형성되는 제3단계로 이루어진 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of fabricating an aluminum nitride base material in which a diffusion reaction layer is formed, comprising: a first step of forming a diffusion medium layer by applying a diffusion medium to an aluminum nitride base material; A second step of diffusing into the aluminum nitride base material to form a first diffusion reaction layer and heating the diffusion medium layer so as to produce a new liquid phase; And a third step in which the new liquid phase is diffused into the aluminum nitride ceramic base material to form a second diffusion reaction layer.

본 발명의 확산 반응층이 형성되는 질화알루미늄 모재 제조방법 및 그 질화알루미늄 모재에 따르면, 질화알루미늄 세라믹 모재에 에어로졸 방식으로 산화이트륨이 코팅되고, 그 위에 다시 희토류 금속 불소화합물 또는 알칼리토류 금속 불소화합물이 도포되어 소정의 온도로 가열됨에 따라, 이들 금속 불소화합물이 액상화되어 산화이트륨 코팅층 내부로 1차 확산됨으로써 새로운 액상이 생성되고, 이 생성된 새로운 액상이 질화알루미늄 세라믹 모재 내부로 2차 확산되어 확산 반응층이 형성됨으로써, 할로겐 부식성 가스에 대하여 기존의 코팅방식에 대해 매우 우수한 내식성 코팅층을 얻을 수 있다.According to the method for producing an aluminum nitride base material in which the diffusion-reactive layer of the present invention is formed and the aluminum nitride base material, yttria is coated in an aerosol manner on the aluminum nitride ceramic base material, and a rare earth metal fluoride compound or an alkaline earth metal fluoride compound The metal fluoride compound is liquefied and firstly diffused into the yttrium oxide coating layer to generate a new liquid phase and the generated new liquid phase is secondarily diffused into the aluminum nitride ceramic base material, Layer is formed, a corrosion-resistant coating layer excellent in the existing coating method against halogen corrosive gas can be obtained.

또한, 본 발명에 따르면, 1차 확산 반응층과 확산 매개체층이 제거되고, 2차 확산 반응층만 남겨둠으로써 히터의 열효율을 향상시킬 수 있다. Further, according to the present invention, the heat diffusion efficiency of the heater can be improved by removing the first diffusion reaction layer and the diffusion medium layer and leaving only the second diffusion reaction layer.

도 1a 내지 도 1f는 본 발명의 실시예에 따른 확산 반응층이 형성되는 질화알루미늄 모재 제조방법의 공정 순서도.
도 2는 본 발명의 실시예에 따른 확산 반응층이 형성되는 질화알루미늄 모재 제조방법의 동작 흐름도.
도 3은 본 발명의 실시예에 따라 형성된 반응층들의 미세 구조도.
FIGS. 1A to 1F are flow charts of a method for manufacturing an aluminum nitride base material in which a diffusion reaction layer is formed according to an embodiment of the present invention.
2 is a flowchart illustrating an operation of a method of manufacturing an aluminum nitride base material in which a diffusion reaction layer is formed according to an embodiment of the present invention.
3 is a microstructure view of reaction layers formed in accordance with an embodiment of the present invention.

이하, 본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail.

그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.It is to be understood, however, that the invention is not to be limited to the specific embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.

본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

본 발명은, 질화알루미늄 세라믹 모재 표면에 에어로졸 방식으로 산화이트륨이 코팅되고, 그 위에 다시 희토류 금속 불소화합물 또는 알칼리토류 금속 불소화합물 등의 확산 매개체가 도포된 상태에서, 이들 금속 불소화합물이 액상화되어 산화이트륨 코팅층 내부로 1차 확산됨과 동시에 새로운 액상이 생성되고, 이와 같이 생성된 새로운 액상이 질화알루미늄 세라믹 모재로 2차 확산되어 그에 따른 반응층이 형성되도록 한 것이다.The present invention relates to a method for producing a fluorine-containing fluorine compound, which comprises coating a surface of an aluminum nitride ceramic base material with yttria in an aerosol manner and applying a diffusion medium such as a rare earth metal fluoride compound or an alkaline earth metal fluoride compound thereto, The first liquid is diffused into the yttrium coating layer and a new liquid phase is generated, and the new liquid phase thus generated is secondarily diffused into the aluminum nitride ceramic base material to form a reaction layer.

도 1a 내지 도 1f는 본 발명의 실시예에 따른 확산 반응층이 형성되는 질화알루미늄 모재 제조방법의 공정 순서도이고, 도 2는 본 발명의 실시예에 따른 확산 반응층이 형성되는 질화알루미늄 모재 제조방법의 동작 흐름도이다.FIGS. 1A to 1F are flow charts of a method of manufacturing an aluminum nitride base material in which a diffusion reaction layer is formed according to an embodiment of the present invention. FIG. 2 is a cross- Fig.

도 1 및 도 2에 도시된 바와 같이, 질화알루미늄 모재(10) 위에 산화이트륨 코팅층(20)이 형성되며, 여기에 확산 매개체층(30)이 형성된 후, 소정 온도로 가열됨으로써 산화이트륨 코팅층(20)으로 확산되어 1차 확산 반응층(40)이 형성되고, 이와 동시에 새롭게 생성되는 액상이 질화알루미늄 모재(10)로 확산되어 2차 확산 반응층(50)이 형성된다.1 and 2, a yttrium oxide coating layer 20 is formed on an aluminum nitride base material 10, a diffusion medium layer 30 is formed thereon, and then heated to a predetermined temperature to form a yttria coating layer 20 To form a first diffusion reaction layer 40. At the same time, a liquid phase that is newly generated is diffused into the aluminum nitride base material 10 to form a second diffusion reaction layer 50. [

먼저, 도 1a에 도시된 바와 같이 질화알루미늄 세라믹 모재(10)가 준비된다.First, as shown in FIG. 1A, an aluminum nitride ceramic base material 10 is prepared.

다음에, 도 1b에 도시된 바와 같이 상기 질화알루미늄 세라믹 모재(10) 위에 산화이트륨 코팅층(20)이 형성된다(도 2의 스텝 S10). 한편, 본 공정단계는 생략될 수 있다. Next, as shown in FIG. 1B, the yttria coating layer 20 is formed on the aluminum nitride ceramic base material 10 (step S10 in FIG. 2). On the other hand, this process step can be omitted.

다음에, 도 1c에 도시된 바와 같이 상기 산화이트륨 코팅층(20) 위에 확산 매개체인 금속 불소화합물이 도포되어 확산 매개체층(30)이 형성된다(도 2의 스텝 S20). 이들 확산 매개체는 예를 들어, 희토류 금속 불소화합물 또는 알칼리토류 금속 불소화합물이다.Next, as shown in FIG. 1C, a metal fluoride compound as a diffusion mediator is applied on the yttrium oxide coating layer 20 to form a diffusion mediator layer 30 (step S20 in FIG. 2). These diffusion media are, for example, rare earth metal fluoride compounds or alkaline earth metal fluoride compounds.

다음에, 상기 확산 매개체층(30)이 소정 온도로 가열된다(도 2의 스텝 S30). 여기서 확산 매개체는 1418℃ 또는 1387℃ 이상으로 가열되며, 금속 불소화합물이 액상화되어 산화이트륨 코팅층 내부로 확산된다. 상기 가열온도는 확산을 위한 불소화합물(CaF2, YF3)의 액상화 온도이다. Next, the diffusion medium layer 30 is heated to a predetermined temperature (step S30 in Fig. 2). Here, the diffusion medium is heated to 1418 DEG C or 1387 DEG C or higher, and the metal fluoride compound is liquefied and diffused into the yttrium oxide coating layer. The heating temperature is the liquefaction temperature of the fluorine compound (CaF2, YF3) for diffusion.

다음에, 도 1d에 도시된 바와 같이 상기 확산 매개체층(30)이 소정 온도로 가열됨에 따라 산화이트륨 코팅층(20) 내부로 확산되어 1차 확산 반응층(40)이 형성된다(도 2의 스텝 S40). 1D, the diffusion medium layer 30 is diffused into the yttria coating layer 20 as the diffusion medium layer 30 is heated to a predetermined temperature to form a first diffusion reaction layer 40 S40).

상기 1차 확산 반응층(40)은, 질화알루미늄 세라믹 모재(10) 위에 코팅된 산화이트륨 코팅층(20) 위에 금속 불소화합물 등의 확산 매개체(30)가 도포된 후, 소정 온도로 가열됨에 따라 얻어지는 층이다. The first diffusion reaction layer 40 is formed by applying a diffusion medium 30 such as a metal fluoride compound onto the yttria oxide coating layer 20 coated on the aluminum nitride ceramic base material 10 and then heating it to a predetermined temperature Layer.

다음에, 도 1e에 도시된 바와 같이 상기 확산 매개체층(30)이 산화이트륨 코팅층(20) 내부로 확산됨에 따라 1차 확산 반응층(40)이 형성됨과 동시에, 새로운 액상이 생성되고, 이렇게 생성된 새로운 액상이 질화알루미늄 모재(10)로 확산되어 2차 확산 반응층(50)이 형성된다(도 2의 스텝 S50).Next, as shown in FIG. 1E, as the diffusion medium layer 30 is diffused into the yttria coating layer 20, the primary diffusion reaction layer 40 is formed and a new liquid phase is generated, A new liquid phase is diffused into the aluminum nitride base material 10 to form a second diffusion reaction layer 50 (step S50 in Fig. 2).

상기 2차 확산 반응층(50)은, 금속 불소화합물 등의 확산 매개체가 산화이트륨 등의 코팅층 내부로 확산되면서 새로운 액상이 생성되는데, 이 생성된 액상이 질화알루미늄 세라믹 모재(10) 내부로 확산됨에 따라 얻어지는 층이다.In the second diffusion reaction layer 50, a diffusion medium such as a metal fluoride compound diffuses into a coating layer such as yttrium to form a new liquid phase. The generated liquid phase diffuses into the aluminum nitride ceramic base material 10 .

이와 같이 생성된 1차 확산 반응층(40)과 2차 확산 반응층(50)의 미세 구조를 도시한 것이 도 3이다.FIG. 3 shows the microstructure of the first diffusion-reaction layer 40 and the second diffusion-reaction layer 50 thus produced.

상기 새로운 액상은 Y 원소, O 원소, F 원소를 포함하는 액상이며, 이렇게 생성된 새로운 액상이 질화알루미늄 세라믹 모재(10) 내부로 다시 확산됨으로써 YOF, Y4Al2O9(YAM)와 같은 새로운 2차 확산 반응층이 얻어지는 것이다. The new liquid phase is a liquid phase containing element Y, element O and element F. The new liquid phase thus generated diffuses again into the aluminum nitride ceramic base material 10 to form a new secondary diffusion reaction layer such as YOF and Y4Al2O9 (YAM) .

상기 2차 확산 반응층(50)인 YAM은, 질화알루미늄 모재의 소결체 제조시 질화알루미늄 분말에 불순물로서 포함되는 Al2O3와, 소결 제조된 Y2O3가 코팅층(Y2O3)과 확산 매개체(액상)에 의해 확산 반응하여 생성된다.YAM, which is the secondary diffusion reaction layer 50, is composed of Al2O3 contained as an impurity in aluminum nitride powder in the production of a sintered body of an aluminum nitride base material, and Y2O3 sintered and produced by a diffusion reaction (liquid phase) .

또한, 같은 방법으로 알칼리 금속원소 및 알칼리토류 금속 원소(Ca, CaO)를 확산 매개체로 사용하여도 유사한 결과를 얻을 수 있다.Similar results can also be obtained by using an alkali metal element and an alkaline earth metal element (Ca, CaO) as diffusion media in the same manner.

다음에, 도 1f에 도시된 바와 같이 상기 확산 매개체층(30)과 1차 확산 반응층(40)을 제거하여 제2 확산 반응층(50)만 남도록 한다(도 2의 스텝 S60). Next, as shown in FIG. 1F, the diffusion medium layer 30 and the first diffusion reaction layer 40 are removed to leave only the second diffusion reaction layer 50 (step S60 in FIG. 2).

상기 확산 매개체층(30)과 1차 확산 반응층(40)은, 케미칼, 샌드 프라스터, 폴리싱 방법으로 제거한다.The diffusion medium layer 30 and the first diffusion-reactive layer 40 are removed by a chemical, sandblaster or polishing method.

할로겐계 부식성 가스 노출 실험 결과를 보면 다음 표 1과 같다.Table 1 shows the results of exposure to halogen-based corrosive gases.

모재Base material 확산 매개체Diffusion medium 산화이트륨 코팅Yttrium oxide coating 반응층Reaction layer 부식량(㎛)Corrosion amount (탆) ALNALN 없음none 없음none 없음none 100100 ALNALN 없음none 30㎛30 탆 없음none 7070 ALNALN YF3YF3 없음none 있음has exist 4040 ALNALN CaF2CaF2 30㎛30 탆 있음has exist 55 ALNALN YF3YF3 30㎛30 탆 있음has exist 44 ALNALN CaOCaO 30㎛30 탆 있음has exist 1010 ALNALN CaCa 30㎛30 탆 있음has exist 1414

표 1에 나타난 바와 같이, 질화알루미늄 모재에 산화이트륨 코팅층 및 확산 매개체층이 형성되지 않은 경우 부식량이 100㎛로 매우 높고, 산화이트륨 코팅층은 형성되나 확산 매개체층이 형성되지 않은 경우 부식량이 70㎛로 매우 높으며, 산화이트륨 코팅층은 형성되지 않더라도 확산 매개체층이 형성된 경우 부식량이 40㎛로 다소 높음을 알 수 있다.As shown in Table 1, when the yttria coating layer and the diffusion medium layer were not formed on the aluminum nitride base material, the corrosion amount was as high as 100 탆 and the yttrium oxide coating layer was formed. However, when the diffusion medium layer was not formed, Mu m, and the amount of corrosion is somewhat as high as 40 mu m when the diffusion medium layer is formed even though the yttria coating layer is not formed.

반면에, 산화이트륨 코팅층과 확산 매개체층이 모두 형성된 경우, 확산 매개체의 종류에 따라 다소 차이가 있으나, 산화이트륨 코팅층 및 확산매개체층이 모두 또는 선택적으로 형성되지 않은 경우에 비하여 샹대적으로 부식량이 낮음을 알 수 있다. On the other hand, when both the yttrium oxide coating layer and the diffusion medium layer are formed, there is a slight difference depending on the type of the diffusion medium. However, when the yttrium oxide coating layer and the diffusion medium layer are not both formed or selectively formed, Low.

따라서 확산을 통해 얻은 반응층의 막은 할로겐 부식성 가스에 대하여 기존의 코팅방식으로 얻은 산화이트륨 보다 월등한 고내식성을 얻을 수 있음을 알 수 있다.Therefore, it can be seen that the film of the reaction layer obtained through diffusion can obtain higher corrosion resistance than the yttrium oxide obtained by the conventional coating method for the halogen corrosive gas.

10 : 모재 20 : 코팅층
30 : 확산 매개체층 40 : 1차 확산 반응층
50 : 2차 확산 반응층
10: Base material 20: Coating layer
30: diffusion medium layer 40: primary diffusion reaction layer
50: Secondary diffusion reaction layer

Claims (11)

질화알루미늄 세라믹 모재에 코팅층이 형성되는 제1단계;
상기 코팅층 위에 확산 매개체가 도포되어 확산 매개체층이 형성되는 제2단계;
상기 상기 확산 매개체층이 코팅층 내부로 확산되어 1차 확산 반응층이 형성되고, 새로운 액상이 생성되도록 상기 확산 매개체층이 가열되는 제3단계; 및
상기 새로운 액상이 질화알루미늄 세라믹 모재 내부로 확산되어 2차 확산 반응층이 형성되는 제4단계로 이루어진 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.
A first step of forming a coating layer on the aluminum nitride ceramic base material;
A second step in which a diffusion medium is applied on the coating layer to form a diffusion medium layer;
A third step in which the diffusion mediator layer is diffused into the coating layer to form a first diffusion reaction layer, and the diffusion mediator layer is heated to generate a new liquid phase; And
And a fourth step in which the new liquid phase is diffused into the aluminum nitride ceramic base material to form a second diffusion reaction layer.
제1항에 있어서,
상기 코팅층은, 산화이트륨 코팅층인 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.
The method according to claim 1,
Wherein the coating layer is a yttrium oxide coating layer.
제1항에 있어서, 상기 확산 매개체는 알칼리토류 금속 불소화합물 또는 희토류 금속 불소화합물인 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.The method of claim 1, wherein the diffusion medium is an alkaline earth metal fluorine compound or a rare earth metal fluorine compound. 제1항에 있어서,
상기 1차 확산 반응층은 산화이트륨 코팅층에 형성되는 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.
The method according to claim 1,
Wherein the diffusion reaction layer is formed on the yttrium oxide coating layer.
제1항에 있어서,
상기 2차 확산 반응층은, 상기 질화알루미늄 모재의 소결체 제조시 질화알루미늄 분말에 불순물로서 포함되는 Al2O3와, 소결 제조된 Y2O3가 산화이트륨 코팅층과 확산 매개체에 의해 확산 반응함에 따라 생성되는 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.
The method according to claim 1,
Wherein the second diffusion reaction layer is formed by Al2O3 contained as an impurity in the aluminum nitride powder during the production of the sintered body of the aluminum nitride base material and diffusion of Y2O3 sintered by the yttria coating layer and diffusion medium Wherein the diffusion reaction layer is formed.
제1항에 있어서,
상기 확산 매개체가 산화이트륨 코팅층에 확산됨에 따라 생성되는 액상은 Y 원소, O 원소, F 원소를 포함하는 액상인 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.
The method according to claim 1,
Wherein the liquid phase formed by diffusion of the diffusion medium into the yttria coating layer is a liquid phase containing element Y, element O, and element F.
제1항에 있어서,
상기 확산 매개체층과 1차 확산 반응층은, 케미칼, 샌드프라스터, 폴리싱 중 어느 하나에 의해 제거되는 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.
The method according to claim 1,
Wherein the diffusion medium layer and the first diffusion reaction layer are removed by any one of chemical, sandblasting, and polishing.
질화알루미늄 모재에 확산 매개체가 도포되어 확산 매개체층이 형성되는 제1단계;
상기 확산 매개체층이 질화알루미늄 모재 내부로 확산되어 1차 확산 반응층이 형성되고, 새로운 액상이 생성되도록 상기 확산 매개체층이 가열되는 제2단계; 및
상기 새로운 액상이 질화알루미늄 세라믹 모재 내부로 확산되어 2차 확산 반응층이 형성되는 제3단계로 이루어진 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.
A first step in which a diffusion medium is applied to the aluminum nitride base material to form a diffusion medium layer;
A second step in which the diffusion mediator layer is diffused into the aluminum nitride base material to form a first diffusion reaction layer and the diffusion mediator layer is heated so as to produce a new liquid phase; And
And a third step of diffusing the new liquid phase into the aluminum nitride ceramic base material to form a second diffusion reaction layer.
제8항에 있어서, 상기 확산 매개체는 알칼리토류 금속 불소화합물 또는 희토류 금속 불소화합물인 것을 특징으로 하는 확산 반응층이 형성되는 질화알루미늄 모재 제조방법.The method according to claim 8, wherein the diffusion medium is an alkali earth metal fluoride compound or a rare earth metal fluoride compound. 제1항 내지 제7항 중 어느 한 항의 방법에 의해 제조되는 것을 특징으로 하는 질화알루미늄 모재.An aluminum nitride preform produced by the method of any one of claims 1 to 7. 제8항 또는 제9항의 방법에 의해 제조되는 것을 특징으로 하는 질화알루미늄 모재.9. An aluminum nitride preform produced by the method of claim 8 or 9.
KR1020160051140A 2016-04-26 2016-04-26 Method of manufacturing aluminum nitride basic material being formed diffusioin layer and aluminum nitride basic material thereof KR101693010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160051140A KR101693010B1 (en) 2016-04-26 2016-04-26 Method of manufacturing aluminum nitride basic material being formed diffusioin layer and aluminum nitride basic material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160051140A KR101693010B1 (en) 2016-04-26 2016-04-26 Method of manufacturing aluminum nitride basic material being formed diffusioin layer and aluminum nitride basic material thereof

Publications (1)

Publication Number Publication Date
KR101693010B1 true KR101693010B1 (en) 2017-01-06

Family

ID=57832525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160051140A KR101693010B1 (en) 2016-04-26 2016-04-26 Method of manufacturing aluminum nitride basic material being formed diffusioin layer and aluminum nitride basic material thereof

Country Status (1)

Country Link
KR (1) KR101693010B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712993B2 (en) * 1986-08-26 1995-02-15 住友電気工業株式会社 Aluminum nitride sintered body having metallized surface
KR20100045393A (en) * 2008-10-23 2010-05-03 니뽄 가이시 가부시키가이샤 Aluminum-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
KR20150077283A (en) * 2013-12-27 2015-07-07 엔지케이 인슐레이터 엘티디 Bonding material composition, bonded nitride aluminum body, and method of manufacturing the same
JP7012993B2 (en) * 2017-08-10 2022-01-31 ナトコ株式会社 A method for producing a coating material of a stain coating composition, a photocurable coating composition, a coating material and a porous material.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712993B2 (en) * 1986-08-26 1995-02-15 住友電気工業株式会社 Aluminum nitride sintered body having metallized surface
KR20100045393A (en) * 2008-10-23 2010-05-03 니뽄 가이시 가부시키가이샤 Aluminum-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
KR20150077283A (en) * 2013-12-27 2015-07-07 엔지케이 인슐레이터 엘티디 Bonding material composition, bonded nitride aluminum body, and method of manufacturing the same
JP7012993B2 (en) * 2017-08-10 2022-01-31 ナトコ株式会社 A method for producing a coating material of a stain coating composition, a photocurable coating composition, a coating material and a porous material.

Similar Documents

Publication Publication Date Title
US20220367175A1 (en) Apparatus and method for removal of oxide and carbon from semiconductor films in a single processing chamber
JP7408273B2 (en) Metal oxyfluoride membrane for chamber components
US10773995B2 (en) Low temperature fluoride glasses and glazes
TWI632125B (en) Rare-earth oxide based monolithic chamber material
JP3619330B2 (en) Components for plasma process equipment
US20150329430A1 (en) Advanced layered bulk ceramics via field assisted sintering technology
TWI737933B (en) Rare-earth-based oxyfluoride ald coating for chamber productivity enhancement
KR20190091542A (en) Articles coated with fluoro-annealed film
TW200525611A (en) Chamber cleaning method
TWI802789B (en) Chamber coating material and method for manufacturing the same
TW201442991A (en) Surface treatment method and ceramic structure formed by the same
KR101693010B1 (en) Method of manufacturing aluminum nitride basic material being formed diffusioin layer and aluminum nitride basic material thereof
TW202207301A (en) Etching method and etching apparatus
JP3623054B2 (en) Components for plasma process equipment
JP2001097791A (en) Corrosionproof member and method for producing the same
KR102439193B1 (en) Method to deposit aluminum oxy-fluoride layer for fast recovery of etch amount in etch chamber
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
TWI545995B (en) Inductively Coupled Plasma Processing Chamber and Corrosion Resistant Insulation Window and Manufacturing Method
US20040234824A1 (en) Ceramic member
JP3784180B2 (en) Corrosion resistant material
KR20170006807A (en) Component parts of process chamber and yttria deposition method on componet parts using chemical vapor deposition
JP2005022971A (en) Member for plasma processing device
JP2008007343A (en) Alumina coated material and method of manufacturing the same
EP4354490A1 (en) Dry etching method, method for producing semiconductor element, and cleaning method
JP2000164572A (en) Plasma-resistant member and manufacture thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191209

Year of fee payment: 4