KR101586984B1 - 리소그래피 머신을 위한 준비 유닛 - Google Patents

리소그래피 머신을 위한 준비 유닛 Download PDF

Info

Publication number
KR101586984B1
KR101586984B1 KR1020117022203A KR20117022203A KR101586984B1 KR 101586984 B1 KR101586984 B1 KR 101586984B1 KR 1020117022203 A KR1020117022203 A KR 1020117022203A KR 20117022203 A KR20117022203 A KR 20117022203A KR 101586984 B1 KR101586984 B1 KR 101586984B1
Authority
KR
South Korea
Prior art keywords
substrate
support structure
substrate support
liquid
gas
Prior art date
Application number
KR1020117022203A
Other languages
English (en)
Other versions
KR20110132395A (ko
Inventor
헨드릭 잔 데 종
Original Assignee
마퍼 리쏘그라피 아이피 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0905789A external-priority patent/GB2469114A/en
Application filed by 마퍼 리쏘그라피 아이피 비.브이. filed Critical 마퍼 리쏘그라피 아이피 비.브이.
Publication of KR20110132395A publication Critical patent/KR20110132395A/ko
Application granted granted Critical
Publication of KR101586984B1 publication Critical patent/KR101586984B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Electron Beam Exposure (AREA)

Abstract

하전 입자 리소그래피 시스템은 준비 유닛(112)를 포함한다. 상기 준비 유닛는, 하우징으로서, 기판(22, 82, 122)을 상기 하우징 내로 로딩하기 위한, 및/또는 상기 하우징 밖으로 언로딩하기 위한 제1 로드 포트(131)를 구비하는 하우징(136), 상기 하우징 내의 기판 지지 구조물(23, 83, 123) 상으로 상기 기판을 위치시키기 위한 기판 이송 유닛(127), 및 상기 기판을 지지하는 상기 기판 지지 구조물을 로딩 및/또는 언로딩하기 위한 제2 로딩 포트(132)를 포함한다.

Description

리소그래피 머신을 위한 준비 유닛{PREPARATION UNIT FOR LITHOGRAPAHY MACHINE}
본 발명은 대체로 리소그래피 머신용 준비 유닛, 보다 상세하게는 리소그래피 시스템 내의 처리용 기판을 준비하기 위한 유닛 및 방법에 관한 것이다.
리소그래피 및 검사 시스템은 대체로, 공정의 정확성을 개선하기 위한 리소그래피 또는 검사 공정 이전에 준비되는, 대게 기판 또는 웨이퍼로 언급되는, 처리될 물체를 필요로 한다. 이러한 준비의 예는, 기판에 고정밀도 패턴을 형성하기 위해 견고한 지지 구조물 상에 기판을 클램핑하는 것이다. 리소그래피 또는 검사 공정은 대체로 진공 환경 내에서 수행되며, 상기 공정에서는 기판에 에너지를 가하여 기판을 가열한다. 준비 공정의 효율적인 자동화는, 위와 같은 이슈를 다루는 동안 리소그래피 또는 검사 시스템에서의 높은 처리량을 보장하기 위해 요구된다.
본 발명의 목적은 리소그래피 또는 검사 머신 내에서의 처리를 위한 기판을 준비하는 준비 유닛을 제공하는 것이다. 일 면에서, 본 발명은 준비 유닛늘 포함하는 하전 입자 리소그래피 시스템을 포함한다. 준비 유닛은 하우징으로서, 기판을 상기 하우징 내로 로딩하기 위한, 및/또는 상기 하우징 밖으로 언로딩하기 위한 제1 로드 포트를 구비하는 하우징, 상기 하우징 내의 기판 지지 구조물 상으로 상기 기판을 위치시키기 위한 기판 이송 유닛, 및 상기 기판을 지지하는 상기 기판 지지 구조물을 로딩 및/또는 언로딩하기 위한 제2 로딩 포트를 포함한다. 상기 시스템은 기판 처리 격실(compartment) 내의 상기 기판 상에 리소그래피 공정을 수행하기 위한 리소그래피 장치를 더 포함할 수 있고, 상기 준비 유닛은, 상기 기판 처리 격실로부터 상기 기판 지지 구조물을 제거한 이후에, 상기 리소그래피 공정 결과 상기 기판 지지 구조물 내에 축적된 에너지를 제거하기 위한 에너지 방출 시스템을 더 포함할 수 있다. 상기 준비 유닛에는 상기 에너지 방출 시스템용 에너지 운반 매체의 공급 및 방출을 위한 연결 수단이 구비될 수 있으며, 상기 에너지 운반 매체는 유체를 포함할 수 있다. 상기 에너지 방출 시스템은 전기 구동되는 열전기 냉각 구성요소를 포함할 수 있으며, 상기 냉각 구성요소는 냉각 유체용 도관을 포함할 수 있고, 상기 도관은 적어도 부분적으로 상기 하우징의 외부에 위치될 수 있다. 상기 준비 유닛은 상기 에너지 운반 매체에 대한 상기 기판 지지 구조물의 노광을 위해 적합할 수 있다. 상기 에너지 운반 매체는 유체, 바람직하게는 물일 수 있다.
상기 시스템은 또한 상기 준비 유닛과 리소그래피 장치 사이에서 하나 이상의 기판 지지 구조물을 재이용(recycling)하기에 적합할 수 있다. 상기 준비 유닛은, 다수의 기판 지지 구조물을 포함하기 위한, 상기 유닛 내의 후입후출(last-in last-out) 버퍼 시스템을 포함할 수 있으며, 상기 하우징은 제어된 압력 환경을 제공할 수 있다.
상기 준비 유닛은 또한, 모세관 액체층을 이용하여 상기 기판 지지 구조물의 표면 상에 상기 기판을 클램핑(clamping)하도록 구성될 수 있다. 상기 에너지 운반 매체는 위에서 설명된 바와 같이 이용될 수 있으며, 액체를 포함할 수 있고, 적어도 부분적으로 상기 기판 지지 구조물의 표면 사에 상기 기판을 클램핑하기 위한 모세관 액체층에 이용될 수 있으며, 상기 에너지 운반 매체는, 상기 기판을 클램핑하기 위해 필요한 액체 양을 초과하여, 상기 모세관 액체층을 위해 제공될 수 있다. 상기 준비 유닛은, 상기 모세관 액체층을 형성하기 위해, 상기 기판 지지 구조물의 표면 상에 액체를 분배하는 액체 분배기를 더 포함할 수 있다.
상기 하우징(136) 내의 압력은 상기 모세관 층 내의 액체의 증기압과 실질적으로 같은 압력으로 저하될 수 있다. 상기 기판 이송 유닛은 상기 기판 지지 구조물 상에 상기 기판을 내리기 위한 지지 핀을 포함할 수 있다. 상기 준비 유닛은, 상기 기판 지지 구조물의 표면에 가스를 제공하기 위해, 및/또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하기 위해 상기 기판 지지 구조물에 연결될 수 있는 하나 이상의 가스 커넥터를 더 포함할 수 있으며, 상기 가스는 질소를 포함할 수 있다. 상기 준비 유닛은, 상기 기판 지지 구조물의 표면에 액체를 제공하기 위해, 및/또는 기판 지지 구조물의 표면으로부터 액체를 제거하기 위해 상기 기판 지지 구조물에 연결될 수 있는 하나 이상의 액체 커넥터를 더 포함할 수 있다.
상기 기판 지지 구조물은 그의 이동을 방해할 수 있는 와이어, 튜브의 다른 연결 수단 없이 자유 이동 가능하다.
상기 준비 유닛은, 기판 지지 구조물의 표면 상에 액체를 분배하기 위한 액체 분배기, 상기 기판 지지 구조물의 표면에 가스를 제공하기 위한 및/또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하기 위한 하나 이상의 가스 커넥터, 및 상기 기판 지지 구조물의 표면에 액체를 제공하기 위한 및/또는 상기 기판 지지 구조물의 표면으로부터 액체를 제거하기 위한 하나 이상의 액체 커넥터를 더 포함하며, 상기 기판 지지 구조물은, 상기 하나 이상의 가스 커넥터, 및 상기 하나 이상의 액체 커넥터와, 연결될 수 있고 연결 분리될 수 있다(connectable and disconnectable).
상기 시스템은 다수의 리소그래피 장치를 더 포함하며, 상기 리소그래피 장치 각각은, 패턴화된 방사 빔을 제공하기 위한 방사 시스템, 기판을 지지하기 위한 기판 지지 구조물, 및 상기 기판의 타겟 부분 상에 상기 패턴화된 방사 빔을 투영하기 위한 광학 시스템을 포함하고, 상기 준비 유닛은 다수의 리소그래피 장치 각각의 기판 지지 구조물에 클램핑되는 기판을 제공하도록 구성된다.
본 발명의 다른 일 면에 따르면, 리소그래피 처리를 위한 기판을 준비하는 방법이 제공된다. 상기 방법은 하우징 내에 제어된 압력 환경을 제공하는 단계, 상기 하우징 내로 상기 기판을 로딩하는 단계; 상기 하우징 내에 기판 지지 구조물을 제공하는 단계, 및 모세관 층을 이용하여 상기 기판 지지 구조물의 표면 상에 상기 기판을 클램핑하는 단계를 포함한다. 상기 방법은 상기 모세관 층을 형성하기 위해 기판 지지 구조물의 표면 상에 액체를 분배하는 단계, 및 상기 분배된 액체 상으로 상기 기판을 내려놓는 단계를 더 포함할 수 있다.
상기 방법은 상기 기판 지지 구조물에 하나 이상의 가스 커넥터를 연결하고, 상기 기판 지지 구조물의 표면에 가스를 제공하는 및/또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하는 단계를 포함할 수 있고, 상기 기판 지지 구조물에 하나 이상의 액체 커넥터를 연결하고, 상기 기판 지지 구조물의 표면에 액체를 제공하는 및/또는 상기 기판 지지 구조물의 표면으로부터 액체를 제거하는 단계를 포함할 수 있다. 상기 방법은 상기 모세관 층 내의 액체의 증기압과 실질적으로 동일한 압력으로 상기 하우징의 내의 압력을 저하시키는 단계를 더 포함할 수 있다.
상기 방법은 기판 지지 구조물의 표면 상에 액체를 분배하는 단계; 상기 기판 지지 구조물에 하나 이상의 가스 커넥터를 연결하고, 상기 기판 지지 구조물의 표면에 가스를 제공하는 및/또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하는 단계, 상기 기판 지지 구조물에 하나 이상의 액체 커넥터를 연결하고, 상기 기판 지지 구조물의 표면에 액체를 제공하는 및/또는 상기 기판 지지 구조물의 표면으로부터 액체를 제거하는 단계, 및 상기 기판 지지 구조물로부터 상기 하나 이상의 가스 커넥터 및 상기 하나 이상의 액체 커넥터를 연결 분리시키는 단계를 포함할 수 있다. 상기 방법은 제 1 포트를 경유하여 상기 하우징 내로 댐핑되지(undamped) 않은 기판을 로딩하고, 제 2 포트를 경유하여 상기 하우징 밖으로 상기 기판 지지 구조물에 클램핑된 기판을 언로딩하는 단계를 포함할 수 있다.
상기 방법은 상기 기판 지지 구조물의 표면 상에 상기 기판을 클램핑하기 이전에 상기 기판 지지 구조물을 컨디셔닝(conditioning)하는 단계를 포함할 수 있다. 상기 기판 지지 구조물을 컨디셔닝하는 단계는, 앞선 리소그래피 공정의 결과 상기 기판 지지 구조물 내에 축적된 에너지를 능동적으로 제거하는 단계를 더 포함할 수 있다. 상기 기판 지지 구조물을 컨디셔닝하는 단계는, 저장된 에너지를 제거하기 위한 에너지 운반 매체에 상기 기판 지지 구조물을 노광시키는 단계를 포함할 수 있고, 상기 에너지 운반 매체는 유체를 포함할 수 있다. 상기 기판 지지 구조물을 컨디셔닝하는 단계는, 상기 기판 지지 구조물을 전기 구동되는 열전기 냉각 구성요소와 열 접촉되게 배치하는 단계를 더 포함할 수 있다.
현재 고안된 원리는 다양한 방법으로 실용화될 수 있음이 명백하다.
본 발명의 다양한 면이 아래의 도면들에 도시된 실시예들을 참고하여 상세하게 설명될 것이다.
도 1은 두 개의 구조물 사이의 모세관 층을 개략적으로 도시하는 단면도이다.
도 2는 도 1의 모세관 층의 클램프 안정성 상에 부정적인 영향을 주는 과정을 개략적으로 도시하는 단면도이다.
도 3a는 본 발명의 제1 실시예에 따른 기판 지지 구조물의 단면도이다.
도 3b는 도 3a의 기판 지지 구조물의 정면도이다.
도 4는 기판 필링의 개념을 개략적으로 도시하는 도면이다.
도 5는 본 발명의 제2 실시예에 따른 기판을 지지하는 기판 지지 구조물의 단면도이다.
도 6a 내지 6c는 리클램핑(reclamping)의 개념을 개략적으로 더 도시하는 도 5의 기판 지지 구조물의 정면도이다.
도 7a 내지 7j는 본 발명의 일 실시예에 따른 기판 지지 구조물의 표면 상에 기판을 클램핑하는 방법의 구현을 개략적으로 도시하는 도면이다.
도 8a는 본 발명의 제3 실시예에 따른 기판 지지 구조물을 개략적으로 도시하는 정면도이다.
도 8b는 도 8a의 기판 지지 구조물과 기판의 조합에 의해 형성되는 클램프를 개략적으로 도시하는 단면도이다.
도 9는 기판 지지 구조물의 실시예들과 함께 이용될 수 있는 기판 처리 및 노광 장치를 개략적으로 도시하는 도면이다.
도 10은 로드 락 챔버를 포함하는 또 다른 기판 처리 및 노광 장치를 개략적으로 도시하는 도면이다.
도 11은 도 10의 기판 처리 및 노광 장치를 더 상세하게 도시하는 도면이다.
도 12는 도 10의 기판 처리 및 노광 장치에 대한 기판 및 기판 지지 구조물의 예를 도시하는 도면이다.
도 13은 기판 지지 구조물의 예와 함께 이용될 수 있는 다른 기판 처리 및 노광 장치를 개략적으로 도시하는 도면이다.
도 14a 내지 14d는 도 9 또는 도 11의 기판 처리 및 노광 장치에서 이용되는 예시적인 준비 유닛의 동작을 개략적으로 도시하는 도면이다.
위의 도면들에서, 적어도 기능적으로, 대응하는 구조적 구성요소들은 동일한 참조 번호로 표시되었다.
이하에서는, 도면을 참조하여, 그리고 예로서만, 본 발명의 다양한 실시예들이 개시된다.
도 1은 제1 기판(2)과, 예를 들어 웨이퍼와 제2 기판(3)의 사이에의, 예를 들어 물 테이블 같은 기판 지지 구조물의 사이에의, 모세관 액체의, 예를 들어 물의 모세관 액체층을 개략적으로 도시하는 단면도이다. 제1 및 제2 기판(2, 3)은 각각 실질적으로 평평한 표면(5, 6)을 갖는다. 대향 표면(5, 6) 사이의 노미널(nominal) 거리는 높이 h로 주어진다. 모세관 액체층(1)은, 제1 기판(2) 및 제2 기판(3)과 액체와의 점착성 연결 때문에 대체로 오목한 형상인, 외부 액체 표면(8)을 갖는다.
제1 기판(2) 및 제2 기판(3)에 대향 표면(5, 6)에 실질적으로 수직인 방향으로 힘이 주어진다면, 오목한 액체 표면(8)은 그 형상을 유지하려 한다. 외부 액체 표면(8)의 오목함은 제1 기판(2)의 표면(5)과 모세관 층(1) 사이의 접촉 각에 의존한다. 각 접촉 각은 두 개의 기판(2, 3)의 물질적 성질뿐만 아니라 모세관 층(1) 내에서 이용되는 액체에 의존한다. 두 개의 구조물과 실질적으로 평평한 대향 표면을 서로 홀딩하는 모세관 층에 대한 상세한 설명이 국제특허출원 WO2009/011574 내에 개시되어 있으며, 상기 명세서의 내용은 그 전체로서 본 명세서에 편입된 것으로 간주될 수 있다.
도 2는 도 1의 모세관 액체층(1)을 이용하여 수행되는 클램핑 동작의 안정성에의 부정적인 영향을 개략적으로 나타내는 단면도이다. 이후 내용에서, "클램핑"이라는 표현은, 모세관 층(1)을 이용하여 기판 지지 구조물(3)에 기판(2)이 클램핑되는 배치를 위하여 이용될 것이다.
액체 내에 미리 존재하는 버블이 있다면, 진공 환경 내에 클램핑의 도입(즉, 기판이 기판 지지 유닛에 클램핑되는 것)은 모세관 층 내에 위와 같은 버블의 확장을 유발할 것이다. 주위 압력이 감소한다면, 예를 들어 1 bar에서 10-6 mbar로 된다면, 최초에 작았던 버블의 크기는 상당히 증가할 수 있다. 도 2에서 용이하게 확인할 수 있듯이, 11 버블 정도의 버블 크기는, 적어도 국부적으로 심각하게 클램핑 강도에 영향을 미칠 수 있으며, 클램핑의 안정성에 부정적인 영향을 미칠 수 있다.
클램핑 불안정성을 유발할 수 있는 다른 메커니즘은, 예를 들어 모세관 액체층 내의 용해된 가스의 집진(precipitation) 또는 캐비테이션(cavitation)에 의해 유발되는, 자발적 보이드 형성이다. 이러한 보이드의 예는 도 2의 참조 번호(13)에 의해 표시되고 있다. 클램핑이 진공 환경 내로 도입된다면, 캐비테이션에 의해 형성된 보이드는 앞서서 미리 존재하는 버블과 관련하여 논의된 바와 유사한 방식으로 성장할 수 있다. 성장된 보이드는 클램핑 안정성에 부정적인 영향을 미칠 수 있다.
버블 및/또는 보이드의 존재에 기인한 클램핑 안정성의 감소 이외에, 모세관 층 계면에서의 액체의 증발에 의해서도, 즉 오목한 액체 표면에서의 증발에 의해서도, 클램핑 안정성은 부정적인 영향을 받을 수 있다. 도 2는 이러한 증발의 효과를 개략적으로 도시하고 있다. 증발 때문에, 외부 액체 표면(8')을 형성하기 위하여 외부 액체 표면(8)의 위치는 새로운 지점을 향하여 이동되고 있다. 이러한 이동의 결과로서, 모세관 층에 의해 커버되는 표면 영역이 감소되며, 이에 따라 클램핑의 안정성도 감소된다.
도 3a 및 도 3b 각각은, 본 발명의 제1 실시예에 따른, 기판을 지지하는 기판 지지 구조물(23)의 정면 및 단면이다. 지지 구조물은 모세관 층(21)을 이용하여 기판(22)을 클램핑하도록 구성된다. 기판 지지 구조물(23)의 표면에는 벌스(burls) 형태로 다수의 접촉 구성요소(27)가 제공된다. 기판 지지 구조물(23)은 또한 실링 구조물(29) 및 액체 제거 시스템을 포함한다.
접촉 구성요소(27)로서 벌스를 이용하는 것 대신에, 또는 이에 추가하여, 다수의 스페이서가, 예를 들어 글래스 결정, SiO2 결정 등이 기판 지지 구조물(23) 상부에 균일하게 분산될 수 있다. 벌스 같은 접촉 구성요소의 존재는 기판(22)의 후면에의 입자에 의한 오염의 영향을 감소시킬 수 있다. 더욱이, 접촉 구성요소는, 모세관 층의 클램핑 힘에 저항하여 기판 보우(bow)의 일어남을 방지함으로써 기판(22)을 실질적으로 평평하게 유지하는 용도로 제공된다.
접촉 구성요소(27)의 최대 피치(pitch)는, 모세관 층의 클램핑 힘에 의해 유발되는 인접한 접촉 구성요소들 사이의 기판의 최대 굴절을 위한 요구사항 세트에 의해 결정된다. 접촉 구성요소마다 접촉 표면은 적용된 클램핑 압력 하에의 변형 및/또는 파괴를 견디기에 충분한 정도이다. 바람직하게는,
접촉 구성요소의 에지는, 예를 들어 세정 동작 동안 입자 오염의 가능성을 감소하기 위해 둥근 형태이다. 원형 접촉 영역을 포함한 벌(27)의 지름에 대한 일반적인 값은 10 내지 500 마이크론의 범위이다. 다수의 벌스(27)의 피치에 대한 일반적인 값은 1 - 5 mm의 범위 내에 있다.
접촉 구성요소의 노미널 높이는, 기판(22)과 기판 지지 구조물(23)의 표면(26) 사이의 거리 및 이에 따른 클램핑 압력을 결정한다. 원하는 클램핑 압력을 획득하기 위해 다양한 될 수 있는 다른 파라미터는, 모세관 층(21)을 형성하는데 이용되는 액체의 종류, 접촉 구성요소 형태, 접촉 구성요소의 피치, 표면(26)의 표면 영역, 기판 지지 구조물(23)의 표면(26)의 물질적 성질, 및 기판(22)의 물질적 성질을 포함한다.
실링 구조물(29)은 클램핑된 기판(22)과 마주보는 기판 지지 구조물(23)의 표면을 둘러싼다(circumscribe). 실링 구조물(29)은, 존재한다면, 모세관 층(21)으로부터 증발하는 액체의 누출을 제한할 수 있다. 바람직하게는, 실링 구조물(29)의 정면은, 그 높이 면에서, 다수의 벌스(27)의 노미널 높이에 대응하는 레벨을 가진다. 이러한 배치는, 특히 진공 환경에서의 이슈인, 증기 누출 예방의 효율성을 증가시킨다.
실링 구조물(29)은, 예를 들어 바이턴(viton) 또는 고무로 만들어진 오링 같은, 하나 이상의 탄성 변형 구성요소를 포함할 수 있다. 오링의 정면이 앞서 언급된 레벨로 세팅될 수 있도록, 위와 같은 오링은 감소된 높이로 기판 지지 구조물(23)의 일부 내로 삽입될 수 있다. 오링이 과도한 힘에 대한 요구 없이 기판 지지 구조물(23)과 기판(22) 사이에서 압축될 수 있도록, 그러나 증기 누출을 충분히 예방할 수 있도록, 오링은 방사상 측면에, 예를 들어 기판 지지 구조물(23)의 중심과 마주보는 방사상 측면에 절개 부위를 가질 수 있다.
대안적으로, 도 3a에 도시된 바와 같이, 실링 구조물(29)은 기판 지지 구조물(23)의 외부 림(rim)에 의해 지지되는 증기 제한 링을 포함할 수 있다. 증기 제한 링은, 기판 지지 구조물(23)의 표면(26) 상에서 다수의 벌스(27)에 의해 지지되는 기판(22)과 링 사이에 매우 짧은 수직 거리만을 남긴 채, 모세관 액체 표면과 마주보는 원주 개구를 차단한다.
액체 제거 시스템은 모세관 층(21)이 형성될 수 있도록 기판 아래에의 액체를 제거하도록 구성된다. 액체 제거 시스템을 이용한 모세관 층(21)의 형성과 관련된 추가 상세 내용은 도 7을 참조하여 논의될 것이다.
액체 제거 시스템은 기판 지지 구조물(23)의 표면(26)으로부터 초과 수분을 제거하도록 구성된다. 도 3a에서, 액체 제거 시스템은 도 3b에서 부분적으로 실시예로서 도시되는 가스 분배 시스템을 포함한다. 가스 분배 시스템은, 표면(26)의 원주에 모트(moat)(31)를 포함할 수 있으며, 가스가 모트(31) 내로 들어가도록 하기 위한 하나 이상의 입구(33), 및 가스를 모트(31)로부터 제거하기 위한 하나 이상의 출구(35)를 각각 포함할 수 있다. 실링 구조물(29)이 존재한다면, 가스 유동은 액체 층을 구비하는 표면(26)과 실링 구조물(29) 사이에 형성될 수 있는데, 이에 따라, 대시 화살표에 의해 도 3b에 도시된 바와 같이 채널 유동을 형성한다.
하나 이상의 가스 입구(33) 및 하나 이상의 가스 출구(35)는 대칭 형태로 모트(31)를 따라 제공될 수 있다. 도 3b의 실시예에는 두 개의 가스 입구(33) 및 두 개의 가스 출구(35)가 있다. 두 개의 가스 입구(33)를 연결함으로써 형성되는 제1 가상선(37) 및 두 개의 가스 출구(35)를 연결함으로써 형성되는 제2 가상선(39)이 서로 실질적으로 수직을 이루도록, 가스 입구(33) 및 가스 출구(35)가 위치된다.
도 3a에 도시된 기판 지지 구조물(23)은 또한 액체 저장소(41)를 포함한다. 액체 저장소(41)는 특정 부피의 액체를, 예를 들어 물을 수용하도록 구성되며, 또한 그 액체의 증기를 저장하도록 구성된다. 더욱이, 액체 저장소는, 예를 들어 하나 이상의 채널(43)을 경유하여, 존재한다면, 모세관 층(21)으로 증기를 공급하도록 구성된다. 저장소는 액체 저장소(41)로서 언급될 수 있다. 바람직하게는, 액체 저장소(41) 내의 액체, 저장소 액체는 모세관 층(21) 내의 액체, 즉 모세관 액체와 같다. 저장소 액체 및 모세관 액체로 적합한 액체는 물일 것이다.
액체 저장소의 존재는 또한, 존재한다면, 모세관 층(21)으로부터 액체의 증발을 감소하는 방법을 제공한다. 저장소 내의 액체의 자유 표면 영역은 바람직하게는, 모세관 층(21)의 오목 외부 표면(28)의 자유 표면 영역보다 크다. 저장소 내에 저장되는 액체의 보다 큰 자유 표면 영역은, 증기의 양이 표면(28)의 환경에 수분을 제공하기에 충분하도록 하며, 그 결과 모세관 층(21) 내에서 더 적은 증발이 일어나도록 한다.
하나 이상의 가스 입구(33) 및/또는 하나 이상의 가스 출구(35)를 이용하여, 증기는 액체 저장소(41)로부터 모세관 층(21)의 외부 표면 영역(28)을 향하여 운반될 수 있다. 이러한 경우에, 가스 분배 시스템 내에서 이용되는 가스는 액체 저장소(41)에 액체를 공급하는데 이용되는 밸브(45)를 이용하여 기판 지지 구조물에 제공될 수 있다.
대안적으로, 가스는 하나 이상의 분리 가스 연결 유닛을 이용하여 제공될 수 있다. 이러한 가스 연결 유닛이 모세관 층으로 증기를 공급하는데 이용되는 하나 이상의 채널(43)을 경유하여 가스 유동을 공급하도록 구성된다면, 하나 이상의 채널(43)에는 유동 제어 유닛(44)이 구비될 수 있다. 이러한 유동 제어 유닛(44)은 저장소(41)로부터 비롯된 증기로부터 가스 연결 유닛을 경유하여서 가스 유동을 분리하도록 구성된다.
또 다른 대안적 예에서, 가스 분배 시스템은 증기 저장소(41)로부터의 증기를 클램프에 제공하도록 하나 이상의 구성요소와 전적으로 분리된다.
도 2를 참조하여 앞서 언급한 바와 같이, 모세관 액체의 층은 진공 환경에서 증발한다. 모세관 액체층의 남은 부피는 클램프의 일 측면에 축적되기 쉽다. 이러한 모세관 층의 비대칭적인 분배 때문에, 기판의 측면은 테이블을 "필 오프(peels off)" 한다. 이후에, 이러한 효과는 기판 필링(peeling)으로 언급될 것이다.
도 4는 기판 필링의 개념을 개략적으로 도시하고 있다. 이론적으로만 아니라, 피할 수 없는 임의의 불안정성 때문에, 기판(22)이 덜 강하게 클램핑되는 지점에서 기판(22)의 에지는 기판 지지 구조물(23)로부터 떨어져 상승하기 시작한다. 이러한 상승 움직임이 도 4에서 화살표 47에 의해 개략적으로 나타나고 있다. 필링 때문에, 증기는 더 쉽게 모세관 층(21)으로부터 누출된다. 추가로, 모세관 층(21)의 외부 액체 표면(28)은 증가하며, 이는 증발 속도의 증가를 유발한다. 더욱이, 국부적인 필링은 모세관 층(21)이 필링이 일어나는 영역으로부터 멀리 이동하는 것을 유발한다. 이는 추가적인 언클램핑(unclamping)을 유발한다. 따라서, 국부적인 필링은 클램프의 수명을 현저하게 제한할 수 있다.
도 5는 본 발명의 제2 실시예에 따른 기판(22)을 지지하는 기판 지지 구조물(23)의 단면이다. 도 5의 기판 지지 구조물(23)의 실시예는 추가로 원주 림(51)을 포함한다. 원주 림(51)은 기판 지지 구조물(23)과 기판(22) 사이의 더 작은 거리를 제공한다. 도 1 및 도 2에서 높이 h로서 언급되는, 기판 지지 구조물(23)과 기판(22) 사이의 노미널 거리가 대체로 약 3 내지 10 마이크론인 반면, 원주 림(51)과 기판(22) 사이의 거리는 대체로 500 nm 내지 1.5 마이크론의 범위 내에 있다. 바람직하게는, 원주 림(51)은 기판 지지 구조물(23)의 표면 상에 제공되는 접촉 구성요소의 노미널 높이보다 1 마이크론 더 작은 높이를 가진다.
이론적으로만 아니라, 원주 림(51)은, 모세관 층이 구비되는 기판 구조물의 정면을 도시하고 있는 도 6a 내지 도 6c에서 개시되는 방식으로 기판 필링을 제한한다. 원주 림(51)의 존재가 도 5와 관련하여 논의되었다고 하더라도, 이러한 원주 림(51)의 이용은 이러한 실시예로 제한되지 아니한다. 예를 들어, 원주 림(51)은 또한 도 3a에서 개략적으로 도시되는 실시예, 및 국제특허출원 WO2009/011574에서 논의된 실시예에도 적용될 수 있다.
우선, 외부 모세관 표면(28)으로부터 액체가 증발할 때에, 원주 림(51)과 기판(22) 사이의 작은 갭은 수축될 것이다. 불균일한 증발 때문에, 도 6a에서 개략적으로 도시되는 바와 같이, 외부 모세관 표면(28)은 국부적으로 안쪽으로 더 수축될 것이다. 원주 림(51)과 기판(22) 사이의 작은 갭에 걸친 모세관 압력 상승은 주요 클램핑 영역 내의 압력 상승보다 더 큰데, 예를 들어 이는 약 1 bar 대 약 200 mbar 정도이다. 증발 때문에 외부 모세관 표면(28)이 원주 림(51)의 내부 측면에 이를 때에, 표면은 기판(22)과 기판 지지 구조물(23) 사이의 더 큰 거리와 만나게 된다. 이러한 영역에서의 더 낮은 모세관 압력 상승에 의해 작은 양의 액체가 원주 림(51)과 기판(22) 사이의 갭으로 유동되는 것이, 도 6b에 개략적으로 도시되고 있다. 유동은 도 6c에 도시된 바와 같이 원주 림(51)과 기판(22) 사이의 갭이 완전하게 채워질 때까지 계속된다. 보이드 주요 클램핑 영역 내에 남겨질 것이다. 보이드는 전적으로 액체 층에 의해 둘러싸인다. 효과적이게, 증발 때문에 손실된 모세관 클램핑 영역은 내부로 이동되었다. 외부 모세관 표면은 같은 위치에 남겨져 있다. 그 결과, 기판 에지는 필 오프되지 않을 것이다.
도 3a 내지 도 5에 도시된 것과 같은 기판 지지 구조물(23)의 실시예들은 캐비테이션 효과가 최소화되거나 존재하지 않는 방식으로 설계될 수 있다. 이론적으로만 아니라, 공동을 위한 임계 반경이 있다고 생각된다. 공동 반경이 이러한 임계 반경보다 더 크게 된다면, 공동은 광범위하게 성장할 수 있다. 가장 작은 치수로, 즉 매우 작은, 그리고 바람직하게는 임계 반경보다 더 작은 두께 h로, 모세관 층의 형성을 가능하게 하는 기판 지지 구조물을 이용함으로써, 캐비테이션은 충분히 제한되거나 발생하지 않을 것이다. 실시예들은, 3 내지 10 마이크론 정도의 두께 h를 가지는 물의 모세관 층에는 캐비테이션이 발생하지 않는다는 것을 도시하고 있다.
특별한 조치에 따라서, 기판과 기판 지지 구조물(23)의 접촉 표면(22) 중 하나 또는 둘은 모세관 층(21)을 형성하는 액체와 관련된 접촉 표면 사이의 접촉 각에 영향을 미치기 위한 물질로 코팅된, 또는 처리된 표면이 될 수 있다.
도 7a 내지 도 7j는 본 발명의 일 실시예에 따른 기판 지지 구조물의 표면 상에 기판을 클램핑 하는 일 실시예의 방법의 실행을 개략적으로 도시하고 있다. 이러한 방법은, 기판 지지 구조물 상에 기판을 클램핑하는 방법의 자동화를 가능케 하는 준비 유닛 내에서 수행된다.
준비 유닛은 제어된 압력 환경을 제공할 수 있는 진공 시스템을 포함한다. 더욱이, 준비 유닛은 액체를 적용하기 위한 액체 분배 유닛, 가스를 제공하고 제거하기 위한 하나 이상의 가스 연결 유닛, 및 액체를 제공하고 제거하기 위한 하나 이상의 액체 연결 유닛을 포함한다.
도 7a에 도시된 바와 같이, 먼저, 기판 지지 구조물(23)이 진공 챔버 내에, 예를 들어 준비 유닛의 진공 시스템 내의 하우징 내에 배치된다. 진공 챔버 내에 기판 지지 구조물(23)을 배치한 이후에, 도 7b에 개략적으로 도시된 바와 같이, 액체는 그 표면에 적용된다. 기판 지지 구조물(23)의 표면(26) 상에의 액체 적용은 액체 분배 유닛(61)을 이용하여 수행될 수 있다.
도 7a 내지 도 7j에서, 기판 지지 구조물(23)의 표면(26)에는 접촉 구성요소, 예를 들어 벌스(27)가 구비된다. 일 실시예에서, 액체를 적용하는 것은 적어도 접촉 구성요소가 액체 층(64)에 의해 커버될 때까지 계속된다. 액체의 적용 이후에 액체 층(64)의 대체적인 두께는 2 내지 5 mm 범위 내에 있다. 액체를 적용하는 것은 바람직하게는, 액체 층(64) 내의 액체의 증기압과 실질적으로 동일한 레벨의 압력에서 수행된다. 이러한 압력에서 액체를 적용하는 것은 액체 내에 버블의 엔트레인먼트(entrainment) 및/또는 가스 용해의 기회를 감소시킨다.
선택적으로, 액체를 적용한 이후에, 퍼징(pausing) 동작이 수행된다. 이러한 동작은 도 7c에 개략적으로 도시되고 있다. 이러한 퍼징은 액체 층(64) 밖으로 연행(連行) 버블(entrained bubbles)(62) 및/또는 용해된 가스의 확산을 가능하게 한다. 연행 버블(62) 및/또는 용해된 가스의 제거는 도 2와 관련하여 논의된 바와 같은 보이드의 형성 기회를 감소시킨다.
이후에, 기판(22)은 액체 층(64)의 상부에 배치된다. 바람직하게는, 도 7d에 개략적으로 도시된 바와 같이, 기판(22)의 제1 단부(22a)에의 에지가 액체 층(64)과 우선, 이후 내용에서 경사각으로 언급되는, 초기 각으로 접촉하도록, 기판이 배치된다. 제1 접촉 이후에, 도 7e에 도시된 바와 같이, 기판(22)이 액체 층(64)에 충분하게 위치될 때까지 기판(22)의 비-접촉 단부(22b)는 하향 이동한다.
도 7d에서, 기판(22)은 초기 각 α로 배치된다. 액체는 기판(22)의 바닥면과 접촉하며, 모세관 효과 때문에 그에 부착된다. 일 실시예에서, 기판(22)의 일 단부(22a)의 제1 접촉 이후에, 물 기판 접촉선은, 도 7d에서 오른쪽 이동 화살표로 개략적으로 도시된 바와 같이, 다른 단부(22b)의 방향으로, 기판(22)의 바닥면을 따라 이동하도록 기판(22)의 다른 단부(22b)는 하향 이동된다. 경사 각으로의 기판(22)의 배치는 기판(22)과 기판 지지 구조물(23) 사이의 공기 또는 가스의 캡쳐링(capturing) 기회를 감소시키는데, 이는 형성되는 클램프의 안정성을 향상시킨다. 경사 각 알파(α)는, 바람직하게는 10도보다 작은, 더 바람직하게는 5도보다 작은 예각이다. 실험들은 이러한 경사 각이 만족스러운 결과를 제공한다는 것을 보여준다.
도 7e에서는 액체 층(64)으로의 배치 이후에 기판(22)의 모습을 도시하고 있다. 기판(22)은 액체 층(64) 상에 플로팅(floating)된다.
액체 층의 상부에 기판을 배치한 이후에, 초과 액체는 제거된다. 초과 액체의 제거는, 기판 지지 구조물(23)을 둘러싸는 압력 수준보다 실질적으로 아래인 압력 수준으로 기판(22) 하부의 압력을 낮춘다는 것을 포함한다. 이것은 도 7f에서 화살표 65로 개략적으로 도시되는 바와 같이 기판(22) 하부 영역과 낮은 압력 환경을 연결시킴으로써 달성될 수 있다.
액체 층(64) 상부 압력 수준과 액체 층(64) 아래 압력 수준 사이의 차이 때문에, 기판(22)은 기판 지지 구조물(23)을 향하여 당겨진다(pulled). 그 결과, 초과 액체는, 도 7f에서 화살표 67로 개략적으로 도시되는 바와 같이 기판 지지 구조물(23)의 에지 밖으로 압착되거나(squeezed), 하나 이상의 채널(66), 예를 들어 도 3b에서 도시되는 가스 분배 시스템의 채널(33, 35)을 경유하여 흡입된다. 그 이후에, 기판(22)은 기판 지지 구조물 표면(26)의 접촉 구성요소(27) 상으로 배치된다.
초과 액체의 제거는 추가로, 또는 대안적으로, 표면(26) 주위를 따라 가스 유동을 제공하는 것을 포함한다. 기판(22)과 접촉 구성요소와의 접촉이 유지되도록, 가스 유동은 기판(22) 상부의 압력보다 더 낮은 압력으로 제공된다. 가스 유동에 이용되는 적절한 가스는 질소, 산소 및 헬륨을 포함한다.
가스 유동은 하나 이상의 방법으로 초과 액체를 제거할 수 있다. 예를 들어, 액체는 유동에 의해 씻겨 내려갈 수 있다(swept away). 추가로, 남은 액적(droplet)은 가스 유동 내에서 증발될 수 있다. 남은 액적의 증발은 탈습된(dehumidified) 또는 건조 가스, 즉 그의 증기 포화 값(vapor saturation value) 보다 50%보다 더 낮은 증기 함량을 가지는 가스, 바람직하게는 10%보다 더 낮은 증기 함량을 가지는 가스를 제공함으로써, 향상될 수 있다.
가스 유동을 제공하는 것이 도 7g 및 도 7h에 개략적으로 도시되고 있다. 가스는 채널(66a)을 경유하여 기판 지지 구조물(23)로 들어가게 되는 반면, 가스 채널(66b)을 경유하여 나가게 된다. 채널(66a) 및 채널(66b)은 각각 도 3b의 가스 입구(33) 및 가스 출구(35)에 대응될 수 있다. 가스 유동은 바람직하게는 모세관 층(71)이 형성될 때까지, 즉 그의 주위 압력 아래의 압력을 가지는 오목한 외부 표면(28)을 갖는 얇은 액체 층이 형성될 때까지, 유지된다. 이러한 모세관 층은 도 1 및 도 2와 관련하여 논의되었다.
초과 액체 제거에 기인한 모세관 층의 형성 이후에, 주위 압력은 감소될 수 있다. 기판(22)이 클램핑 유지되는 것을 보장하기 위하여, 존재한다면, 초과 가스는, 예를 들어 도 7i에 개략적으로 도시된 바와 같이 밸브(45)를 경유하여, 기판(22)의 아래에서 제거될 수 있다.
본 발명의 실시예에서, 모세관 층(71)의 형성 이후에, 증기는 모세관 층으로 제공될 수 있다. 증기(73)는 적어도 부분적으로 저장소 액체(77)로 채워진 저장소(75)에 의해 제공될 수 있다. 저장소(75)는 도 7i 내지 도 7j에 도시된 바와 같이 기판 지지 구조물(23)의 일부일 수 있다. 대안적으로, 저장소(75)는 외부 저장소일 수 있다. 증기(73)는 이후에 외부 저장소 및 기판 지지 구조물(23) 모두에 연결될 수 있는 이송 시스템을 경유하여 제공될 수 있다.
액체 증기 저장소(75)가 기판 지지 구조물(23)에 연결될 수 있는 분리 모듈로서 제공될 수 있다. 제공된 증기는 모세관 층(71)으로부터의 액체 증발을 제한한다. 이것은 클램프의 더 긴 수명을 유발할 수 있다.
도 8은 본 발명의 다른 실시예에 따른 기판 지지 구조물(83)의 정면을 개략적으로 도시하고 있다. 기판 지지 구조물(83)은 기판을 클램핑하기 위한 표면(86)을 포함한다. 바람직하게는, 표면에는 접촉 구성요소(87)가 구비된다. 추가로, 기판 지지 구조물은 모트(91), 가스 입구(93) 및 가스 출구(95)를 포함하는 가스 분배 시스템을 포함한다. 이러한 구성요소들의 기능은 도 3a와 관련하여 논의되었으며, 본 실시예에 동일한 적용될 수 있다. 기판 지지 구조물(83)은, 아래에서 설명되는 노광 배치 및 기판 처리의 실시예, 도 7a 내지 도 7j, 및 기판 지지 구조물(23)과 관련하여 설명된 바와 유사한 방식의 클램핑 방법에서 이용될 수 있다.
도 3a 및 도 5에 도시된 기판 지지 구조물(23)의 실시예와 대조적으로, 기판 지지 구조물(83)은 다수의 서브 표면으로 분리되는 표면(86)을 포함한다. 서브 표면은, 예를 들어 육각형 형상의 타일(tile)의 형태를 취할 수 있으며, 모자이크식(tessellated) 패턴 내에 배열될 수 있다. 도 5와 관련하여 설명된 원주 림(51)과 유사한 원주 림(도시되지 않음)이 각 타일에는 제공될 수 있다. 다수의 서브 표면으로 분리된 표면(86)의 이용은, 상대적으로 큰 기판이, 예를 들어 300mm 웨이퍼가 클램핑될 때에, 효율적일 수 있다.
도 8b는 도 8a의 기판 지지 구조물(83)과 기판(82)의 조합에 의해 형성되는 클램프를 개략적으로, 또한 설명의 목적으로 도시하는 단면도이다.
도 9 내지 도 12는 위에서 설명된 기판 지지 구조물의 실시예와 관련하여 이용될 수 있는, 다른 기판 처리 및 노광 배치를 도시하고 있다. 비록 도 9 내지 도 12가 웨이퍼의 리소그래피 처리와 관련된 예를 참고하여 설명된다고 하더라도, 이러한 배치가 이러한 적용으로 제한되지 않음은 자명하다 할 것이다. 도 9 내지 도 12는, 예를 들어 도 7a 내지 도 7j와 관련하여 설명된 바와 같은. 기판 지지 구조물 상에 기판을 자동 클램핑하는데 이용될 수 있는 준비 유닛의 예를 도시하고 있다. 이러한 클램핑 방법은 특히 전하 입자 리소그래피를 수행하는 기판을 위해 적합하나, 기판 상에서 이용되는 후속 처리 종류에 따라. 다른 클램핑 방법이, 예를 들어, 공기 흡입, 기판 지지 구조물에 기판을 꼭 매달리게 하는 것(freezing), 전자석 클램핑이 이용될 수 있다. 준비 유닛은, 대안적으로 또는 추가적으로, 리소그래피 같은 추가 처리를 위해 기판 및/또는 기판 지지 구조물을 준비하기 위한 다른 기능을 수행할 수 있다.
도 9를 참조하면, 기판 처리 및 노광 배치에서, 준비 유닛(112)은 물 지지 구조물 상에 물을 클램핑하는 방법을 자동화하는데 이용된다. 준비 유닛(112)은, 본 예에서 소위 웨이퍼 트랙 또는 웨이퍼 공급부(111)라 불리는, 기판 분배 설비로부터 클램핑될 기판을 수용한다. 준비 유닛(112)에서, 도 7a 내지 도 7j와 관련하여 서술된 방법을 이용함으로써, 클램프가 준비된다. 클램프의 준비 이후에, 클램프(기판 지지 구조물에 클램핑되는 기판)는 기판 처리 유닛으로, 본 예에서 리소그래피 장치(113)로 포워딩(forwarding)된다. 리소그래피 장치는, 본 기술분야의 숙련자에 의해 이해될 수 있는 바와 같이, 패턴화된 방사 빔을 제공하기 위한 방사 시스템, 기판을 지지하기 위한 기판 지지 구조물, 및 기판의 타겟 부분 상에 패턴화된 방사 빔을 투영하기 위한 광학 시스템을 포함할 수 있다. 예시적인 준비 유닛의 동작과 관련한 추가 상세 사항은 도 14a 내지 도 14d를 참고하여 설명될 것이다.
도 9에서, 클램핑 절차가 참조 번호 115에 의해 개략적으로 표시되고 있다. 예시적인 준비 유닛의 동작과 관련한 추가 상세 사항은 도 14a 내지 도 14d를 참고하여 설명될 것이다. 준비 유닛(112)은 제어된 압력 환경을 제공하기 위한 진공 시스템을 포함한다. 클램핑 절차는, 예를 들어 도 14a에 도시된 바와 같은 웨이퍼 지지부(121)이 구비되는 로봇 암을 이용한, 웨이퍼(122)의 준비 유닛(112) 진공 시스템 내의 도입과 함께 시작될 수 있다.
웨이퍼(122)는 진공 타이트(tight) 도어 또는 로드락 챔버를 경유하여 도입될 수 있다. 웨이퍼 지지 구조물(123)은 이미 준비 유닛(112) 내에 존재할 수 있다. 대안적으로, 웨이퍼 지지 구조물은 웨이퍼(122)와 유사한 방법으로 도입될 수 있다.
이후에, 액체는 도 14a에 도시된 바와 같은 액체 분배 유닛(124)을 이용하여 웨이퍼 지지 구조물(123)의 표면 상으로 적용될 수 있다. 액체 분배 유닛(124)은, 충분한 "두께"의 액체 층이 제공될 때까지 액체 유동을 제공하며, 이후에 액체 유동을 차단한다. 바람직하게는, 클램핑 절차 내의 사전 및 후속 동작에 혼란을 주는 일 없이 액체의 적용이 효율적인 방식으로 수행될 수 있도록, 액체 분배 유닛(124)은 준비 유닛(112) 내에서 이동가능하다. 바람직하게는, 웨이퍼 지지 구조물(123)의 표면 상으로 액체를 적용하는 동안의 준비 유닛(112) 내의 압력은 주위 압력보다 아래인데, 예를 들어 액체 층 내의 액체의 증기압과 실질적으로 같다. 대안적으로, 준비 유닛 내의 압력은, 액체를 적용한 이후에, 그러나 웨이퍼를 클램핑하기 이전에 감소될 수 있다.
액체 층(125) 상에 웨이퍼의 배치를 가능케 하도록, 웨이퍼(122) 및 웨이퍼 지지 구조물(123)은 이후에 서로에 대해 이동된다. 이러한 목적으로, 기판 이송 유닛을, 예를 들어 도 14b에 도시된 바와 같은 이동식 지지 핀(127)을 을 이용하여, 웨이퍼(122)는 액체 층(125) 상으로 하향 이동된다. 도 7d과 관련하여 앞서 설명된 바와 같이, 웨이퍼(122) 및 액체 층(125) 사이의 제1 접촉은 초기 경사 각 알파(α), 바람직하게는 10도보다 낮은 각, 더 바람직하게는 5도보다 더 낮은 각으로 이루어질 수 있다. 이러한 경사 배치는, 예를 들어 지지 핀(127)의 분리된 제어 이동에 의해, 웨이퍼(122)의 다른 측면으로 하강시키기 이전에 웨이퍼(122)의 일 측면으로 하강시킴으로써 달성될 수 있다. 웨이퍼(122)의 각 측면은 액체 층(125)과의 접촉이 이루어질 때까지 하향 이동되며, 지지 핀(127)은 이후에 추가로 하향 이동되고 방해가 되지 않도록 이동될 수 있다. 웨이퍼(122)의 액체 층(125) 상에의 배치는 주위 압력, 즉 약 1 bar에서 수행될 수 있다. 그러나, 낮은 압력에서의 배치가 바람직한데, 예를 들어 액체 층 내의 액체의 증기압과 실질적으로 같은 압력에서의 배치가 바람직하다.
웨이퍼 지지 구조물(123)은 웨이퍼 지지 구조물로부터 액체를 제거하기 위한 웨이퍼 지지 구조물(123)에 연결될 수 있는 하나 이상의 액체 연결 유닛에 연결될 수 있다. 일 실시예에서, 도 14c에 도시된 바와 같은 커넥터(126a, 126b)는 이러한 목적을 위해 이용될 수 있다. 대안적으로, 위와 같은 하나 이상의 액체 연결 유닛의 연결은 보다 선행하여 이루어질 수 있다. 초과 액체는 하나 이상의 액체 연결 유닛을 경유하여 제거된다. 액체의 제거는 주위 압력, 즉 약 1 bar에서 수행될 수 있다.
더욱이, 웨이퍼 지지 구조물(123)은, 웨이퍼 지지 구조물(123)과 가스 공급부를 연결하기 위한 하나 이상의 가스 연결 유닛을, 예를 들어 액체를 위해 이용되는 커넥터(126a, 126b)와 동일한 것으로, 또는 가스를 위해 이용되는 커넥터와 분리된 세트로, 포함할 수 있다. 가스 연결 유닛은 진공과의 연결에 의해 낮은 압력을 형성할 수 있다. 추가로 및/또는 대안적으로, 가스 연결 유닛은, 도 7a 내지 도 7j를 참고하여 앞서 논의된 바와 같은, 웨이퍼(122)와 웨이퍼 지지 구조물(123) 사이의 모세관 층의 형성을 가능하게 하기 위한 가스 유동을 제공할 수 있다. 가스 유동을 제공하는 것은 주위 압력, 즉 약 1bar에서 수행될 수 있다. 웨이퍼(122)가 웨이퍼 지지 구조물(123)에 대해 그의 위치를 유지하는 것을 보장하기 위하여, 가스 유동에 의해 제공되는 압력은 주위 압력보다 낮을 필요가 있다는 것에 주목할 수 있다.
리소그래피 장치(113)에 클램프를 포워딩하기 이전에, 도 14d에 개략적으로 도시된 바와 같이, 연결(126a, 126b)은 제거될 수 있다. 클램프를 포워딩하는 것은 진공 타이트 도어 또는 로드락 챔버를 경유하여 로봇 암을 이용하여 수행될 수 있다.
리소그래피 장치(113) 내에서의 처리 이후에, 준비 유닛(112)으로 또는, 클램프는 언클램핑을 위한, 즉 웨이퍼 지지 구조물로부터의 웨이퍼 제거를 위한, 분리된 언클램핑 유닛으로 다시 이송될 수 있다. 도 9에서, 언클램핑 공정은 개략적으로 참조 번호 116으로 표시된다. 언클램핑은 준비 유닛(112) 내로 클램프를 도입함으로써, 웨이퍼 지지 구조물(123)에 하나 이상의 액체 커넥터를 연결함으로써 수행될 수 있다. 하나 이상의 액체 커넥터를 경유하여, 액체 층의 두께를 증가시키기 위해 추가 액체가 모세관 액체층으로 제공될 수 있다. 웨이퍼가 액체 층의 상부에 플로팅되기 시작하도록 추가 액체가 가해질 수 있다. 웨이퍼가 변형되거나 깨지지 않도록, 추가 액체의 도입은 액체 압력이 실질적으로 균일하게 분배되는 방식으로 적용될 수 있다.
이러한 단계에서, 예를 들어 지지 핀(127)을 이용하여, 웨이퍼(122)는 웨이퍼 지지 구조물(123) 상의 액체 층으로부터 상향 이동될 수 있다. 액체 층 상에 웨이퍼를 배치시키는 앞서 설명된 공정과는 반대로, 웨이퍼는 초기 경사 각으로 상향 이동될 수 있다. 웨이퍼를 상향 이동 동안의 초기 경사 각은 바람직하게는 10도 이하, 더 바람직하게는 5도 이하인데, 이는 예를 들어 지지 핀의 분리된 제어 이동으로, 다른 측면을 상향 이동하기 이전에 웨이퍼의 일 측면을 상향 이동시킴으로써 달성될 수 있다. 결과적으로, 예를 들어 웨이퍼 트랙/웨이퍼 공급부(111)를 향하여 이송되는, 그리고 웨이퍼 지지부(121)가 구비되는 로봇 암을 이용함으로써, 웨이퍼는 준비 유닛(112)으로부터 추출될 수 있다.
도 9에서 준비 유닛(112) 및 리소그래피 장치(113)는 분리된 유닛으로 도시되고 있다. 그러나, 예를 들어 리소그래피 장치(113)의 로드 락 내에 준비 유닛(112)의 요구되는 기능을 포함시킴으로써, 준비 유닛(112)이 리소그래피 장치(113)와 일체화될 수 있음은 자명하다 할 것이다. 이러한 경우에, 웨이퍼는 그들이 리소그래피 장치로 들어가고 나갈 때에 각각 클램핑되고 언클램핑될 것이다.
도 10은 로드 락(114)을 포함하는 기판 처리 및 노광 배치의 예를 도시하고 있다. 로드 락은 준비 유닛(112)으로부터 기판 지지 표면에 클램핑되는 기판을 수용한다. 로드 락은, 리소그래피 장치(113)로의 클램핑된 기판 및 기판 지지부의 이송에 적합한 진공으로 펌핑 다운하기 위한 진공 펌프를 구비하는 진공 챔버, 및 리소그래피 장치 내에서 클램핑된 기판의 처리 이후에 진공이 감소되도록 배기하기 위한 벤트를 포함한다.
도 11은 도 10의 기판 처리 및 노광 배치의 추가 상세사항을 도시하고 있다. 준비 유닛(112)은, 카세트 또는 공급 설비 내에 다수의 기판을 구비하는 것으로 도시되는, 웨이퍼 트랙 또는 웨이퍼 공급부(111)로부터 언댐핑된 기판(122)의 이송을 위한 포트(131)를 구비하는, 클램핑 또는 다른 동작을 수행하기 위한 제어된 압력 환경을 생성하는데 이용될 수 있는 하우징(136), 예를 들어 진공 챔버를 포함한다. 기판은 언댐핑된 기판을 수용하기 위한 크기의 로딩 포트(131)를 경유하여 준비 유닛(112) 내로 로딩된다. 기판은 기판 지지 표면(123)에 클램핑되며, 클램핑된 기판은 언로딩 포트(132)를 경유하여 로드 락 챔버(114)로 이송된다. 아래에서 설명되는 바와 같이, 기판 지지 표면의 컨디셔닝이 준비 유닛 내에서 수행될 수 있다. 로드 락 챔버는, 클램핑된 기판을 수용한 이후에, 포트(133)를 경유한 리소그래피 장치(113)로의 클램핑된 기판의 이송에 적합한 높은 진공으로 펌핑 다운되는, 진공 챔버(138)를 포함한다. 리소그래피 장치(113)는 대체로 진공 챔버를 포함하거나 진공 챔버 내에 위치되는 기판 처리 격실(139)을 포함한다. 리소그래피 장치 내의 처리 이후에, 클램핑된 기판은 포트(133)를 경유하여(대안적으로는 분리된 포트를 경유하여) 기판 처리 격실로부터 높은 진공이 깨지는 로드 락으로 이동되며, 기판의 언클램핑 및 기판 지지 구조물의 컨디셔닝을 위하여 포트(132)를 경유하여(대안적으로는 분리된 포트를 경유하여) 준비 유닛으로 다시 이동된다.
도 12는 도 10의 일 실시예의 기판 처리 및 노광 설비 내에서 기판 및 기판 지지 구조물의 이동을 도시하고 있다. 기판 유동(141)은 기판의 경로를 가리키는 실선으로 도시되고 있으며, 기판 지지 구조물 유동(142)은 기판 지지 구조물의 재이용 경로를 가리키는 점선으로 도시되고 있다.
기판 유동(141)은 클램핑 동작(115)을 위한 웨이퍼 트랙 또는 공급 유닛(111)으로부터 준비 유닛(112)으로의 기판의 경로를 나타내고 있다. 클램핑된 기판은, 기판 지지부와 함께, 이후에 로드 락 챔버(114) 및 기판 처리 격실(139) 내의 처리를 위한 리소그래피 장치로 이동되며, 처리 후에 기판의 언클램핑 및 기판 지지부로부터 기판의 상향 이동을 위해 준비 유닛으로 다시 이동된다. 기판은 이후에 추가 처리 유닛으로의 운반을 위해 웨이퍼 트랙/공급 유닛(111)으로 다시 이동된다. 기판 지지 구조물 유동(142)은 준비 유닛(112)으로부터 로드 락(114)을 경유하여 리소그래피 장치(113)로, 그리고 다시 기판 지지부의 재이용을 위한 재이용 경로로의, 기판 지지부의 재이용을 도시하고 있다. 대안적인 유동 경로(143)는 언로딩되고 새로운 기판이 로딩되기 이전에의 기판 지지부의 선택적인 컨디셔닝을 도시하고 있다. 버퍼(137)가, 예를 들어 재이용을 위해 준비된 작은 수의 기판 지지 구조물을 홀딩하기 위한 후입후출(last-in last-out) 저장 시스템이 재이용 경로(142 또는 143) 내에 포함될 수 있다. 기판 지지부의 컨디셔닝은 그들이 버퍼 저장부 내에 있는 동안 수행될 수 있으며, 또는 버퍼 저장부는 컨디셔닝 이후에 기판 지지부를 수용하고 재이용을 위해 준비된 그들을 홀딩할 수 있다.
기판 유동(141) 이후에, 클램핑 다음에, 기판 지지 구조물에 함께 클램핑되는 기판은 로드 락(114)을 경유하여 리소그래피 장치(113) 내에서의 기판 처리를 위해 이송된다. 리소그래피 장치(113)는 기판 처리 격실(139)을, 리소그래피 공정 동안 기판 상에의 투영을 위한 하전된 입자 또는 광 빔을 생성하는 하전된 입자 소스 또는 광 소스(145)를 구비하는, 대체로 진공 챔버를 구비한다. 리소그래피 처리 동안에, (화살표 146으로 도시된 바와 같이) 기판을 노광하는데 이용되는 광학 빔 또는 하전 입자로부터 기판에 의해 에너지가 흡수된다. 이러한 기판 내의 에너지 축적은 기판의 가열을 유발하며, 이는 기판의 열적 팽창 및 리소그래피 공정의 저하 같은 원하지 않는 효과를 유발한다.
기판 지지 구조물은 기판을 클램핑하기 위한 지지 구조물로서 뿐만 아니라 기판으로부터 에너지를 흡수하기 위한 에너지 흡수 유닛으로 제공된다. 기판 지지 구조물은 바람직하게는 기판 가열을 감소하기 위한 기판으로부터 에너지를 흡수하도록 구성된다. 기판과 기판 지지 구조물 사이의 우수한 열 접촉이 지지 구조물로의 우수한 에너지 전달을 위해 요구된다. 클램핑 액체 층은 기판과 기판 지지 구조물 사이의 매우 우수한 열 접촉을 위해 제공된다.
기판으로부터 전달되는 에너지는 기판 지지 구조물에 저장될 수 있다. 기판 지지 구조물은, 그것이 큰 질량을 가지도록 함으로써, 및/또는 높은 비열 용량을 가지는 물질로 그것을 구성함으로써, 히트 싱크로서의 역할을 수행하기 위해 높은 열 질량(열 용량)을 가지도록 구성될 수 있다. 국제출원 WO2008/013443호에 개시된 바와 같이, 상 전이를 수행하도록 설계되는 열 흡수 물질이 기판 지지 구조물 내에 혼입될 수 있으며, 상기 명세서의 내용은 그 전체로서 본 명세서에 편입된 것으로 간주될 수 있다. 상 전이 물질은, 바람직하게는 전체 기판 상에 리소그래피 공정을 수행하기에 충분한 오랜 시간 동안 균일한 온도를 유지하면서, 기판 지지 구조물로 하여금 기판으로부터 에너지를 흡수하게끔 하는 상 변화를, 예를 들어 용해를 수행하는 동안 에너지를 흡수하는 열 버퍼로서의 역할을 수행하며, 그 결과 기판 상에의 정확한 투영을 향상시킬 수 있게 된다. 일 실시예에서, 지지 구조물은, 바람직한 온도 수준으로 또는 상온으로 장기적인 온도 안정성을 달성할 수 있는, 갈륨 또는 갈륨 화합물로 구성되는 열 버퍼 물질을 포함한다.
기판의 처리 이후에, 기판 및 기판 지지 구조물 조합은, 로드 락 챔버(114)를 경유하여 리소그래피 장치(113)의 처리 챔버로부터 제거되며, 언클램핑 작동(116) 시에 기판이 지지부로부터 제거되는, 그리고 기판 지지 구조물이 또 다른 기판을 클램핑하기 위한 경로(142) 또는 재이용 이전에 컨디셔닝을 수행하기 위한 경로(143)를 따라서 갈 수 있는 준비 유닛(112)으로 이송된다. 리소그래피 장치 내에서 생성되는 광 빔 또는 하전된 입자로부터의 에너지의 일부가, 그것이 격실로부터 제거될 때에, 기판 지지 구조물에 의해 리소그래피 머신의 기판 처리 격실로부터 제거된다. 준비 유닛은 (화살표 148로 도시되는 바와 같이) 기판 지지 구조물 내에 저장되는 에너지를 제거하기 위한 에너지 방출 유닛으로서 기능할 수 있다. 이러한 방식으로, 기판 지지 구조물은, 바람직하게는 그것을 냉각하는 일 없이, 그의 에너지를 릴리싱(releasing)함으로써 컨디셔닝된다. 에너지 유동 화살표(146, 148)는 리소그래피 시스템 내의 에너지 경로를 가리킨다.
에너지의 릴리스는 수동적으로 수행될 수 있는데, 예를 들어 기판 지지부가 버퍼 스토어에 안착되는 동안, 기판 지지부로 하여금 열 방사 또는 준비 유닛의 구조물과의 열 접촉에 의해 그의 에너지를 릴리싱하도록 함으로써 수행될 수 있다. 에너지 릴리스는 또한 능동적으로 수행될 수 있는데, 예를 들어 기판 지지 구조물을, 후속 냉각을 위해 유체 공급부 및 방출 라인을 경유하여 에너지 출구 지점(화살표 148)에서 준비 유닛(112)의 밖으로 운반되는, 액체 또는 가스 같은 에너지 방출 매체에 노광시킴으로써 수행될 수 있다. 에너지 방출 매체는 바람직하게는 액체를 포함하며, 그 후에 그의 적어도 일부가 본 명세서에서 설명된 바와 같이 기판을 클램핑하기 위한 모세관 액체로서 이용될 수 있다. 가스는 기판 지지 구조물 내의 개방 도관을 통과하는 또는 표면 상부로 향하여지는 에너지 방출 매체로서 이용될 수도 있다.
소위 펠티에(Peltier) 효과를 이용하는 열전기 냉각 구성요소(140)가 기판 지지부와의 열 접촉에 이용될 수 있다. 펠티에 냉각 구성요소는 접합(junction)을 형성하도록 배열되는 두 개의 다른 형태의 물질을 포함한다. 어느 하나의 물질로부터 다른 물질로의 열의 전달은 전기 에너지를 소비하여 일어난다. 냉각 구성요소와 직류 전압 소스를 연결하는 것은 구성요소의 일 측면이 냉각되고 다른 면이 가열되는 효과를 유발한다. 열은, 예를 들어 냉각 유체를 이용하여, 구성요소의 가열된 면으로부터 제거될 수 있다.
도 13은 기판 지지 구조물의 실시예들과 함께 이용될 수 있는 다른 기판 처리 및 노광 장치를 개략적으로 도시하고 있다. 도 13의 장치에서, 하나의 리소그래피 장치(113) 대신에 다수의 리소그래피 장치(113a, 113b, 113c)가 이용된다. 웨이퍼 트랙/웨이퍼 공급부(111) 및 준비 유닛(112)의 기능은 도 9와 관련하여 설명된 바와 같다.
도 13에서, 처리를 위해 리소그래피 장치로 이송되도록 준비된 클램프는, 추가 웨이퍼 트랙(117)을 경유하여 세 개의 다른 리소그래피 장치(113a, 113b, 113c)를 향하여 이송될 수 있다. 준비 유닛 내에서 수행되는 클램핑 방법의 대체적인 구현 시간이 리소그래피 장치(113a, 113b, 113c)의 여느 하나에서 수행되는 리소그래피 공정의 대체적인 구현 기간보다 더 빠르다면, 도 13의 구성은 더 효율적일 수 있다.
본 명세서 전반에 걸쳐, "모세관 층"이라는 표현이 사용되었다. 여기서, "모세관 층"은 그의 주위 압력보다 낮은 압력을 가지며 오목한 메니스커스 형태를 갖는 얇은 액체 층을 의미할 수 있다.
본 발명의 추가적인 면은 또한, 기판 지지 구조물이 액체의 모세관 층을 이용하여 클램핑되는 기판을 수용하기 위한 표면을 포함하는 경우에 기판을 그의 표면 상에 클램핑하기 위한 기판 지지 구조물, 액체 저장소의 증기 및 저장소 액체를 저장하기 위한 액체 저장소, 및 존재한다면, 저장소 액체의 증기가 모세관 층으로 제공될 수 있도록 수용 표면을 갖는 저장소와 연결된 증기 이송 시스템 내에서 정의된다. 저장소는 수용 표면 아래로 확장할 수 있다. 바람직하게는, 저장소는 수용 표면 아래에 위치되는 더 큰 부분, 및 수용 표면 원주로부터 연장하는 더 작은 부분을 갖는 공동을 포함한다. 저장소 내의 저장소 액체의 저장을 위한 부피는 액체의 모세관 층의 부피보다 더 클 수 있다. 저장소는 수용 표면으로부터 분리될 수 있다. 이용 시에, 모세관 층은 오목하게 형상진 외부 표면을 가질 수 있으며, 저장소 내의 액체의 자유 표면 영역은 상기 오목하게 형상진 외부 표면의 자유 표면 영역보다 더 크다. 기판 지지 구조물은 또한 그의 표면 주위의 액체를 제거하기 위한 액체 제거 시스템을 포함할 수 있다. 액체 제거 시스템은 가스 분배 시스템을 포함할 수 있다. 가스 분배 시스템은 가스를 공급하기 위한 하나 이상의 가스 입구, 및 가스를 제거하기 위한 하나 이상의 가스 출구를 포함할 수 있다. 대안적으로, 가스 분배 시스템은 서로에 대해 등거리의 위치에 있는 다수의 가스 입구 및 다수의 가스 출구를 가질 수 있다. 기판 지지 구조물은 또한 가스 공급부와 기판 지지 구조물을 연결하기 위한 가스 연결 유닛을 포함할 수 있다. 가스 연결 유닛은 증기 이송 시스템에 연결될 수 있다. 증기 이송 시스템은 가스 연결 유닛을 경유하여 저장소로부터 비롯된 증기로부터 가스 유동을 분리하기 위한 유동 제어 유닛을 포함할 수 있다. 유동 제어 유닛은 밸브 또는 플랩(flap)일 수 있다. 기판 지지 구조물의 저장소는 기판 지지 구조물의 제거 가능 부분 내에 위치될 수 있다. 저장소 및 증기 이송 시스템은 기판 지지 구조물의 제거 가능 부분 내에 위치될 수 있다. 기판 지지 구조물은 또한 가스 분배 시스템에 의해 공급되는 가스가 수용 표면과 실링 구조물 사이에서 유동할 수 있도록 수용 표면에 외접하는 실링 구조물을 포함할 수 있다. 수용 표면에는 다수의 접촉 구성요소가 구비될 수 있는데, 여기서 실링 구조물은 다수의 접촉 구성요소의 높이에 대응하는 높이를 갖는다. 대안적으로, 가스 분배 시스템에 의해 공급되는 가스가 원주 림과 실링 구조물 사이에서 유동할 수 있도록, 수용 표면은 또한 상승된 원주 림을 포함할 수 있다. 이러한 실시예에서, 수용 표면에는 다수의 접촉 구성요소가 구비될 수 있으며, 여기서 원주 림은 다수의 접촉 구성요소의 높이보다 더 작은 높이를 갖는다. 수용 표면은 다수의 서브 표면으로 분할될 수 있다. 이때에, 액체 제거 시스템은 각 서브 표면 주변에의 액체를 제거하도록 구성될 수 있다. 다수의 서브 표면의 경우, 적어도 하나의 서브 표면은 실질적으로 육각형 형태를 가질 수 있다.
본 발명의 추가적인 면은 또한 기판이 기판 지지 구조물에 클램핑되도록 유지하는 방법으로 정의되며, 상기 방법은 기판이 모세관 층을 이용하여 클램핑되는 표면을 갖는 기판 지지 구조물을 제공하는 단계, 저장소 액체 및 저장소 액체의 증기를 저장하는 저장소를 제공하는 단계, 및 모세관 층으로부터 증발을 제한하기 위하여 저장소로부터 모세관 층으로 저장소 액체의 증기의 이송이 가능하게 하는 단계를 포함한다. 기판 지지 구조물은 앞서 설명된 여느 기판 지지 구조물일 수 있다.
본 발명은 앞서 논의된 특정 실시예를 참고하여 설명되었다. 이러한 실시예들이 본 발명의 목적 범위 내에서 본 기술분야의 숙련자에 의해 다양하게 수정되거나 대안적인 형태로 구현될 수 있음은 자명하다. 따라서, 특정 실시예로 설명되었다고 하더라도, 이러한 실시예들이 이하의 청구항으로 정의되는 본 발명의 권리 범위를 제한하지 아니하는 것으로 이해되어야 한다.

Claims (37)

  1. 모세관 액체층을 이용하여 기판 지지 구조물의 표면 상에 기판을 클램핑(clamping)하도록 구성되는 준비 유닛(112) 및 상기 기판 지지 구조물 상으로 클램핑되는 상기 기판 상에서 리소그래피 공정을 수행하기 위한 리소그래피 장치(113)를 포함하는 하전 입자 리소그래피 시스템으로서,
    상기 준비 유닛(112)은,
    하우징(136)으로서, 기판(22, 82, 122)을 상기 하우징(136) 내로 로딩하거나 또는 기판(22, 82, 122)을 상기 하우징(136) 밖으로 언로딩하기 위한 제 1 로드 포트(131)를 구비하는, 상기 하우징(136);
    기판 지지 구조물 및 그 위에(thereon) 클램핑되는 기판을 함께 준비할 수 있게 하기 위하여, 상기 하우징 내에서 기판 지지 구조물(23, 83, 123) 상으로 상기 기판을 위치시키기 위한 기판 이송 유닛(127); 및
    상기 기판 지지 구조물 및 그 위에 클램핑되는 상기 기판을 함께 상기 하우징 내로 로딩하거나 또는 상기 기판 지지 구조물 및 그 위에 클램핑되는 상기 기판을 함께 상기 하우징 밖으로 언로딩하기 위한 언로딩 포트(132)를 포함하며,
    상기 리소그래피 장치(113)는 기판 처리 격실(compartment)(139)을 포함하고, 상기 리소그래피 장치의 상기 기판 처리 격실은 상기 언로딩 포트를 통해 상기 기판 지지 구조물 및 그 위에 클램핑되는 상기 기판을 함께 받아들이도록 배치되는,
    하전 입자 리소그래피 시스템.
  2. 제1항에 있어서,
    상기 준비 유닛은, 상기 기판 처리 격실로부터 상기 기판 지지 구조물을 제거하고 상기 기판을 지지하는 상기 기판 지지 구조물을 상기 언로딩 포트를 통해 상기 하우징 내로 로딩한 이후에, 상기 리소그래피 공정 결과 상기 기판 지지 구조물 내에 축적된 에너지를 제거하기 위한 에너지 방출 시스템을 더 포함하는,
    하전 입자 리소그래피 시스템.
  3. 제2항에 있어서,
    상기 준비 유닛에는 상기 에너지 방출 시스템용 에너지 운반 매체(135)의 공급 및 방출을 위한 연결 수단이 구비되는,
    하전 입자 리소그래피 시스템.
  4. 제3항에 있어서,
    상기 에너지 운반 매체는, 액체를 포함하며, 상기 기판을 상기 기판 지지 구조물의 표면 상에 클램핑하기 위한 모세관 액체 층에 적어도 부분적으로 이용되는,
    하전 입자 리소그래피 시스템.
  5. 제2항에 있어서,
    상기 에너지 방출 시스템은 전기 구동되는 열전기 냉각 구성요소를 포함하는,
    하전 입자 리소그래피 시스템.
  6. 제1항에 있어서,
    상기 기판을 클램핑하기 위해 필요한 액체 양을 초과하여, 에너지 운반 매체가 상기 모세관 액체층을 위해 제공되는,
    하전 입자 리소그래피 시스템.
  7. 제1항에 있어서,
    상기 준비 유닛은, 상기 모세관 액체층을 형성하기 위해, 상기 기판 지지 구조물의 표면 상에 액체를 분배하는 액체 분배기를 더 포함하는,
    하전 입자 리소그래피 시스템.
  8. 제1항에 있어서,
    상기 하우징(136) 내의 압력은 상기 모세관 층 내의 액체의 증기압과 같은 압력까지 저하될 수 있는,
    하전 입자 리소그래피 시스템.
  9. 제1항에 있어서,
    상기 기판 이송 유닛은 상기 기판 지지 구조물 상으로 상기 기판을 하향 이동시키기 위한 지지 핀(127)을 포함하는,
    하전 입자 리소그래피 시스템.
  10. 제1항에 있어서,
    상기 준비 유닛은, 상기 기판 지지 구조물의 표면에 가스를 제공하거나 또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하기 위해, 상기 기판 지지 구조물에 연결될 수 있는 하나 또는 복수의 가스 커넥터(126a, 126b)를 더 포함하는,
    하전 입자 리소그래피 시스템.
  11. 제1항에 있어서,
    상기 준비 유닛은, 상기 기판 지지 구조물의 표면에 액체를 제공하거나 또는 상기 기판 지지 구조물의 표면으로부터 액체를 제거하기 위해, 상기 기판 지지 구조물에 연결될 수 있는 하나 또는 복수의 액체 커넥터(126a, 126b)를 더 포함하는,
    하전 입자 리소그래피 시스템.
  12. 제1항에 있어서,
    상기 준비 유닛(112)은,
    기판 지지 구조물의 표면 상에 액체를 분배하기 위한 액체 분배기(61, 124);
    상기 기판 지지 구조물의 표면에 가스를 제공하거나 또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하기 위한 하나 또는 복수의 가스 커넥터(126a, 126b); 및
    상기 기판 지지 구조물의 표면에 액체를 제공하거나 또는 상기 기판 지지 구조물의 표면으로부터 액체를 제거하기 위한 하나 또는 복수의 액체 커넥터(126a, 126b)
    를 더 포함하며,
    상기 기판 지지 구조물은, 상기 하나 또는 복수의 가스 커넥터 및 상기 하나 또는 복수의 액체 커넥터와, 연결될 수 있고 연결 분리될 수 있는(connectable and disconnectable),
    하전 입자 리소그래피 시스템.
  13. 제1항에 있어서,
    복수의 리소그래피 장치를 더 포함하며, 상기 리소그래피 장치 각각은, 패턴화된 방사 빔을 제공하기 위한 방사 시스템, 기판을 지지하기 위한 기판 지지 구조물, 및 상기 기판의 타겟 부분 상에 상기 패턴화된 방사 빔을 투영하기 위한 광학 시스템을 포함하고, 상기 준비 유닛은 상기 복수의 리소그래피 장치들 각각의 기판 지지 구조물에 클램핑되는 기판을 제공하도록 구성되는,
    하전 입자 리소그래피 시스템.
  14. 제1항에 있어서,
    상기 리소그래피 장치 및 상기 준비 유닛의 상기 하우징 사이에 제공되는 로드락 챔버(load lock chamber)를 더 포함하며,
    상기 로드락 챔버는, 상기 언로딩 포트를 통해 상기 기판 지지 구조물 및 그 위에 클램핑되는 상기 기판을 함께 받아들이도록 배치되며 진공 챔버 내의 압력을 상기 기판 지지 구조물 및 그 위에 클램핑되는 상기 기판을 함께 상기 리소그래피 장치로 이송하기 위한 압력까지 펌핑 다운하도록 배치되는, 상기 진공 챔버를 포함하며,
    상기 기판 지지 구조물 및 그 위에 클램핑되는 상기 기판을 함께 상기 리소그래피 장치로 이송하기 위한 추가의 로드 포트를 포함하는,
    하전 입자 리소그래피 시스템.
  15. 리소그래피 처리를 위한 기판(22, 82, 122)을 준비하는 방법으로서,
    하우징(136) 내에 제어된 압력 환경을 제공하는 단계;
    상기 하우징 내로 상기 기판을 로딩하는 단계;
    상기 하우징 내에 기판 지지 구조물(23, 83, 123)을 제공하는 단계;
    그 위에(thereon) 기판이 클램핑된 기판 지지 구조물을 형성하기 위해, 모세관 층을 이용하여 상기 기판 지지 구조물의 표면 상에 상기 기판을 클램핑하는 단계; 및
    상기 하우징의 밖으로 상기 기판 지지 구조물 및 그 위에 클램핑된 상기 기판을 함께 언로딩하는 단계;를 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  16. 제15항에 있어서,
    상기 모세관 층을 형성하기 위해 기판 지지 구조물의 표면 상에 액체를 분배하는 단계; 및 상기 분배된 액체 상으로 상기 기판을 하향 이동시키는 단계;를 더 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  17. 제15항에 있어서,
    상기 기판 지지 구조물에 하나 또는 복수의 가스 커넥터(126a, 126b)를 연결하고, 상기 기판 지지 구조물의 표면에 가스를 제공하거나 또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하여, 모세관 층을 형성하는 단계를 더 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  18. 제15항에 있어서,
    상기 기판을 클램핑하는 단계 이후에, 상기 기판 지지 구조물에 하나 또는 복수의 액체 커넥터(126a, 126b)를 연결하고, 상기 기판 지지 구조물의 표면에 액체를 제공하거나 또는 상기 기판 지지 구조물의 표면으로부터 액체를 제거하는 단계를 더 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  19. 제15항에 있어서,
    상기 기판을 상기 모세관 층 내의 액체 층의 상부(top) 상에 위치시킨 이후에, 상기 모세관 층 내의 액체의 증기압과 동일한 압력까지 상기 하우징 내의 압력을 저하시키는 단계를 더 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  20. 제15항에 있어서,
    상기 기판 지지 구조물을 제공하는 단계 이후에 기판 지지 구조물의 표면 상에 액체를 분배하는 단계;
    상기 기판 지지 구조물에 하나 또는 복수의 가스 커넥터(126a, 126b)를 연결하고, 상기 기판 지지 구조물의 표면에 가스를 제공하거나 또는 상기 기판 지지 구조물의 표면으로부터 가스를 제거하여, 상기 기판 및 상기 기판 지지 구조물 사이에 모세관 층을 형성하는 단계;
    상기 기판을 클램핑 하기 위하여, 상기 기판 지지 구조물에 하나 또는 복수의 액체 커넥터(126a, 126b)를 연결하고, 상기 기판 지지 구조물의 표면으로부터 액체를 제거하는 단계; 및
    상기 기판 지지 구조물 및 그 위에 클램핑된 상기 기판을 함께 언로딩하는 단계 이전에, 상기 기판 지지 구조물로부터 상기 하나 또는 복수의 가스 커넥터 및 상기 하나 또는 복수의 액체 커넥터를 연결 분리시키는 단계를 더 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  21. 제15항에 있어서,
    앞선 리소그래피 공정의 결과 상기 기판 지지 구조물 내에 축적된 에너지를 능동적으로 제거하는 것에 의하여, 상기 기판 지지 구조물의 표면 상에 상기 기판을 클램핑하기 이전에 상기 기판 지지 구조물을 컨디셔닝(conditioning)하는 단계를 더 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  22. 제21항에 있어서,
    상기 기판 지지 구조물을 컨디셔닝하는 단계는, 저장된 에너지를 제거하기 위해 에너지 운반 매체(135)에 상기 기판 지지 구조물을 노광시키는 단계를 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  23. 제21항에 있어서,
    상기 기판 지지 구조물을 컨디셔닝하는 단계는, 상기 기판 지지 구조물을 전기 구동되는 열전기 냉각 구성요소(140)와 열 접촉되게 위치시키는 단계를 포함하는,
    리소그래피 처리를 위한 기판을 준비하는 방법.
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
KR1020117022203A 2009-02-22 2010-02-22 리소그래피 머신을 위한 준비 유닛 KR101586984B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15441109P 2009-02-22 2009-02-22
US15441509P 2009-02-22 2009-02-22
US61/154,415 2009-02-22
US61/154,411 2009-02-22
GB0905789.4 2009-04-03
GB0905789A GB2469114A (en) 2009-04-03 2009-04-03 Clamp preparation unit, unclamping unit, arrangement, method for clamping a substrate, and a method of unclamping a substrate
US30652110P 2010-02-21 2010-02-21
US61/306,521 2010-02-21

Publications (2)

Publication Number Publication Date
KR20110132395A KR20110132395A (ko) 2011-12-07
KR101586984B1 true KR101586984B1 (ko) 2016-01-20

Family

ID=42211903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117022203A KR101586984B1 (ko) 2009-02-22 2010-02-22 리소그래피 머신을 위한 준비 유닛

Country Status (7)

Country Link
US (2) US8436324B2 (ko)
EP (1) EP2399280B1 (ko)
JP (1) JP5670351B2 (ko)
KR (1) KR101586984B1 (ko)
CN (1) CN102414782B (ko)
TW (1) TW201106107A (ko)
WO (1) WO2010094802A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705010B2 (en) 2007-07-13 2014-04-22 Mapper Lithography Ip B.V. Lithography system, method of clamping and wafer table
TWI514090B (zh) * 2007-07-13 2015-12-21 Mapper Lithography Ip Bv 微影系統及用於支撐晶圓的晶圓台
JP5670351B2 (ja) 2009-02-22 2015-02-18 マッパー・リソグラフィー・アイピー・ビー.ブイ. リソグラフィ機械装置のための準備ユニット
GB2469112A (en) 2009-04-03 2010-10-06 Mapper Lithography Ip Bv Wafer support using controlled capillary liquid layer to hold and release wafer
CN103370655B (zh) * 2010-12-14 2016-03-16 迈普尔平版印刷Ip有限公司 光刻***和在该光刻***中处理基板的方法
TWI486723B (zh) * 2011-04-28 2015-06-01 Mapper Lithography Ip Bv 在微影系統中處理基板的方法
JP2013125791A (ja) * 2011-12-13 2013-06-24 Canon Inc 保持装置、描画装置、および、物品の製造方法
JP6219178B2 (ja) * 2014-01-20 2017-10-25 株式会社ディスコ プラズマエッチング装置
JP2017513036A (ja) 2014-11-14 2017-05-25 マッパー・リソグラフィー・アイピー・ビー.ブイ. 貨物固定システムおよびリソグラフィシステム内で基板を移送するための方法
DE102016109510B4 (de) * 2016-05-24 2018-07-19 VON ARDENNE Asset GmbH & Co. KG Vakuumprozessieranlage und Verfahren zum schubweisen Einschleusen und Ausschleusen von Substraten
WO2019049588A1 (en) 2017-09-07 2019-03-14 Mapper Lithography Ip B.V. METHODS AND SYSTEMS FOR COATING A SUBSTRATE
CN110181428B (zh) * 2019-05-09 2024-04-26 武汉维尔笛工程技术有限公司 一种利用电磁力实现车门铰链压紧的装置
CN112325955A (zh) * 2020-11-11 2021-02-05 麦克传感器股份有限公司 多用途热导式流量开关及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511928B1 (en) 1991-04-25 1996-03-13 International Business Machines Corporation Liquid film interface cooling system for semiconductor wafer processing
US20030138704A1 (en) 2002-01-23 2003-07-24 Ping Mei Optical-mechanical feature fabrication during manufacture of semiconductors and other micro-devices and nano-devices that include micron and sub-micron features
US20050259236A1 (en) 2003-09-29 2005-11-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070114440A1 (en) 2005-11-11 2007-05-24 Kyoung-Seok Yang Multi-chambered substrate processing equipment having sealing structure between chambers thereof, and method of assembling such equipment

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204547A (en) * 1981-06-12 1982-12-15 Hitachi Ltd Exposing method
JPS6043841A (ja) 1983-08-22 1985-03-08 Shibayama Kikai Kk 半導体ウエハ−の保持装置
US4951601A (en) * 1986-12-19 1990-08-28 Applied Materials, Inc. Multi-chamber integrated process system
US5536128A (en) * 1988-10-21 1996-07-16 Hitachi, Ltd. Method and apparatus for carrying a variety of products
JPH0729787A (ja) * 1993-07-15 1995-01-31 Toshiba Mach Co Ltd 恒温部材の温度保持装置
DE4446489C1 (de) 1994-12-23 1996-05-15 Fraunhofer Ges Forschung Verfahren zum Manipulieren von Mikrobauteilen und Vorrichtung zur Durchführung des Verfahrens
US6157866A (en) * 1997-06-19 2000-12-05 Advanced Micro Devices, Inc. Automated material handling system for a manufacturing facility divided into separate fabrication areas
WO1999026278A1 (fr) * 1997-11-14 1999-05-27 Nikon Corporation Dispositif d'exposition, procede de fabrication associe, et procede d'exposition
US6949143B1 (en) 1999-12-15 2005-09-27 Applied Materials, Inc. Dual substrate loadlock process equipment
JP2001332487A (ja) 2000-05-25 2001-11-30 Hitachi Ltd ステージ装置及び荷電粒子線装置
JP2002009139A (ja) * 2000-06-20 2002-01-11 Nikon Corp 静電チャック
KR20080109062A (ko) * 2000-09-15 2008-12-16 어플라이드 머티어리얼스, 인코포레이티드 처리 장비용 더블 이중 슬롯 로드록
DE50015481D1 (de) 2000-10-31 2009-01-22 Sez Ag Vorrichtung zur Flüssigkeitsbehandlung von scheibenförmigen Gegenständen
US6786996B2 (en) 2001-10-16 2004-09-07 Applied Materials Inc. Apparatus and method for edge bead removal
US6753129B2 (en) * 2001-12-07 2004-06-22 Applied Materials Inc. Method and apparatus for modification of chemically amplified photoresist by electron beam exposure
DE10228103A1 (de) 2002-06-24 2004-01-15 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
WO2004021411A2 (en) 2002-08-31 2004-03-11 Applied Materials, Inc. Method and apparatus for supplying substrates to a processing tool
JP2004281474A (ja) * 2003-03-12 2004-10-07 Seiko Epson Corp 製造対象物の受け渡し装置および製造対象物の受け渡し装置を有する搬送システム
JP5058550B2 (ja) 2003-05-23 2012-10-24 株式会社ニコン 露光装置、露光方法、デバイス製造方法、及び液体回収方法
TWI502694B (zh) * 2004-05-14 2015-10-01 Ferrotec Usa Corp 轉移物件通過低壓狀態下之負荷固定艙的裝置及方法
JP2006066690A (ja) * 2004-08-27 2006-03-09 Hitachi High-Technologies Corp 電子線描画装置、電子線描画装置の温度制御方法、および回路パターン製造装置
WO2006077859A1 (ja) 2005-01-18 2006-07-27 Nikon Corporation 液体除去装置、露光装置、及びデバイス製造方法
JP4844186B2 (ja) 2005-03-18 2011-12-28 株式会社ニコン プレート部材、基板保持装置、露光装置及び露光方法、並びにデバイス製造方法
DE102006021647A1 (de) 2005-11-09 2007-11-15 Coenen, Wolfgang, Dipl.-Ing. Verfahren zur Vereinzelung von scheibenförmigen Substraten unter Nutzung von Adhäsionskräften
US8325321B2 (en) 2006-07-28 2012-12-04 Mapper Lithography Ip B.V. Lithography system, method of heat dissipation and frame
CN101495922B (zh) 2006-07-28 2012-12-12 迈普尔平版印刷Ip有限公司 光刻***、热消散方法和框架
JP5048352B2 (ja) * 2007-01-31 2012-10-17 東京エレクトロン株式会社 基板処理方法及び基板処理装置
TWI514090B (zh) 2007-07-13 2015-12-21 Mapper Lithography Ip Bv 微影系統及用於支撐晶圓的晶圓台
JP5670351B2 (ja) 2009-02-22 2015-02-18 マッパー・リソグラフィー・アイピー・ビー.ブイ. リソグラフィ機械装置のための準備ユニット
GB2469112A (en) * 2009-04-03 2010-10-06 Mapper Lithography Ip Bv Wafer support using controlled capillary liquid layer to hold and release wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511928B1 (en) 1991-04-25 1996-03-13 International Business Machines Corporation Liquid film interface cooling system for semiconductor wafer processing
US20030138704A1 (en) 2002-01-23 2003-07-24 Ping Mei Optical-mechanical feature fabrication during manufacture of semiconductors and other micro-devices and nano-devices that include micron and sub-micron features
US20050259236A1 (en) 2003-09-29 2005-11-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070114440A1 (en) 2005-11-11 2007-05-24 Kyoung-Seok Yang Multi-chambered substrate processing equipment having sealing structure between chambers thereof, and method of assembling such equipment

Also Published As

Publication number Publication date
CN102414782A (zh) 2012-04-11
US20100238421A1 (en) 2010-09-23
US9117631B2 (en) 2015-08-25
WO2010094802A1 (en) 2010-08-26
TW201106107A (en) 2011-02-16
JP5670351B2 (ja) 2015-02-18
CN102414782B (zh) 2014-11-05
JP2012518901A (ja) 2012-08-16
EP2399280B1 (en) 2020-01-15
US20130234040A1 (en) 2013-09-12
KR20110132395A (ko) 2011-12-07
EP2399280A1 (en) 2011-12-28
US8436324B2 (en) 2013-05-07

Similar Documents

Publication Publication Date Title
KR101586984B1 (ko) 리소그래피 머신을 위한 준비 유닛
USRE49725E1 (en) Method and arrangement for handling and processing substrates
US8991330B2 (en) Substrate support structure, clamp preparation unit, and lithography system
GB2469113A (en) Substrate Support Structure and Method for maintaining a substrate clamped to a substrate support Structure
GB2469114A (en) Clamp preparation unit, unclamping unit, arrangement, method for clamping a substrate, and a method of unclamping a substrate
NL1037754C2 (en) Substrate support structure, clamp preparation unit, and lithography system.

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 5