KR101552677B1 - Sulfonated polyphenylene polymer containing tetraphenylethylene and preparing method thereof - Google Patents

Sulfonated polyphenylene polymer containing tetraphenylethylene and preparing method thereof Download PDF

Info

Publication number
KR101552677B1
KR101552677B1 KR1020140006016A KR20140006016A KR101552677B1 KR 101552677 B1 KR101552677 B1 KR 101552677B1 KR 1020140006016 A KR1020140006016 A KR 1020140006016A KR 20140006016 A KR20140006016 A KR 20140006016A KR 101552677 B1 KR101552677 B1 KR 101552677B1
Authority
KR
South Korea
Prior art keywords
polyphenylene
polymer
tetraphenylethylene
dichlorobenzophenone
containing tetraphenylethylene
Prior art date
Application number
KR1020140006016A
Other languages
Korean (ko)
Other versions
KR20150085975A (en
Inventor
김환기
임영돈
이상영
이순호
담비
홍태훈
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020140006016A priority Critical patent/KR101552677B1/en
Publication of KR20150085975A publication Critical patent/KR20150085975A/en
Application granted granted Critical
Publication of KR101552677B1 publication Critical patent/KR101552677B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/162End groups comprising metal complexes
    • C08G2261/1626End groups comprising metal complexes of Fe, Co or Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 탄소-탄소 결합형 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자와 이를 기반으로 하는 연료전지의 전해질막 및 이의 제조방법에 관한 것이다.
상기와 같은 본 발명에 따르면, 고분자 골격에 에테르 결합을 갖지 않는 탄소 결합으로 이루어진 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자를 제공함으로써, 고온에서 우수한 열적 안정성, 높은 양성자전도도, 산화적 및 기계적 안정성을 갖는 연료전지용 전해질막을 제공하는 효과가 있다.
The present invention relates to a sulfonated polyphenylene polymer containing tetraphenylethylene and a process for producing the same. More particularly, the present invention relates to a sulfonated polyphenylene polymer containing carbon-carbon bond type tetraphenylethylene and a fuel The present invention relates to an electrolyte membrane for a battery and a method of manufacturing the same.
According to the present invention as described above, it is possible to provide a sulfonated polyphenylene polymer containing tetraphenylethylene composed of a carbon bond having no ether bond in a polymer skeleton, thereby providing excellent thermal stability, high proton conductivity, oxidative and mechanical There is an effect of providing an electrolyte membrane for a fuel cell having stability.

Description

테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자 및 이의 제조방법{SULFONATED POLYPHENYLENE POLYMER CONTAINING TETRAPHENYLETHYLENE AND PREPARING METHOD THEREOF}TECHNICAL FIELD [0001] The present invention relates to a sulfonated polyphenylene polymer containing tetraphenylethylene and a method for producing the same. BACKGROUND ART < RTI ID = 0.0 > [0001]

본 발명은 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 탄소-탄소 결합형 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자와 이를 기반으로 하는 연료전지의 전해질막 및 이의 제조방법에 관한 것이다.The present invention relates to a sulfonated polyphenylene polymer containing tetraphenylethylene and a process for producing the same. More particularly, the present invention relates to a sulfonated polyphenylene polymer containing carbon-carbon bond type tetraphenylethylene and a fuel The present invention relates to an electrolyte membrane for a battery and a method of manufacturing the same.

화학 에너지를 전기 에너지로 전환시키는 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cells; PEMFCs)는 교통, 휴대용 장치, 고정식 동력 등의 대안 및 환경 친화적인 에너지원으로 주목받고 있다. PEMFCs의 주요 재료 중 하나가 양성자 교환막(proton exchange membrane, PEM)인데, 이는 양극(anode)으로부터 음극(cathode)으로의 양성자 수송을 가능하게 하고, 크게 불소계(fluorinated-based PEM)와 탄화수소계(Hydrocarbon-based PEM)로 구분된다.Polymer electrolyte membrane fuel cells (PEMFCs), which convert chemical energy into electrical energy, are attracting attention as alternative and environmentally friendly energy sources for transportation, portable devices, stationary power, and the like. One of the main materials of the PEMFCs is a proton exchange membrane (PEM), which allows proton transport from the anode to the cathode and is largely composed of a fluorinated-based PEM and a hydrocarbon- -based PEM).

대부분의 PEM 기술은 퍼플루오로황산(perfluorosulfonic acid) 고분자막을 기반으로 하며, 듀폰(Dupont)사의 나피온(Nafion)이 대표적이다. 나피온은 일반적으로 높은 상대습도(RH) 및 저온에서 우수한 화학 안정성과 양성자전도도를 나타내지만, 고비용, 높은 메탄올 투과성, 80 ℃ 이상에서의 불충분한 열기계적 특성(thermomechanical properties) 및 폐기와 관련된 환경 위험과 같은 단점으로 인해 고분자 전해질막(PEM)의 적용에 한계가 있다. Most PEM technologies are based on perfluorosulfonic acid polymer membranes, and are representative of Nafion from DuPont. Although Nafion generally exhibits excellent chemical stability and proton conductivity at high relative humidity (RH) and low temperature, it has a high cost, high methanol permeability, inadequate thermomechanical properties at < RTI ID = 0.0 > 80 C & The application of the polymer electrolyte membrane (PEM) is limited.

이에, 저렴한 비용과 높은 성능을 갖는 비플루오르화된 고분자 양성자 전도성 물질(non-fluorinated polymeric proton-conducting materials)에 중점을 두고 많은 연구들이 진행 중에 있다. 폴리포스파젠(polyphosphazenes), 폴리벤즈이미다졸(polybenzimidazole), 폴리(에테르 설폰)(poly(ether sulfone)s), 폴리(에테르 케톤)(poly(ether ketone)s) 등과 같은 다양한 고분자가 연료전지의 막 제조에 응용되었고, 이러한 고분자 중에서도 폴리(에테르 설폰)은 연료전지 환경에서 높은 열, 산화 및 화학적 안정성을 이유로 많은 주목을 받고 있다. 관련 선행기술로는 한국 등록특허 제10-0717800호(연료 전지용 고분자 전해질 막, 이의 제조 방법 및 이를포함하는 연료 전지용 막-전극 어셈블리), 한국 공개특허 제10-2013-0106558호(연료전지용 술폰화 폴리아릴렌에테르술폰 공중합체의 제조방법) 등이 있다.Accordingly, many studies have been conducted focusing on non-fluorinated polymeric proton-conducting materials having low cost and high performance. A variety of polymers such as polyphosphazenes, polybenzimidazole, poly (ether sulfone) s and poly (ether ketone) Among these polymers, poly (ether sulfone) has attracted much attention due to its high heat, oxidation and chemical stability in a fuel cell environment. Korean prior art 10-0717800 (polymer electrolyte membrane for fuel cells, a method for producing the same, and a membrane-electrode assembly for a fuel cell including the same), Korean Patent Laid-Open No. 10-2013-0106558 A method for producing a polyarylene ether sulfone copolymer).

탄화수소계 전해질막은 불소계 막 수준의 수소이온 전도도를 부여하기 위하여 설폰산기 등 친수성 이온기가 도입되는데, 그에 따라 수분에 의한 과도한 팽윤으로 기계적 물성이 저하되어 막의 안정성이 떨어지고 설폰화된 수지의 일부가 용출되는 문제점이 있다. 이러한 문제점을 보완하기 위하여 원료 수지에 공유결합에 의한 가교 구조를 도입하여 전해질막의 수용성을 낮추어 수지의 용출을 억제하거나 고분자의 주쇄가 아닌 측쇄에 설폰산기를 도입하여 고분자 사슬의 유동성을 증가시킴으로써 수소이온의 전도도를 향상시키는 방법이 제안되었으나, 수소이온 전도도가 여전히 낮고 가교에 의한 거대 고분자는 합성과정 및 이를 이용한 막 제조과정에 어려움이 있으며 유리전이온도(Tg)의 상승으로 고분자의 유동성이 떨어져 막의 기계적 물성이 충분치 못한 문제점이 있다.In the hydrocarbon-based electrolyte membrane, a hydrophilic ionic group such as a sulfonic acid group is introduced in order to impart hydrogen ion conductivity at the level of the fluorine-based membrane, and mechanical properties are lowered due to excessive swelling due to moisture and the stability of the membrane is deteriorated, and a part of the sulfonated resin is eluted There is a problem. In order to overcome this problem, a cross-linking structure by covalent bonding is introduced into the raw resin to lower the water solubility of the electrolyte membrane to inhibit elution of the resin or to increase the fluidity of the polymer chain by introducing a sulfonic acid group into the side chain, However, the hydrogen ion conductivity is still low, and the macromolecules due to crosslinking have difficulties in the synthesis process and the membrane manufacturing process using the same, and the fluidity of the polymer is lowered due to the increase of the glass transition temperature (Tg) There is a problem that the physical properties are not sufficient.

본 발명의 목적은 생산 가공 비용이 절감되고 친환경적인 고분자 전해질막 연료전지의 전해질막으로 이용되는 우수한 열, 산화, 화학적, 물성 안정성과 높은 양성자전도도를 갖는 신규한 고분자를 제공함에 있다. An object of the present invention is to provide a novel polymer having excellent heat, oxidation, chemical and physical stability and high proton conductivity, which is used as an electrolyte membrane of an environmentally friendly polymer electrolyte membrane fuel cell with reduced production processing cost.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표기되는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자를 제공한다.In order to accomplish the above object, the present invention provides a sulfonated polyphenylene polymer containing tetraphenylethylene represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112014005006011-pat00001
Figure 112014005006011-pat00001

상기 n : m은 9 : 1 내지 1 : 9 몰분율을 갖고 l은 10 내지 80으로, Mw은 30,000 내지 150,000이다.Wherein n: m has a mole fraction of 9: 1 to 1: 9, l is 10 to 80, and Mw is 30,000 to 150,000.

상기 고분자는 디클로로테트라페닐에틸렌과 2.5-디클로로벤조페논을 혼합하여 니켈로 촉매화된 탄소-탄소 결합 반응과 진한 황산에 의한 설폰화 반응에 의해 합성된 것을 특징으로 한다.The polymer is characterized in that it is synthesized by nickel-catalyzed carbon-carbon bonding reaction by mixing dichlorotetraphenylethylene and 2,5-dichlorobenzophenone and sulfonation reaction by concentrated sulfuric acid.

상기 디클로로테트라페닐에틸렌과 2.5-디클로로벤조페논은 각각 30 내지 50 mol% 및 50 내지 70 mol%로 혼합하는 것을 특징으로 한다.The dichlorotetraphenyl ethylene and the 2,5-dichlorobenzophenone are mixed in an amount of 30 to 50 mol% and 50 to 70 mol%, respectively.

또한, 본 발명은 상기 고분자를 기반으로 하는 연료전지의 전해질막을 제공한다.The present invention also provides an electrolyte membrane of a polymer-based fuel cell.

본 발명은 (1) 디클로로테트라페닐에틸렌을 제조하는 단계; (2) 상기 디클로로테트라페닐에틸렌을 2.5-디클로로벤조페논과 니켈 촉매화된 중합 방법으로 중합하여 테트라페닐에틸렌을 함유하는 폴리페닐렌을 합성하는 단계; 및 (3) 상기 테트라페닐에틸렌을 함유하는 폴리페닐렌에 설폰산기를 도입하는 단계;를 포함하는 상기 화학식 1로 표기되는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자의 제조방법을 제공한다.The present invention relates to a process for producing (1) a process for producing dichlorotetraphenylethylene; (2) synthesizing polyphenylene containing tetraphenylethylene by polymerizing the dichlorotetraphenylethylene with 2.5-dichlorobenzophenone by a nickel-catalyzed polymerization method; And (3) introducing the polyphenylene ethersulfonic group containing tetraphenylethylene into the sulfonated polyphenylene polymer containing tetraphenylethylene represented by the above formula (1).

상기 (2)단계에서 중합 방법은 디메틸아세트아미드(DMAc) 용매에 디클로로테트라페닐에틸렌과 2,5-디클로로벤조페논이 첨가된 용액을 아연, 니켈 브로마이드, 트리페닐포스핀 및 바이피리딜과 혼합하여 이루어지는 것을 특징으로 한다.In the step (2), a solution in which dichlorotetraphenyl ethylene and 2,5-dichlorobenzophenone are added to dimethylacetamide (DMAc) solvent is mixed with zinc, nickel bromide, triphenylphosphine and bipyridyl .

상기 (3)단계에서 설폰산기는 테트라페닐에틸렌을 함유하는 폴리페닐렌을 황산 용액과 반응시켜 도입하는 것을 특징으로 한다.In the step (3), the sulfonic acid group is characterized in that polyphenylene containing tetraphenylethylene is introduced by reacting with a sulfuric acid solution.

또한, 본 발명은 상기 제조방법에 의해 제조된 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자를 기반으로 하는 연료전지의 전해질막을 제공한다.The present invention also provides an electrolyte membrane of a fuel cell based on a sulfonated polyphenylene polymer containing tetraphenylethylene produced by the above-mentioned production method.

상기와 같은 본 발명에 따르면, 고분자 골격에 에테르 결합을 갖지 않는 탄소 결합으로 이루어진 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자를 제공함으로써, 고온에서 우수한 열적 안정성, 높은 양성자전도도, 산화적 및 기계적 안정성을 갖는 연료전지용 전해질막을 제공하는 효과가 있다.According to the present invention as described above, it is possible to provide a sulfonated polyphenylene polymer containing tetraphenylethylene composed of a carbon bond having no ether bond in a polymer skeleton, thereby providing excellent thermal stability, high proton conductivity, oxidative and mechanical There is an effect of providing an electrolyte membrane for a fuel cell having stability.

도 1은 1H-NMR 스펙트럼.
도 2는 열중량 분석(TGA, thermogravimetric analysis) 결과.
도 3은 40 내지 80 ℃ 및 90 % 상대습도에서 막의 양성자전도도.
도 4는 4 ppm Fe2+ 펜턴 시약(Fenton reagent)을 이용한 가속화된 화학적 막 열화 실험 결과.
1 is a 1 H-NMR spectrum.
Fig. 2 shows results of thermogravimetric analysis (TGA).
Figure 3 shows the proton conductivity of the membrane at 40-80 < 0 > C and 90% relative humidity.
Figure 4 shows accelerated chemical degradation experiments using 4 ppm Fe 2+ Fenton reagent.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1로 표기되는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자를 제공한다.The present invention provides a sulfonated polyphenylene polymer containing tetraphenylethylene represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112014005006011-pat00002
Figure 112014005006011-pat00002

상기 n : m은 9 : 1 내지 1 : 9 몰분율을 갖고 l은 10 내지 80으로, Mw은 30,000 내지 150,000이다.Wherein n: m has a mole fraction of 9: 1 to 1: 9, l is 10 to 80, and Mw is 30,000 to 150,000.

본 발명에 따라 제조된 고분자는 고분자 골격에 에테르 결합을 갖지 않는 탄소 결합으로 이루어져 H2O, 과산화수소, 수산화물 음이온, 라디칼과 같은 친핵체(nucleophiles)에 의한 공격반응이 일어나지 않으며 뒤틀린 구조는 비양성자 극성 용매에서의 용해도를 높여준다.The polymer prepared according to the present invention is composed of a carbon bond having no ether bond in the polymer skeleton and does not attack by nucleophiles such as H 2 O, hydrogen peroxide, hydroxide anion, and radical, and the twisted structure is an aprotic polar solvent Lt; / RTI >

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실험예.Experimental example.

(1) 재료(1) Material

모든 시약은 Aldrich, Merck 또는 TCI로부터 구입하여 이용하였다. 바이피리딜은 60 ℃의 진공에서 건조시키고 니켈 브로마이드는 180 ℃의 진공에서 건조시켰다. 다른 용매들과 달리 트리페닐포스핀과 2,5-디클로로벤조페논은 정화하여 이용하였다.All reagents were purchased from Aldrich, Merck or TCI. The bipyridyl was dried in a vacuum at 60 ° C and the nickel bromide was dried in a vacuum at 180 ° C. Unlike other solvents, triphenylphosphine and 2,5-dichlorobenzophenone were purified and used.

(2) 단량체 디클로로테트라페닐에틸렌(DCTPE) 합성(2) Synthesis of monomer dichlorotetraphenylethylene (DCTPE)

DCTPE는 기 공지된 방법(Moloy Banerjee 등의 방법)에 따라 Mcmurry 커플링 반응에 의해 합성하였다(반응식 1 참조).DCTPE was synthesized by Mcmurry coupling reaction according to a known method (Moloy Banerjee et al.) (See Scheme 1).

무수 테트라하이드로퓨란 80 ml 중 60 mmol의 디페닐메탄 10.1 g 용액에 질소 기체 하의 0 ℃에서 60 mmol의 헥산 중 2.5 M의 n-부틸 리튬 용액 24 ml를 첨가하였다. 생성된 적오렌지색 용액을 그 온도에서 30 분간 교반하였다. 이 용액에 45 mmol의 4,4'-디클로로벤조페논 11.3 g을 첨가하고 반응 혼합물을 6 시간 동안 교반하면서 실온으로 승온시키고, 염화암모늄 수용액을 첨가하여 반응을 억제하고 유기층을 디클로로메탄으로 추출한 후 유기층을 포화 염수로 세척하고 무수 황산마그네슘 상에서 건조시켰다. 용매를 증발시키고 생성된 조 알코올(과량의 디페닐메탄 함유)을 하기와 같이 산 촉매 탈수시켰다. 조 알코올을 딘 스타크 트랩이 구비된 500 ml 플라스크에서 약 300 ml의 톨루엔에 용해시키고, p-톨루엔설폰산(1.71 g, 9 mmol) 촉매를 첨가한 후 혼합물을 3~4 시간 동안 환류시키고 실온으로 냉각시켰다. 톨루엔 층은 10 % 중탄산나트륨 수용액으로 세척하고 무수 황산마그네슘 상에서 건조시켜 증발시킨 다음, 조 디클로로테트라페닐에틸렌(DCTPE) 유도체를 얻었다. 상기 조 생성물은 아세토나이트릴로부터 간단한 재결정에 의해 정제하였다.To 10.1 g of 60 mmol of diphenylmethane in 80 ml of anhydrous tetrahydrofuran was added 24 ml of a 2.5 M solution of n-butyllithium in 60 mmol of hexane at 0 DEG C under nitrogen. The resulting red orange solution was stirred at that temperature for 30 min. 45 mmol of 4,4'-dichlorobenzophenone (11.3 g) was added to the solution, and the reaction mixture was heated to room temperature with stirring for 6 hours. An ammonium chloride aqueous solution was added to inhibit the reaction. The organic layer was extracted with dichloromethane, Was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated and the resulting crude alcohol (containing excess diphenylmethane) was acid catalyzed dehydrated as follows. The crude alcohol was dissolved in about 300 ml of toluene in a 500 ml flask equipped with a Dean-Stark trap, p-toluenesulfonic acid (1.71 g, 9 mmol) catalyst was added, the mixture was refluxed for 3-4 hours, Lt; / RTI > The toluene layer was washed with 10% aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulfate and evaporated to give crude dichlorotetraphenylethylene (DCTPE) derivative. The crude product was purified by simple recrystallization from acetonitrile.

[반응식 1] DCTPE의 합성.[Reaction 1] Synthesis of DCTPE.

Figure 112014005006011-pat00003
Figure 112014005006011-pat00003

(3) DCTPE의 중합(테트라페닐에틸렌을 함유하는 폴리페닐렌(PPTPE) 합성)(3) Polymerization of DCTPE (polyphenylene (PPTPE) synthesis containing tetraphenylethylene)

PPTPE를 니켈 촉매화된 중합 방법에 의해 합성하였다(반응식 2 참조).PPTPE was synthesized by nickel-catalyzed polymerization (see Scheme 2).

아연(4.0 g, 61.2 mmol), 니켈 브로마이드(0.1 g, 0.463 mmol), 트리페닐포스핀(2.5 g, 9.53 mmol) 및 바이피리딜(0.1 g, 0.640 mmol)을 질소 분위기 하에서 삼목 플라스크에 넣고, DMAc 25 ml를 강한 질소 흐름 하에서 플라스크 안으로 이동시켰다. DMAc 25 ml 중의 DCTPE와 2,5-디클로로벤조페논 용액을 주사기를 통해 주입하되, DCTPE와 2,5-디클로로벤조페논의 양은 전체 30 mmol이 되도록 조절하였다. 이 혼합물을 80 ℃에서 4 내지 6 시간 동안 교반하여 생성된 점성이 강한 혼합물을 DMAc로 휘석하였다. 이후, 혼합물을 10 % 염산 수용액에 붓고 침전된 고분자를 여과한 후 DMAc에 두 번 용해시키고 10 % 염산 수용액으로 재침전시켰다. 마지막으로, DMAc에 용해시키고 메탄올로 재침전, 60 ℃의 진공 오븐에서 건조시켜 DCTPE(30, 40 및 50 %mol)와 2,5-디클로로벤조페논(70, 60 및 50 %mol)이 다른 비율로 혼합된 PPTPE 30, 40 및 50을 합성하였다. (2.5 g, 9.53 mmol) and bipyridyl (0.1 g, 0.640 mmol) were added to a cedar flask under a nitrogen atmosphere. 25 ml of DMAc were transferred into a flask under a strong nitrogen flow. DCTPE and a solution of 2,5-dichlorobenzophenone in 25 ml of DMAc were injected through a syringe, and the amount of DCTPE and 2,5-dichlorobenzophenone was adjusted to 30 mmol as a whole. The mixture was stirred at 80 < 0 > C for 4 to 6 hours, and the resulting viscous mixture was pyrochlated with DMAc. Thereafter, the mixture was poured into 10% hydrochloric acid aqueous solution, the precipitated polymer was filtered, dissolved twice in DMAc, and reprecipitated with a 10% hydrochloric acid aqueous solution. Finally, it was dissolved in DMAc and reprecipitated with methanol and dried in a vacuum oven at 60 DEG C to give DCTPE (30,40 and 50% mol) and 2,5-dichlorobenzophenone (70,60 and 50% mol) PPTPE < / RTI > 30, 40 and 50 were synthesized.

[반응식 2] PPTPE, SPPTPE의 합성.[Reaction Scheme 2] Synthesis of PPTPE and SPPTPE.

Figure 112014005006011-pat00004
Figure 112014005006011-pat00004

상기 n : m은 9 : 1 내지 1 : 9의 mol% 비율을 갖고 l은 10 내지 80으로, SPPTPE의 Mw은 30,000 내지 150,000이다.Wherein n: m has a molar ratio of 9: 1 to 1: 9, 1 is 10 to 80, and Mw of SPPTPE is 30,000 to 150,000.

(4) PPTPE의 설폰화(테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌(SPPTPE) 제조)(4) sulfonation of PPTPE (preparation of sulfonated polyphenylene (SPPTPE) containing tetraphenylethylene)

50 ml 플라스크에 0.5 g PPTPE 공중합체와 8 ml 진한 황산(95~98 %)을 첨가하여 혼합물을 45 ℃에서 24 시간 동안 교반하였다. 이후, 혼합물을 냉수에 붓고 고분자를 물로 완전히 세척하여 80 ℃ 진공에서 24 시간 동안 건조시켰다.0.5 g of PPTPE copolymer and 8 ml of concentrated sulfuric acid (95 to 98%) were added to a 50 ml flask and the mixture was stirred at 45 캜 for 24 hours. Thereafter, the mixture was poured into cold water, the polymer was thoroughly washed with water and dried at 80 DEG C under vacuum for 24 hours.

(5) 가속화된 화학적 막 열화 실험(5) Accelerated chemical film degradation experiments

막 열화는 75 ℃에서 펜턴 시약(Fenton reagent, 4 ppm Fe2+, 3 % H2O2)에 담금으로써 실시되었다. 최초의 샘플 무게를 측정한 후 샘플을 45 ml 초순수(ultrapure water) 중의 황산철(Ⅱ) 7수화물 용액에 넣어 75 ℃로 승온시키고, 30 % 과산화수소 5 ml를 용액에 첨가하였다. 막 샘플은 무게를 측정하는 과정에서 정기적으로 취득하였고, 증류수로 샘플을 세척하여 열화 반응을 중지하고 노출된 막을 최종 무게를 측정하기 전에 건조시켰다.The film deterioration was carried out by immersing in Fenton reagent (4 ppm Fe 2+ , 3% H 2 O 2 ) at 75 ° C. After the initial sample weight was measured, the sample was placed in 45 ml of ultrapure water of iron sulfate heptahydrate solution, heated to 75 ° C, and 5 ml of 30% hydrogen peroxide was added to the solution. Membrane samples were taken regularly during the weighing process, the samples were washed with distilled water to stop the degradation reaction and the exposed membranes were dried prior to final weight measurement.

(6) 물질의 특성 분석(6) Characterization of the substance

고분자 구조는 DMSO-d 6 용매와 테트라메틸실란(TMS) 내부표준물질을 이용하여 Bruker DRX(400 MHz) 분광기에 기록된 1H NMR 스펙트럼에 의해 확인되었고, 열중량 분석(TGA, thermogravimetric analysis)은 Perkin-Elmer TGA-7 분석기에 의해 실시되었다. 막은 DMSO에 고분자를 용해시켜 준비하였고 25 ㎛의 투명한 필름을 생성하였다(D. W. Seo, Y. D. Lim, S. H. Lee, I. S. Jeong, D. I. Kim, J. H. Lee, and W. G. Kim, Int. J. Hydrogen Energy 37, 6140 (2012)). Polymer structure DMSO- d 6 solvent with tetramethylsilane (TMS) was used an internal standard confirmed by the 1 H NMR spectrum recorded on a Bruker DRX (400 MHz) spectroscopy, thermogravimetric analysis (TGA, thermogravimetric analysis) is Perkin-Elmer TGA-7 analyzer. The membrane was prepared by dissolving the polymer in DMSO and produced a 25 탆 transparent film (DW Seo, YD Lim, SH Lee, IS Jeong, DI Kim, JH Lee, and WG Kim, Int. J. Hydrogen Energy 37, 6140 2012).

막을 100 ℃에서 24 시간 동안 진공 건조시켜 무게를 측정한 후 30 ℃ 및 80 ℃에서 24 시간 동안 탈이온화수에 침지시켰다. 이후, 젖은 막을 닦아 건조하고 빠르게 무게를 다시 측정하였다. 막의 수분흡수율(WU)은 다음과 같이 계산되었다. Wdry와 Wwet은 각각 막의 건조된 중량과 젖은 중량을 의미한다.The membrane was vacuum dried at 100 < 0 > C for 24 hours, weighed and immersed in deionized water at 30 < 0 > C and 80 < 0 > C for 24 hours. The wet film was then wiped dry and quickly weighed again. The water absorption rate (WU) of the membrane was calculated as follows. W dry and W wet mean the dry weight and wet weight of the film, respectively.

수분흡수율 = {(Wwet―Wdry)/Wdry} × 100 %Water absorption rate = {(W wet -W dry ) / W dry } × 100%

또한, 치수 변화는 상온에서 24 시간 동안 막을 물에 침지시켜 관찰되었고 두께와 길이의 변화는 다음과 같이 계산되었다. t s, l s는 건조된 막의 두께와 지름을 의미하며, t, l은 막을 물에 24 시간 동안 침지시킨 후의 두께와 지름을 의미한다.The dimensional change was observed by immersing the membrane in water at room temperature for 24 hours, and the change in thickness and length was calculated as follows. t s , l s means the thickness and diameter of the dried membrane, and t and l mean the thickness and diameter after immersing the membrane in water for 24 hours.

Δt = {(t-t s)/t s} × 100 %, Δl = {(l-l s)/l s} × 100 % Δ t = - × 100% { (t t s) / t s}, Δ l = {(l - l s) / l s} × 100%

막의 IEC를 결정하기 위해 적정 방법을 이용하였다(D. W. Seo, Y. D. Lim, S. H. Lee, I. S. Jeong, D. I. Kim, J. H. Lee, and W. G. Kim, Int. J. Hydrogen Energy 37, 6140 (2012)). 산 형태(H+)의 막은 1.0 M NaCl 용액에서 24 시간 동안 침지에 의해 H+ 이온과 Na+ 이온을 교환하여 나트륨염 형태로 전환되었다. 이후, 용액 중의 교환된 H+ 이온은 0.02 N NaOH 용액으로 적정되었다. NNaOH, VNaOH, 및 mdry는 각각 농도, 이용된 NaOH 용액의 부피 및 산 형태 막의 건조된 중량을 의미한다. We used the titration method to determine the IEC of the membrane (DW Seo, YD Lim, SH Lee, IS Jeong, DI Kim, JH Lee, and WG Kim, Int. J. Hydrogen Energy 37, 6140 (2012)). The membrane in acid form (H + ) was converted to sodium salt form by exchanging H + and Na + ions by immersion in 1.0 M NaCl solution for 24 hours. The exchanged H + ions in the solution were then titrated with 0.02 N NaOH solution. N NaOH , V NaOH , and m dry respectively denote the concentration, the volume of the NaOH solution used, and the dry weight of the acid film.

Figure 112014005006011-pat00005
Figure 112014005006011-pat00005

설폰화도(DS, degree of sulfonation)로부터 계산된 이론적인 IEC는 다음과 같이 계산되었다.The theoretical IEC calculated from the degree of sulfonation (DS) was calculated as follows.

IEC (meq./g) = 이온의 mmol 농도 / 25 ℃에서의 건조 막 중량IEC (meq./g) = mmol concentration of ion / dry film weight at 25 캜

막의 평면 방향에서의 양성자전도도는 Newton's 4th Ltd.(N4L) impedance analysis interface(PSM 1735)를 구비한 스크라이브너 막 시험 테스트(Scribner membrane test system, MTS-740)를 이용하여 40~80 ℃, 90 %의 상대습도 하에서 측정하였다.The proton conductivity in the plane direction of the membrane was measured at 40-80 ° C and 90% using a Scribner membrane test system (MTS-740) equipped with Newton's 4th Ltd. (N4L) impedance analysis interface (PSM 1735) Lt; / RTI > relative humidity.

실험결과.Experiment result.

DCTPE의 화학적 구조는 1H NMR로 확인하여 도 1에 나타내었다. DCTPE에서 6 개의 양성자 피크(Ha, Hc)가 7.03 내지 7.17 ppm에서 관찰되었고 4 개의 양성자 피크(Hb)가 6.92 ppm에 할당되었다. 또한, 4 개의 양성자 피크(Hd)와 4 개의 양성자 피크(He)가 각각 6.73 및 6.48 ppm에서 관찰되었다.The chemical structure of DCTPE was confirmed by 1 H NMR and is shown in Fig. Six protons peaks (H a , H c ) were observed at 7.03 to 7.17 ppm in DCTPE and four proton peaks (H b ) were assigned at 6.92 ppm. Also, four proton peaks (H d ) and four proton peaks (H e ) were observed at 6.73 and 6.48 ppm, respectively.

SPPTPEs의 가열산화 안정성은 열중량 분석(TGA, thermogravimetric analysis)에 의해 관찰되었고 이를 도 2에 나타내었다. 260 ℃ 이상에서의 SPPTPEs의 초기 중량 손실은 설폰산기의 분해로 인한 것이며, 550 ℃ 부근에서의 두 번째 중량 손실은 고분자 주쇄의 분해로 인한 것이다.The thermal oxidation stability of SPPTPEs was observed by thermogravimetric analysis (TGA) and is shown in Fig. The initial weight loss of SPPTPEs above 260 ° C is due to the decomposition of the sulfonic acid group and the second weight loss around 550 ° C is due to the degradation of the polymer backbone.

SPPTPEs 고분자는 DMSO, DMAc 및 NMP와 같은 비양자성 극성용매에 가용성인 것으로 확인되었고, DMSO 용매로 캐스트하여 갈색의 투명한 필름을 형성시켰다. 표 1에서 보는 바와 같이, Nafion 211®의 IEC가 0.91 meq./g인 반면, SPPTPE 30, 40 및 50의 IEC는 2.19, 2.82 및 3.02 meq./g으로 나타났다. 설폰산기 함량이 증가함에 따라 막의 IEC도 증가하였다. The SPPTPEs polymers were found to be soluble in aprotic polar solvents such as DMSO, DMAc and NMP and were cast with DMSO solvent to form a brown transparent film. As shown in Table 1, the IEC of Nafion 211 ® was 0.91 meq./g whereas the IEC of SPPTPE 30, 40 and 50 was 2.19, 2.82 and 3.02 meq./g. As the sulfonic acid group content was increased, the IEC of the membrane was also increased.

Figure 112014005006011-pat00006
Figure 112014005006011-pat00006

SPPTPE 30, 40 및 50 막의 수분흡수율은 80 ℃에서 Nafion 211®의 수분흡수율이 32.13 %인 것과 비교하여 각각 52.84, 80.35 및 114.19 %인 것으로 나타났다. 막의 Δt 및 Δl의 치수 변화는 수화된 상태를 건조된 상태와 비교하여 측정하였다. SPPTPE 30, 40 및 50 막의 Δt는 각각 20.57, 28.25 및 40.12 %, Δl는 각각 19.74, 28.73 및 40.81 %로(표 1 참조), 이는 이전의 막에 비하여 상대적으로 낮은 변화이며, 높은 양성자전도도와 낮은 치수 변화는 PEMFC 스택(stack) 작동시 안정성을 유지시켜 준다. The water uptake of SPPTPE 30, 40 and 50 membranes was 52.84, 80.35 and 114.19%, respectively, compared to 32.13% of Nafion 211 ® at 80 ° C. The dimensional changes of Δ t and Δ 1 of the membrane were measured by comparing the hydrated state with the dried state. The Δ t of the SPPTPE 30, 40 and 50 membranes was 20.57, 28.25 and 40.12%, respectively, and Δ 1 was 19.74, 28.73 and 40.81%, respectively (see Table 1), which is a relatively low change compared to the previous membrane and high proton conductivity And low dimensional changes maintain stability during PEMFC stack operation.

도 3은 막의 양성자전도도를 나타낸다. 막의 양성자전도도는 80 ℃, 90 %의 상대습도에서 80.1 내지 109.3 mS/cm의 범위를 갖는 것으로 나타났다. SPPTPE 50의 양성자전도도는 60 내지 80 ℃, 90 % 이하의 상대습도(RH)에서 Nafion 211®보다 높았다. 또한, 계외(Ex situ) 과산화수소 시험을 모든 막, SPPTPEs, Nafion 211® 및 SPES 40(40 mol%의 4,4-비페놀을 함유하는 설폰화된 선형의 폴리(에테르 설폰))에 대하여 동일한 온도에서 실시하였다. 시험은 막의 화학적 분해 가속 시험으로서 8 시간 동안 고온 Fenton 시약으로 진행하여 그 결과를 도 4에 나타냈으며, 좋은 안정성을 보였다. 설폰화 폴리(에테르 설폰) 40 구조는 하기 화학식 2에 나타내었다.Figure 3 shows the proton conductivity of the membrane. The proton conductivity of the membrane was found to be in the range of 80.1 to 109.3 mS / cm at 80 DEG C and 90% relative humidity. The proton conductivity of SPPTPE 50 was higher than that of Nafion 211 ® at 60 to 80 ° C and relative humidity (RH) of 90% or less. In addition, off - system (Ex situ) hydrogen peroxide test any film, SPPTPEs, Nafion 211 ® and SPES 40 (40 mol% of 4,4-biphenol Description of the sulfonated polyester containing linear (ether sulfone)) at the same temperature for . The test was carried out for 8 hours as a high-temperature Fenton reagent as a chemical accelerated chemical decomposition test, and the results are shown in FIG. 4, showing good stability. The sulfonated poly (ether sulfone) 40 structure is shown in the following formula (2).

[화학식 2] (2)

상기 SPES 40의 Mw는 10,000 내지 150,000이다.The Mw of SPES 40 is 10,000 to 150,000.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
Having described specific portions of the present invention in detail, it will be apparent to those skilled in the art that this specific description is only a preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

하기 화학식 1로 표기되는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자.
[화학식 1]
Figure 112014005006011-pat00008

상기 n : m은 9 : 1 내지 1 : 9 몰분율을 갖고 l은 10 내지 80으로, Mw은 30,000 내지 150,000이다.
A sulfonated polyphenylene polymer containing tetraphenylethylene represented by the following formula (1).
[Chemical Formula 1]
Figure 112014005006011-pat00008

Wherein n: m has a mole fraction of 9: 1 to 1: 9, l is 10 to 80, and Mw is 30,000 to 150,000.
제 1항에 있어서,
상기 고분자는 디클로로테트라페닐에틸렌과 2.5-디클로로벤조페논을 혼합하여 니켈로 촉매화된 탄소-탄소 결합 반응과 진한 황산에 의한 설폰화 반응에 의해 합성된 것을 특징으로 하는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자.
The method according to claim 1,
Wherein the polymer is synthesized by a carbon-carbon bonding reaction catalyzed by nickel and a sulfonation reaction by concentrated sulfuric acid by mixing dichlorotetraphenylethylene and 2.5-dichlorobenzophenone, and sulfonation with tetraphenylethylene Polyphenylene polymer.
제 2항에 있어서,
상기 디클로로테트라페닐에틸렌과 2.5-디클로로벤조페논은 각각 30 내지 50 mol% 및 50 내지 70 mol%로 혼합하는 것을 특징으로 하는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자.
3. The method of claim 2,
Wherein the dichlorotetraphenyl ethylene and the 2,5-dichlorobenzophenone are mixed in an amount of 30 to 50 mol% and 50 to 70 mol%, respectively.
제 1항 내지 제 3항 중 어느 한 항의 고분자를 기반으로 하는 연료전지의 전해질막.
An electrolyte membrane of a fuel cell based on the polymer of any one of claims 1 to 3.
(1) 디클로로테트라페닐에틸렌을 제조하는 단계;
(2) 상기 디클로로테트라페닐에틸렌을 2.5-디클로로벤조페논과 니켈 촉매화된 중합 방법으로 중합하여 테트라페닐에틸렌을 함유하는 폴리페닐렌을 합성하는 단계; 및
(3) 상기 테트라페닐에틸렌을 함유하는 폴리페닐렌에 설폰산기를 도입하는 단계;를 포함하는 하기 화학식 1로 표기되는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자의 제조방법.
[화학식 1]
Figure 112014005006011-pat00009

상기 n : m은 9 : 1 내지 1 : 9 몰분율을 갖고 l은 10 내지 80으로, Mw은 30,000 내지 150,000이다.
(1) preparing dichlorotetraphenylethylene;
(2) synthesizing polyphenylene containing tetraphenylethylene by polymerizing the dichlorotetraphenylethylene with 2.5-dichlorobenzophenone by a nickel-catalyzed polymerization method; And
(3) introducing a polyphenylene ethersulfonic group containing tetraphenylethylene into the polyphenylene sulfonic acid group, and (3) introducing the polyphenylene ethersulfonic group containing tetraphenylethylene.
[Chemical Formula 1]
Figure 112014005006011-pat00009

Wherein n: m has a mole fraction of 9: 1 to 1: 9, l is 10 to 80, and Mw is 30,000 to 150,000.
제 5항에 있어서,
상기 (2)단계에서 중합 방법은 디메틸아세트아미드(DMAc) 용매에 디클로로테트라페닐에틸렌과 2,5-디클로로벤조페논이 첨가된 용액을 아연, 니켈 브로마이드, 트리페닐포스핀 및 바이피리딜과 혼합하여 이루어지는 것을 특징으로 하는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자의 제조방법.
6. The method of claim 5,
In the step (2), a solution in which dichlorotetraphenyl ethylene and 2,5-dichlorobenzophenone are added to dimethylacetamide (DMAc) solvent is mixed with zinc, nickel bromide, triphenylphosphine and bipyridyl Wherein the sulfonated polyphenylene polymer is a polyphenylene sulfide polymer.
제 5항에 있어서,
상기 (3)단계에서 설폰산기는 테트라페닐에틸렌을 함유하는 폴리페닐렌을 황산 용액과 반응시켜 도입하는 것을 특징으로 하는 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자의 제조방법.
6. The method of claim 5,
Wherein the sulfonic acid group in the step (3) is introduced by reacting polyphenylene containing tetraphenylethylene with a sulfuric acid solution.
제 5항 내지 제 7항 중 어느 한 항의 제조방법에 의해 제조된 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자를 기반으로 하는 연료전지의 전해질막.














An electrolyte membrane of a fuel cell based on a sulfonated polyphenylene polymer containing tetraphenylethylene prepared by the method of any one of claims 5 to 7.














KR1020140006016A 2014-01-17 2014-01-17 Sulfonated polyphenylene polymer containing tetraphenylethylene and preparing method thereof KR101552677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140006016A KR101552677B1 (en) 2014-01-17 2014-01-17 Sulfonated polyphenylene polymer containing tetraphenylethylene and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140006016A KR101552677B1 (en) 2014-01-17 2014-01-17 Sulfonated polyphenylene polymer containing tetraphenylethylene and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20150085975A KR20150085975A (en) 2015-07-27
KR101552677B1 true KR101552677B1 (en) 2015-09-21

Family

ID=53874929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140006016A KR101552677B1 (en) 2014-01-17 2014-01-17 Sulfonated polyphenylene polymer containing tetraphenylethylene and preparing method thereof

Country Status (1)

Country Link
KR (1) KR101552677B1 (en)

Also Published As

Publication number Publication date
KR20150085975A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
JP5740030B2 (en) Copolymer of sulfonated polyethersulfone containing hydroxy group and method for producing the same, polymer electrolyte membrane for fuel cell, and membrane electrode assembly including the same
Seo et al. Preparation and characterization of sulfonated amine-poly (ether sulfone) s for proton exchange membrane fuel cell
Han et al. Considerations of the morphology in the design of proton exchange membranes: cross-linked sulfonated poly (ether ether ketone) s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs
Lim et al. Synthesis and properties of sulfonated poly (phenylene sulfone) s without ether linkage by Diels–Alder reaction for PEMFC application
Seo et al. Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell
Seo et al. Anion conductive poly (tetraphenyl phthalazine ether sulfone) containing tetra quaternary ammonium hydroxide for alkaline fuel cell application
CN105418921A (en) Cross-linkable polyimide with high sulfonation degree as well as preparation method and application thereof in proton exchange membranes
Shang et al. Fluorene-containing sulfonated poly (arylene ether 1, 3, 4-oxadiazole) as proton-exchange membrane for PEM fuel cell application
CN113067022A (en) Amino-containing sulfonated polyaryletherketone sulfone blended metal organic framework composite membrane and preparation method thereof
Umsarika et al. Proton exchange membrane based on sulfonated poly (aromatic imide-co-aliphatic imide) for direct methanol fuel cell
CN114044884B (en) High-temperature phosphoric acid proton exchange membrane based on polyfluorene and preparation method thereof
KR20140017213A (en) Sulfonated polymer electrolyte membrane having cardo structure and fuel cell comprising the same
KR101649204B1 (en) Sulfonated polyphenylene containing benzophenone moiety via nickel catalyzed polymerization
KR20160081117A (en) Sulfonated poly(isatin-ethersulfone), method for preparing the same and polymer membrane composition for fuel cell using the same
KR101546651B1 (en) Grafted propane sulfonic acid polyphenylene
KR101538761B1 (en) Sulfonated polyphenylene polymer containing fluorine moiety
Lim et al. Synthesis and characterization of pendant propane sulfonic acid on phenylene based copolymers by superacid-catalyzed reaction
Jeong et al. Synthesis and characterization of sulfonated bromo-poly (2, 6-dimethyl-1, 4-phenylene oxide)-co-(2, 6-diphenyl-1, 4-phenylene oxide) copolymer as proton exchange membrane
KR101552677B1 (en) Sulfonated polyphenylene polymer containing tetraphenylethylene and preparing method thereof
JP4836539B2 (en) Fuel cell electrolyte
Lim et al. Preparation and characterization of grafted propane sulfonic acid polyphenylene membrane via superacid-catalyzed reaction
KR20150142885A (en) Sulfonated polyphenylene polymer containing n-methylisatin
KR101987529B1 (en) Polymer electrolyte membrane and fuel cell comprising the same
Jang et al. Synthesis and property of sulfonated poly (methylisatin biphenylene) containing diphenyl ether by polyhydroalkylation reaction
KR101436011B1 (en) Polymer electrolyte membrane of metallophthalocyanine contained sulfonated poly(ether sulfone)s and preparing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190827

Year of fee payment: 5