KR101491216B1 - High elastic aluminum alloy and method for producing the same - Google Patents

High elastic aluminum alloy and method for producing the same Download PDF

Info

Publication number
KR101491216B1
KR101491216B1 KR20120145787A KR20120145787A KR101491216B1 KR 101491216 B1 KR101491216 B1 KR 101491216B1 KR 20120145787 A KR20120145787 A KR 20120145787A KR 20120145787 A KR20120145787 A KR 20120145787A KR 101491216 B1 KR101491216 B1 KR 101491216B1
Authority
KR
South Korea
Prior art keywords
aluminum alloy
elasticity
cnt
aluminum
alloy
Prior art date
Application number
KR20120145787A
Other languages
Korean (ko)
Other versions
KR20140077061A (en
Inventor
박훈모
이경문
이후담
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR20120145787A priority Critical patent/KR101491216B1/en
Priority to US13/828,451 priority patent/US20140170017A1/en
Publication of KR20140077061A publication Critical patent/KR20140077061A/en
Application granted granted Critical
Publication of KR101491216B1 publication Critical patent/KR101491216B1/en
Priority to US15/210,848 priority patent/US20160319398A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/101Pretreatment of the non-metallic additives by coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Abstract

Al을 주성분으로 하며 Si 14~20wt%, Ti 2~7.5wt%, B 1~3wt%를 포함하는 조성으로 구성되고, Ti/B는 2~2.5인 고탄성 알루미늄합금 및 그 제조방법이 소개된다.A1 A high-elasticity aluminum alloy comprising Al as a main component and composed of 14 to 20 wt% of Si, 2 to 7.5 wt% of Ti, and 1 to 3 wt% of B, and Ti / B of 2 to 2.5, and a manufacturing method thereof are introduced.

Description

고탄성 알루미늄합금 및 그 제조방법 {HIGH ELASTIC ALUMINUM ALLOY AND METHOD FOR PRODUCING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a high-elasticity aluminum alloy,

본 발명은 Boride 화합물의 생성을 극대화한 고탄성 합금에 CNT를 추가로 첨가하여 탄성 향상을 최대화하는 고탄성 알루미늄합금 및 그 제조방법에 관한 것이다.
The present invention relates to a high-elasticity aluminum alloy that maximizes elasticity enhancement by further adding CNT to a high-elasticity alloy maximizing the production of a boride compound, and a method of manufacturing the same.

종래에는 합금 성분의 제어에 있어, 고탄성화를 위해 Si만을 이용할 경우 탄성 향상에 한계가 있고 입자가 조대해져 Si입자에 의한 가공이 난이하였다.Conventionally, in the control of alloy components, when only Si is used for high elasticity, there is a limit to the improvement of elasticity, and the particles become coarse, and processing with Si particles is difficult.

또한, Al 복합재의 경우 금속계 화합물이나 CNT 등의 강화상을 분말형태로 성형하였으나, 원가경쟁력에 있어 한계가 있었다.In addition, in the case of the Al composite, although the metal compound or the reinforcing phase such as CNT was molded into a powder form, there was a limit in cost competitiveness.

또한, 주조공정에서 분말형태의 강화입자 투입시, Al 용탕에서의 손실, 젖음성, 분산 문제가 발생되었고, 기지 합금의 개량 없이 강화상만을 첨가만 할 경우에는 목표로 하는 탄성의 달성을 위한 강화입자의 첨가량 증가로 인해 원가 상승 및 공정 제어 난이 등의 문제점이 발생되었다.In addition, loss of strength, wettability, and dispersion in the Al melt occurred when the powders in the form of powders were fed in the casting process. When only the strengthening phase was added without modifying the base alloy, The increase in the amount of the additive has caused problems such as cost increase and process control difficulty.

따라서, 탄성 향상에 가장 중요한 역할을 하는 Boride 화합물의 생성을 극대화하고, 고탄성 합금에 CNT를 추가로 첨가하여 탄성 향상을 최대화하며, 고온의 알루미늄 용탕에서 CNT가 손상되지 않도록 보호하고, 첨가된 CNT와 자발 반응에 의해 생성된 Boride 화합물을 알루미늄 용탕 내부에 균일하게 분산하는 기술이 필요하였다.Therefore, maximization of the elasticity improvement by maximizing the production of the boride compound, which plays the most important role in improving the elasticity, and addition of CNT to the high-elasticity alloy, protecting the CNT from damage in the high-temperature aluminum melt, A technique for uniformly dispersing the boride compound produced by the spontaneous reaction in the aluminum melt was required.

종래의 KR10-2012-0059256 A "티타늄 붕화물을 포함하는 알루미늄 주조재 및 그의 제조 방법"은 "본 발명은 알루미늄 81 ~ 93 중량%, 규소 5 ~ 13 중량%, 티타늄 1 ~ 3 중량% 및 붕소 1 ~ 3 중량% 를 포함하는 알루미늄 주조재에 관한 것이다. 본 발명은 탄소나노튜브(CNT) 등의 고가재료를 사용하지 않으면서도 종래의 알루미늄 합금에 비해 탄성이 뛰어나며, 또한 종래의 알루미늄 합금의 경우, 저압주조공정에서만 적용될 수 있는 한계가 있었으나, 본 발명에서 제공하는 알루미늄 재료는 고압주조를 포함하는 일반적인 주조공정에서 모두 적용이 가능하다."를 제시하였다."Aluminum casting materials containing titanium boride and a method for producing the same" according to the prior art KR 10-2012-0059256 A disclose that "aluminum casting material containing titanium boride and a method of producing the same" is characterized in that it comprises 81 to 93% by weight aluminum, 5 to 13% by weight silicon, 1 to 3% by weight titanium, The present invention relates to an aluminum casting material which is superior in elasticity to a conventional aluminum alloy without using expensive materials such as carbon nanotubes (CNT) , There is a limitation that can be applied only to the low-pressure casting process, but the aluminum material provided by the present invention can be applied to all the general casting processes including high-pressure casting. "

그러나 상기 종래기술에 의하더라도 분말형태의 강화입자 투입시, Al 용탕에서의 손실, 젖음성, 분산 문제 발생 및 강화입자의 첨가량 증가로 인해 원가 상승 및 공정 제어 난이 등의 문제점을 해결할 수는 없었던 것이다.
However, even with the above-mentioned conventional techniques, problems such as cost increase and difficulty in process control can not be solved due to loss, wettability, dispersion problem in the Al melt, and increase of addition amount of reinforcing particles when powder particles are added .

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as an admission that the prior art is known to those skilled in the art.

KRKR 10-2012-005925610-2012-0059256 AA

본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, Boride 화합물의 생성을 극대화한 고탄성 합금에 CNT를 추가로 첨가하여 탄성 향상을 최대화하는 고탄성 알루미늄합금 및 그 제조방법을 제공하는데 그 목적이 있다.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-elasticity aluminum alloy that maximizes elasticity enhancement by additionally adding CNT to a high-elasticity alloy maximizing generation of a boride compound, and a method of manufacturing the same.

상기의 목적을 달성하기 위한 본 발명에 따른 고탄성 알루미늄합금은, Al을 주성분으로 하며 Si 14~20wt%, Ti 2~7.5wt%, B 1~3wt%를 포함하는 조성으로 구성되고, Ti/B는 2~2.5이다.In order to achieve the above object, the present invention provides a high-elasticity aluminum alloy comprising Al as a main component and having a composition containing 14 to 20 wt% of Si, 2 to 7.5 wt% of Ti and 1 to 3 wt% of B, Is 2 to 2.5.

상기 알루미늄합금은 연속주조공정에 의해 성형될 수 있다.The aluminum alloy may be formed by a continuous casting process.

상기 알루미늄합금은 Al-(5~10wt%)Ti, Al-(2~10wt%)B의 알루미늄 모합금을 이용하여 제조될 수 있다.The aluminum alloy may be produced using an aluminum master alloy of Al- (5-10 wt%) Ti, Al- (2-10 wt%) B.

상기 알루미늄합금은 2~7vol%의 CNT를 더 포함할 수 있다.The aluminum alloy may further include 2 to 7 vol% of CNT.

상기 CNT는 금속산화물로 코팅할 수 있다.
The CNT may be coated with a metal oxide.

상기 알루미늄합금의 제조방법은, CNT를 금속산화물로 코팅하는 코팅단계; 알루미늄용탕에 불활성가스와 함께 CNT를 투입하고 교반하는 분산단계; 및 연속주조공정을 통해 합금을 성형하는 성형단계;를 포함한다.The method of manufacturing the aluminum alloy includes: a coating step of coating CNT with a metal oxide; A dispersion step in which CNT is added to an aluminum molten metal together with an inert gas and stirred; And a shaping step of shaping the alloy through a continuous casting process.

상기 코팅단계는 CNT를 금속산화물로 20~50㎚ 코팅될 수 있다.The coating step may be coated with CNTs of 20 to 50 nm as a metal oxide.

상기 분산단계는 500~1500rpm으로 교반될 수 있다.The dispersion step may be stirred at 500 to 1500 rpm.

상기 성형단계는 연속주조공정에 있어서 용탕의 몰드 주입전 연주테이블에서 진동을 가할 수 있다.
The molding step may apply vibration to the performance table before the injection of the molten metal in the continuous casting step.

상술한 바와 같은 구조로 이루어진 고탄성 알루미늄합금 및 그 제조방법에 따르면, 탄성 향상에 가장 중요한 역할을 하는 Boride 화합물의 생성을 극대화하고, 고탄성 합금에 CNT를 추가로 첨가하여 탄성 향상을 최대화할 수 있다. According to the high-elasticity aluminum alloy having the above-described structure and the method of manufacturing the same, the generation of the boride compound, which plays the most important role in improving the elasticity, is maximized and the elasticity enhancement can be maximized by further adding CNT to the high-elasticity alloy.

또한, 고온의 알루미늄 용탕에서 CNT가 손상되지 않도록 보호하고, 첨가된 CNT와 자발 반응에 의해 생성된 Boride 화합물을 알루미늄 용탕 내부에 균일하게 분산할 수 있다.
In addition, it is possible to protect the CNT from being damaged in the hot molten aluminum, and to disperse the added CNT and the boride compound generated by the spontaneous reaction uniformly in the molten aluminum.

도 1은 본 발명의 일 실시예에 따른 고탄성 알루미늄합금의 탄성을 나타낸 그래프.
도 2는 본 발명의 일 실시예에 따른 고탄성 알루미늄합금 제조방법에서 사용되는 분산기를 나타낸 도면.
도 3은 본 발명의 일 실시예에 따른 고탄성 알루미늄합금 제조방법의 순서도.
1 is a graph showing elasticity of a high-elasticity aluminum alloy according to an embodiment of the present invention.
2 is a view illustrating a dispersing device used in a method of manufacturing a high elasticity aluminum alloy according to an embodiment of the present invention.
3 is a flowchart of a method of manufacturing a high-elasticity aluminum alloy according to an embodiment of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 고탄성 알루미늄합금 및 그 제조방법에 대하여 살펴본다.Hereinafter, a high-elasticity aluminum alloy according to a preferred embodiment of the present invention and a method of manufacturing the same will be described with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 고탄성 알루미늄합금의 탄성을 나타낸 그래프이고, 도 2는 본 발명의 일 실시예에 따른 고탄성 알루미늄합금 제조방법에서 사용되는 분산기를 나타낸 도면이며, 도 3은 본 발명의 일 실시예에 따른 고탄성 알루미늄합금 제조방법의 순서도이다.FIG. 1 is a graph showing the elasticity of a high-elasticity aluminum alloy according to an embodiment of the present invention, FIG. 2 is a view showing a dispersing device used in a method of manufacturing a high-elasticity aluminum alloy according to an embodiment of the present invention, FIG. 4 is a flowchart of a method of manufacturing a high-elasticity aluminum alloy according to an embodiment of the present invention. FIG.

본 발명의 고탄성 알루미늄합금은, Al을 주성분으로 하며 Si 14~20wt%, Ti 2~7.5wt%, B 1~3wt%를 포함하는 조성으로 구성된다. 그리고 바람직하게는 상기 Ti와 B는 Ti/B의 비율이 2~2.5가 되도록 한다.The high-elasticity aluminum alloy of the present invention comprises Al as a main component and has a composition including 14 to 20 wt% of Si, 2 to 7.5 wt% of Ti, and 1 to 3 wt% of B. Preferably, the ratio of Ti to B is 2 to 2.5.

즉, 상기와 같은 비율을 유지하도록 함으로써 탄성 향상에 가장 중요한 역할을 하는 Boride 화합물의 생성을 극대화하는 것이다.That is, by maintaining the above-mentioned ratio, it is possible to maximize the production of the boride compound which plays the most important role in improving the elasticity.

구체적으로, 상기와 같은 비율로 Ti와 B를 유지하고, TiB2 화합물을 자연스럽게 유도하기 위해 상기 알루미늄합금은 Al-(5~10wt%)Ti, Al-(2~10wt%)B의 알루미늄 모합금을 이용하여 제조될 수 있다.Specifically, in order to maintain Ti and B at the above ratios and induce the TiB2 compound naturally, the aluminum alloy contains Al- (5-10 wt%) Ti, Al- (2-10 wt% . ≪ / RTI >

또한, 이러한 Boride 생성량 극대화에 의한 기지 합금의 고탄성화와 기계적 특성(강도, 내마모성) 및 가공성 향상을 얻을 수 있다.In addition, it is possible to obtain a base alloy with high elasticity and mechanical properties (strength, abrasion resistance) and workability by maximizing the amount of boride produced.

종래의 과공정 알루미늄(A390 : Si 17wt%)의 경우 탄성 85GPa과 본 발명의 Al-16Si-2.3Ti-1B의 탄성 102GPa, Al-20Si-2.3Ti-1B의 탄성 106GPa은 많은 탄성의 차이를 보이는 것이다.
In the case of conventional over-process aluminum (A390: Si 17 wt%), the elasticity of 85 GPa, the elasticity of Al-16Si-2.3Ti-1B of the present invention 102GPa and the elasticity of Al-20Si-2.3Ti-1B of 106GPa, will be.

하기의 표는 이러한 Ti와 B의 비율에 따른 본 발명의 조성과 실시예의 조성을 나타낸다.The following table shows the composition of the present invention and the composition of the examples according to the ratio of Ti and B.

Figure 112012103950779-pat00001
Figure 112012103950779-pat00001

상기 표에서와 같이, 본 발명의 경우 종래와는 달리 Ti 2~7.5wt%, B 1~3wt%를 포함하고, 나머지의 조성을 유지한 것이다.
As shown in the above table, unlike the prior art, the present invention includes Ti 2 to 7.5 wt% and B 1 to 3 wt% and the remaining composition is maintained.

그리고, 하기의 표는 그 실시예에 따른 Boride 생성량의 결과이다.The following table is the result of the amount of boride produced according to the embodiment.

Figure 112012103950779-pat00002
Figure 112012103950779-pat00002

상기 표에서 볼 수 있듯이, 본 발명의 경우 Boride 생성량이 9.64까지 나옴으로써 탄성이 극대화된 것을 알 수 있다. 이러한 결과에 의하면, Ti와 B는 Ti/B의 비율이 2~2.5가 가장 바람직하다는 것을 알 수 있다.
As can be seen from the above table, in the case of the present invention, the amount of boride produced reaches 9.64, which indicates that the elasticity is maximized. According to these results, it can be seen that the ratio of Ti / B to Ti / B is most preferably 2 to 2.5.

한편, 도 1은 본 발명의 일 실시예에 따른 고탄성 알루미늄합금의 탄성을 나타낸 그래프로서, 해당 그래프에서도 볼 수 있듯이, TiB2 9.64%의 경우 탄성이 종래의 경우의 68GPa에서 98.5GPa로 45%가 증대되었음을 알 수 있다.
FIG. 1 is a graph showing the elasticity of a high-elasticity aluminum alloy according to an embodiment of the present invention. As shown in the graph, the elasticity of 9.64% TiB2 is increased from 68 GPa to 98.5 GPa by 45% .

이러한 본 발명의 알루미늄합금은 연속주조공정에 의해 성형될 수 있다. 연속주조법이란 용해금속을 주형에 연속적으로 주입하고 응고시키는 주조법으로, 보통 판 ·봉 ·선 모양의 빌렛을 제조하는데 사용된다. 연속주조에서는 주형 위쪽에서 연속적으로 주탕하고 주형의 밑을 빼놓은 다음 굳어진 주괴를 아래쪽으로 냉각수로 급냉을 시키며 계속 끌어내는 방식으로 수~수십 미터에 이르는 긴 빌렛을 만들 수 있다. 연속주조법을 사용하여 합금화 시키는 경우에는 융체(Al-Si-Mg-Cu)의 이동 변수가 있어 응고시킬 때 턴디시 등의 온도제어가 필수적이다.Such an aluminum alloy of the present invention can be molded by a continuous casting process. Continuous casting is a casting method in which molten metal is continuously injected into a mold and solidified, and is usually used to produce billets, bars, and lines. In continuous casting, long billets ranging from several meters to several tens of meters in length can be made by pouring continuously from above the mold, removing the bottom of the mold, and then rapidly drawing the hardened ingot downward with cooling water. In the case of alloying by the continuous casting method, there is a moving parameter of the fused Al-Si-Mg-Cu, and temperature control such as turn-off is necessary when solidifying.

합금화된 용탕을 턴디시에 장입할 때, 턴디시 입구온도를 최소 650도 이상으로 가열하여 용탕이 측벽에 급랭되어 응고되는 것을 막고, 턴디시 출구부의 온도를 300도~350도로 유지하여 머시(mush) 상태로 출탕이 되도록 유지한다. 이는 주형 위쪽에 연속적으로 주입된 주탕이 그대로 아래로 흐르지 않고 빌렛 형상을 유지하게 하는데 필요한 조건이다. 다른 주조법에 비해 빠른 냉각속도가 가능하므로 용질원자의 함량을 증가시키는 것과 조직 미세화와 균일성 확보에 유리한 공정이다.
When the alloyed molten metal is charged into the tundish, the temperature of the inlet of the tundish is heated to at least 650 ° C. to prevent the molten metal from rapidly solidifying on the sidewall so that the molten metal is prevented from solidifying and maintaining the temperature of the tundish outlet at 300 to 350 ° C., ) To keep it in the tap. This is a necessary condition for continuously injecting the molten metal above the mold to keep the shape of the billet without flowing down. It is a process favorable for increasing the content of solute atoms and securing the microstructure and homogeneity because it enables faster cooling rate than other casting methods.

한편, 본 발명은 고탄성 합금에 CNT를 추가로 첨가하여 탄성 향상을 최대화하며, 고온의 알루미늄 용탕에서 CNT가 손상되지 않도록 보호하고, 첨가된 CNT와 자발 반응에 의해 생성된 Boride 화합물을 알루미늄 용탕 내부에 균일하게 분산하는 것이다.Meanwhile, the present invention maximizes elasticity enhancement by further adding CNT to a high-elasticity alloy, protects the CNT from damage in a high-temperature aluminum melt, and protects the CNT and the boride compound produced by the spontaneous reaction in the aluminum melt It is dispersed uniformly.

따라서, 상기 알루미늄합금은 2~7vol%의 CNT를 더 포함할 수 있으며, 상기 CNT는 금속산화물로 코팅할 수 있다.Therefore, the aluminum alloy may further include 2 to 7 vol% of CNT, and the CNT may be coated with a metal oxide.

최종적으로 본 발명의 실시예로서 Al-16Si의 경우 2.3Ti-1B을 첨가하고 CNT 5vol%의 첨가시 최종탄성계수가 112.5 GPa이 나왔고, Al-20Si의 경우 동일하게 2.3Ti-1B을 첨가하고 CNT 5vol%의 첨가시 최종탄성계수가 118.5 GPa이 나왔다. Finally, in the case of Al-16Si, 2.3 Ti-1B was added, and when 5 vol% CNT was added, the final elastic modulus was 112.5 GPa. In the case of Al-20 Si, 2.3 Ti- The final modulus of elasticity was 118.5 GPa when 5 vol% was added.

이러한 CNT의 경우 그 함량 범위는 2~7vol%로 한정함이 바람직한데, 이는 2vol%의 첨가시 탄성 예측에서 105GPa까지 가능하여 주철과 동등 수준의 개발 요구에 있어 최소한의 물성을 확보할 수 있다. 그리고, 7vol% 이상을 주조공정에 적용하면 용해 및 분산 불량 문제가 발생하므로 주조용 소재로 부적합하기 때문이다.
It is preferable that the content of CNT is limited to 2 to 7 vol%, which can be up to 105 GPa in the prediction of elasticity when 2 vol% is added, so that minimum physical properties can be secured in the development requirement of the same level as cast iron. When 7 vol% or more is applied to the casting process, problems of dissolution and dispersion occur, which is unsuitable as a casting material.

한편, 도 3은 본 발명의 일 실시예에 따른 고탄성 알루미늄합금 제조방법의 순서도로서, 본 발명의 알루미늄합금의 제조방법은, CNT를 금속산화물로 코팅하는 코팅단계(S100); 알루미늄용탕에 불활성가스와 함께 CNT를 투입하고 교반하는 분산단계(S200); 및 연속주조공정을 통해 합금을 성형하는 성형단계(S500);를 포함한다.FIG. 3 is a flowchart illustrating a method of manufacturing a high-elasticity aluminum alloy according to an embodiment of the present invention. FIG. 3 illustrates a method of manufacturing an aluminum alloy according to an embodiment of the present invention. A dispersion step (S200) of adding and stirring CNT together with an inert gas to an aluminum molten metal; And a forming step (S500) of forming an alloy through a continuous casting process.

먼저, Al-(5~10wt%)Ti, Al-(2~10wt%)B의 알루미늄 모합금을 이용하여 용탕을 제조하고, Ti/B의 비율을 2~2.5이 되도록 제어한다.First, a molten metal is prepared by using an aluminum master alloy of Al- (5-10 wt%) Ti and Al- (2-10 wt%) B, and the ratio of Ti / B is controlled to be 2 to 2.5.

그리고 CNT의 경우 금속산화물 SiO2, TiO2 등으로 20~50㎚ 코팅하여 고온의 알루미늄 용탕에서 CNT 손상을 방지한다(S100).In case of CNT, it is coated with a metal oxide such as SiO 2, TiO 2 or the like to 20 to 50 nm to prevent CNT damage in a hot molten aluminum (S 100).

그리고 도 2의 이중구조 교반기(20)를 이용하여 알루미늄 용탕(10)에 불활성 가스와 CNT를 함께 투입하고, 500~1500rpm의 고속 교반을 통해 CNT 및 Boride 화합물을 균일하게 분산시키는 것이다(S200).Then, inert gas and CNT are added to the molten aluminum 10 together with the dual structure stirrer 20 of FIG. 2, and CNT and boride compounds are uniformly dispersed through high-speed agitation at 500 to 1500 rpm (S200).

그리고 나서 보온과정과 탕도이송을 수행하고(S300), 연속주조공정에 있어서 용탕의 몰드 주입전 연주테이블에서 진동을 가할 수 있다(S400). 연주 테이블에서는 진동을 부가하여 용탕의 몰드 주입 전 강화입자의 균일성 향상에 기여하도록 하는 것이다.Then, the warming process and the hot water transfer are performed (S300). In the continuous casting process, vibration can be applied to the performance table before the mold injection of the molten metal (S400). In the performance table, vibration is added to contribute to the improvement of the uniformity of the reinforcing particles before the mold injection of the molten metal.

따라서, 연속주조의 빠른 냉각속도, 이중구조 교반기의 고속 회전, 연주 테이블의 진동 부가를 통해 고탄성 알루미늄 복합소재의 균일성을 확보할 수 있게 된다.
Therefore, it becomes possible to ensure the uniformity of the high-elasticity aluminum composite material through the rapid cooling rate of the continuous casting, the high-speed rotation of the dual structure stirrer, and the vibration portion of the performance table.

상술한 바와 같은 구조로 이루어진 고탄성 알루미늄합금 및 그 제조방법에 따르면, 탄성 향상에 가장 중요한 역할을 하는 Boride 화합물의 생성을 극대화하고, 고탄성 합금에 CNT를 추가로 첨가하여 탄성 향상을 최대화할 수 있다. According to the high-elasticity aluminum alloy having the above-described structure and the method of manufacturing the same, the generation of the boride compound, which plays the most important role in improving the elasticity, is maximized and the elasticity enhancement can be maximized by further adding CNT to the high-elasticity alloy.

또한, 고온의 알루미늄 용탕에서 CNT가 손상되지 않도록 보호하고, 첨가된 CNT와 자발 반응에 의해 생성된 Boride 화합물을 알루미늄 용탕 내부에 균일하게 분산할 수 있다.
In addition, it is possible to protect the CNT from being damaged in the hot molten aluminum, and to disperse the added CNT and the boride compound generated by the spontaneous reaction uniformly in the molten aluminum.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

S100 : 코팅단계 S200 : 분산단계
S500 : 성형단계
S100: coating step S200: dispersion step
S500: molding step

Claims (9)

Si 14~20wt%, Ti 2~7.5wt%, B 1~3wt% 및 잔부 Al를 포함하고,
Ti/B는 2~2.5인 알루미늄 합금으로서,
상기 알루미늄합금은 Al-(5~10wt%)Ti, Al-(2~10wt%)B의 알루미늄 모합금을 이용하여 제조되며,
상기 알루미늄합금은 2~7 vol%의 탄소나노튜브(Carbon Nano Tube, CNT)를 더 포함하는 고탄성 알루미늄합금.
14 to 20 wt% of Si, 2 to 7.5 wt% of Ti, 1 to 3 wt% of B, and the remainder Al,
Ti / B is an aluminum alloy of 2 to 2.5,
The aluminum alloy is manufactured using an aluminum master alloy of Al- (5-10 wt%) Ti and Al- (2-10 wt%) B,
Wherein the aluminum alloy further comprises 2 to 7 vol% of carbon nanotubes (CNTs).
청구항 1에 있어서,
상기 알루미늄합금은 연속주조공정에 의해 성형되는 것을 특징으로 하는 고탄성 알루미늄합금.
The method according to claim 1,
Wherein the aluminum alloy is molded by a continuous casting process.
삭제delete 삭제delete 청구항 1에 있어서,
상기 탄소나노튜브(Carbon Nano Tube, CNT)는 금속산화물로 코팅된 것을 특징으로 하는 고탄성 알루미늄합금.
The method according to claim 1,
Wherein the carbon nanotube (CNT) is coated with a metal oxide.
청구항 1의 알루미늄합금을 제조하는 방법으로서,
탄소나노튜브(Carbon Nano Tube, CNT)를 금속산화물로 코팅하는 코팅단계;
알루미늄용탕에 불활성가스와 함께 CNT를 투입하고 교반하는 분산단계; 및
연속주조공정을 통해 합금을 성형하는 성형단계;를 포함하는 고탄성 알루미늄합금 제조방법.
A process for producing the aluminum alloy according to claim 1,
A coating step of coating a carbon nanotube (CNT) with a metal oxide;
A dispersion step in which CNT is added to an aluminum molten metal together with an inert gas and stirred; And
And molding the alloy through a continuous casting process.
청구항 6에 있어서,
상기 코팅단계는 탄소나노튜브(Carbon Nano Tube, CNT)를 금속산화물로 20~50㎚ 코팅하는 것을 특징으로 하는 고탄성 알루미늄합금 제조방법.
The method of claim 6,
Wherein the coating step comprises coating a carbon nanotube (CNT) with a metal oxide to a thickness of 20 to 50 nm.
청구항 6에 있어서,
상기 분산단계는 500~1500rpm으로 교반하는 것을 특징으로 하는 고탄성 알루미늄합금 제조방법.
The method of claim 6,
Wherein the dispersing step is performed at 500 to 1500 rpm.
청구항 6에 있어서,
상기 성형단계는 연속주조공정에 있어서 용탕의 몰드 주입전 연주테이블에서 진동을 가하는 것을 특징으로 하는 고탄성 알루미늄합금 제조방법.
The method of claim 6,
Wherein the forming step applies vibration to the performance table before the mold injection of the molten metal in the continuous casting step.
KR20120145787A 2012-12-13 2012-12-13 High elastic aluminum alloy and method for producing the same KR101491216B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20120145787A KR101491216B1 (en) 2012-12-13 2012-12-13 High elastic aluminum alloy and method for producing the same
US13/828,451 US20140170017A1 (en) 2012-12-13 2013-03-14 High elastic aluminum alloy and method for producing the same
US15/210,848 US20160319398A1 (en) 2012-12-13 2016-07-14 High elastic aluminum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120145787A KR101491216B1 (en) 2012-12-13 2012-12-13 High elastic aluminum alloy and method for producing the same

Publications (2)

Publication Number Publication Date
KR20140077061A KR20140077061A (en) 2014-06-23
KR101491216B1 true KR101491216B1 (en) 2015-02-11

Family

ID=50931114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120145787A KR101491216B1 (en) 2012-12-13 2012-12-13 High elastic aluminum alloy and method for producing the same

Country Status (2)

Country Link
US (2) US20140170017A1 (en)
KR (1) KR101491216B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601406B1 (en) * 2014-04-14 2016-03-09 현대자동차주식회사 Highly elastic aluminum alloy for continuous casting and method for producing the same
KR101637735B1 (en) 2014-11-19 2016-07-08 현대자동차주식회사 Aluminum alloy having excellent formability and elasticity, and method for producing the same
KR101628537B1 (en) * 2014-11-20 2016-06-09 현대자동차주식회사 High elasticity and strength aluminum alloy and manufacturing method thereof
KR101740883B1 (en) * 2016-03-04 2017-05-30 한국과학기술연구원 Methods for manufacturing carbon fiber reinforced aluminum composites using stir casting process
CN111041286B (en) * 2019-12-13 2021-01-12 佛山市三水凤铝铝业有限公司 Method for reinforcing aluminum alloy section bar by nano composite material
CN110938764B (en) * 2019-12-23 2020-09-01 哈尔滨工业大学 Carbon nano tube/aluminum composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192780A (en) * 1992-12-25 1994-07-12 Toyota Motor Corp High heat and wear resistance aluminum alloy and powder thereof
JP2004523357A (en) * 2000-05-15 2004-08-05 ワン,ル−ヤオ Method of spheroidizing silicon during casting of aluminum-silicon alloy
JP2005048206A (en) * 2003-07-30 2005-02-24 Toshiba Corp High strength and high electric conductivity aluminum alloy based composite material, and its production method
KR20130058998A (en) * 2011-11-28 2013-06-05 현대자동차주식회사 Aluminum alloy for continuous casting and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006006518U1 (en) * 2006-04-22 2006-09-14 Zak, Hennadiy, Dr. (UA) Aluminum casting alloy, useful in production of safety components, contains silicon
KR101316068B1 (en) * 2010-11-30 2013-10-11 현대자동차주식회사 Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192780A (en) * 1992-12-25 1994-07-12 Toyota Motor Corp High heat and wear resistance aluminum alloy and powder thereof
JP2004523357A (en) * 2000-05-15 2004-08-05 ワン,ル−ヤオ Method of spheroidizing silicon during casting of aluminum-silicon alloy
JP2005048206A (en) * 2003-07-30 2005-02-24 Toshiba Corp High strength and high electric conductivity aluminum alloy based composite material, and its production method
KR20130058998A (en) * 2011-11-28 2013-06-05 현대자동차주식회사 Aluminum alloy for continuous casting and method for producing the same

Also Published As

Publication number Publication date
US20140170017A1 (en) 2014-06-19
US20160319398A1 (en) 2016-11-03
KR20140077061A (en) 2014-06-23

Similar Documents

Publication Publication Date Title
KR101491216B1 (en) High elastic aluminum alloy and method for producing the same
RU2570264C2 (en) Aluminium alloy for injection moulding
CN106086726B (en) SiC nanowire reinforced aluminum matrix composites and preparation method thereof
JP4224083B2 (en) Method for producing composite metal material and method for producing composite metal molded product
Sánchez et al. Fabrication of aluminium composites reinforced with carbon fibres by a centrifugal infiltration process
Liping et al. Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys
Amirkhanlou et al. Effects of reinforcement distribution on low and high temperature tensile properties of Al356/SiCp cast composites produced by a novel reinforcement dispersion technique
CN101280376A (en) High-wear-resistant zinc-aluminum alloy and preparation thereof
Zhang et al. Preparation, microstructures and mechanical properties of in-situ (TiB2+ ZrB2)/AlSi9Cu3 composites
KR20130041354A (en) Magnesium alloy chips and method for manufacturing molded article in which same are used
Guo et al. Effects of Si content and Ca modification on microstructure and thermal expansion property of Mg–Si alloys
CN110117789A (en) A kind of method for preparing high-entropy alloy and device based on Laser Clad Deposition
Fan et al. The microstructures and properties of in-situ ZrB2 reinforced Cu matrix composites
Dong et al. Advanced heat treated die-cast aluminium composites fabricated by TiB2 nanoparticle implantation
Hadad et al. Investigation and comparison of the effect of graphene nanoplates and carbon nanotubes on the improvement of mechanical properties in the stir casting process of aluminum matrix nanocomposites
CN108004426A (en) A kind of two-phase in-situ nano enhancing titanium matrix composite and preparation method thereof
WO2011145194A1 (en) Heat-resistant cast iron type metallic short fiber, and process for production thereof
KR20130058998A (en) Aluminum alloy for continuous casting and method for producing the same
KR20100010181A (en) Metal matrix composite with atom-infiltrated porous-materials/nano-fibers and the casting method thereof
CN109182817A (en) A kind of preparation method of graphene enhancing cobalt-based composite material
Li et al. Effect of in situ Mg 2 Si p contents on microstructure and mechanical properties of Mg 2 Si p/AZ91D composite s
Hiremath et al. Experimental evaluation of the coefficient of thermal expansion of chilled aluminum alloy-borosilicate glass (P) composite
CN112662909B (en) Carbide nanoparticle modified die-casting aluminum alloy and preparation method thereof
WO2021071453A2 (en) Aluminum matrix hybrid composite with mgo and cnt exhibiting enhanced mechanical properties
CN106399873B (en) A kind of preparation method of coating alumina whisker nanotube enhancing magnesium-based composite material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 6