KR101477880B1 - 감소된 자계 방출을 갖는 전기 화학 전지 및 대응하는 장치들 - Google Patents

감소된 자계 방출을 갖는 전기 화학 전지 및 대응하는 장치들 Download PDF

Info

Publication number
KR101477880B1
KR101477880B1 KR1020127027488A KR20127027488A KR101477880B1 KR 101477880 B1 KR101477880 B1 KR 101477880B1 KR 1020127027488 A KR1020127027488 A KR 1020127027488A KR 20127027488 A KR20127027488 A KR 20127027488A KR 101477880 B1 KR101477880 B1 KR 101477880B1
Authority
KR
South Korea
Prior art keywords
cathode
anode
electrode assembly
electrical conductor
disposed
Prior art date
Application number
KR1020127027488A
Other languages
English (en)
Other versions
KR20130008591A (ko
Inventor
호세인 말레키
마이클 프렌저
제럴드 에이. 홀마크
짐 크라우스
Original Assignee
모토로라 모빌리티 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모토로라 모빌리티 엘엘씨 filed Critical 모토로라 모빌리티 엘엘씨
Publication of KR20130008591A publication Critical patent/KR20130008591A/ko
Application granted granted Critical
Publication of KR101477880B1 publication Critical patent/KR101477880B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/1245Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

감소된 자기 방출 잡음을 갖는 배터리 팩은 전극 어셈블리(700)가 배치된 하우징을 포함한다. 전극 어셈블리(700)는 캐소드(701) 및 애노드(702)와 그 사이에 배치된 분리기를 포함하는 전지 스택을 포함한다. 전극 어셈블리(700)의 전지 스택은 제1 단부(705) 및 제2 단부(706)를 갖는다. 제1 전기 도체(703)는 전지 스택의 제1 단부(705)에서 애노드(702)에 결합된다. 제2 전기 도체(704)는 전지 스택의 제1 단부(705)에서 캐소드(701)에 결합된다. 방전 동안, 전류(711,712)는 전극 어셈블리(700)에 의해 발생된 자계 잡음을 감소시키기 위해 실질적으로 반대 방향들로 그리고 실질적으로 유사한 크기로 제1 전기 도체(703) 및 제2 전기 도체(704)를 통해, 그리고 캐소드(701) 및 애노드(702)에 걸쳐 통과된다.

Description

감소된 자계 방출을 갖는 전기 화학 전지 및 대응하는 장치들{ELECTROCHEMICAL CELL WITH REDUCED MAGNETIC FIELD EMISSION AND CORRESPONDING DEVICES}
본 발명은 일반적으로 전기 화학 전지들에 관한 것으로, 특히 전기 화학 전지가 이용될 때 감소된 자계 방출들을 전달하는 구성을 갖는 전기 화학 전지에 관한 것이다.
세계는 신속하게 휴대화되고 있다. 이동 전화들, 개인 휴대 정보 단말기들, 휴대용 컴퓨터들, 태블릿 컴퓨터들 등이 더 대중화됨에 따라, 소비자들은 통신, 엔터테인먼트, 비즈니스, 및 정보를 위해 휴대용 및 무선 장치들에 계속적으로 의지하고 있다. 이 장치들 각각은 휴대성을 배터리로 인해 휴대성을 지닌다. 배터리 내에서 동작하는 전기 화학 전지들은 이 장치들이 벽 콘센트에 테더링되어야 하는 까다로운 한계를 사라지게 할 뿐만 아니라, 반복해서 재충전될 수 있는 신뢰성있는 경량 전원도 제공한다.
알칼리 기반 전지들, 니켈 기반 전지들, 및 리튬 기반 전지들을 포함하는 전기 화학 전지들은 일반적으로 2개의 전극 층들을 취하며, 각 층이 다른 것으로부터 물리적으로 분리된 상태에서 그것들을 함께 스태킹(stack)함으로써 제조된다. 배터리들에 이용되는 전기 화학 전지들을 제조하는 통상의 방법은 "젤리롤" 기술로 알려져 있으며, 여기서 전지의 내부 부분들은 롤업되고 알루미늄 또는 스틸 캔 내에 배치됨으로써, 구식 젤리롤 케이크와 유사하다. 알루미늄은 스틸이 또한 이용될지라고, 그 경량 및 유리한 열 성질들로 인하여 종종 캔에 대한 바람직한 금속이다.
전기 화학 전지의 주된 임무는 에너지를 선택적으로 저장 및 전달하는 것이다. 에너지는 전지가 충전될 때 저장된다. 그 다음, 이 저장된 에너지는 방전 단계 동안 전자 장치에 전달될 수 있다. 전극 재료들 및 전지 구성들의 진보는 소형의 경량 패키지들에 다량의 에너지를 저장할 수 있는 소형 배터리들을 소비자들에게 제공한다.
전기 화학 전지의 자계 방출들은 일반적으로 설계 고려 사항이 아니다. 예로서, 전기 화학 전지가 전형적인 전자 장치에 전력을 공급하는데 이용될 때, 그것으로부터의 자계 방출들은 그 장치의 동작에 영향을 미치는 만큼 충분히 크지 않을 수 있다. 그러나, 일부 애플리케이션들에서, 전기 화학 전지의 자기 방출은 설계 문제일 수 있다. 예를 들어, 보청기들과 같은 감지 장치들에서, 자계 방출들은 보청기 내에서 음향 요소들의 동작에 영향을 미침으로써 성능 또는 신뢰성을 손상시킬 수 있다.
따라서, 자기 방출을 감소시킨 전기 화학 전지에 대한 요구가 존재한다.
유사한 참조 번호들이 개별 도면들에 걸쳐 동일한 또는 기능적으로 유사한 요소들을 지칭하는 첨부 도면은 하기의 상세한 설명과 함께 명세서에 포함되어 명세서의 일부를 형성하고, 다양한 실시예들을 더 예시하며 본 발명에 따른 다양한 원리들 및 장점들을 모두 설명하는 기능을 한다.
도 1은 전형적인 종래의 전극 층 어셈블리의 측단면도를 예시한다.
도 2는 재충전가능 전지를 구성하도록 젤리롤 구성으로 조립된 전극들의 종래의 스택을 예시한다.
도 3은 원통형 금속 캔 내에 삽입된 종래의 젤리롤의 절단 단면도를 예시한다.
도 4는 배터리에서의 이용에 적절한 종래의 전지 구성의 일 실시예를 예시한다.
도 5는 전형적인 전류들 및 대응하는 자계들을 예시하는 언롤된 종래의 전지 구성을 예시한다.
도 6은 GSM(Global System for Mobile Communications) 통신 애플리케이션에서 송수신기를 시뮬레이션하는 로드에 전력을 공급할 때 도 4의 구성에 대응하는 그래픽적으로 측정된 자계 형상들을 예시한다.
도 7은 본 발명의 실시예들에 따라 구성될 때 전형적인 전류들 및 대응하는 자계들을 예시하는 언롤된 전지 구성의 일 실시예를 예시한다.
도 8은 GSM 통신 애플리케이션에서 송수신기를 시뮬레이션하는 로드에 전력을 공급할 때 도 6의 구성에 대응하는 그래픽적으로 측정된 자계 형상들을 예시한다.
도 9는 본 발명의 다른 실시예에 따라 구성될 때 전형적인 전류들 및 대응하는 자계들을 예시하는 언롤된 전지 구성의 다른 실시예를 예시한다.
도 10은 GSM 통신 애플리케이션에서 송수신기를 시뮬레이션하는 로드에 전력을 공급할 때 도 9의 구성에 대응하는 그래픽적으로 측정된 자계 형상들을 예시한다.
도 11은 본 발명의 일 실시예에 따라 구성되며 투자율 재료들이 배치된 전기 화학 활성 층을 예시한다.
도 12는 본 발명의 일 실시예에 따라 구성되며, 전극 층들이 투자율 재료로 코팅된 전기 화학 전지의 일 구성을 예시한다.
도 13은 본 발명의 일 실시예에 따라 구성되며, 외부 캔이 투자율 재료로 코팅된 전기 화학 배터리의 일 구성을 예시한다.
도 14는 본 발명의 일 실시예에 따라 구성된 탭들 및 도체들을 갖는 전기 화학 전지 및 헤더 어셈블리의 일 구성을 예시한다.
도 15는 본 발명의 일 실시예에 따라 구성된 탭들 및 도체들을 갖는 전기 화학 전지 및 헤더 어셈블리의 일 구성을 예시한다.
도 16은 본 발명의 일 실시예에 따라 구성된 탭들 및 도체들을 갖는 전기 화학 전지 및 헤더 어셈블리의 일 구성을 예시한다.
도 17은 본 발명의 일 실시예에 따라 구성된 탭들 및 도체들을 갖는 전기 화학 전지 및 헤더 어셈블리의 일 구성을 예시한다.
도 18은 본 발명의 일 실시예에 따라 구성된 전기 화학 전지의 스태킹된 구성을 예시한다.
당업자들은 도면들에서의 요소들이 간략화 및 명료화를 위해 예시되며 반드시 일정한 비율로 그려지지 않은 것을 인식할 것이다. 예를 들어, 도면들에서의 요소들의 일부의 치수들은 본 발명의 실시예들의 이해의 증진을 돕도록 다른 요소들에 비해 과장될 수 있다.
본 발명의 실시예들이 이제 상세히 설명된다. 도면들을 참조하면, 유사한 번호들은 도면들에 걸쳐 유사한 부분들을 지시한다. 여기서의 설명 및 청구항들에 걸쳐 이용되는 바와 같이, 이하의 용어들은 문맥이 확실히 다르게 지시되지 않으면, 여기서 명시적으로 관련된 의미들을 취하며: 단수표현("a", "an") 및 상기("the")의 의미는 복수 참조를 포함하고, 에("in")의 의미는 에("in") 및 위에("on")을 포함한다. 제1 및 제2, 상부 및 하부 등과 같은 상대적 용어들은 그러한 엔티티들 또는 액션들 사이의 임의의 실제 그러한 관계 또는 순서를 반드시 요구하거나 내포하지 않고 한쪽 엔티티 또는 액션을 다른 쪽 엔티티 또는 액션으로부터 구별하는데 단지 이용될 수 있다. 또한, 여기서 괄호로 도시된 참조 지정자들은 논의 중인 것 이외의 도면에 도시된 구성요소들을 지시한다. 예를 들어, 도면 A를 설명하는 동안 장치(10)에 관해 말하는 것은 도면 A 이외의 도면에 도시된 요소 10을 지칭한다.
본 발명의 실시예들은 감소된 자계 방출들을 전달하도록 구성된 전기 화학 전지 및 대응하는 배터리를 제공한다. 일 실시예에 있어서, 리튬 이온 또는 리튬 폴리머 전지와 같은 전기 화학 전지는 애노드에 흐르는 전류들이 전기 화학 전지에 걸쳐 캐소드에 흐르는 전류들과 방향이 반대이지만, 크기가 실질적으로 유사한 경향이 있도록 전지 스택의 동일한 단부 상에 배치되는 캐소드 및 애노드에 대한 전기 탭 연결들로 구성된다. 그러한 것으로서, 캐소드 층에 의해 발생된 자계들은 애노드 층에 의해 발생된 자계들을 상쇄시킴으로써, 전체 자기 방출들을 감소시키는 경향이 있다.
전기 화학 전지들은 일반적으로 양 전극(캐소드), 음 전극(애노드), 및 이 2개의 전극들이 접촉되는 것을 방지하는 분리기로 구성된다. 분리기는 캐소드 및 애노드를 물리적으로 분리할지라도, 분리기는 이온들이 그것을 통과하게 한다. 이제 도 1을 참조하면, 전기 화학 전지에서 발견되는 전형적인 전극 층 어셈블리의 측단면도가 예시되어 있다.
전극(100)은 상부 및 하부(114 및 116)를 갖는 분리기(112)를 포함한다. 전기 화학 활성 재료의 제1 층(118)이 분리기(112)의 상부(114)에 배치된다. 예를 들어, 니켈 금속 하이브리드 배터리에서, 제1 층(118)은 당업계에 알려진 바와 같이 금속 하이브리드 전하 축적 재료의 층일 수 있다. 대안으로, 제1 층(118)은 리튬 배터리들에 공통으로 이용되는 바와 같이 리튬 또는 리튬 삽입 재료일 수 있다.
전류 수집 층(120)이 제1 층(118) 위에 배치된다. 전류 수집 층은 당업계에 알려진 다수의 금속들 또는 합금들 중 어느 하나로 제작될 수 있다. 그러한 금속들 또는 합금들의 예들은 예를 들어 니켈, 알루미늄, 구리, 스틸, 니켈 도금 스틸, 마그네슘 도핑 알루미늄 등을 포함한다. 전기 화학 활성 재료의 제2 층(122)이 전류 수집 층(120) 위에 배치된다.
전기 화학 전지는 분리기를 통해 전극들 사이에서 이온들을 전송함으로써 에너지를 저장 및 전달한다. 예를 들어, 방전 동안 전기 화학 반응이 전극들 사이에서 발생한다. 이 전기 화학 반응은 분리기를 통한 이온 전송을 초래하며, 전자들로 하여금 전지의 음단자에 수집되게 한다. 전자 장치와 같은 로드에 연결될 때, 전자들은 음극으로부터 로드의 회로조직을 통해 전지의 양단자로 흐른다(이것은 캐소드로부터 애노드로 흐르는 전류와 같이 회로도들에 도시됨). 전기 화학 전지가 충전될 때에는, 역 처리가 발생한다. 따라서, 전자 장치들에 전력을 공급하기 위해, 이 전자들은 전지로부터 전자 장치로 전달되어야 한다. 이것은 일반적으로 다양한 층들에 대한 "탭들"이라고 구어체로 때때로 지칭되는 도전성 호일 스트립들과 같은 도체들을 결합함으로써 달성된다. 그러한 탭들은 도 2에 도시된다.
이제 도 2를 참조하면, 재충전가능 전지를 구성하도록 젤리롤 구성으로 조립된 도 1에서의 것과 같은 전극들의 스택이 예시되어 있다. 도 2에서, 2개의 전극들(240 및 260)은 상술한 바와 같이 제공된다. 전극(240)은 예를 들어 전기 화학 활성 음 전극 재료의 층으로 제작되는 한편, 전극(260)은 전기 화학 활성 양 전극 재료로 제작된다. 어느 하나의 전극(240, 260)은 전지가 초기에 구성될 때 전기 화학 활성일 수 있는 것을 주목한다.
제1 탭(280)은 한쪽 전극(240)에 결합되는 한편, 제2 탭(290)은 다른 쪽 전극(260)에 결합된다. 이 탭들(280, 290)은 각 전극(240, 260)의 전류 수집기들에 결합될 수 있다.
전극들(240 및 260)은 탭들(280, 290)이 스택의 대향 에지들 상에 배치된 상태에서, 스태킹된 관계로 배열된다. 그 후에, 스택은 전기 화학 전지 캔으로의 후속 삽입을 위해 롤(270)로 롤링된다. 캔들은 일반적으로 단일 개구 및 리드를 가지고서 단면상 타원형, 직사각형, 또는 원형이다. 이것은 공동 쓰레기통과 유사하다.
도 2에 도시된 것과 같은 종래의 전지들은 전극들(240, 260)의 대향 단부들 상에 배치된 탭들(280, 290)로 제조된다. 이것은 2개의 전극들(240, 260)이 활성화될 때 실질적으로 동일한 방향으로 전류를 운반하는 것을 초래한다. 이 공동 방향 전류는 각 전극(240, 260)에 의해 발생된 자계들이 부가되는 바와 같이, 오른손의 법칙에 따른 큰 토로이달 자계를 생성한다. 이것은 도 5에 더 분명하게 도시될 것이다.
젤리롤이 완료되면, 도 3에 도시된 바와 같이 금속 캔(322)으로 삽입된다. 이 원통형 구성에서, 금속 캔(322)은 결과로서 생긴 배터리의 캐소드 단자의 역할을 할 수 있는 금속 커넥터(326)를 포함한다. 금속 캔(322) 자체는 종종 애노드 단자의 역할을 한다. 탭들(280, 290)은 이 구성에서 금속 커넥터(326) 및 금속 캔(322)에 결합된다. 직사각형 또는 타원형 배터리들과 같은 대체 구성들에 있어서, 탭들(280, 290)은 캔 상의 금속 커넥터들보다 오히려 커넥터 어셈블리(330)에 결합될 수 있다.
어느 하나의 시나리오에서, 젤리롤을 주시하면, 분리기(332), 제1 전극(328), 및 제2 전극(336)과 같은 다양한 층들이 보여질 수 있다. 구성에 따라, 전류 수집기(338) 또는 그리드가 필요에 따라 장치에 추가될 수 있다. 전류 수집기(338)는 구리, 금, 철, 망간, 니켈, 백금, 은, 탄탈, 티탄, 알루미늄, 마그네슘 도핑 알루미늄, 구리 기반 합금들, 또는 아연과 같은 금속 또는 합금으로 형성될 수 있다.
이제 도 4를 참조하면, 도 2에서와 같이 구성된 탭들(401, 402)을 갖는 종래의 젤리롤(400)이 예시되어 있다. 젤리롤(400)은 이미 설명된 바와 같이 금속 캔 내에 삽입될 것이다. 도 4의 종래의 어셈블리는 외부 캐소드의 역할을 하는 제1 금속 커넥터(403) 및 제1 금속 커넥터(403)를 제1 탭(401)에 결합하기 위한 탭(404)을 포함한다. 절연체(405)는 제2 탭(402)으로부터 제1 금속 커넥터(403)를 분리하기 위해 제공된다. 젤리롤(400)의 일 단부에 있는 편평한 상부 절연체들은 Zayatz의 미국 특허 제6,317,335호에 인용된 바와 같이 기술 분야에 알려져 있다.
도 4의 젤리롤(400)은 동작 시에 비교적 다량의 자계 잡음을 생성한다. 이 잡음은 dB A/m으로 측정되고, 전류가 증가함에 따라 증가한다. 게다가, 전류가 펄스될 때, 전지가 이동 전화와 같은 GSM 장치를 서비스할 때의 경우와 같이, 잡음이 악화된다.
이제 도 5를 참조하면, 도 4의 젤리롤(400)이 감겨 있지 않은 형태로 예시되어 있다. 이 감겨 있지 않은 예시는 이 구성이 자계 잡음을 발생시키는 방법을 보여주는데 유용하다. 로드 하에 있을 때, 애노드 전류들은 애노드의 역할을 하는 전극(260)에 결합된 탭(401)으로부터 흘러 나간다. 애노드 전류(501)는 일반적으로 기울기에 따라 도 5의 도면에서 좌측에서 우측으로 흐른다. 탭(401)이 애노드의 상부 부분에 결합되므로, 애노드 전류(501)는 애노드의 상부 좌측 부분으로부터 애노드의 하부 우측 부분으로 흐르는 경향이 있을 것이다.
이것이 발생할 때, 제1 자계(503)가 오른손의 법칙에 따라 발생될 것이다. 제1 자계(503)는 탭(401) 근처에서 가장 클 것이며, 이온들이 분리기를 통해 전해질로 캐소드의 역할을 하는 전극(240)까지 통과함에 따라 탭(401)으로부터 떨어져서 더 작아질 것이다.
캐소드의 역할을 하는 전극(240)을 참조하면, 탭(402)은 우측 상의 캐소드에 연결된다. 로드 하에 있을 때, 캐소드 전류들(502)은 탭(402)을 향해 흐르는데 도 5의 도면에서는 전하 기울기에 따라 좌측에서 우측으로 흐른다. 캐소드 전류(502)는 대체적으로 도 5의 도면에서 좌측에서 우측으로 흐른다. 도 5의 예시적 실시예에 있어서, 캐소드 전류(502)는 캐소드의 하부 좌측 부분으로부터 캐소드의 상부 우측 부분으로 흐르는 경향이 있다.
이것이 발생할 때, 제2 자계(504)가 오른손의 법칙에 따라 발생될 것이다. 제2 자계(504)는 탭(402) 근처에서 가장 클 것이며, 전자들이 애노드의 역할을 하는 전극(260)으로부터 전해질을 통해 분리기를 통해 통과됨에 따라 탭(402)으로부터 떨어져서 더 작아질 것이다.
도 5에 도시된 바와 같이, 전지 구성으로 인해, 제1 자계(503) 및 제2 자계(504)가 부가된다. 애노드 전류(501) 및 캐소드 전류(502)가 화살표들로 도시되고 있으나, 전지가 이동 전화에서의 GSM 송수신기와 같은 시변 로드를 서비스할 때, 결과로서 생긴 교호 자계가 외부 잡음으로서 그 자체를 나타낸다. 이 잡음은 큰 베이스밴드 자계를 생성할 수 있다.
이제 도 6을 참조하면, 테스트 GSM 로드로 전류를 전달할 때 도 5의 구성에 의해 발생되는 자계들(503,504)의 슬라이스의 플롯이 예시되어 있다. 플롯(601)은 X-방향으로 측정된 자계의 슬라이스를 도시하는 한편, 플롯(602)은 Y-방향으로 측정된 자계의 슬라이스를 도시한다. 라인들(603)은 최대 강도 자계들을 도시하는 한편, 라인들(607)은 최소 강도 자계들을 도시한다. 라인들(605)은 중간 강도 자계들을 도시한다.
플롯(601 및 602)에서 각 측정은 0 dB로 참조되며, 이는 미터 당 1 암페어이다. 플롯(601)에서, 최대 자계는 8.49 dB인 한편, 최소 자계는 -29.75 dB이다. 플롯(602)에서, 최대 자계는 4.07 dB인 한편, 최소 자계는 -30.23 dB이다.
알 수 있는 바와 같이, 시변 부하 전류 하에서, 젤리롤(400) 및 탭들(401,402)의 전극 와인딩들은 베이스밴드 자계 잡음의 큰 등고선들을 발생시키는 전류의 루프들을 함께 생성한다. 젤리롤이 안전 회로를 갖는 배터리 내에 포함되는 경우에, 자계 잡음은 동반하는 회로 보드 어셈블리의 설계로 더 악화될 수 있다. 텔레코일 모드들에서 동작하는 보청기들에서, 배터리의 자계 방출들은 보청기 내의 신호 대 잡음비들을 감소시킬 수 있다.
본 발명의 실시예들은 상당히 감소된 자계 잡음을 제공하는 전지 및 배터리 구성들을 제공한다. 일 실시예에 있어서, 전지 구성은 젤리롤을 롤링하기 전에 스택의 동일한 단부 상에 물리적으로 애노드 및 캐소드에 결합된 탭들을 위치시키는 것을 포함한다. 적절하게 배치되는 경우에, 애노드 및 캐소드에서 흐르는 전류들은 그들이 실질적으로 유사한 크기들에서 대향 방향들로 실질적으로 이동하도록 분산됨으로써, 동일한 방향 전류 흐름을 경감할 수 있다. 어떤 실시예들에 있어서, 탭들은 추가적인 루프들이 커넥터 단자 또는 안전 회로조직에 전지를 연결하는 탭들에 의해 형성되는 것을 방지하도록 서로 위에 물리적으로 배치될 수 있다.
어떤 실시예들에 있어서, 다수의 탭들이 각 전극에 이용된다. 예를 들어, 2개의 탭들이 각 탭이 외부 연결에 대한 리드에 연결된 상태에서, 각 전극의 대향 단부들 상에 배치될 수 있다. 어떤 실시예들에 있어서, 고 투자율 자성 재료(high permeability magnetic material)들은 탭들, 전극들, 또는 캔과 같은 전지 구성요소들 내에 포함된다. 어떤 실시예들에 있어서, 캔의 내벽들은 고 투자율 자성 재료들로 코팅될 수 있다. 게다가, 어떤 실시예들에 있어서 전극들 자체들이 고 투자율 자성 재료들로 코팅될 수 있다. 어떤 실시예들에 있어서, 전지들 내의 전도성 트레이스들은 그 자계들이 상쇄되도록 라우팅될 수 있다. 어떤 실시예들에 있어서, 자성 상쇄 코일들이 배터리 구조 또는 캔에 추가될 수 있다. 이 코일들은 전지 및 탭들의 자계를 상쇄시키도록 작용한다. 이 각각은 이하의 도면들과 함께 더 상세히 설명될 것이다.
이제 도 7을 참조하면, 젤리롤로의 와인딩에 적절하며, 종래의 구성들과 비교될 때 방출된 자계 잡음을 상당히 감소시키도록 구성된 전극 어셈블리(700)의 일 실시예가 예시되어 있다. 도 7의 전극 어셈블리(700)는 캐소드(701) 및 애노드(702)를 갖는 전지 스택을 포함한다. 서로 위에 계층화될 때, 분리기(도시되지 않음)는 전자들이 충전 및 방전 동안 캐소드(701) 및 애노드(702)로 그리고 캐소드(701) 및 애노드(702)로부터 통과되게 하도록 그 사이에 배치된다.
호일 알루미늄 또는 다른 도전성 재료로 제조된 도전성 탭으로서 도 7에 도시된 제1 전기 도체(703)는 캐소드(701)에 결합된다. 도 7에 도시된 바와 같이, 제1 전기 도체(703)는 전지 스택의 제1 단부(705)에 결합된다. 전지 스택은 제1 단부(705) 및 제2 단부(706)를 포함한다.
호일 알루미늄 또는 구리 또는 다른 유사한 재료로 제조된 도전성 탭으로서 도 7에도 도시된 제2 전기 도체(704)는 애노드(702)에 결합된다. 도 7에 도시된 바와 같이, 제2 전기 도체(704)는 제1 전기 도체(703)와 같이 전지 스택의 제1 단부(705)에 결합된다. 따라서, 제1 전기 도체(703) 및 제2 전기 도체(704) 둘 다는 전지 스택의 동일한 단부에서 각각 캐소드(701) 및 애노드(702)에 결합된다. 단락이 헤더(707)에서 발생하지 않는 것을 보증하기 위해, 브리지 부재(708)가 헤더(707) 상의 콘택트(709)에 제2 전기 도체(704)를 결합시킴으로써, 헤더(707)를 따라 제1 전기 도체(703)에 연결된 콘택트(710)와 제2 전기 도체(704) 사이의 소정의 양의 물리적 분리를 제공한다.
로드 하에 있을 때, 캐소드 전류들(711)은 제1 전기 도체(703)를 향해 흐르며, 이는 도 7의 도면에서 좌측에서 우측이다. 캐소드 전류들(711)은 캐소드 구성 및 로드에 의존하는 기울기에 따라 흐른다. 캐소드 전류(711)는 대체적으로 도 7의 도면에서 좌측에서 우측으로 흐른다. 도 7의 예시적 실시예에 있어서, 캐소드 전류(711)는 캐소드의 하부 좌측 부분으로부터 캐소드(701)의 상부 우측 부분으로 흐르는 경향이 있을 것이다.
이것이 발생할 때, 제1 자계(713)는 오른손의 법칙에 따라 발생될 것이다. 제1 자계(713)는 제1 전기 도체(703) 근처에서 가장 클 것이며, 전자들이 애노드(702)로부터 분리기를 통해 통과됨에 따라 제1 전기 도체(703)로부터 떨어져서 더 작아질 것이다.
동시에, 도 7의 실시예에 있어서의 애노드 전류들(712)은 애노드(702)에 결합되는 제2 전기 도체(704)로부터 흘러 나간다. 따라서, 애노드 전류(712)는 대체적으로 기울기 함수에 따라 도 7의 도면에서 우측에서 좌측으로 흐른다. 제2 전기 도체(704)는 애노드(702)의 상부 부분에 결합되므로, 애노드 전류(712)는 애노드(702)의 상부 우측 부분으로부터 애노드(702)의 하부 좌측 부분으로 흐르는 경향이 있을 것이다.
이것이 발생할 때, 제2 자계(714)는 오른손의 법칙에 따라 발생될 것이다. 제2 자계(714)는 제2 전기 도체(704) 근처에서 가장 클 것이며, 전자들이 분리기를 통해 캐소드(701)까지 통과함에 따라 제2 전기 도체(704)로부터 떨어져서 더 작아질 것이다.
도 7에 도시된 바와 같이, 전지 구성으로 인해, 제1 자계(713) 및 제2 자계(714)는 서로 상쇄시키는 경향이 있다. 캐소드(701)를 따르는 제1 전기 도체(703)의 배치 및 애노드(702)를 따르는 제2 전기 도체(704)의 배치와 함께, 각 전극의 사이즈 및 재료들을 변화시킴으로써, 설계자는 특정 배터리 구성에 대한 결과로서 생긴 자계 잡음을 최소화하도록 전지 스택을 "튜닝"할 수 있다. 예를 들어, 설계자가 고용량, 직사각형 배터리를 설계하면, 설계자는 그 물리적 구성에 대한 결과적인 자계 잡음을 최소화시키도록 제1 전기 도체(703) 및 제2 전기 도체(704) 각각의 정확한 배치를 변화시킬 수 있다.
도 7의 예시적 실시예에 있어서, 제1 전기 도체(703) 및 제2 전기 도체(704)는 전지 스택의 제1 단부(705)에서 서로 위에 배치된다. 이것은 설명을 위해 도 7에 이용되는 단지 일 실시예인 것을 주목한다. 본 발명의 실시예들이 그렇게 제한되지 않는 것은 본 명세서의 이익을 갖는 당업자들에게 명백해질 것이다. 예를 들어, 서로 위에 배치되는 것 대신에, 제1 전기 도체(703) 및 제2 전기 도체(704)는 헤더(707)를 따라 분리될 수 있다. 그들이 도 7에서와 같이 구성되는 경우에, 단락 문제들을 방지하기 위해, 전기 절연 층(715)이 그 사이에 배치될 수 있다. 이 구성에서, 방전 동안, 전류는 실질적으로 반대 방향들로 캐소드(701) 및 애노드(702)의 인접 영역들에 걸쳐 통과한다. 또한, 전류는 실질적으로 동일한 크기로 캐소드(701) 및 애노드(702)의 인접 영역들을 따라 통과한다. 마찬가지로, 전류는 전극 어셈블리에 의해 발생된 전체 자계 잡음을 감소시키도록 실질적으로 대향 방향들로 제1 전기 도체(703) 및 제2 전기 도체(704)를 통해 통과된다.
상술한 튜닝 처리를 이용하면, 설계자는 캐소드(701), 애노드(702), 제1 전기 도체(703), 및 제2 전기 도체(704)를 흐르는 전류의 방향뿐만 아니라, 또한 상대 크기들도 제어함으로써 전지에 의해 발생된 잡음을 크게 감소시킬 수 있다. 제1 전기 도체(703) 및 제2 전기 도체의 배치를 변화시킴으로써, 설계자는 방향이 반대이며 거의 동일한 크기들인 전류들이 거기서 흐르는 것을 달성할 수 있다. 캐소드(701) 및 애노드(702)에서 흐르는 전류들은 캐소드(701) 및 애노드(702)의 재료들, 기하학적 구조, 및 사이즈뿐만 아니라, 제1 전기 도체(703) 및 제2 전기 도체(704)의 배치, 기하학적 구조, 및 사이즈를 변경하는 기울기 기능으로 변화되므로, 설계자는 캐소드(701) 및 애노드(702)의 인접 부분들 상에서 실질적으로 균등한 크기들의 대향 전류들을 달성할 수 있다.
예로서 예시하면, 전지 스택의 제1 단부(705) 상에 제1 전기 도체(703) 및 제2 전기 도체(704)를 간단히 배치하는 것은 대향 방향으로 흐르는 전류들(711, 712)을 달성할 수 있다. 그러나, 본 발명의 실시예들에 따른 제1 전기 도체(703) 및 제2 전기 도체(704)의 배치를 변화시킴으로써, 설계자는 애노드(702) 및 캐소드(701)의 길이의 대부분에 걸쳐 대향하며 실질적으로 대등한 전류들을 달성할 수 있다.
이제 도 8을 참조하면, 테스트 GSM 로드에 전류를 전달할 때 도 7의 구성에 의해 발생된 자계의 슬라이스의 플롯이 예시되어 있다. 플롯(801)은 X-방향으로 측정된 자계를 도시하는 한편, 플롯(802)은 Y-방향으로 측정된 자계를 도시한다. 라인들(803)은 최대 강도 자계들을 도시하는 한편, 라인들(807)은 최소 강도 자계들을 도시한다. 라인들(805)은 중간 강도 자계들을 도시한다.
도 6과 같이, 플롯(801) 및 플롯(802)에서 각 측정은 0 dB로 참조되며, 이는 미터 당 1 암페어이다. 플롯(801)에서, 최대 자계는 -4.81 dB인 한편, 최소 자계는 -32.91 dB이다. 플롯(802)에서, 최대 자계는 -1.06 dB인 한편, 최소 자계는 -30.86 dB이다. 도 8을 도 6과 비교할 때, 측정된 자계 잡음에서의 현저한 감소가 보여질 수 있다. X-평면에서, 12 dB 이상의 감소가 최대 자계에서 발생되었다. Y-평면에서, 대략 5 dB의 감소가 발생되었다.
이제 도 9를 참조하면, 종래의 구성들과 비교될 때 젤리롤로의 와인딩 및 캔 또는 하우징 내의 배치에 적절하며, 방출된 자계 잡음을 상당히 감소시키도록 구성된 전극 어셈블리(900)의 다른 실시예가 예시되어 있다. 도 9의 전극 어셈블리(900)는 캐소드(901) 및 애노드(902)를 갖는 전지 스택을 포함한다. 서로 위에 계층화될 때, 분리기(도시되지 않음)가 각각 충전 및 방전 동안 이온들이 캐소드(901) 및 애노드(902)로 그리고 캐소드(901) 및 애노드(902)로부터 통과되게 하도록 그 사이에 배치된다.
제1 전기 도체(903)가 캐소드(901)에 결합된다. 도 9에 도시된 바와 같이, 제1 전기 도체(903)는 전지 스택의 제1 단부(905)에 결합된다. 전지 스택은 제1 단부(905) 및 제2 단부(906)를 포함한다.
제2 전기 도체(904)가 애노드(902)에 결합된다. 도 9에 도시된 바와 같이, 제2 전기 도체(904)는 제1 전기 도체(903)와 같이 전지 스택의 제1 단부(905)에 결합된다. 따라서, 제1 전기 도체(903) 및 제2 전기 도체(904) 둘 다는 전지 스택의 동일한 단부에서 각각 캐소드(901) 및 애노드(902)에 결합된다.
제3 전기 도체(991)가 전지 스택의 제2 단부(906)에서 캐소드(901)에 결합된다. 제1 브리지 부재(993)는 제1 전기 도체(903)에 제3 전기 도체(991)를 결합한다.
제4 전기 도체(992)가 전지 스택의 제2 단부(906)에서 애노드(902)에 결합된다. 제2 브리지 부재(994)는 제4 전기 도체(992) 및 제2 전기 도체(904)를 결합한다.
도 9의 예시적 실시예에 있어서, 제5 전기 도체(981)는 헤더(907) 상의 콘택트(910)에 제1 브리지 부재(993)를 연결한다. 마찬가지로, 제6 전기 도체(982)가 헤더(907) 상의 콘택트(909)에 제2 브리지 부재(994)를 결합한다.
일 실시예에 있어서, 제1 전기 도체(903) 및 제2 전기 도체(904)는 전기 절연 재료의 선택적인 층이 그 사이에 배치된 상태에서 서로 위에 배치된다. 마찬가지로, 제3 전기 도체(991) 및 제4 전기 도체(992)는 전기 절연 재료의 선택적인 층이 그 사이에 배치된 상태에서 서로 위에 배치될 수 있다. 게다가, 제1 브리지 부재(993)는 전기 절연 재료의 선택적인 층이 그 사이에 배치된 상태에서 제2 브리지 부재(994) 위에 배치될 수 있다. 그러한 구성에서, 각각 애노드(902) 및 캐소드(901)에서 흐르는 전류들은 실질적으로 동일한 크기 및 반대 방향이어서, 임의의 결과로서 생긴 자계 잡음 방출을 경감할 것이다. 이러한 "그 대응부 위의 모든 것"의 구성은 예시를 위해 도 9에 이용되는 단지 일 실시예인 것을 주목한다. 본 발명의 실시예들이 그렇게 제한되지 않는 것은 본 명세서의 이익을 갖는 당업자들에게 명백해질 것이다. 예를 들어, 다른 전극으로부터 그 대응부 위에 배치되는 각 구성요소 대신에, 소량의 분리는 예를 들어 절연 재료들에 대한 요구를 제거하기 위해 제공될 수 있다.
로드 하에 있을 때, 캐소드 전류들(911, 995)은 각각 제1 전기 도체(903) 및 제4 전기 도체(992)를 향해 흐르며, 이는 도 9의 도면에서 캐소드 전류(911)에 대해서는 좌측에서 우측이며 캐소드 전류(995)에 대해서는 우측에서 좌측이다. 모든 다른 조건이 동등하다면, 이 전류들(911, 995)은 도 7의 실시예의 동일한 도체들을 흐르는 전류들의 대략 절반일 것이며, 이로써 이 도체들에 대한 대응적으로 발생된 자계들을 더 감소시키는 것을 주목한다(애노드에 대해서도 동일함). 캐소드 전류들(911, 995)은 캐소드 구성 및 로드에 의존하는 기울기에 따라 흐른다. 캐소드 전류들(911, 995)은 일반적으로 도 9의 도면에서 위 및 아래로 캐소드(901)의 중앙 부분으로부터 흐른다. 도체 전류들과 같이, 캐소드 전류들(911, 995)은 다수의 도체들(901, 991)을 통해 흐르므로, 캐소드를 따라 흐르는 피크 전류 밀도들은 도 7의 것에 대략 절반일 것이며, 이로써 피크 자계 방출들을 더 감소시킨다(애노드에 대해서도 동일함).
이것이 발생할 때, 제1 자계들(913, 997)은 오른손의 법칙에 따라 발생될 것이다. 제1 자계들(913, 997)은 제1 전기 도체(903) 및 제3 전기 도체(991) 근처에서 가장 클 것이며, 캐소드(901)의 중앙을 향해 작아질 것이다.
동시에, 도 9의 실시예에 있어서 애노드 전류들(912, 996)은 각각 제2 전기 도체(904) 및 제4 전기 도체(992)로부터 흐른다. 따라서, 애노드 전류(912)는 대체적으로 기울기 함수에 따라 도 9의 도면에서 우측에서 좌측으로 흐르는 한편, 애노드 전류(996)는 좌측에서 우측으로 흐른다. 도 9의 예시적 실시예에 있어서, 애노드 전류들(912, 996)은 애노드(902)의 상부 코너 부분들로부터 하부 중앙 부분들로 흐르는 경향이 있을 것이다.
이것이 발생할 때, 제2 자계들(914, 998)은 오른손의 법칙에 따라 발생될 것이다. 제2 자계들(914, 998)은 제2 전기 도체(904) 및 제4 전기 도체(992) 근처에서 가장 클 것이며, 전자들이 분리기를 통해 캐소드(901)까지 통과함에 따라 애노드(902)의 중앙 부분들을 향해 작아질 것이다.
도 9에 도시된 바와 같이, 전기 도체들(903, 904, 991, 992) 및 브리지 부재들(993, 994)의 전지 구성 및 배치로 인해, 제1 자계들(913, 997) 및 제2 자계들(914, 998)은 서로 상쇄시키는 경향이 있다. 게다가, 애노드 전류들(912, 996) 및 캐소드 전류들(911, 995)은 전극 어셈블리에 의해 발생된 전체 자계 잡음을 감소시키도록 반대 방향으로 되고 실질적으로 유사한 크기가 되는 경향이 있다. 또한, 도체들(903 및 991)에서의 전류들은 도체들에 의해 발생된 전체 자계 잡음을 감소시키도록 도체들(904 및 992)에서의 전류들과 반대 방향으로 되고 실질적으로 유사한 크기가 되는 경향이 있다. 브리지 부재들(993 및 994)에 대해서 동일한 것이 유지된다.
이제 도 10을 참조하면, 테스트 GSM 로드에 전류를 전달할 때 도 9의 구성에 의해 발생된 자계의 슬라이스의 플롯이 예시되어 있다. 플롯(1001)은 X-방향으로 측정된 자계를 도시하는 한편, 플롯(1002)은 Y-방향으로 측정된 자계를 도시한다. 라인들(1003)은 최대 강도 자계들을 도시하는 한편, 라인들(1007)은 최소 강도 자계들을 도시한다. 라인들(1005)은 중간 강도 자계들을 도시한다.
도 6 및 도 8과 같이, 플롯(1001) 및 플롯(1002)에서 각 측정은 0 dB로 참조되며, 이는 미터 당 1 암페어이다. 플롯(1001)에서, 최대 자계는 -7.39 dB인 한편, 최소 자계는 -33.42 dB이다. 플롯(1002)에서, 최대 자계는 -5.97 dB인 한편, 최소 자계는 -30.49 dB이다. 도 10을 도 6과 비교할 때, 측정된 자계 잡음에서의 현저한 감소가 보여질 수 있다. X-평면에서, 거의 15 dB의 감소가 최대 자계에서 발생되었다. Y-평면에서, 9 dB보다 많은 감소가 발생되었다.
상기 도시된 바와 같이, 탭들의 배치 및 전지 스택 구성의 배치는 도 4에 도시된 캔과 같이, 젤리롤로 감기고 하우징 내에 배치될 때 결과로서 생긴 전지에 의해 방출된 자계 잡음을 크게 감소시킬 수 있다. 그러나, 본 발명의 다른 실시예들에 따르면, 설계자가 자계 잡음을 더 경감하도록 취할 수 있는 추가적인 단계들이 있다.
이제 도 11을 참조하면, 본 발명의 실시예들에 따라 구성된 전극 어셈블리에서의 이용에 적절한 하나의 전극(1100)의 단면도가 예시되어 있다. 도 11에서, 전극(1100)은 금속 하이브리드 전하 축적 재료 또는 리튬 삽입 재료의 층과 같은 전기 화학 활성 재료의 층(1118)을 포함한다. 전류 수집 층(1120)이 이 층(1118) 아래에 배치된다. 전류 수집 층(1120)은 니켈, 구리, 스테인리스 스틸, 은, 알루미늄, 니켈 도금 스틸, 마그네슘 도핑 알루미늄, 구리 기반 합금들, 또는 티탄을 포함하는 다수의 금속들 또는 합금들 중 어느 하나로 제작될 수 있다.
전기 화학 활성 재료의 각 층(1118, 1122)은 고 투자율 재료(1111)의 입자들로 충진 또는 함침되었다. 고 투자율 재료들(1111)의 예들은 니켈, 코발트, 망간, 크롬, 및 철을 포함한다. 고 투자율 재료들(1111)로 전기 화학 활성 재료를 함침함으로써, 전체 자계 잡음이 더 감소될 수 있다.
이제 도 12를 참조하면, 본 발명의 실시예들에 따라 구성된 전극 어셈블리에서의 이용에 적절한 다른 전극(1200)의 단면도가 예시되어 있다. 도 12에서, 전극(1200)은 전기 화학 활성 재료의 층(1218)을 포함한다. 전류 수집 층(1220)이 이 층(1218) 아래에 배치된다.
도 12에서, 전류 수집 층(1220)은 고 투자율 재료(1211)의 층들로 코팅되었다. 고 투자율 재료들(1211)로 전류 수집 층(1220)을 코팅함으로써 전체 자계 잡음이 더 감소될 수 있다. 물론, 고 투자율 함침을 이용하는 도 11의 실시예, 및 도 12의 실시예의 조합은 본 발명의 실시예들에 따라 구성될 수도 있다.
이제 도 13을 참조하면, 예시 목적들을 위해 캔으로서 구성되는 하우징(1301) 내에 배치된 본 발명의 실시예들에 따라 구성된 전극 어셈블리(1300)의 일 실시예가 예시되어 있다. 방출된 자계 잡음을 더 감소시키기 위해, 이 예시적 실시예에서, 하우징(1301)은 고 투자율 재료(1302)로 코팅되었다. 도 13의 예시적 실시예에서 하우징(1301)의 내벽들이 코팅될지라도, 본 발명의 실시예들이 그렇게 제한되지 않는 것이 본 명세서의 이익을 갖는 당업자들에게 명백할 것이다. 예를 들어, 하우징(1301)의 외부 표면들은 고 투자율 재료(1302)로 대등하게 코팅될 수 있다. 게다가, 하우징(1301)의 내부 및 외부 표면들 둘 다는 고 투자율 재료(1302)로 코팅될 수도 있다.
이제 도 14 내지 도 17을 참조하면, 방출된 자계 잡음을 더 감소시키도록 구성된 배터리 구성요소 구성들의 실시예들이 예시되어 있다. 이 점에 대하여, 본 발명의 실시예들은 고 투자율 재료들의 전지 구성들 및 통합에 초점을 맞추었다. 도 14 내지 도 17의 실시예들은 전체 배터리 팩에 대해 전지의 헤더 상의 콘택트들로부터 외부로 배치된 콘택트 블록들로 진행하는 도전성 트레이스들의 설계를 논한다.
도 14를 시작하면, 배터리 팩(1400) 내의 헤더를 따라 배치된 애노드 콘택트(1401) 및 캐소드 콘택트(1402)를 갖는 배터리 팩(1400)이 예시되어 있다. 상기 도 7의 논의로부터, 어떤 실시예들에 있어서는 애노드 콘택트(1401) 및 캐소드 콘택트(1402) 사이의 미리 결정된 거리(710)가 요구된다는 것을 생각한다. 그러한 구성에서 자계 잡음의 방출의 경감을 돕기 위해, 콘택트 블록(1408)의 음단자(1403) 및 양단자(1404)는 함께 근접 배치되었다. 이 배치는 애노드 콘택트(1401)로부터 음단자(1403)로 그리고 캐소드 콘택트(1402)로부터 양단자(1404)로 각각 진행하는 도체들(1405, 1406)에 의해 생성된 임의의 전류 루프들의 영역을 최소화하도록 작용한다. 루프들의 최소화는 배터리 팩(1400)에 의해 방출된 외부 자계를 최소화하도록 작용한다.
이제 도 15를 참조하면, 본 발명의 실시예들에 따라 구성된 다른 배터리 팩(1500)이 예시되어 있다. 도 15에서, 설계 제약들로 인해, 음단자(1503) 및 양단자(1504)는 콘택트 블록(1508)을 따라 인접한 관계로 배치될 수 없다. 이것은 배터리 팩(1500)이 결합되는 전자 장치가 그러한 콘택트 블록 구성을 요구할 때 발생할 수 있다.
그러한 상황에서 방출된 자계 잡음을 경감하기 위해, 본 발명의 일 실시예에 있어서, 전지의 일 극성으로부터의 도체(1505)는 제2 극성의 도체(1506)에 근접하도록 부분적 루프 또는 코일에서 헤더(1507)에 걸쳐 라우팅될 수 있다. 이 라우팅은 결과로서 생긴 전류 루프들의 임의의 포함된 영역을 감소시키도록 작용함으로써, 외부로 방출된 자계들을 감소시킨다. 각 도체(1505, 1506)는 전지 내의 전기 화학 활성 층들 및 전류 수집기 층들에, 하우징을 따라 배치된 도전성 표면들인 음단자(1503) 및 양단자(1504)를 결합하는 전기 도체의 역할을 한다.
이제 도 16 및 도 17을 참조하면, 본 발명의 실시예들에 따라 구성된 추가적인 배터리 팩들(1600, 1700)이 예시되어 있다. 도 16 및 도 17에서, 도전성 재료의 하나 이상의 턴들을 포함하는 코일(1608, 1708)은 자계 잡음을 더 감소시키도록 전지 상에 또는 전지 주위에 최적으로 배치된다. 각 코일(1608, 1708)은 전기 화학 활성 층, 전류 수집기 층, 및 전기 도체들의 조합들 내에 발생된 자계들이 배터리 팩의 방전 동안 감소되도록 하우징 내에 또는 하우징 상에 배열된다.
코일들(1608, 1708)은 캐소드 콘택트(1602, 1702) 또는 애노드 콘택트(1601, 1701)에 직렬로 연결된다. 각 코일(1608, 1708)은 각 전지에 의해 방출된 자계들이 거의 완전히 상쇄되도록 형상, 배치, 및 턴 수의 설계에 의해 최적화될 수 있다. 대안으로, 코일들(1608, 1708)의 형상은 큰 영역에 걸쳐 자계들을 상쇄하는 것이 실행불가능하면, 보청기가 동작을 시도할 수 있는 이어피스 스피커(earpiece speaker) 근처와 같이, 배터리로부터 떨어져서 설계자에 의해 목표된 특정 영역에서 방출된 자계들을 상쇄시키도록 설계될 수 있다.
일 실시예에 있어서, 코일들(1608, 1708)은 각 배터리 팩(1600, 1700)의 하우징들을 따라 배치된다. 하우징의 타입은 코일(1608, 1708)이 애노드 콘택트(1601, 1701) 또는 캐소드 콘택트(1602, 1702)에 연결되는 지를 판단하도록 작용할 수 있다. 하우징이 스틸로 제조되는 경우에, 하우징은 일반적으로 양단자(1704)로부터 분리될 것이다. 따라서, 코일(1708)이 하우징을 따라 배치되는 경우에, 코일은 애노드 콘택트(1701)에 결합되어야 한다. 하우징이 알루미늄으로 제조되는 경우에, 하우징은 일반적으로 음단자(1603)로부터 분리될 것이다. 따라서, 코일(1608)이 하우징을 따라 배치되는 경우에, 코일은 캐소드 콘택트(1602)에 결합되어야 한다.
이 점에 대하여, 본 발명의 실시예들은 - 예시를 위해 - 젤리롤 구조로 구성된 전극-분리기-전극 스택들에 관한 것이었다. 그러나, 본 발명의 실시예들이 그렇게 제한되지 않는 것은 본 명세서의 이익을 갖는 당업자들에게 명백할 것이다. 예를 들어, 이제 도 18을 참조하면, 본 발명의 실시예들에 따라 구성된 접힌 구성이 예시되어 있다.
도 18에서, 젤리롤로 구성되기 보다는 오히려, 전지(1800)는 접힌 구성으로 구성된다. 접힌 구조로 구성됨에도 불구하고, 탭들(1801, 1802)은 전지의 동일한 단부(1805)에서 애노드(1803) 및 캐소드(1804)에 결합된다. 예시를 위해 나란히 도시될지라도, 일 실시예에 있어서 탭들(1801, 1802)은 자계 잡음을 경감하도록 서로 위에 정확히 배치된다. 하나의 이유 또는 다른 이유로, 탭들(1801 및 1802)이 서로 바로 위에 배치될 수 없는 경우에, 서로 근접하게 배치하는 것이 - 그 사이에 약간의 공간을 가짐 - 효과적일 수도 있다.
이전 명세서에서, 본 발명의 특정 실시예들이 설명되었다. 그러나, 당업자는 다양한 수정들 및 변경들이 이하의 청구항들에 설명되어 있는 본 발명의 범위로부터 벗어나지 않고 이루어질 수 있는 것을 인식한다. 따라서, 본 발명의 바람직한 실시예들이 예시되고 설명되었을지라도, 본 발명이 그렇게 제한되지 않는 것이 명백하다. 다수의 수정들, 변경들, 변화들, 대체물들, 및 등가물들은 이하의 청구항들에 의해 정의된 바와 같이 본 발명의 사상 및 범위로부터 벗어나지 않고 당업자에게 생각날 것이다. 따라서, 명세서 및 도면들은 제한적 의미라기보다는 오히려 예시적 의미로 간주되어야 하며, 모든 그러한 수정들은 본 발명의 범위 내에 포함되는 것으로 의도된다. 이익들, 장점들, 문제들에 대한 해결법들, 및 임의의 이익, 장점, 또는 해결법이 생각나거나 보다 현저하게 될 수 있게 하는 요소(들)은 임의의 또는 모든 청구범위의 중요한, 요구된, 또는 필수적인 특징들 또는 요소들로서 해석되지 않아야 한다.

Claims (20)

  1. 배터리용 전극 어셈블리로서,
    캐소드 및 애노드와 그 사이에 분리기를 포함하며, 제1 단부 및 제2 단부를 갖는 전지 스택;
    상기 전지 스택의 상기 제1 단부에서 상기 애노드에 결합되는 제1 전기 도체; 및
    상기 전지 스택의 상기 제1 단부에서 상기 캐소드에 결합되는 제2 전기 도체 - 상기 제2 전기 도체는, 상기 제2 전기 도체의 단부와 상기 제1 전기 도체의 해당하는 단부 사이에 미리 결정된 양만큼의 물리적 분리를 제공하는 브리지 부재를 포함함 -
    를 포함하며,
    방전 동안, 상기 전극 어셈블리에 의해 발생된 자계 잡음을 감소시키도록 상기 제1 전기 도체 및 제2 전기 도체를 통해, 그리고 상기 캐소드 및 상기 애노드에 걸쳐 대향 방향들로 유사한 크기의 전류가 흐르는 전극 어셈블리.
  2. 제1항에 있어서, 상기 제1 전기 도체 및 상기 제2 전기 도체는 상기 제1 단부에서 서로 위에 배치되며, 상기 전극 어셈블리는 상기 제1 전기 도체와 상기 제2 전기 도체 사이에 배치된 전기 절연층을 더 포함하는 전극 어셈블리.
  3. 제1항에 있어서, 상기 전지 스택은 젤리롤(jelly roll)로 감기는 전극 어셈블리.
  4. 제1항에 있어서, 상기 전지 스택은 접히는 전극 어셈블리.
  5. 제1항에 있어서,
    상기 전지 스택의 상기 제2 단부에서 상기 애노드에 결합되는 제3 전기 도체; 및
    상기 전지 스택의 상기 제2 단부에서 상기 캐소드에 결합되는 제4 전기 도체를 더 포함하며,
    방전 동안 상기 애노드에서 흐르는 제1 전류가 유사한 크기들로 상기 캐소드에서 흐르는 제2 전류와 대향하도록 구성된 전극 어셈블리.
  6. 제5항에 있어서,
    하우징을 더 포함하며,
    상기 전극 어셈블리는 상기 하우징 내에 배치되고;
    상기 제1 전기 도체 및 상기 제3 전기 도체는 상기 브리지 부재를 포함하는 제1 브리지 커넥터에 의해 상기 하우징 내에서 함께 결합되고;
    상기 제2 전기 도체 및 상기 제4 전기 도체는 제2 브리지 커넥터에 의해 상기 하우징 내에서 함께 결합되는 전극 어셈블리.
  7. 제6항에 있어서, 상기 제1 브리지 커넥터 및 상기 제2 브리지 커넥터는 전기 절연층을 그 사이에 가지고 서로 위에 배치되는 전극 어셈블리.
  8. 제6항에 있어서,
    상기 전지 스택의 상기 제1 단부와 상기 전지 스택의 상기 제2 단부 사이에서 상기 제1 브리지 커넥터 및 상기 애노드에 결합되는 제5 전기 도체; 및
    상기 전지 스택의 상기 제1 단부와 상기 전지 스택의 상기 제2 단부 사이에서 상기 제2 브리지 커넥터 및 상기 캐소드에 결합되는 제6 전기 도체를 더 포함하는 전극 어셈블리.
  9. 제1항에 있어서, 상기 전극 어셈블리가 배치되는 하우징 및 상기 애노드에 결합되는 제1 전기 콘택트와 상기 캐소드에 결합되는 제2 전기 콘택트를 적어도 갖는 헤더를 더 포함하는 전극 어셈블리.
  10. 제9항에 있어서,
    상기 하우징의 외측에 배치된 양단자와 음단자, 및 상기 음단자와 상기 제1 전기 콘택트 또는 상기 양단자와 상기 제2 전기 콘택트 중 하나 이상 사이에 배치된 하나 이상의 도체 턴(conductor turn)들을 더 포함하며,
    상기 하나 이상의 도체 턴들은 상기 자계 잡음을 더 감소시키도록 구성되는 전극 어셈블리.
  11. 제10항에 있어서, 상기 하나 이상의 도체 턴들은 상기 헤더를 따라 배치되는 전극 어셈블리.
  12. 제10항에 있어서, 상기 하나 이상의 도체 턴들은 상기 하우징을 따라 배치되는 전극 어셈블리.
  13. 제9항에 있어서, 상기 하우징은 고 투자율 재료로 코팅되는 전극 어셈블리.
  14. 제1항에 있어서, 상기 애노드 또는 상기 캐소드 중 하나 이상은 고 투자율 재료로 함침(impregnated)되는 전극 어셈블리.
  15. 제1항에 있어서, 상기 애노드 또는 상기 캐소드 중 하나 이상은 고 투자율 재료로 코팅되는 전극 어셈블리.
  16. 배터리 팩으로서,
    애노드;
    캐소드; 및
    상기 애노드와 상기 캐소드 사이에 배치된 분리기를 포함하고,
    상기 애노드와 상기 캐소드 중 하나는, 상기 애노드와 상기 캐소드 중 상기 하나와 상기 애노드와 상기 캐소드 중 또 다른 하나의 해당하는 단부 사이에 미리 결정된 양만큼의 물리적 분리를 제공하는 브리지 부재를 포함하고,
    상기 배터리 팩은,
    상기 배터리 팩 외측에 배치된 단자들을 상기 애노드 및 상기 캐소드 각각에 결합시키는 전기 도체들을 더 포함하며,
    상기 전기 도체들은 상기 애노드 및 상기 캐소드에서의 전류들이 대향 방향으로 유사한 크기들로 흐르게 함으로써 상기 애노드, 상기 캐소드, 및 상기 전기 도체들의 조합들에 의해 배터리 팩 내에 발생된 자계들이 상기 배터리 팩의 방전 동안 감소되도록 상기 배터리 팩 내에 배치되는 배터리 팩.
  17. 제16항에 있어서, 상기 캐소드, 상기 애노드, 및 상기 분리기는 스택으로 배치되며, 상기 전기 도체들은 상기 스택의 일단부에서 상기 애노드 및 상기 캐소드 각각에 결합되는 배터리 팩.
  18. 제17항에 있어서, 상기 스택의 타단부에서 상기 애노드 및 상기 캐소드에 결합되는 추가적인 전기 도체들을 더 포함함으로써, 상기 스택의 각 단부에서 상기 애노드 및 상기 캐소드를 흐르는 상기 전류들이 대향 방향이며 실질적으로 크기가 동일하도록 상기 스택을 구성하는 배터리 팩.
  19. 제17항에 있어서, 상기 배터리 팩의 하우징, 상기 애노드 또는 상기 캐소드, 또는 상기 전기 도체들 중 하나 이상은 그 내부에 또는 그 위에 배치된 고 투자율 재료를 포함하는 배터리 팩.
  20. 제17항에 있어서, 상기 애노드와 상기 캐소드 중 또 다른 하나는, 상기 스택과 상기 단자들 사이에 배치된 전기 도체 재료의 하나 이상의 턴들을 포함하는 배터리 팩.
KR1020127027488A 2010-10-31 2011-09-15 감소된 자계 방출을 갖는 전기 화학 전지 및 대응하는 장치들 KR101477880B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/916,573 US20110262779A1 (en) 2010-04-23 2010-10-31 Electrochemical Cell with Reduced Magnetic Field Emission and Corresponding Devices
US12/916,573 2010-10-31
PCT/US2011/051749 WO2012057931A1 (en) 2010-10-31 2011-09-15 Electrochemical cell with reduced magnetic field emission and corresponding devices

Publications (2)

Publication Number Publication Date
KR20130008591A KR20130008591A (ko) 2013-01-22
KR101477880B1 true KR101477880B1 (ko) 2014-12-31

Family

ID=44721080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127027488A KR101477880B1 (ko) 2010-10-31 2011-09-15 감소된 자계 방출을 갖는 전기 화학 전지 및 대응하는 장치들

Country Status (4)

Country Link
US (1) US20110262779A1 (ko)
KR (1) KR101477880B1 (ko)
CN (1) CN103003980A (ko)
WO (1) WO2012057931A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374293B2 (en) * 2011-11-03 2022-06-28 Cps Technology Holdings Llc Prismatic lithium ion cell with positive polarity rigid container
WO2013177202A1 (en) * 2012-05-21 2013-11-28 Blue Spark Technologies, Inc. Multi-cell battery
DE13852079T1 (de) 2012-11-01 2015-11-19 Blue Spark Technologies, Inc. Pflaster zur Protokollierung der Körpertemperatur
EP3238395A4 (en) 2014-12-24 2018-07-25 Intel Corporation Apparatus and method for buffering data in a switch
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
US10516147B2 (en) 2017-01-24 2019-12-24 9013733 Canada Inc. Battery pack with reduced magnetic field emission
KR102316338B1 (ko) * 2017-04-14 2021-10-22 주식회사 엘지에너지솔루션 전극조립체
KR102179486B1 (ko) 2017-06-02 2020-11-16 주식회사 엘지화학 이차전지
US10849501B2 (en) 2017-08-09 2020-12-01 Blue Spark Technologies, Inc. Body temperature logging patch
WO2022052737A1 (zh) * 2020-09-11 2022-03-17 Oppo广东移动通信有限公司 电池组件及电子设备
CN114173542A (zh) * 2020-09-11 2022-03-11 Oppo广东移动通信有限公司 电路结构、电池、电子设备及电池的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067692A (ja) * 2001-08-24 2003-03-07 Nippon Telegr & Teleph Corp <Ntt> 無線通信モジュール及び無線通信モジュールによる通信方法
JP2007220372A (ja) * 2006-02-14 2007-08-30 Nissan Motor Co Ltd 電池、電池システム、組電池、およびこれらを用いた車両
KR20100058501A (ko) * 2007-07-24 2010-06-03 에이일이삼 시스템즈 인코포레이티드 배터리 셀 구성 및 배터리 셀 구성 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348757A (ja) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd 渦巻き形蓄電池
US6317335B1 (en) 1999-09-24 2001-11-13 Wilson Greatbatch Ltd. Stiffened protection device for protecting an electrical component
US6824917B2 (en) * 2001-12-11 2004-11-30 Nokia Corporation Battery system for a portable electronic device
DE102008032068A1 (de) * 2008-07-08 2010-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbessertes elektrochemisches Speicherelement
US20100316896A1 (en) * 2009-06-10 2010-12-16 Research In Motion Limited Battery for wireless mobile communication device
US8357460B2 (en) * 2009-07-14 2013-01-22 Research In Motion Limited Low magnetic interference battery and mobile communication device
EP2325932B1 (en) * 2009-11-23 2012-04-18 Research In Motion Limited Rechargeable Battery with Reduced Magnetic Leak
US20110262787A1 (en) * 2010-04-23 2011-10-27 Hosein Maleki Electrochemical Cell with Reduced Magnetic Field Emission and Corresponding Devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067692A (ja) * 2001-08-24 2003-03-07 Nippon Telegr & Teleph Corp <Ntt> 無線通信モジュール及び無線通信モジュールによる通信方法
JP2007220372A (ja) * 2006-02-14 2007-08-30 Nissan Motor Co Ltd 電池、電池システム、組電池、およびこれらを用いた車両
KR20100058501A (ko) * 2007-07-24 2010-06-03 에이일이삼 시스템즈 인코포레이티드 배터리 셀 구성 및 배터리 셀 구성 방법

Also Published As

Publication number Publication date
WO2012057931A1 (en) 2012-05-03
CN103003980A (zh) 2013-03-27
US20110262779A1 (en) 2011-10-27
KR20130008591A (ko) 2013-01-22

Similar Documents

Publication Publication Date Title
KR101477880B1 (ko) 감소된 자계 방출을 갖는 전기 화학 전지 및 대응하는 장치들
US10020506B2 (en) Active material for a cathode of a battery cell, cathode, and battery cell
US9972868B2 (en) Curved electrode stack and battery pack including the same
KR100289537B1 (ko) 리튬 이차전지
CA2780705C (en) Low noise battery with a magnetic compensation structure for wireless mobile communication device
CA2763825C (en) Battery for wireless mobile communication device
KR102020757B1 (ko) 전기 에너지 저장 모듈 및 전기 에너지 저장 모듈의 제조 방법
US20110262787A1 (en) Electrochemical Cell with Reduced Magnetic Field Emission and Corresponding Devices
US20100316896A1 (en) Battery for wireless mobile communication device
KR20200064752A (ko) 양극 및 상기 양극을 포함하는 전극조립체
US20110262798A1 (en) Electrochemical storage element
KR20160052252A (ko) 이차 전지
CN109643821A (zh) 电极组件以及包括该电极组件的可再充电电池
US20230207789A1 (en) Secondary electrochemical lithium-ion cell
KR101431726B1 (ko) 안전성이 향상된 전극조립체 및 이를 이용한 이차전지
KR101346746B1 (ko) 낮은 자기 간섭을 갖는 배터리를 위한 장치 및 방법
EP2486613B1 (en) Low noise battery
WO2021198857A1 (en) Coin-type lithium-ion cells
CN116207365A (zh) 具有带内部可熔断体的电池单元的电动化车辆电池

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191213

Year of fee payment: 6