KR101381744B1 - Manufacturing method of conductive and heat-storing textile and a textile thereof - Google Patents

Manufacturing method of conductive and heat-storing textile and a textile thereof Download PDF

Info

Publication number
KR101381744B1
KR101381744B1 KR1020120112438A KR20120112438A KR101381744B1 KR 101381744 B1 KR101381744 B1 KR 101381744B1 KR 1020120112438 A KR1020120112438 A KR 1020120112438A KR 20120112438 A KR20120112438 A KR 20120112438A KR 101381744 B1 KR101381744 B1 KR 101381744B1
Authority
KR
South Korea
Prior art keywords
pvdf
hfp
vgcnf
fabric
textile
Prior art date
Application number
KR1020120112438A
Other languages
Korean (ko)
Inventor
이선희
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020120112438A priority Critical patent/KR101381744B1/en
Application granted granted Critical
Publication of KR101381744B1 publication Critical patent/KR101381744B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Abstract

The present invention relates to a method of manufacturing conductive and heat storing textile and a textile manufactured by the same. More specifically, the present invention relates to a method for manufacturing conductive and heat storing textile and a textile manufactured by the same, wherein a mixture solution is made by mixing vapor growth carbon nanofiber (VGCNF) and poly(vinylidene fluoride)-hexamethylenediamine (PVDF-HFP), and then is electrospun to be nanocoated on the textile in a state of nanofiber web, so that the textile has superior conductivity and heat storing properties by the mixture solution of the VGCNF and the PVDF-HFP, and the physical properties of the corresponding textile is maintained intact by the nanocoating. [Reference numerals] (P100) Step of preparing a mixture solution of VGCNF/PVDF-HFP; (P200) Step of electrospinning the mixture solution of VGCNF/PVDF-HFP to nanocoat the textile in state of nanofiber web

Description

전도성 및 축열성을 가지는 직물의 제조방법 및 이 방법에 의해 제조된 직물{MANUFACTURING METHOD OF CONDUCTIVE AND HEAT-STORING TEXTILE AND A TEXTILE THEREOF}Manufacturing method of the fabric having conductivity and heat storage and the fabric produced by the method {MANUFACTURING METHOD OF CONDUCTIVE AND HEAT-STORING TEXTILE AND A TEXTILE THEREOF}

본 발명은 직물에 전도성 및 축열성을 부여하면서도 해당 직물의 물성은 그대로 유지할 수 있도록 하는, 전도성 및 축열성을 가지는 직물의 제조방법 및 이 방법에 의해 제조된 직물에 관한 것이다.
The present invention relates to a method for producing a fabric having conductivity and heat storage, and to a fabric produced by the method, which can impart conductivity and heat storage property to the fabric while maintaining the physical properties of the fabric.

일반적으로 직물이 전도성을 가지거나 열을 흡수하여 그 내부에 열을 저장할 수 있다면 의류 등 다양한 분야에 적용되어 다양한 장점, 예를 들면 외부의 추위로부터 인체를 보호하거나 또는 난방으로 인한 각종 비용을 절감할 수 있는 장점을 가질 수 있을 것이다.
In general, if the fabric is conductive or absorbs heat and can store heat therein, it can be applied to various fields such as clothing to protect the human body from various cold effects such as external cold or reduce various costs due to heating. It may have advantages.

따라서, 이러한 목적으로 전도성 또는 축열성을 가지는 직물에 대한 개발이 지속적으로 이루어지고 있으며, 상기와 같은 목적으로 현재까지 개발된 대표적인 기술은 원적외선, 근적외선 방사에 의한 방법, 흡습발열을 이용한 방법, 태양광을 열에너지로 변환하는 방법 및 IT 융합 발열 방법이 있다.
Therefore, the development of a fabric having a conductivity or heat storage for this purpose is continuously made, the representative technologies developed so far for such purposes are far-infrared, near-infrared radiation method, method using hygroscopic heat generation, solar light To thermal energy and IT fusion heating method.

먼저, 원적외선, 근적외선 방사에 의한 방법은 산화티탄, 산화주석, 산화규소 등의 세라믹을 섬유에 분산 혼입하거나 코팅, 라미네이티 소재의 수지피막 중에 특정한 세라믹을 분산 혼입시키는 방법으로써 관련 선행기술로 특허문헌 1(대한민국 공개특허공보 제10-2011-0085604호)이 있다.
First, the method of far-infrared and near-infrared radiation is a method in which ceramics such as titanium oxide, tin oxide, and silicon oxide are dispersed and mixed into fibers or coated and dispersed and mixed into specific resins in resin coatings of lamination materials. Document 1 (Korean Patent Publication No. 10-2011-0085604).

또한, 흡습발열을 이용한 방법은 양모가 수분을 취하면 흡착열이 발생하는 원리를 이용한 것으로, 관련 선행기술로써 특허문헌 2(대한민국 공개특허공보 제10-2011-0109330호)가 있다.
In addition, a method using hygroscopic heat generation uses the principle of generating heat of adsorption when wool takes moisture. Patent document 2 (Korean Patent Publication No. 10-2011-0109330) is a related prior art.

아울러, 태양광을 열에너지로 변환하는 방법은 탄화지르코늄, 카본, 유기색소 등이 태양의 근적외선 범위의 광에너지를 흡수하여 열에너지로 변환시키는 것으로, 관련 선행기술로써 특허문헌 3(대한민국 공개특허공보 제10-2009-0021567호) 이 있다.
In addition, a method of converting sunlight into thermal energy is that zirconium carbide, carbon, organic dyes, etc. absorb light energy in the near infrared range of the sun to convert it into thermal energy, Patent Document 3 (Korean Patent Publication No. 10) -2009-0021567).

또한, IT 융합 발열 방법은 전도성 고분자, 열선 등을 섬유와 결합하여 소형 배터리를 이용해 발열하는 것으로, 관련 선행기술로써 특허문헌 4(대한민국 공개특허공보 제10-2000-0044061호)가 있다.
In addition, the IT fusion heating method is to heat the heat generated by using a small battery by combining a conductive polymer, a heating wire and the like, there is a patent document 4 (Korean Patent Publication No. 10-2000-0044061).

하지만, 상기와 같은 종래의 기술들은 축열성 또는 전도성 등이 부여되지만 해당 직물의 물성 변화가 심하여, 그 사용(예를 들면, 의류 등)분야가 극히 제한되는 문제점이 있었다.
However, the above-described conventional techniques are provided with heat storage property or conductivity, but there is a problem that the field of use (for example, clothing, etc.) is extremely limited because the physical properties of the fabric are severely changed.

특허문헌 1 : 대한민국 공개특허공보 제10-2011-0085604호 "원적외선 방사와 발열 및 온도 상승 기능을 갖는 직물의 제조방법 및 그에 의해 제조된 직물"Patent Document 1: Korean Patent Laid-Open Publication No. 10-2011-0085604 "Method of manufacturing far-infrared radiation, heat-generating and heat-up-functioning fabrics, and fabrics produced therefrom & 특허문헌 2 : 대한민국 공개특허공보 제10-2011-0109330호 "고효율 하이브리드 발열섬유의 제조방법"Patent Document 2: Korean Patent Laid-Open No. 10-2011-0109330 "Method of Manufacturing High Efficiency Hybrid Heat Fibers" 특허문헌 3 : 대한민국 공개특허공보 제10-2009-0021567호 "항균 및 흡한 속건성을 지닌 원착 기능성 나일론 섬유의제조방법"Patent Document 3: Korean Patent Laid-Open Publication No. 10-2009-0021567 "Method of producing original functional nylon fiber having antibacterial and sweat fast drying property" 특허문헌 4 : 대한민국 공개특허공보 제10-2000-0044061호 "전기적 발열장치가 있는 방한의류, 장갑, 신발"Patent Document 4: Korean Patent Laid-Open Publication No. 10-2000-0044061 "Weatherproof Clothes, Gloves and Shoes with Electric Heating Device"

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 증기성장형 탄소나노섬유(vapor growth carbon nano fiber, 이하 'VGCNF' 라 함)와 폴리비닐리덴플루오라이드-헥사메틸렌디아민(polyvinlylidenefluoride-hexamethylenediamine, 이하 'PVDF-HFP' 라 함)으로 복합용액을 제조하고, 이를 전기방사하여 직물에 나노섬유 웹(nanofiber web) 상태로 나노 코팅함으로써, 상기 VGCNF 및 PVDF-HFP 복합용액에 의해 직물에 우수한 전도성 및 축열성이 부여되면서도, 상기 나노 코팅에 의해 해당 직물의 물성은 그대로 유지할 수 있도록 함을 과제로 한다.
The present invention is to solve the above problems, vapor growth carbon nanofibers (hereinafter referred to as' VGCNF ') and polyvinylidene fluoride-hexamethylenediamine (polyvinlylidenefluoride-hexamethylenediamine, hereinafter' PVDF -HFP ') to prepare a composite solution, electrospinning it and nano-coating the fabric in a nanofiber web state, the VGCNF and PVDF-HFP composite solution with excellent conductivity and heat storage properties While being given, the object of the present invention is to maintain the physical properties of the fabric by the nano-coating.

본 발명은 전도성 및 축열성을 가지는 직물의 제조방법에 있어서,The present invention provides a method for producing a fabric having conductivity and heat storage properties,

VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계(P100); 및Preparing a VGCNF and PVDF-HFP composite solution (P100); And

상기 제조된 VGCNF 및 PVDF-HFP 복합용액을 전기방사하여 나노섬유 웹 상태로 직물에 나노 코팅하는 단계(P200);를 포함하여 구성되는 것을 특징으로 하는 전도성 및 축열성을 가지는 직물의 제조방법 및 이 방법에 의해 제조된 직물을 과제의 해결 수단으로 한다.
A method of manufacturing a fabric having conductivity and heat storage properties, comprising the; step (P200) nano-coated to the fabric in a nanofiber web state by electrospinning the prepared VGCNF and PVDF-HFP composite solution The fabric manufactured by the method is a solution to the problem.

여기서, 상기 VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계(P100)는,Here, the step of preparing the VGCNF and PVDF-HFP composite solution (P100),

아세톤 100 중량부에 대하여 PVDF-HFP 칩 10 ~ 15 중량부를 85 ~ 95분간 교반하여 PVDF-HFP 용액을 제조한 후,After stirring 10 to 15 parts by weight of the PVDF-HFP chip for 85 to 95 minutes with respect to 100 parts by weight of acetone to prepare a PVDF-HFP solution,

상기 제조된 PVDF-HFP 용액 100 중량부에 대하여, VGCNF 10 ~ 20 중량부를 첨가하여 85 ~ 95분간 교반하고,To 100 parts by weight of the prepared PVDF-HFP solution, 10 to 20 parts by weight of VGCNF was added and stirred for 85 to 95 minutes,

95 ~ 100W, 40 ~ 45KHz의 조건에서 20 ~ 40시간 동안 초음파 처리한 후, 15 ~ 20℃에서 1 ~ 7일간 보관하여 VGCNF 및 PVDF-HFP 복합용액을 제조하는 것이 바람직하다.
After sonication for 20 to 40 hours at the conditions of 95 ~ 100W, 40 ~ 45KHz, it is preferable to prepare a VGCNF and PVDF-HFP composite solution by storing for 1 to 7 days at 15 ~ 20 ℃.

한편, 상기 VGCNF 및 PVDF-HFP 복합용액을 전기방사하여 나노섬유 웹 상태로 직물에 나노 코팅하는 단계(P200)는,On the other hand, by electrospinning the VGCNF and PVDF-HFP composite solution nano-coated to the fabric in a nanofiber web state (P200),

양전하 직류 전압 35 ~ 45kV까지 공급할 수 있는 고전압 직류 공급기에 23 ~ 26G의 전기방사 바늘을 연결한 후, 12 ~ 21kV 전압을 상기 VGCNF 및 PVDF-HFP 복합용액에 공급하여 전기방사하되, After connecting the electrospinning needle of 23 ~ 26G to a high voltage DC supply capable of supplying a positive charge DC voltage of 35 ~ 45kV, the 12 ~ 21kV voltage is supplied to the VGCNF and PVDF-HFP composite solution to electrospin,

방사 거리는 10 ~ 15cm, 용액의 토출속도는 3 ~ 8ml/h로 15 ~ 20℃에서 전기방사하여 이를 나노섬유 웹 상태로 직물에 나노 코팅하는 것이 바람직하다.
Spinning distance is 10 ~ 15cm, the discharge rate of the solution is 3 ~ 8ml / h it is preferable to electrospun at 15 ~ 20 ℃ by nano-coating the fabric in a nanofiber web state.

본 발명은 VGCNF 및 PVDF-HFP 복합용액에 의해 직물에 우수한 전도성 및 축열성이 부여되면서도, 상기 나노 코팅에 의해 해당 직물의 물성은 그대로 유지할 수 있도록 하는 효과가 있다.
The present invention has the effect of maintaining the physical properties of the fabric by the nano-coating, while excellent conductivity and heat storage properties are imparted to the fabric by the VGCNF and PVDF-HFP composite solution.

도 1은 본 발명의 일 실시예에 따른 전도성 및 축열성을 가지는 직물의 제조방법을 나타낸 흐름도
도 2a 및 도 2b는 주사현미경을 이용하여 전도성 및 축열성을 가지는 직물의 표면특성을 나타낸 300배 및 20,000배 SEM 사진
도 3은 적외선 열화상 측정장치를 이용하여 전도성 및 축열성을 가지는 직물의 표면온도를 측정한 결과를 나타낸 온도변화곡선
1 is a flow chart showing a method of manufacturing a fabric having conductivity and heat storage according to an embodiment of the present invention
Figures 2a and 2b is a 300 times and 20,000 times SEM photograph showing the surface characteristics of the fabric having a conductivity and heat storage using a scanning microscope
Figure 3 is a temperature change curve showing the results of measuring the surface temperature of the fabric having a conductive and heat storage properties using an infrared thermography device

본 발명은 전도성 및 축열성을 가지는 직물의 제조방법 및 이 방법에 의해 제조된 직물에 관한 것으로, 이하 본 발명에 따른 바람직한 실시 예를 상세히 설명하되, 하기의 설명에서는 본 발명을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
The present invention relates to a method for manufacturing a fabric having conductivity and heat storage and to a fabric produced by the method, which will be described in detail below with reference to a preferred embodiment according to the present invention. It is to be noted that this description is made and the description elsewhere will be omitted so as not to obscure the subject matter of the present invention.

상기 본 발명의 목적과 특징 및 장점은 첨부도면 및 다음의 상세한 설명을 참조함으로서 더욱 쉽게 이해될 수 있을 것이다.
The above objects, features and advantages of the present invention will be more readily understood by reference to the accompanying drawings and the following detailed description.

도 1은 본 발명의 일 실시예에 따른 전도성 및 축열성을 가지는 직물의 제조방법을 나타낸 흐름도로써, 본 발명은 VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계(P100) 및 상기 제조된 VGCNF 및 PVDF-HFP 복합용액을 전기방사하여 나노섬유 웹 상태로 직물에 나노 코팅하는 단계(P200)를 포함하여 구성된다.
1 is a flow chart showing a method of manufacturing a fabric having conductivity and heat storage according to an embodiment of the present invention, the present invention is a step of preparing a composite solution of VGCNF and PVDF-HFP (P100) and the prepared VGCNF and PVDF It comprises a step (P200) to nano-coated the fabric in the state of the nanofiber web by electrospinning the HFP composite solution.

상기 VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계(P100)는, 직물에 전도성 및 축열성을 부여하기 위한 VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계로써, 아세톤 100 중량부에 대하여 PVDF-HFP 칩 10 ~ 15 중량부를 85 ~ 95분간 교반하여 PVDF-HFP 용액을 제조한 후, 상기 제조된 PVDF-HFP 용액 100 중량부에 대하여, VGCNF 10 ~ 20 중량부를 첨가하여 85 ~ 95분간 교반하고, 95 ~ 100W, 40 ~ 45KHz의 조건에서 20 ~ 40시간 동안 초음파 처리한 후, 15 ~ 20℃에서 1 ~ 7일간 보관하여 VGCNF 및 PVDF-HFP 복합용액을 제조한다.
The preparing of the VGCNF and PVDF-HFP composite solution (P100) is a step of preparing the VGCNF and PVDF-HFP composite solution for imparting conductivity and heat storage property to the fabric, and the PVDF-HFP chip based on 100 parts by weight of acetone. After stirring 10 to 15 parts by weight for 85 to 95 minutes to prepare a PVDF-HFP solution, 10 to 20 parts by weight of VGCNF was added to 100 parts by weight of the prepared PVDF-HFP solution, stirred for 85 to 95 minutes, 95 ~ After sonication for 20 to 40 hours at 100W, 40 ~ 45KHz condition, and then stored for 1 to 7 days at 15 ~ 20 ℃ to prepare a VGCNF and PVDF-HFP composite solution.

이때, 사용되는 PVDF-HFP는 폴리비닐리덴플루오라이드(polyvinlylidenefluoride)와 헥사메틸렌디아민(hexamethylenediamine)의 공중합체로써 직물에 전도성 및 축열성을 부여하고자 첨가되는 것으로, 아세톤 100 중량부에 대하여, 10 ~ 15 중량부가 사용되는데, 상기 PVDF-HFP의 사용량이 10 중량부 미만일 경우, 전기방사 시 코팅막의 형태가 형성되지 못할 우려가 있으며, 15 중량부를 초과할 경우, 전기방사 시 나노웹상으로 형성되지 못할 우려가 있다.
In this case, PVDF-HFP is used as a copolymer of polyvinlylidenefluoride and hexamethylenediamine and is added to impart conductivity and heat storage property to the fabric. Although parts by weight are used, when the amount of PVDF-HFP is less than 10 parts by weight, there is a risk that the coating film may not be formed during electrospinning, and when it exceeds 15 parts by weight, there is a concern that the PVDF-HFP may not be formed on a nanoweb during electrospinning. have.

아울러, 상기 VGCNF는 고온하에서 분해된 기체상의 탄화수소에 의해서도 생성된 증기성장형 탄소나노섬유(vapor growth carbon nano fiber)로써 직물에 전도성 및 축열성을 부여하고자 첨가되는 것으로, 상기 PVDF-HFP 용액 100 중량부에 대하여, 10 ~ 20 중량부가 사용되는데, 상기 VGCNF의 사용량이 10 중량부 미만일 경우, 전도성이 낮게 나타날 우려가 있으며, 20 중량부를 초과할 경우, 전기방사 시 나노웹상으로 코팅되지 못할 우려가 있다.
In addition, the VGCNF is a vapor growth carbon nanofiber produced by gaseous hydrocarbons decomposed under high temperature, and is added to impart conductivity and heat storage property to the fabric. 100 parts by weight of the PVDF-HFP solution With respect to, 10 to 20 parts by weight is used, when the amount of the VGCNF is less than 10 parts by weight, there is a fear that the conductivity is low, if the amount exceeds 20 parts by weight, there is a fear that the coating on the nanoweb during electrospinning.

한편, 상기 단계(P100)의 각 조건(교반 및 초음파 처리 조건 등)이 상기 범위를 벗어날 경우, VGCNF의 분산성이 저하되어 VGCNF 및 PVDF-HFP 복합용액이 제대로 제조되지 않거나 또는 충분한 전도성 및 축열성을 발현시키지 못할 우려가 있다.
On the other hand, if each condition (stirring and sonication conditions, etc.) of the step (P100) is out of the above range, the dispersibility of the VGCNF is lowered, the VGCNF and PVDF-HFP composite solution is not properly prepared or sufficient conductivity and heat storage property There is a risk of not expressing.

상기 VGCNF 및 PVDF-HFP 복합용액을 전기방사하여 나노섬유 웹 상태로 직물에 나노 코팅하는 단계(P200)는, VGCNF 및 PVDF-HFP 복합용액을 직물에 나노 코팅하여 직물에 우수한 전도성 및 축열성이 부여되면서도 직물의 물성은 그대로 유지할 수 있도록 하는 단계로써, 양전하 직류 전압 35 ~ 45kV까지 공급할 수 있는 고전압 직류 공급기에 23 ~ 26G의 전기방사 바늘을 연결한 후, 12 ~ 21kV 전압을 상기 VGCNF 및 PVDF-HFP 복합용액에 공급하여 전기방사하되, 방사 거리는 10 ~ 15cm, 용액의 토출속도는 3 ~ 8ml/h로 15 ~ 20℃에서 전기방사하여 이를 나노섬유 웹 상태로 직물에 나노 코팅한다.
Nano-coating the fabric in a nanofiber web state by electrospinning the VGCNF and PVDF-HFP composite solution (P200), by nano-coating the VGCNF and PVDF-HFP composite solution on the fabric to give excellent conductivity and heat storage property to the fabric. While maintaining the physical properties of the fabric as it is, after connecting the electrospinning needle of 23 ~ 26G to a high voltage DC supply capable of supplying a positive charge DC voltage of 35 ~ 45kV, 12 ~ 21kV voltage is applied to the VGCNF and PVDF-HFP Electrospinning is supplied to the composite solution, the spinning distance is 10 ~ 15cm, the discharge rate of the solution is 3 ~ 8ml / h and electrospinning at 15 ~ 20 ℃ and nano-coated on the fabric in the state of a nanofiber web.

이때, 상기 단계(P200)의 각조건(전압, 바늘종류, 방사거리, 토출속도, 온도 등)이 상기 범위를 벗어날 경우, VGCNF 및 PVDF-HFP 복합용액이 제대로 전기방사되지 않거나 또는 나노섬유 웹의 형태로 코팅되지 못할 우려가 있다.
At this time, if each condition (voltage, needle type, spinning distance, discharge speed, temperature, etc.) of the step (P200) is out of the above range, the VGCNF and PVDF-HFP composite solution is not properly electrospun or nanofiber web There is a fear that the coating may not be in the form.

한편, 상기 "나노섬유 웹(nanofiber web)"이란, 굵기가 나노미터(nm) 정도의 초극세사로 만든 섬유가 불규칙적으로 연결된 망(web)의 형태를 이루는 것을 의미하며, "나노섬유 웹 상태로 직물에 나노 코팅"된다는 것은, 상기와 같은 나노섬유 웹이 직물에 코팅됨을 의미한다.
On the other hand, the "nanofiber web" means that the fibers made of ultra-fine fibers having a thickness of about nanometers (nm) forms an irregularly connected web (web) in the form of "nanofiber web state Nanocoated "means that the nanofiber web is coated on a fabric.

이하 본 발명을 아래의 실시예에 의거하여 상세히 설명하겠는 바, 본 발명이 아래의 실시예에 의해서만 반드시 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not necessarily limited to the following examples.

1. 전도성 및 축열성을 가지는 직물의 제조
1. Fabrication of fabric having conductivity and heat storage

(실시예 및 비교예)(Examples and Comparative Examples)

아세톤 100 중량부에 대하여 PVDF-HFP(SOLEF 21508, Solvay Co. Ltd.) 칩 PVDF-HFP (SOLEF 21508, Solvay Co. Ltd.) chip based on 100 parts by weight of acetone

10 중량부 또는 15 중량부를 90분간 교반하여 PVDF-HFP 용액을 제조한 후, 상기 제조된 PVDF-HFP 용액 100 중량부에 대하여, VGCNF(Pyrograf III Co. Ltd) 16 중량부를 첨가하여 90분간 교반하고, 100W, 42KHz의 조건에서 24시간 동안 초음파 처리(Brason 3510R-DTH, USA)한 후, 20℃에서 7일간 보관하여 VGCNF 및 PVDF-HFP 복합용액을 제조(P100)하고, 양전하 직류 전압 40kV까지 공급할 수 있는 고전압 직류 공급기(CPS-40K03, Chungpa EMT)에 23G의 전기방사 바늘을 연결한 후, 12, 15, 18 또는 21kV 전압을 상기 VGCNF 및 PVDF-HFP 복합용액에 공급하여 전기방사하되 방사 거리는 12cm, 용액의 토출속도는 5ml/h로 20℃에서 전기방사하여 이를 나노섬유 웹 상태로 면 또는 나일론 직물에 나노 코팅(P200)하여 전도성 및 축열성을 가지는 직물을 제조하였으며, 각 실시예 및 비교예에 따른 구체적인 조건을 아래 [표 1]에 나타내었다.
After stirring 10 parts by weight or 15 parts by weight for 90 minutes to prepare a PVDF-HFP solution, with respect to 100 parts by weight of the prepared PVDF-HFP solution, 16 parts by weight of VGCNF (Pyrograf III Co. Ltd) was added and stirred for 90 minutes. Ultrasonic treatment (Brason 3510R-DTH, USA) for 24 hours at 100W, 42KHz, and then stored at 20 ℃ for 7 days to prepare a composite solution of VGCNF and PVDF-HFP (P100), to supply a positive charge DC voltage of 40kV After connecting a 23G electrospinning needle to a high voltage DC power supply (CPS-40K03, Chungpa EMT), supply a 12, 15, 18 or 21kV voltage to the VGCNF and PVDF-HFP composite solution to electrospin, but the radiation distance is 12cm , The discharge rate of the solution was electrospun at 20 ℃ at 5ml / h and nano-coated (P200) on the cotton or nylon fabric in a nanofiber web state to prepare a fabric having conductivity and heat storage properties, each Example and Comparative Example Specific conditions according to [Table 1] below Indicated.

구분division 인가전압Applied voltage PVDF-HFP 사용량PVDF-HFP Usage 사용직물Fabric used 실시예 1Example 1 1818 1010 if 실시예 2Example 2 1818 1515 if 실시예 3Example 3 2121 1010 if 실시예 4Example 4 2121 1515 if 실시예 5Example 5 1818 1010 나일론nylon 실시예 6Example 6 1818 1515 나일론nylon 실시예 7Example 7 2121 1010 나일론nylon 실시예 8Example 8 2121 1515 나일론nylon 비교예 1Comparative Example 1 1212 1010 if 비교예 2Comparative Example 2 1212 1515 if 비교예 3Comparative Example 3 1515 1010 if 비교예 4Comparative Example 4 1515 1515 if 비교예 5Comparative Example 5 1212 1010 나일론nylon 비교예 6Comparative Example 6 1212 1515 나일론nylon 비교예 7Comparative Example 7 1515 1010 나일론nylon 비교예 8Comparative Example 8 1515 1515 나일론nylon

2. 전도성 및 축열성을 가지는 직물의 평가
2. Evaluation of fabric having conductivity and heat storage

(1) 표면특성(1) Surface properties

상기 각 실시예 및 비교예에 따른 직물의 표면특성을 주사현미경(FE-SEM, JSM-35CF, Jeol, Japan)을 이용하여 관찰하였으며, 그 결과는 도 2a 및 도 2b에 나타내었다.
Surface characteristics of the fabrics according to the above Examples and Comparative Examples were observed using a scanning microscope (FE-SEM, JSM-35CF, Jeol, Japan), the results are shown in Figures 2a and 2b.

(2) 축열성(2) heat storage

축열성 분석은 37℃에서 10분 가열 후, 20초 경과 후에 적외선 열화상 측정장치(TVS-2000MK2 Serie, Nippon Avionivs Co., Ltd)를 이용하여 일정한 거리에서 상기 각 실시예 및 비교예에 따른 직물의 표면온도를 측정하였으며, 그 결과는 도 3에 나타내었다.
Thermal storage analysis is 10 minutes after heating at 37 ℃, 20 seconds after the infrared thermography (TVS-2000MK2 Serie, Nippon Avionivs Co., Ltd) using a fabric according to each of the above Examples and Comparative Examples at a constant distance The surface temperature of was measured, and the results are shown in FIG.

우선, 도 2a 및 2b에서와 같이, 전기방사 시, 비교예 1 ~ 8에서와 같이 인가전압이 12 또는 15kV의 낮은 인가전압으로 코팅한 경우 구슬달린 나노섬유의 웹 형태로 코팅된 것으로 확인하였다. 하지만, 실시예1 ~ 8에서와 같이, 인가전압이 18V이상 증가함에 따라 나노섬유 사이에 있는 구슬의 형태는 작아지고, 나노섬유는 더 가는 형태를 보이고 있었다. 특히 실시예 3,4 및 7, 8과 같이 21kV 전압을 걸어준 경우 균일한 나노웹 상태로 코팅된 것을 확인할 수 있었다.
First, as shown in Figures 2a and 2b, during the electrospinning, when the applied voltage is coated with a low applied voltage of 12 or 15kV as in Comparative Examples 1 to 8 it was confirmed that the coating in the form of a web of beaded nanofibers. However, as in Examples 1 to 8, as the applied voltage increased by more than 18V, the shape of the beads between the nanofibers became smaller, and the nanofibers showed a thinner shape. In particular, when the 21kV voltage was applied as in Examples 3, 4 and 7, 8 it was confirmed that the coating in a uniform nanoweb state.

아울러, 도 3에 도시된 바와 같이, 코팅하지 않은 직물의 경우, 면은 약 28℃, 나일론은 약 31℃에서 나타났으며, 직물의 종류에 관계없이 인가전압이 증가함에 따라 직물에 나노섬유 웹 코팅을 행한 경우, 표면온도는 증가하는 경향을 보였다. 특히, 15 중량부의 PVDF-HFP를 사용한 경우, 면직물의 표면온도는 33℃ 범위에서 나타났다. 즉, 인가전압 및 PVDF-HFP 용액의 농도에 따라 직물에 나노섬유 웹상의 코팅된 모폴로지의 변화에 따라 축열성에 영향을 미치는 것으로 볼 수 있으며, 이는 나노섬유 웹 형성시 열전도율이 낮은 공극이 형성되어 축열성이 증가하는 것으로 볼 수 있다.
In addition, as shown in Figure 3, in the case of the uncoated fabric, cotton appeared at about 28 ℃, nylon at about 31 ℃, the nanofiber web on the fabric as the applied voltage increases regardless of the type of fabric In the case of coating, the surface temperature tended to increase. In particular, when 15 parts by weight of PVDF-HFP was used, the surface temperature of the cotton fabric was in the range of 33 ° C. In other words, depending on the applied voltage and the concentration of PVDF-HFP solution, it can be seen that the heat storage property is affected by the change of the coated morphology on the nanofiber web on the fabric. It can be seen that the recessiveness is increased.

즉, 인가전압이 증가함에 따라 구슬 상에서 나노섬유 웹 상으로 코팅이 가능하였고, 인가전압이 증가할수록, 복합용액의 농도가 클수록 축열 특성이 우수해지는 것을 알 수 있다.
That is, it was possible to coat the nanofiber web on the beads as the applied voltage was increased, and as the applied voltage was increased, the heat storage characteristics were improved as the concentration of the composite solution was increased.

상술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술분야의 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. It can be understood that it is possible.

P100 : VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계
P200 : VGCNF 및 PVDF-HFP 복합용액을 전기방사하여 나노섬유 웹 상태로 직물에 나노 코팅하는 단계
P100: step of preparing a composite solution of VGCNF and PVDF-HFP
P200: Electrospinning of VGCNF and PVDF-HFP composite solution and nanocoating the fabric with nanofiber web

Claims (4)

전도성 및 축열성을 가지는 직물의 제조방법에 있어서,
VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계(P100); 및
상기 제조된 VGCNF 및 PVDF-HFP 복합용액을 전기방사하여 나노섬유 웹 상태로 직물에 나노 코팅하는 단계(P200);를 포함하여 구성되되,
상기 VGCNF 및 PVDF-HFP 복합용액을 제조하는 단계(P100)는, 아세톤 100 중량부에 대하여 PVDF-HFP 칩 10 ~ 15 중량부를 85 ~ 95분간 교반하여 PVDF-HFP 용액을 제조한 후, 상기 제조된 PVDF-HFP 용액 100 중량부에 대하여, VGCNF 10 ~ 20 중량부를 첨가하여 85 ~ 95분간 교반하고, 95 ~ 100W, 40 ~ 45KHz의 조건에서 20 ~ 40시간 동안 초음파 처리한 후, 15 ~ 20℃에서 1 ~ 7일간 보관하여 VGCNF 및 PVDF-HFP 복합용액을 제조하며,
상기 VGCNF 및 PVDF-HFP 복합용액을 전기방사하여 나노섬유 웹 상태로 직물에 나노 코팅하는 단계(P200)는, 양전하 직류 전압 35 ~ 45kV까지 공급할 수 있는 고전압 직류 공급기에 23 ~ 26G의 전기방사 바늘을 연결한 후, 12 ~ 21kV 전압을 상기 VGCNF 및 PVDF-HFP 복합용액에 공급하여 전기방사하되, 방사 거리는 10 ~ 15cm, 용액의 토출속도는 3 ~ 8ml/h로 15 ~ 20℃에서 전기방사하여, 공극이 형성되는 나노섬유 웹 상태로 직물에 나노 코팅함으로써 나노섬유 웹상의 코팅된 모폴로지의 변화에 따라 축열성을 가지는 것을 특징으로 하는 전도성 및 축열성을 가지는 직물의 제조방법.
In the manufacturing method of the fabric having conductivity and heat storage property,
Preparing a VGCNF and PVDF-HFP composite solution (P100); And
Consists of nano-coating the fabric in the state of the nanofiber web by electrospinning the prepared VGCNF and PVDF-HFP composite solution (P200);
In the preparing of the VGCNF and PVDF-HFP composite solution (P100), 10 to 15 parts by weight of the PVDF-HFP chip is stirred for 85 to 95 minutes with respect to 100 parts by weight of acetone to prepare a PVDF-HFP solution. To 100 parts by weight of PVDF-HFP solution, 10 to 20 parts by weight of VGCNF was added, stirred for 85 to 95 minutes, sonicated for 20 to 40 hours at a condition of 95 to 100 W and 40 to 45 KHz, and then at 15 to 20 ° C. It is stored for 1 to 7 days to prepare a composite solution of VGCNF and PVDF-HFP,
Nano-coating the fabric in the state of the nanofiber web by electrospinning the VGCNF and PVDF-HFP composite solution (P200), the electrospinning needle of 23 ~ 26G to a high voltage DC supply capable of supplying a positive charge DC voltage of 35 ~ 45kV After connection, the 12 ~ 21kV voltage was supplied to the VGCNF and PVDF-HFP composite solution and electrospun, but the spinning distance is 10 ~ 15cm, the discharge rate of the solution 3 ~ 8ml / h by electrospinning at 15 ~ 20 ℃, A method of manufacturing a conductive and heat-retaining fabric, characterized in that it has heat storage property according to the change of the coated morphology on the nanofiber web by nano-coating the fabric in the state of the nanofiber web in which the voids are formed.
삭제delete 삭제delete 제 1항에 따른 전도성 및 축열성을 가지는 직물의 제조방법에 의해 제조된 직물.A fabric produced by the method for producing a fabric having conductivity and heat storage properties according to claim 1.
KR1020120112438A 2012-10-10 2012-10-10 Manufacturing method of conductive and heat-storing textile and a textile thereof KR101381744B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120112438A KR101381744B1 (en) 2012-10-10 2012-10-10 Manufacturing method of conductive and heat-storing textile and a textile thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120112438A KR101381744B1 (en) 2012-10-10 2012-10-10 Manufacturing method of conductive and heat-storing textile and a textile thereof

Publications (1)

Publication Number Publication Date
KR101381744B1 true KR101381744B1 (en) 2014-04-07

Family

ID=50656652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120112438A KR101381744B1 (en) 2012-10-10 2012-10-10 Manufacturing method of conductive and heat-storing textile and a textile thereof

Country Status (1)

Country Link
KR (1) KR101381744B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457391A (en) * 2018-12-11 2019-03-12 东华大学 A kind of PcH/ZIF nano fibrous membrane and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718727B1 (en) * 2005-12-31 2007-05-15 성균관대학교산학협력단 Fabrication of conductive pet film using electro-static method
KR100925775B1 (en) * 2007-09-21 2009-11-11 경희대학교 산학협력단 Method for producing polyvinylidene fluoride nanofiber web with high ?- type crystal structure
JP2010531396A (en) 2007-06-27 2010-09-24 アルケマ フランス Method for impregnating continuous fibers with a composite polymer matrix containing a grafted fluoropolymer
US20120225602A1 (en) 2011-03-04 2012-09-06 Xerox Corporation Fuser manufacture and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718727B1 (en) * 2005-12-31 2007-05-15 성균관대학교산학협력단 Fabrication of conductive pet film using electro-static method
JP2010531396A (en) 2007-06-27 2010-09-24 アルケマ フランス Method for impregnating continuous fibers with a composite polymer matrix containing a grafted fluoropolymer
KR100925775B1 (en) * 2007-09-21 2009-11-11 경희대학교 산학협력단 Method for producing polyvinylidene fluoride nanofiber web with high ?- type crystal structure
US20120225602A1 (en) 2011-03-04 2012-09-06 Xerox Corporation Fuser manufacture and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457391A (en) * 2018-12-11 2019-03-12 东华大学 A kind of PcH/ZIF nano fibrous membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
Lu et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning
KR101253032B1 (en) Method for producing fiber and fabric with heating, heat-retaining and heat storage function
Moon et al. Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns
WO2016127465A1 (en) Preparation method for high-strength polyacrylonitrile nano composite fibres
KR101597176B1 (en) Light absorbing-heat emitting fabrics and clothing using the same
KR20130115399A (en) The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
TWI530554B (en) Method for preparing light-absorbing and heat-storing masterbatch, its products and products thereof
CN102691136A (en) Method for preparing polyacrylonitrile-based porous hollow carbon fibers by coaxial electrospinning
WO2018010347A1 (en) Antistatic nanofiber nonwoven material and manufacturing method
CN107108227A (en) Graphite flake and preparation method thereof
KR20150037794A (en) High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode
KR101463522B1 (en) Method for Manufacturing Heat-Radiation Textile
Yi et al. Development of core–sheath structured smart nanofibers by coaxial electrospinning for thermo-regulated textiles
CN108611792A (en) A kind of stretchable conductive material and application thereof based on Modal knitted fabric
CN102587035A (en) Manufacturing process for heat storage insulation cotton
WO2022048162A1 (en) Preparation method for graphene heat dissipation fiber
CN105113127A (en) Large-area flexible piezoelectric spontaneous-heating non-woven fabric and manufacturing method thereof
KR101381744B1 (en) Manufacturing method of conductive and heat-storing textile and a textile thereof
Park et al. Quaternary artificial nacre-based electronic textiles with enhanced mechanical and flame-retardant performance
Huang et al. Laser carbonization of lignin-based fiber membranes with heating treatment for flexible supercapacitors
KR101477201B1 (en) Heat generating membranes with excellent fiexibility
TW201202498A (en) Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same
CN107475815A (en) A kind of Sb2S3The electrostatic spinning preparation method of C nano fiber
Wang et al. Recent progress on general wearable electrical heating textiles enabled by functional fibers
Kondawar et al. Polymer Nanofibers via Electrospinning for Flexible Devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180316

Year of fee payment: 5