TW201202498A - Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same - Google Patents

Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same Download PDF

Info

Publication number
TW201202498A
TW201202498A TW99122809A TW99122809A TW201202498A TW 201202498 A TW201202498 A TW 201202498A TW 99122809 A TW99122809 A TW 99122809A TW 99122809 A TW99122809 A TW 99122809A TW 201202498 A TW201202498 A TW 201202498A
Authority
TW
Taiwan
Prior art keywords
fiber
powder
function
infrared
absorbing
Prior art date
Application number
TW99122809A
Other languages
Chinese (zh)
Other versions
TWI418676B (en
Inventor
Yung-Pin Huang
Chang-Jung Chang
Fen-Mei Chang
Chia-Chen Ho
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99122809A priority Critical patent/TWI418676B/en
Publication of TW201202498A publication Critical patent/TW201202498A/en
Application granted granted Critical
Publication of TWI418676B publication Critical patent/TWI418676B/en

Links

Abstract

A fiber having infrared absorption ability, fabrication methods thereof and a fabric containing the same are provided. The fiber includes a major fiber and a powder having infrared absorption ability dispersed in the inner of the major fiber. The fabrication method of the fiber includes mixing a powder having infrared absorption ability with monomers, and polymerizing the monomers into a polymer to form a complex, or directly blending the powder having infrared absorption ability with a polymer to form a complex, and then performing a spinning process to the complex to form a fiber having infrared absorption ability. The fiber is used to form a fabric having infrared absorption ability.

Description

201202498 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種纖維材料,特別有關於一種具有 吸收紅外線功能的纖維材料。 【先前技術】 一般的天然或合成纖維要達到較佳的保暖效果,通常 需使用經緯密度高的織物或增加織物的厚度,但是這些方 式會使得紡織成品的透氣性變差且重量增加。 另外,在紡織成品中還可以使用動物羽絨作為充填 物,或使用人造的中空或多孔性纖維來製成紡織成品,以 達到保暖且輕量化的效果。然而,此類紡織成品具有高蓬 鬆性,會造成使用者活動的不便。 因此,業界亟需一種纖維材料,其可以使得纖維及其 製成的紡織品具有保暖性,並同時具有輕量化以及避免紡 織成品過度蓬鬆的特性,以克服上述缺點。 目前已有人利用碳化锆粉體添加分散於纖維内的做法 來製備紡織品,其吸收紅外線的性能優異(紅外線能量可轉 換為熱能,導致紡織品溫度上升,達到保暖效果),但是因 為其紡織品是深黑色且價格非常昂貴,導致應用受到了很 大的限制。因此,研發淺色系和生產成本較低的吸收紅外 線功能紡織品,是目前的重點方向。 氧化鋅是一種半導體材料,其禁帶寬度(energy gap)於 室溫下為3.37eV,隨著氧化鋅粉體的尺寸減小,其禁帶寬 度會逐漸增加,為了提升其電氣或光學性質,通常摻雜第 IIIA至VA族的元素。氧化鋅或摻雜第IIIA至VA族元素 201202498 的氧化鋅通常應用在與半導體產業相關的產業上,例如導 電材料、壓電材料、氣體探測器或太陽能電池等。 【發明内容】 本發明之實施例提供一種具有吸收紅外線功能的纖 維,此纖維包括纖維主體,以及具有吸收紅外線功能的粉 體,添加分散於纖維主體的内部。 此外,本發明之實施例還提供一種具有吸收紅外線功 能的紡織品,其包括如上所述之具有吸收紅外線功能的纖 維。 另外,本發明之實施例還提供一種具有吸收紅外線功 能之纖維的製造方法,該方法包括:提供具有吸收紅外線 功能的粉體,提供至少一單體與此粉體摻合,將單體聚合, 形成至少一高分子與此粉體摻合的複合材料,以及將複合 材料以紡絲工程加工,形成具有吸收紅外線功能之纖維, 其中粉體添加分散於纖維的内部。 在另一實施例中,提供一種具有吸收紅外線功能之纖 維的製造方法,該方法包括:提供具有吸收紅外線功能的 粉體,提供至少一高分子與此粉體混摻,形成高分子與此 粉體混摻的複合材料,以及將複合材料以紡絲工程加工, 形成具有吸收紅外線功能之纖維,其中粉體添加分散於纖 維的内部。 添加本發明之具有吸收紅外線功能的粉體所製成的紡 織品,其顏色改變相對於未添加粉體的紡織品而言,平均 可見光反射率差異只有2%左右。此性能遠優於添加碳化锆 粉體的紡織品(具有吸收紅外線功能),其顏色改變非常明 201202498 顯,平均可見光反射率差異可以達到40%以上。 懂,月之上述目的、特徵、及優點能更明顯易 【實施方ir圖式’作詳細說明如下: 維主具有吸收紅親功㈣粉體添加分散於纖 ,·’収、口p使传纖維具有吸收紅外線的功能,並使得 :纖的纺織品也具有吸收紅外線輸並:: 織吸收紅外線及保暖的功效’並同時保‘紡 …口::匕的優點以及避免紡織品過度蓬鬆的缺點。 以是摻雜:二::知例中’具有吸收紅外線功能的粉體可 之金屬種以上第ΠΙΑ族至第va族的金屬元素 物粉體’或者為前述摻雜有第ΙΠΑ族至第VA 矢、·屬元素之金屬氧化物粉 體的組合。 ' 例中,具有吸收紅外線功能的粉體可為摻雜 :二::(Α1)或前述元素之組合的氧化鋅(ΖηΟ)粉體,或 者摻雜不同元素的氧化鋅粉體之組合,此具有摻雜 有吸收能Γ鋅,體對於波長約在78Gnm以上的紅外線具 氧化鋅粉體的粒徑可介於約10 nm至200nm =氣=為、小於1()0nm。在一實施例中,於具有摻雜元 元辛-重中’摻雜元素的重量百分比約佔鋅和摻雜 兀素…重里的0·α20重量百分比(wt%)。 =刚内摻雜鎵(Ga),Ai)的方法可為: 的氣化物或者硫酸鹽與摻雜元素(包括鎵、銘) 。.祖製:混合溶液,濃“ 〃疋素的添加莫耳量為鋅和摻雜元素 201202498 總莫耳量的 0.1mol%~10.0mol%. (2) 將步驟(1)中所配置的混合鹽溶液和碳酸氫銨溶液 一起滴加到水中,過程中保持在40 °C、pH值控制在 7.0-7.5,同時強烈攪拌。即獲得均勻摻雜的白色驗式碳酸 鋅沉殿物生成。 (3) 將上述沉澱物經過洗滌分離後烘乾,所得的粉末在 氫氣和氬氣的混合下燒結,燒節溫度400°C〜700°C,時間 30分鐘〜60分鐘,燒結後即得到最終的摻雜鎵、鋁的氧化 鋅粉體。 依據本發明之一實施例,可將一種或一種以上摻雜鎵 (Ga)、鋁(A1)或前述元素之組合的氧化鋅(ZnO)粉體摻合在 一種或一種以上的單體中,接著將單體聚合,形成高分子 與上述粉體的複合材料,然後利用紡絲工程將此複合材料 加工,形成具有吸收紅外線功能的纖維。在一實施例中, 上述單體可以是己二酸/己二胺之組合、己内醯胺 (caprolactam)、乙二醇/對苯二曱酸之組合、乙烯及丙稀, 其聚合而成的高分子可以是聚乙烯、聚丙烯、聚醯胺、聚 酯或前述之組合,所形成的纖維可為聚乙烯纖維、聚丙烯 纖維、聚醯胺纖維、聚酯纖維或前述之組合,並且具有上 述粉體添加分散在纖維内部,使得纖維具有吸收紅外線的 功能。 依據本發明之另一實施例,可將一種或一種以上摻雜 鎵(Ga)、鋁(A1)或前述元素之組合的氧化鋅(ZnO)粉體直接 與一種或一種以上的高分子混摻(blending),形成高分子與 上述粉體的複合材料,然後利用紡絲工程將此複合材料加 201202498 工’形成具有吸收紅外線功能的_。在此 上述高分子可以是聚乙缔、聚丙歸 I施例中, 之組合,所形成的纖維可為聚:丙=旨或前述 醯胺纖維、聚酉旨纖維或前述之叙人,並日^缔纖維、聚 摻在纖維内部,使得纖維具有吸收紅外線的功ί述粉體混 在本發明之實施例中, 此 中,上述粉體約估纖維及粉趙外線功能的纖維 分比(wt%)。 仏〜重里的0.1幻0.0重量百 此外,上述具有吸收紅外線功 體材料、高分子材料或纖維材料的選擇過單 例如抗紫外線、抗菌、抗靜電、陽有料功能, 可染、異形斷㈣濕排汗或中空保暖等功:。、南乱價低溫 、維可例:者收紅外線功能的纖 功效。 的成。。可吸收紅外線,因此具有保暖的 外線= 與比較例說明本發明之具有吸收紅 外線力i的纖維及其纺織品㈣造方法及其特性: 【實施例1】 將摻賴元素的氧_粉體(鎵的摻雜 重:的】·〇 入水中打裝混合(濃度 ::、 溫度為70t〜贼的已内酿胺(_la 二二二 =化辞粉體之添加量為。h 二 化辞粉體與己㈣胺單體的總重)。接著,在⑽。c〜2〇i 的溫度下獅6小時,然後進行祕C約30分鐘),再升溫 201202498 至230 C〜240 C ’授掉持溫18小時’此時即已將p 士 單體聚合成為聚醯胺(polyamide),以紡絲及假撚工#。么 260 C、捲速4500m/min、上油量0.5 opu)將含有摻雜鎵: 氧化鋅粉體之聚醯胺複合物假撚成為70d/24f規袼的 = 胺纖維,再織成基重為15〇g/m2的針織布。 、A ^201202498 VI. Description of the Invention: [Technical Field] The present invention relates to a fiber material, and more particularly to a fiber material having an infrared absorbing function. [Prior Art] In order to achieve a better warming effect of a natural or synthetic fiber, it is usually necessary to use a fabric having a high warp density or to increase the thickness of the fabric, but these methods may deteriorate the gas permeability of the finished textile product and increase the weight. In addition, animal down can be used as a filling in the finished textile product, or artificial hollow or porous fiber can be used to make the finished textile product to achieve warmth and light weight. However, such textile products are highly velvety and cause inconvenience to the user's activities. Accordingly, there is a need in the art for a fibrous material that can provide thermal insulation to the fibers and the textiles they make, while at the same time having a lightweight and avoiding excessive fluffy properties of the finished textile product to overcome the above disadvantages. At present, people have used zirconia powder to add and disperse in the fiber to prepare textiles, which have excellent infrared absorption performance (infrared energy can be converted into heat energy, which causes the temperature of the textile to rise to achieve warmth), but because the textile is dark black. And the price is very expensive, which leads to a very limited application. Therefore, the development of light-colored systems and infrared-absorbing functional textiles with lower production costs are the current focus. Zinc oxide is a semiconductor material with an energy gap of 3.37 eV at room temperature. As the size of the zinc oxide powder decreases, the band gap increases gradually. To enhance its electrical or optical properties, Elements of Groups IIIA through VA are typically doped. Zinc Oxide or Zinc Oxide No. IIIA to VA Element 201202498 is commonly used in industries related to the semiconductor industry, such as conductive materials, piezoelectric materials, gas detectors or solar cells. SUMMARY OF THE INVENTION An embodiment of the present invention provides a fiber having an infrared absorbing function, which comprises a fiber main body and a powder having an infrared absorbing function, which is added and dispersed inside the fiber main body. Further, an embodiment of the present invention provides a textile having an infrared absorbing function comprising a fiber having an infrared absorbing function as described above. In addition, an embodiment of the present invention further provides a method for manufacturing a fiber having an infrared absorbing function, comprising: providing a powder having an infrared absorbing function, providing at least one monomer to be blended with the powder, and polymerizing the monomer. Forming a composite material in which at least one polymer is blended with the powder, and processing the composite material in a spinning process to form a fiber having an infrared absorbing function, wherein the powder is added and dispersed in the interior of the fiber. In another embodiment, a method for manufacturing a fiber having an infrared absorbing function is provided, the method comprising: providing a powder having an infrared absorbing function, providing at least one polymer mixed with the powder to form a polymer and the powder The body blended composite material, and the composite material is processed by spinning to form a fiber having an infrared absorbing function, wherein the powder is added and dispersed inside the fiber. The addition of the powder having the infrared absorbing function of the present invention has a color change of about 2% with respect to the textile having no powder added. This performance is far superior to textiles with zirconia powder added (with infrared absorption), and its color change is very clear. 201202498 shows that the average visible light reflectance difference can reach more than 40%. Understand that the above purposes, characteristics, and advantages of the month can be more obvious [implementation of the implementation of the ir diagram] as detailed as follows: the main owner has the absorption of red pro-gong (four) powder added to the fiber, · 'receive, mouth p to pass The fiber has the function of absorbing infrared rays, and makes the textile of the fiber also have the function of absorbing infrared rays and: absorbing the infrared ray and keeping warmth' while at the same time ensuring the advantages of the mouth:: 匕 and avoiding the excessive fluffiness of the textile. Therefore, it is doped: two:: In the example, the powder of the powder having the function of absorbing the infrared ray, the metal element powder of the lanthanum to the va group, or the lanthanum to the VA A combination of metal oxide powders of sagittal and genus elements. In the example, the powder having the function of absorbing infrared rays may be doped: two:: (Α1) or a combination of the foregoing elements of zinc oxide (ΖηΟ) powder, or a combination of zinc oxide powder doped with different elements, The particle size of the zinc oxide powder doped with an absorption energy of bismuth zinc and having a wavelength of about 78 Gnm or more may be between about 10 nm and 200 nm = gas = is less than 1 (0 nm). In one embodiment, the weight percentage of the doping element having a doping element octane-heap is about 0% by weight (wt%) of the weight of zinc and doped halogen. = The method of doping gallium (Ga), Ai) can be: gasification or sulfate and doping elements (including gallium, Ming). Ancestral system: mixed solution, concentrated "the molar amount of alizarin is zinc and the doping element 201202498 total mole amount of 0.1 mol% ~ 10.0 mol%. (2) The mixing configured in step (1) The salt solution and the ammonium hydrogencarbonate solution were added dropwise to the water, and the temperature was kept at 40 ° C, the pH was controlled at 7.0-7.5, and the mixture was vigorously stirred, that is, a uniformly doped white zinc carbonate was formed. 3) The above precipitate is separated by washing and drying, and the obtained powder is sintered under a mixture of hydrogen and argon, and the sintering temperature is 400 ° C to 700 ° C for 30 minutes to 60 minutes, and the final is obtained after sintering. A gallium- or aluminum-doped zinc oxide powder. According to an embodiment of the present invention, one or more zinc oxide (ZnO) powders doped with gallium (Ga), aluminum (A1) or a combination of the foregoing may be doped. In combination with one or more monomers, the monomer is then polymerized to form a composite material of the polymer and the above powder, and then the composite material is processed by a spinning process to form a fiber having an infrared absorbing function. In the example, the above monomer may be adipic acid/hexane a combination of caprolactam, a combination of ethylene glycol/terephthalic acid, ethylene and propylene, and the polymer obtained by polymerizing may be polyethylene, polypropylene, polyamide, polyester or In the foregoing combination, the fibers formed may be polyethylene fibers, polypropylene fibers, polyamide fibers, polyester fibers or a combination thereof, and have the above-mentioned powder added and dispersed inside the fibers so that the fibers have a function of absorbing infrared rays. According to another embodiment of the present invention, one or more zinc oxide (ZnO) powders doped with gallium (Ga), aluminum (A1) or a combination of the foregoing may be directly mixed with one or more polymers. (blending), forming a composite material of the polymer and the above powder, and then using the spinning process to add the composite material to form a function of absorbing infrared rays. The above polymer may be polyethylene, polypropylene, or In the combination of the examples, the fibers formed may be poly: propylene = or the aforementioned guanamine fibers, poly fluorene fibers or the aforementioned narration, and the fibers are incorporated into the fibers, so that the fibers have The function of absorbing infrared rays is mixed in the embodiment of the present invention, wherein the powder is estimated to have a fiber ratio (wt%) of fiber function and powder outer line function. 仏~重里的0.1幻0.0重量重量, The above-mentioned absorbing inorganic material, polymer material or fiber material has a single selection such as anti-ultraviolet, antibacterial, antistatic, and aging materials, and can be dyed, shaped, broken (four) wet wicking or hollow warmth, etc.: Southern chaos Low-temperature, high-dimensional example: the fiber function of the infrared function is obtained. The infrared ray can be absorbed, so that the outer line with warmth = the comparative example shows the fiber having the infrared absorbing force i and the textile thereof. And its characteristics: [Example 1] The oxygen-powder (doped weight of gallium: 〇) of the doped element is mixed and mixed into water (concentration::, the temperature is 70t~ the thief's internal amine ( _la 2 22 = the amount of addition of the powder is. h The total weight of the powder and the (tetra)amine monomer). Next, at (10). c ~ 2 〇 i the temperature of the lion for 6 hours, then carry the secret C for about 30 minutes), then heat up 201202498 to 230 C~240 C 'grant the temperature for 18 hours' at this point, the p-cell monomer has been polymerized into a poly Polyamide, for spinning and false workman #. 260 C, winding speed 4500 m/min, oil loading 0.5 opu) The polyamide compound containing doped gallium: zinc oxide powder is made into a 70d/24f gauge = amine fiber, which is woven into a basis weight. It is a knitted fabric of 15 〇g/m2. , A ^

使用積分球分光光度計測試實施例〗之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為68%及65%,如表1所列。 【實施例2-4】 貫^例2-4之針織布的製備方式如同實施例1,其差別 在於鎵元素的摻雜量以及摻雜鎵的氧化鋅粉體之添加量不 同,如表1所列。 同樣地,使用積分球分光光度計測試實施例2_4之針 織布在可見光波長範圍400nm〜780nm之間的平均反射率 及在紅外線波長範圍為780〜2500 nm之間的平均吸收率, 其結果如表1所列。 【比較例1】 將己内1&版单體聚合成為聚酿胺(p〇lyarnide),以纺絲 及假撚工程將聚醯胺假撚成為7〇d/24f規格的聚醯胺纖 維,再織成基重為15〇g/m2的針織布。 使用積分球分光光度計測試比較例1之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為70%及40%,如表1所列。 201202498 [比較例2] 將粒徑約為l〇〇nm的妒 Π 的石反化錯粉體加入水中打漿混合 G辰度 25wt/。)並添加在溫度 ^ ^ ^ ^ , ^ /υ C ~80 C的己内醯胺 (caprolactam)單體内,並中磁 十〇/,扣拟从山 ,、肀反化錯粉體之添加量為0.5 wt /〇(相對於;ε反化錯與己内醢 ^ ^ 〇円醞胺早體的總重)。接著,〇 C〜200 C的溫度下攪採6,丨、蛀 ^ 崎6小時,然後進行錢(約30分 鐘)’再升溫至230°C〜240°C,谱姓4士 ^ mul攪拌持溫18小時’此時即已Using an integrating sphere spectrophotometer, the average reflectance of the knitted fabric in the visible light wavelength range of 400 nm to 780 nm and the average absorptivity in the infrared wavelength range of 780 to 2500 nm were measured using an integrating sphere spectrophotometer, and the results were 68% and 65%, as listed in Table 1. [Example 2-4] The knitted fabric of Examples 2-4 was prepared in the same manner as in Example 1, except that the doping amount of the gallium element and the addition amount of the gallium-doped zinc oxide powder were different, as shown in Table 1. Listed. Similarly, the average reflectance of the knitted fabric of Example 2_4 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer. 1 listed. [Comparative Example 1] The monomer 1&" monomer was polymerized into a polyamine (p〇lyarnide), and the polyamidamine was made into a 7〇d/24f polyamide fiber by a spinning and false twisting process. It was woven into a knitted fabric having a basis weight of 15 〇g/m2. The average reflectance of the knitted fabric of Comparative Example 1 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were 70% and 40%, as listed in Table 1. 201202498 [Comparative Example 2] A stone reversed powder of 妒 粒径 having a particle diameter of about 1 〇〇 nm was added to water to be mixed with a G-degree of 25 wt/. And added in the caprolactam monomer at a temperature ^ ^ ^ ^ , ^ /υ C ~80 C, and the magnetic ten 〇 /, deducted from the mountain, 肀 肀 化 化 之The amount is 0.5 wt / 〇 (relative to; ε inverse error and total weight of hexamidine oxime). Next, 〇C~200 C is stirred at a temperature of 6 丨, 蛀^ 崎6 for 6 hours, then carry out money (about 30 minutes) and then heat up to 230 ° C ~ 240 ° C, the spectrum name is 4 ± mul stirring Warm 18 hours' at this time

將己内醯胺單體聚合成為聚醯胺(p〇lyamide),以紡絲及假 撚工程(紡溫260°C、捲速4500m/min、上油量〇.5 opu)將含 有碳化錯粉體之聚醯胺複合物假撚成為70d/24f規格的聚 醯胺纖維,再織成基重為150g/m2的針織布。 使用積分球分光光度計測試比較例2之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為25%及60%,如表1所列。The caprolactam monomer is polymerized into polypamine (p〇lyamide), and the spinning and false twisting engineering (spinning temperature 260 ° C, coiling speed 4500 m / min, oil loading 〇 .5 opu) will contain carbonization error. The powdery polyamine compound false-twist was made into a polyamide fiber of 70d/24f size and woven into a knitted fabric having a basis weight of 150g/m2. The average reflectance of the knitted fabric of Comparative Example 2 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were respectively 25% and 60%, as listed in Table 1.

表1實施例1-4與比較例1-2之針織布的成分與特性 鎵元素的搀 雜量(wt%) 粉趙的添加 量(Wt〇/〇) 平均可見光 反射率(%) 平均紅外線 吸收率(%) 實施例1 1.0 0.5 68 65 實施例2 1.0 5.0 61 81 實施例3 5.0 0.5 65 70 實施例4 5.0 5.0 60 87 比較例1 —— 一 70 40 比較例2 — 0.5(碳化锆) 25 60 【實施例5】 10 201202498 將摻雜鋁元素的氧化鋅粉體(鋁的摻雜量為鋅和鋁總 重量的0.8 wt%)先與三烴曱基(Trimethyi〇iethane)或聚乙烯 口比咯烧酮(Polyvinyl pym>lidone)分散劑(用量為粉體的2〇 wt%〜100 wt%)在氣流粉碎機中進行粉碎及分散處理,然後 直接與聚丙烯混摻,其中摻雜铭的氧化鋅粉體之混摻重量 比為1.5 wt%(相對於摻雜鋁的氧化鋅粉體與聚丙烯的總 重),以紡絲及假撚工程(紡溫250°C、捲速2500m/min、上 油量l.Oopu)將含有摻雜鋁的氧化鋅粉體之聚丙烯複合物 假撚成為60d/24f規格的聚丙稀纖維,再織成基重為 120g/m2的針織布。 使用積分球分光光度計測試實施例5之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為65%及64%,如表2所列。 【實施例6-8】 實施例6-8之針織布的製備方式如同實施例5,其差別 在於鋁元素的摻雜量以及摻雜鋁的氧化辞粉體之添加量不 同’如表2所列。 同樣地,使用積分球分光光度計測試實施例6-8之針 織布在可見光波長範圍4〇〇nm〜780nm之間的平均反射率 及在紅外線波長範圍為780〜2500 nm之間的平均吸收率, 其結果如表2所列。 【比較例3】 以纺絲及假撚工程將聚丙烯假撚成為6〇d/24f規格的 聚丙烯纖維,再織成基重為120g/m2的針織布。 201202498 使用積分球分光光度計測試比較例3之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為60%及45%,如表2所列。 【比較例4】 將粒徑100 nm的碳化鍅粉體先與三烴甲基 (Trimethylolethane)或聚乙烯吼》各烧酮(Polyvinyl pyrrolidone)等分散劑(用量為粉體的20 wt%〜100 wt%)在氣 流粉碎機中進行粉碎及分散處理,然後直接與聚丙烯混 摻’其中碳化锆粉體之混摻重量比為1.5 wt%(相對於碳化 錯粉體與聚丙烯的總重),以紡絲及假撚工程(紡溫250°C、 捲速2500m/min、上油量l.〇opu)將含有碳化鍅粉體之聚丙 烯複合物假撚成為60d/24f規格的聚丙烯纖維,再織成基重 為120g/m2的針織布。 使用積分球分光光度計測試比較例4之針織布在可見 光波長範圍40〇nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為8%及72% ’如表2所列。 表2貫施例5-8與比較例3-4之針織布的成分與特性 施例編號 鋁元素的摻 雜量(wt%) 粉體的添加 量(Wt%) 平均可見光 反射率(%) 平均紅外線 吸收率(%) j施例5 0.8 _ ------ 1.5 65 64 J施例6 0.8 6.0 61 61 施例7 5.0 1.5 63 63 12 201202498 實施例8 5.0 —6-0 60 60 比較例3 — — 60 45 比較例4 — 1.5(碳化鍅) 8 72 【實施例9】 將摻雜鋁元素的氧化鋅粉體(鋁的摻雜量為鋅和鋁總 重量的0.8 wt%)先與三煙曱基(:Frimethyl〇lethane)或聚乙稀 吡咯烷酮(Polyvinyl Pyrrolid〇ne)等分散劑(用量為粉體的2〇 wt%〜100 wt%)在氣流粉碎機中進行粉碎及分散處理,然後 直接與聚丙炼混掺’其中摻雜鋁的氧化鋅粉體之混摻重量 比例為1.5 wt%(相對於摻雜鋁的氧化鋅粉體與聚丙烯的總 重)’以紡絲及假撚工程(紡溫25〇°C、捲速2500m/min、上 油量l.Oopu)工程將含有摻雜鋁的氧化鋅粉體之聚丙烯複 合物假撚成為50d/36f規格的聚丙烯纖維。 接著,將此50d/36f規格的聚丙烯纖維與75d/96f規格 的聚酯纖維以1 : 1的紗線數量比例交織成基重為170g/m2 的針織布。 使用積分球分光光度計測試實施例9之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780~2500 nm之間的平均吸收率’其結果分別 為 74%及 61%。 接著,將實施例9之針織布剪裁成為袖套’依服裝隔 熱性能的試驗方法ASTM F1291進行熱感假人穿著袖套之 照日光溫升試驗,於照射15分鐘後,實施例9之針織布的 溫升為4.0°C。 【比較例5】 201202498 以紡絲及假撚工程將聚丙烯假撚成為50d/36f規格的 聚丙烯纖維。接著,將此5〇d/36f規格的聚丙烯纖維與 75d/96f規格的聚酯纖維以! : i的紗線數量比例交織成基 重為170g/m2的針織布。 使用積分球分光光度計測試比較例5之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為 75%及 40%。 接著,將比較例5之針織布剪裁成為袖套,依服裝隔 熱性能的試驗方法ASTM F1291進行熱感假人穿著袖套之 照日光溫升試驗,於照射15分鐘後,比較例5之針織布的 溫升為1.9°C。 【實施例10】 使用單體對苯二甲酸和乙二醇進行酯化反應,單體投 料莫耳比為對苯二曱酸:乙二醇= 100:110〜200,反應溫度為 260°C〜280°C,反應壓力為l〇〇kpa〜300kpa,反應停留時間 為1.5〜4.0小時。摻雜鎵元素的氧化鋅粉體(鎵的摻雜量為 鋅和趣總重量的1.0 wt%)的加入選擇在酯化反應之前。酯 化原料打漿混合時,將0.5wt%的摻雜鎵元素的氧化鋅粉體 加入到酯化原料中,再開始酯化過程。預縮聚及縮聚反應 均在負壓下進行,反應溫度控制為270°C〜285°C,反應物 停留時間控制為1 ·〇〜3.0小時。預縮聚反應的真空度控制為 1.0 kpa〜2.0 kpa,縮聚反應的真空度控制為0.1 kpa~0.2 kpa。縮聚催化劑採用乙二醇銻,用量以單體對苯二甲酸重 量為基準,以銻離子計算,控制為120mg/kg〜300mg/kg。 14 201202498 縮聚反應結束後即得聚酯高分子複合物。以紡絲及假機工 程將含有摻雜鎵元素的氧化鋅粉體之聚酯複合物假機成為 74d/48f規格的聚酯纖維,再織成基重為175g/m2的針織布。 使用積分球分光光度計測試實施例10之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為7 2 %及61 % ’如表3所列。 【實施例11-13】Table 1 Compositions and Characteristics of Knit Fabrics of Examples 1-4 and Comparative Examples 1-2 Doping amount of gallium element (wt%) Addition amount of powder Zhao (Wt〇/〇) Average visible light reflectance (%) Average infrared ray Absorption rate (%) Example 1 1.0 0.5 68 65 Example 2 1.0 5.0 61 81 Example 3 5.0 0.5 65 70 Example 4 5.0 5.0 60 87 Comparative Example 1 - One 70 40 Comparative Example 2 - 0.5 (Zirconium carbide) 25 60 [Example 5] 10 201202498 The zinc-doped zinc oxide powder (doped aluminum is 0.8 wt% of the total weight of zinc and aluminum) first with Trimethyi〇iethane or polyethylene Polyvinyl pym>lidone dispersant (in an amount of 2% by weight to 100% by weight of the powder) is pulverized and dispersed in a jet mill, and then directly mixed with polypropylene, wherein doping Ming's zinc oxide powder blending weight ratio is 1.5 wt% (relative to the total weight of aluminum-doped zinc oxide powder and polypropylene), in spinning and false twisting engineering (spinning temperature 250 ° C, coil speed) 2500m/min, oil quantity l.Oopu) The polypropylene composite false-twist containing aluminum-doped zinc oxide powder is made into 60d/24f specification Acrylic fibers, and then woven into a basis weight of 120g / m2 knitted fabrics. The average reflectance of the knitted fabric of Example 5 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were respectively 65% and 64%, as listed in Table 2. [Examples 6-8] The knitted fabrics of Examples 6-8 were prepared in the same manner as in Example 5, except that the doping amount of the aluminum element and the addition amount of the aluminum oxide-doped oxidized powder were different as shown in Table 2. Column. Similarly, the average reflectance of the knitted fabric of Examples 6-8 in the visible light wavelength range of 4 〇〇 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer. , the results are listed in Table 2. [Comparative Example 3] Polypropylene false crepe was made into a 6 〇d/24f polypropylene fiber by a spinning and false twisting process, and woven into a knitted fabric having a basis weight of 120 g/m2. 201202498 The average reflectance of the knitted fabric of Comparative Example 3 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were respectively 60%. And 45%, as listed in Table 2. [Comparative Example 4] A tantalum carbide powder having a particle diameter of 100 nm was firstly dispersed with a trimethylolethane or a polyvinylpyrene (Polyvinyl pyrrolidone) (amount of powder of 20 wt% to 100%) Gt%) is pulverized and dispersed in a jet mill, and then directly mixed with polypropylene. The weight ratio of the zirconium carbide powder is 1.5 wt% (relative to the total weight of the carbonized powder and polypropylene) The polypropylene composite false-twist containing the niobium carbide powder is made into a polypropylene of 60d/24f specifications by a spinning and false twisting project (spinning temperature 250 ° C, roll speed 2500 m/min, oil loading l.〇opu). The fibers were woven into a knitted fabric having a basis weight of 120 g/m2. The average reflectance of the knitted fabric of Comparative Example 4 in the visible light wavelength range of 40 〇 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were respectively 8 % and 72% ' are listed in Table 2. Table 2 Composition and characteristics of knitted fabrics of Examples 5-8 and Comparative Examples 3-4 Example No. Doping amount of aluminum element (wt%) Adding amount of powder (Wt%) Average visible light reflectance (%) Average infrared absorption rate (%) j Example 5 0.8 _ ------ 1.5 65 64 J Example 6 0.8 6.0 61 61 Example 7 5.0 1.5 63 63 12 201202498 Example 8 5.0 —6-0 60 60 Comparison Example 3 - 60 45 Comparative Example 4 - 1.5 (鍅 碳) 8 72 [Example 9] The aluminum-doped zinc oxide powder (doped amount of aluminum is 0.8 wt% of the total weight of zinc and aluminum) Dispersing agent (such as Frimethyl〇lethane) or polyvinylpyrrolidone (Polyvinyl Pyrrolid〇ne) (in an amount of 2% by weight to 100% by weight of the powder) is pulverized and dispersed in a jet mill And then directly blended with the polypropylene blend, wherein the aluminum-doped zinc oxide powder has a blending weight ratio of 1.5 wt% (relative to the total weight of the aluminum-doped zinc oxide powder and polypropylene)' to be spun and The false-twisting project (spinning temperature 25〇°C, rolling speed 2500m/min, oil loading l.Oopu) works to make the polypropylene composite false-ruthenium containing aluminum-doped zinc oxide powder Polypropylene fiber of 50d/36f size. Next, the 50d/36f polypropylene fiber and the 75d/96f polyester fiber were interwoven into a knitted fabric having a basis weight of 170 g/m2 at a yarn ratio of 1:1. The average reflectance of the knitted fabric of Example 9 in the visible light wavelength range of 400 nm to 780 nm and the average absorbance in the infrared wavelength range of 780 to 2500 nm were measured using an integrating sphere spectrophotometer, and the results were 74% and 61%. Next, the knitted fabric of Example 9 was cut into a cuff. According to the test method ASTM F1291 of the thermal insulation property of the garment, the thermal temperature dummy test was carried out by wearing a cuff, and after 15 minutes of irradiation, the knitting of Example 9 was carried out. The temperature rise of the cloth was 4.0 °C. [Comparative Example 5] 201202498 Polypropylene false twist was made into a polypropylene fiber of 50d/36f specifications by a spinning and false twisting process. Next, use this 5〇d/36f polypropylene fiber and 75d/96f polyester fiber! : The ratio of the number of yarns of i is interwoven into a knitted fabric having a basis weight of 170 g/m2. The average reflectance of the knitted fabric of Comparative Example 5 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were respectively 75% and 40%. Next, the knitted fabric of Comparative Example 5 was cut into a cuff, and the thermal temperature dummy test was carried out according to the test method ASTM F1291 of the thermal insulation performance of the clothing. After 15 minutes of irradiation, the knitting of Comparative Example 5 was carried out. The temperature rise of the cloth was 1.9 °C. [Example 10] The esterification reaction was carried out using a monomeric terephthalic acid and ethylene glycol. The monomer charge molar ratio was terephthalic acid: ethylene glycol = 100: 110 to 200, and the reaction temperature was 260 ° C. ~280 ° C, the reaction pressure is l 〇〇 kpa ~ 300kpa, the reaction residence time is 1.5 ~ 4.0 hours. The addition of the gallium-doped zinc oxide powder (the doping amount of gallium is 1.0 wt% of zinc and the total weight of the fun) is selected before the esterification reaction. When the esterified raw material is beaten and mixed, 0.5 wt% of the gallium-doped zinc oxide powder is added to the esterification raw material, and the esterification process is started. The precondensation and polycondensation reactions were carried out under a negative pressure, and the reaction temperature was controlled to be 270 ° C to 285 ° C, and the residence time of the reactant was controlled to be 1 · 〇 to 3.0 hours. The degree of vacuum of the precondensation reaction is controlled from 1.0 kpa to 2.0 kpa, and the degree of vacuum of the polycondensation reaction is controlled from 0.1 kpa to 0.2 kpa. The polycondensation catalyst is ethylene glycol ruthenium, and the amount is calculated based on the weight of the monomeric terephthalic acid, and is controlled to be 120 mg/kg to 300 mg/kg. 14 201202498 After the polycondensation reaction is completed, a polyester polymer composite is obtained. A polyester composite with a gallium-doped zinc oxide powder was used as a 74d/48f polyester fiber by a spinning and counterfeiting process, and woven into a knitted fabric having a basis weight of 175 g/m2. The average reflectance of the knitted fabric of Example 10 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were respectively 72%. And 61% 'as listed in Table 3. [Example 11-13]

實施例11-13之針織布的製備方式如同實施例1〇,其 差別在於鎵元素的摻雜量以及摻雜鎵的氧化鋅粉體之添加 量不同,如表3所列。 同樣地’使用積分球分光光度計測試實施例u-u之 針織布在可見光波長範圍400nm〜780nm之間的平均反射 率及在紅外線波長範圍為780〜2500 nm之間的平均吸收 率’其結果如表3所列。 【比較例6】 以紡絲及假撚工程將聚酯高分子假撚成為75d/48f規 格的聚酯纖維,再織成基重為175g/m2的針織布。 使用積分球分光光度計測試比較例6之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其、纟士果分別 為74%及44%,如表3所列。 【比較例7】 將粒徑100 nm的碳化鍅粉體先與三煙甲基 (Trimethylolethane)或聚乙烯吡咯烷酉同(p〇lyvinyl 15 201202498 pyrrolidone)等分散劑(用量為粉體的2〇 wt〇/〇〜j 〇〇 碎及分散處理,然後直接與聚二 ,、中反化錯W之化換重量比為15 wt%(相對於碳化錯粉 體與聚醋的總重),以终絲及假撚工程將含有碳化錯粉體之 聚丙稀複合物·成為7 5 d服規格的聚|旨纖維,再織成基 重為175g/m2的針織布。The knitted fabrics of Examples 11-13 were prepared in the same manner as in Example 1 except that the doping amount of the gallium element and the amount of the gallium-doped zinc oxide powder were different, as listed in Table 3. Similarly, the average reflectance of the knitted fabric of Example uu in the visible light wavelength range of 400 nm to 780 nm and the average absorbance in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer. 3 listed. [Comparative Example 6] The polyester polymer false twist was made into a 75d/48f gauge polyester fiber by a spinning and false twisting process, and then woven into a knitted fabric having a basis weight of 175 g/m2. The average reflectance of the knitted fabric of Comparative Example 6 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, respectively. 74% and 44%, as listed in Table 3. [Comparative Example 7] A cerium carbide powder having a particle diameter of 100 nm was first dispersed with a trimethylolethane or a polyvinylpyrrolidine (p〇lyvinyl 15 201202498 pyrrolidone) (amount of powder 2 〇) Wt〇 / 〇 ~ j mash and disperse treatment, and then directly with the poly 2, the reverse weight change ratio of 15 wt% (relative to the total weight of carbonized powder and poly vinegar), The final yarn and the false twisting project were made of a polypropylene composite having a carbonized wrong powder, and were made into a woven fabric having a basis weight of 175 g/m2.

使用積分球分光光度計測試比較例7之針織布在可見 光波長範圍400nm〜780nm之間的平均反射率及在紅外線 波長範圍為780〜2500 nm之間的平均吸收率,其結果分別 為25%及61%,如表3所列。 實施例10 & %素的摻 雖量(Wt0/o) 粉體的添加 量(wt°/〇) 平均可見光 反射率(%) 平均紅外線 吸收率(%) 1.0 0.5 72 61 1-0-.. 5.0 —67 71 —5.0 0.5 71 67 5.0 5.0 64 74 -— 74 44 15(碳化鍅) 25 61 率盥、⑧二K她例興比較例之針織布的平均紅外線口及 鋅粉度的比較結果可得知,由含有摻雜元素的氧 含粉雕^維所製成的針織布,其紅外線吸收性能高於 比#所製成的針織布。而且實施例與不含粉體 ==織布之間的平均可見光反射率差距甚小’表 雜元素的氧化鋅粉體並不影響紡織品的顏色The average reflectance of the knitted fabric of Comparative Example 7 in the visible light wavelength range of 400 nm to 780 nm and the average absorption ratio in the infrared wavelength range of 780 to 2500 nm were tested using an integrating sphere spectrophotometer, and the results were respectively 25% and 61%, as listed in Table 3. Example 10 & % amount of doping (Wt0 / o) Powder addition amount (wt ° / 〇) Average visible light reflectance (%) Average infrared absorption rate (%) 1.0 0.5 72 61 1-0-. 5.0 —67 71 —5.0 0.5 71 67 5.0 5.0 64 74 — — 74 44 15 (Carbide) 25 61 The ratio of the average infrared ray and zinc powder of the knitted fabric of the comparative example It can be seen that the knitted fabric made of the oxygen-containing powder containing the doping element has a higher infrared absorption performance than the knitted fabric made of #. Moreover, the difference between the average visible light reflectance between the examples and the powder-free == woven fabric is very small. The zinc oxide powder of the impurity element does not affect the color of the textile.

16 201202498 但是添加碳化锆粉體的比較例之紡織品,其平均可見光反 射率較實施例之紡織品大幅降低,表示碳化锆嚴重影響紡 織品的顏色,因此在衣著用紡織品的色彩應用已受到嚴重 的限制。 此外,由含有摻雜元素的氧化鋅粉體之纖維所製成的 針織布,其溫升程度高於不含粉體之纖維所製成的針織布。 因此,由上述結果可得知,本發明使用具有吸收紅外 線功能的粉體添加分散於纖維主體的内部,可以使得此纖 維以及其製成的紡織品具有較高的紅外線吸收能力,並且 可達到較佳的保暖效果。 雖然本發明已揭露較佳實施例如上,然其並非用以限 定本發明,任何熟悉此項技藝者,在不脫離本發明之精神 和範圍内,當可做些許更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定為準。16 201202498 However, the comparative visible light reflectance of the textile of the comparative example in which the zirconia powder was added was significantly lower than that of the textile of the example, indicating that the zirconium carbide seriously affects the color of the textile, and thus the color application of the textile for clothing has been severely restricted. Further, a knitted fabric made of a fiber containing a doped element of zinc oxide powder has a higher temperature rise than a knitted fabric made of a fiber containing no powder. Therefore, it can be seen from the above results that the present invention uses a powder having an infrared absorbing function to be added and dispersed in the interior of the fiber main body, so that the fiber and the textile produced therefrom can have a high infrared absorbing ability and can be preferably obtained. The warmth effect. Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

17 201202498 【圖式簡單說明】 #»»、 【主要元件符號說明】 無017 201202498 [Simple description of the diagram] #»», [Key component symbol description] No 0

Claims (1)

201202498 七、申請專利範圍: 體.1以吸收紅外線功能的纖維’包括:-纖維主 維主體的部有吸收紅外線功能的粉體,添加分散於該纖 的纖項所述之具有吸收紅外線功能 氧化鋅沖嫁、㈣前述元素之組合的 3如H别述具有摻雜元素的氧化鋅粉體之组人。 的纖維,2項所叙具有糾紅外線魏 總重量,該摻雜元素:=體重=該摻雜元素的 4·如申請專利範圍第丨項 的纖維’其中該_佔M 重量;分比I:外線功能 的纖7申其請中=:;項:述之具有吸收紅外線功能 聚醯胺纖维:二、—匕括聚乙烯纖維、聚丙烯纖維、 ㈣私纖維、聚酷纖維或前述之組合物。 ㈣’嘴 範圍6第1種項具所tr且^線功能的纺織品,包括如申請專利 7.如 ___6二==纖維。 的纺織品,更包括至小#、具有吸收紅外線功能 的纖維混纺。I種纖維與該具有吸收紅外線功能 二功能 括聚乙烯纖維、聚丙、·工外線功旎的纖維包 W歸纖維、聚酿脸播 纖维、嫘縈纖維或醋酸纖 上酯纖維、棉 質纖維。 次疋以上述纖维為主體之改 19 201202498 9.-種具有吸收紅外線功能 . 提供一具有吸收紅外線功能_^維的製造方法,包括: 粉體混合,·將該單體聚合,形成至小^供至少-單體與該 合的一複合材料:以及將該複合㈣Γ南分子與該粉體混 成-具有吸收紅外線功能之纖維,程加工,形 該纖维的内部。 /、r孩卷體添加分散於 如申請專鄉㈣9 之纖維的製造方法,其,該粉體包二 外線功能 素之組合的氧化鋅粉體,或者前述具有二::3前述元 粉體之組合。 、百彳彡雜711•素的氧化鋅 能之纖維1C) 之具有吸收紅外線功 該推雜元素 :的㈣重里’該摻雜π素為01至 12.如申請專利範圍第9項 里百刀比 之纖維的f造方4 ^ _00 ,、有吸收紅外線功能 入“法,其令該單體包括己二酸/己二胺之細 二及::胺(一)、乙二醇阶甲酸=: 之織項所述之具有外線功能 聚酿胺、=以ΐ'Γ包括聚乙稀、聚丙烯、 =,乙稀纖維、聚丙_維、聚二:子聚: 纖,准或疋以前述纖維為主體之改質纖維。 、酉曰 二:!=範=項所述之具有吸收紅外線功能 中,具有吸收紅外線功能之纖維 Τ这粉體佔0.1至10重量百分比。 解 20 201202498 15.種具有吸收紅外線功能之纖維㈣造方法,包 括:提供一具有吸收紅外線功能的粉體;提供至少-高分 :與該泰體此摻,形成該高分子與該粉體混合複合 料:以及將該複合材料以纺絲工程加工,形成一具有吸^ 紅外線功叙纖維,其中該粉體混摻於該纖維的内部。 能之細15項所述之具有吸收紅外線功 -音少έ入A ★’其中該粉體包括摻雜鎵、録或前述 凡素之組合的氧化鋅粉體,吱201202498 VII. Patent application scope: Body 1. Fibers that absorb infrared light function include: - The main body of the fiber main body has a powder that absorbs infrared rays, and the fiber which is dispersed in the fiber has an infrared absorbing function. Zinc rushing, (4) a combination of the foregoing elements, such as H, a group of zinc oxide powders having doping elements. The fiber, the two items have the total weight of the infrared ray, the doping element: = body weight = 4 of the doping element, such as the fiber of the scope of the patent application 'where the _ accounted for M weight; the ratio I: The fiber function of the external line is applied to the product: =;; Item: Polyamide fiber with infrared absorption function: 2, - including polyethylene fiber, polypropylene fiber, (4) private fiber, poly fiber or a combination of the foregoing Things. (4) 'Mouth Range 6 The first item has textiles with the function of tr and ^ line, including as for patent application 7. For example, ___6 two == fiber. The textiles, including the small #, fiber blend with infrared absorption function. I fiber and the fiber-coated fiber with the function of absorbing infrared rays, including polyethylene fiber, polypropylene, and external work, fiber-reinforced fiber, rayon fiber or cellulose acetate fiber, cotton fiber . The second 疋 is based on the above fiber as the main change 19 201202498 9.- Kind has the function of absorbing infrared rays. Provides a manufacturing method with infrared absorbing function, including: powder mixing, · polymerization of the monomer A composite material for at least a monomer and the composite: and a composite of the composite (iv) yam and the powder - a fiber having an infrared absorbing function, processed to form the inside of the fiber. /, r child roll body is added to the manufacturing method of the fiber as disclosed in the application (4) 9, which powder, the combination of the outer-line functional elements of the zinc oxide powder, or the aforementioned two:: 3 of the aforementioned elemental powder combination.彳彡 彳彡 711 711 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素 素Compared with the fiber's f-making 4 ^ _00, it has the function of absorbing infrared rays into the "method, which makes the monomer include adipic acid / hexamethylene diamine fine and:: amine (a), ethylene glycol carboxylic acid = : The outer-line function of the woven fabric has the function of polyamine, = ΐ 'Γ including polyethylene, polypropylene, =, ethylene fiber, polypropylene _ dimension, poly 2: sub-polymer: fiber, quasi- or bismuth with the aforementioned The fiber is the main modified fiber. 酉曰二:!=范=The product has the function of absorbing infrared rays and has the function of absorbing infrared rays. The powder accounts for 0.1 to 10% by weight. Solution 20 201202498 15. A method for fabricating a fiber (four) absorbing infrared function, comprising: providing a powder having an infrared absorbing function; providing at least a high score: mixing with the Thai body to form a mixed compound of the polymer and the powder: and The composite material is processed by spinning engineering to form a absorbing and infrared ray a fiber in which the powder is blended into the interior of the fiber. The fineness of the item 15 has the function of absorbing infrared light, and the sound is less than A. 'The powder includes a combination of doping gallium, recording or the combination of the foregoing. Zinc oxide powder, 吱 鋅粉體之組合,且在二2具摻雜元素的氧化 粉體佔(U至1〇重量=匕收、,工外線功能之纖維中,該 17·如申請專利範圍第15項 能之纖維的製造方法,其中該高分括外線功 聚丙烯纖維、聚醯胺纖唯、聚醋纖:二㈣乙烯纖維、 改質纖維。㈣维m維或前述纖維為主體之Combination of zinc powder, and in the oxidized powder of two or two doping elements (U to 1 〇 weight = 匕,,,,,,,,,,,,,,,, The manufacturing method, wherein the high score comprises an outer work polypropylene fiber, a polyamidamine fiber, a polyacetate fiber: a di(tetra)ethylene fiber, a modified fiber. (4) a dimension m dimension or the aforementioned fiber as a main body
TW99122809A 2010-07-12 2010-07-12 Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same TWI418676B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99122809A TWI418676B (en) 2010-07-12 2010-07-12 Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99122809A TWI418676B (en) 2010-07-12 2010-07-12 Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same

Publications (2)

Publication Number Publication Date
TW201202498A true TW201202498A (en) 2012-01-16
TWI418676B TWI418676B (en) 2013-12-11

Family

ID=46756092

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99122809A TWI418676B (en) 2010-07-12 2010-07-12 Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same

Country Status (1)

Country Link
TW (1) TWI418676B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655329B (en) * 2017-12-29 2019-04-01 財團法人工業技術研究院 Composite textile
US10519595B2 (en) 2017-12-29 2019-12-31 Industrial Technology Research Institute Composite textile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555890B (en) * 2013-12-18 2016-11-01 財團法人工業技術研究院 Yarns having infrared absorbing ability and textiles containing the yarns
CN107009707B (en) * 2016-01-08 2019-11-08 财团法人工业技术研究院 Composite fabric

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW422898B (en) * 1998-10-26 2001-02-21 Nanya Plastics Corp The warm keeping cellulose and cloth and their manufacturing method
TW412608B (en) * 1998-11-20 2000-11-21 True Young Co Ltd Method of producing fiber with far-infrared light emission characteristics
TW200938670A (en) * 2008-03-12 2009-09-16 Huang-Shan Huang Manufacturing method of multi-functional spun-yarn fiber matrix

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655329B (en) * 2017-12-29 2019-04-01 財團法人工業技術研究院 Composite textile
US10519595B2 (en) 2017-12-29 2019-12-31 Industrial Technology Research Institute Composite textile

Also Published As

Publication number Publication date
TWI418676B (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US11149129B2 (en) Graphene composite material and preparation method thereof
CN102337603A (en) Fiber with function of infrared ray absorption, and its preparation method and textile
TW524903B (en) Method of preparing polyethylene glycol modified polyester filaments
TWI382112B (en) Polyster fiber having excellent lightshielding and flame retardanct characteristic and textile goods using the same
CN106350932B (en) Flocking lace fabric
JP2011162907A (en) Crimped yarn and fibrous structure
TW201202498A (en) Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same
CN102443876B (en) Preparation method for polyester fiber with compound ultraviolet ray resisting, aging resisting, moisture absorbing and quick drying functions
TW200306367A (en) Textured yarn with different shrinkage and excellent suede effect and method for preparing the same
CN106319685A (en) Heat insulation core-shell composite fiber for reflecting near infrared rays, and production method of fiber
KR101484506B1 (en) Soluble conjugated hollow fiber and hollow yarn
US3661853A (en) Filamentary material
EP4055219A1 (en) Radiative cooling fabric and fabrication method for the same
CN105482090B (en) A kind of neutron shielding fiber and its preparation and application
Lim et al. Study on manufacturing PCT/PPS flame retardant Fiber by sheath/core conjugate spinning
CN110004553A (en) The method of varicosity fire resistance fibre of the preparation without fire retardant in FDY equipment
JP5726002B2 (en) POLYESTER RESIN COMPOSITION, PROCESS FOR PRODUCING THE RESIN COMPOSITION, POLYESTER FIBER COMPRISING THE RESIN COMPOSITION, AND FIBER PRODUCT
KR101744256B1 (en) Extraction type conjugated hollow fiber and hollow yarn
KR101292081B1 (en) Polyester fiber composition having excellent tactility and drape, and preparing thereof
JP2012180504A (en) Flame-retardant cationic dyeable polyester composition and method for producing the same
JP2015105444A (en) Functional composite yarn
TWI458683B (en) Sodalite-containing composition and polyester composite
JP2882636B2 (en) Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric
CN216585403U (en) Anti-pilling wear-resistant flame-retardant acrylic yarn
Jing Elastic fibers