KR101353895B1 - 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는방법 - Google Patents

팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는방법 Download PDF

Info

Publication number
KR101353895B1
KR101353895B1 KR1020070008991A KR20070008991A KR101353895B1 KR 101353895 B1 KR101353895 B1 KR 101353895B1 KR 1020070008991 A KR1020070008991 A KR 1020070008991A KR 20070008991 A KR20070008991 A KR 20070008991A KR 101353895 B1 KR101353895 B1 KR 101353895B1
Authority
KR
South Korea
Prior art keywords
palm
biodiesel
fatty acid
oil
low temperature
Prior art date
Application number
KR1020070008991A
Other languages
English (en)
Other versions
KR20080070988A (ko
Inventor
강신영
박환호
김창국
Original Assignee
에스케이이노베이션 주식회사
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 에스케이에너지 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020070008991A priority Critical patent/KR101353895B1/ko
Priority to MYPI20093022A priority patent/MY171641A/en
Priority to PCT/KR2008/000538 priority patent/WO2008093990A1/en
Publication of KR20080070988A publication Critical patent/KR20080070988A/ko
Application granted granted Critical
Publication of KR101353895B1 publication Critical patent/KR101353895B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 팜오일로부터 저온유동성이 양호한 바이오디젤을 생산하는 방법에 관한 것으로, 보다 상세하게는 팜오일로부터 제조된 팜바이오디젤 (또는 팜지방산)을 증류하여 C16 팜바이오디젤(또는 C16팜지방산)과 C18 팜바이오디젤(또는 C18팜지방산)로 분리하여, 저온유동성이 열악한 C16 팜바이오디젤(또는 C16팜지방산)을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시켜, 경유 배합재로 활용하는 방법에 관한 것이다.
식물유, 유채유, 대두유, 팜오일, 바이오디젤, 지방산, 에스테르, 파라핀, 필터막힘점, 유동점, 가수분해, 수첨반응, 경유, 배합재, 저온유동성

Description

팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법 {Method of making biodiesel with good low-temperature performance from palm oil}
도1은 대두유를 사용한 국내 바이오디젤 생산 공정도이다
도2는 팜오일을 활용한 저온유동성이 양호한 바이오디젤 생산 공정도이다.
도3는 C16 팜지방산의 수첨반응실험 장치의 구성도이다.
도4는 C16 팜바이오디젤과 C15/C16 n-파라핀 혼합물의 경유 혼합비율별 필터막힘점을 나타낸 그래프이다.
도5은 식물유별 가격 추이를 나타낸 그래프이다.
본 발명은 팜오일로부터 저온유동성이 양호한 바이오디젤을 생산하는 방법에 관한 것으로, 좀 더 구체적으로 팜오일로부터 제조된 팜바이오디젤(또는 팜지방산)을 C16 팜바이오디젤(또는 C16팜지방산)과 C18팜바이오디젤(또는 C18팜지방산)로 분리하여, 저온유동성이 열악한 C16팜바이오디젤(또는 C16팜지방산)을 수첨반응시 켜 파라핀 혼합액으로 전환하여 경유 배합재로 활용하는 방법에 관한 것이다.
바이오디젤은 식물유(트리글리세라이드)가 염기촉매하에서 메탄올로 트랜스에스테르화되면서 만들어 지는 지방산메틸에스테르로서, 일산화탄소, 질소산화물, 미세먼지, 이산화탄소의 배출량을 감축시킬 수 있어 기후변화협약에 대처 및 고유가 시대의 대안으로서 관심이 높아지고 있는 실정이다.
현재 국내 바이오디젤의 원료는 수입 대두유 또는 대두유가 대부분인 회수유가 사용되고 있는데, 도 5에서 보이는 바와 같이, 대두유 가격은 유채유보다 저렴하나, 팜오일 보다는 통상적으로 20-25% 높은 편이다.
따라서 팜오일로부터 만들어 지는 팜바이오디젤이 생산단가 측면에서 가장 유리하나 팜바이오디젤은 저온유동성이 불리하여 동절기에는 사용되기 어려운 문제점을 가지고 있다. 바이오디젤의 구성 성분 중, 메틸팔미테이트(Methyl Palmitate) (C16:0) 와 Methyl Stearate(메틸스테아레이트) (C18:0)가 저온유동성을 악화시키는 성분인데, 팜바이오디젤에서는 이들의 비율이 45% 이상으로 다른 식물유로부터 만들어 지는 바이오디젤보다 그 비율이 크게 높은 편이다.
식물유별 바이오디젤의 성분 비율
유동점,
유채
바이오
디젤
대두
바이오
디젤

바이오
디젤
C16:0(Methyl Palmitate) 30-32 6 % 11 % 44.0 %
C18:0 (Methyl Stearate) 37-41 1.9 % 4 % 4.5 %
C18:1 (Methyl Oleate) -20 62.1 % 24 % 39.2 %
C18:2(Methyl Linoleate) -35 20.2 % 54 % 10.1 %
C18:3(Methyl Linoenate) -57 8.5 % 7 % 0.4 %
상기 표에 나타난 C18:1또는 C18:2와 같은 지방산의 표기법을 간단히 설명하면, 예를들어 C18:2는 지방산의 카본체인을 구성하고 있는 탄소의 개수가 18개이고 카본체인 안의 불포화 본드가 2개 있음을 나타낸다.
식물유별 바이오디젤의 주요 물성
유럽규격 유채
바이오디젤
대두
바이오디젤

바이오디젤
요오드가, g/100g < 120 98 129 55
유동점, ℃ < 0
(국내규격)
-12 -2 13
10%잔류탄소, wt% < 0.30 0.25 0.65 0.10
산화안정도, hr > 6.0 5.5 3.6 6.9
세탄가 > 51 58 50 65
위의 표1,2 에서 보는 바와 같이, 식물유를 구성하는 성분 비율의 차이로 식물유별 바이오디젤의 물성 차이가 있다. 대두바이오디젤은 메틸리놀레이트(Methyl Linoleate)(18:2)이 주성분인데, 이들은 저온 유동성은 양호하나 산화안정도가 불량하다.
바이오디젤 구성 성분 중, 메틸올레이트(Methyl Oleate)(18:1)는 저온유동성이 나쁘지 않으면서도 산화안정도도 우수한 편이기 때문에 바이오디젤 구성 성분으로 가장 바람직하다. 따라서 메틸올레이트가 주성분인 유채바이오디젤이 물성측면에서 가장 우수하다. 하지만 유채유는 가격이 상대적으로 높고 국가간 교역량도 많지 않아서, 유채가 많이 생산되는 유럽 일부 지역을 제외하면, 안정적인 물량 확보가 쉽지 않다.
대안으로 팜바이오디젤을 들 수 있는데, 전술한 바와 같은 저온유동성 문제만 없다면, 우리나라와 같이 바이오디젤 원료인 식물유의 대부분을 외국에서 수입해야 하는 국가에게는, 팜바이오디젤이 가격 및 품질에서 가장 적합하다.
팜바이오디젤의 저온유동성과 관련하여, 미국 특허공개 제 2004-0231234호에서는, 팜바이오디젤을 증류분리 또는 결정화하여 C16 팜바이오디젤(C16:0)을 제거하고 남은 저온유동성이 양호한 C18 팜바이오디젤(C18:0, C18:1, C18:2, C18:3)을 경유 배합재로 사용하는 것을 특징으로 하며, C18 팜바이오디젤은 온대기후 지역에서 바이오디젤로 사용될 수 있을 정도로 유동점이 낮고 부산물로 얻어지는 C16 팜바이오디젤 또는 C16팜지방산은 올레오 화합물(Oleo chemicals)로 팔릴 수 있고 알파 설폰화(α-sulphonated) 메틸에스테르의 원료로 사용될 수 있다고 언급하고 있다.
그러나 위에서 언급한 올레오 화합물의 시장규모는 C16 팜바이오디젤 또는 C16 팜지방산을 모두 흡수하기에는 규모가 충분하지 않고 이미 포화되어 있는 상태이다. 따라서 상기의 종래 기술은, C16 팜바이오디젤이 적정 가치이상으로 소비될 수 있는 용도가 있어야, 현실적으로 적용할 수 있다는 문제점을 가지고 있다.
일반적으로 유동점이 30℃수준인 C16 팜바이오디젤은 경유의 저온유동성을 크게 저하시키기 때문에 경유에 배합하는 것은 좋은 해결 방안이 될 수 없었다.
한편 미국특허 제4,992,605에 따르면, 식물유를 고압의 수소와 함께 고온상태로 CoMo Type 촉매가 채워진 반응기를 통과시켜 C15/C16/C17/C18 n-파라핀 혼합물로 전환시켜서 경유의 세탄가 향상제로 활용하는 방안이 제시되었다. 그러나 이에 따르면, 이 혼합물의 유동점이 20℃ 이상으로 저온유동성이 팜바이오디젤의 유동점보다 오히려 높아지는 문제점을 가지고 있으며, 특히, C18 팜바이오디젤은 수첨반응 시킬 경우, C17/C18 n-파라핀 혼합물로 전환되는데, 이 경우 유동점이 훨씬 높아지게 된다(0 ℃이하 → 25℃이상).
또한 C18 팜바이오디젤은, C16 팜바이오디젤과 비교하여, 지방산의 카본체인 중 불포화 본드가 포함되어 있기 때문에 수첨반응에서 상대적으로 30~40% 더 많은 수소가 소모되는 단점을 가지고 있다. 수소 가격이 높기 때문에 가능한 수소 소모량 줄이는 것이 중요하다.
이에 본 발명에서는 상술한 문제점을 해결하기 위하여 광범위한 연구를 수행한 결과, 팜바이오디젤을 C16 팜바이오디젤과 C18팜바이오디젤로 분리하여, C18 팜바이오디젤은 저온 유동성이 양호하여 그대로 경유 배합재로 사용가능 할 것으로 판단되었으나, 팜바이오디젤의 많은 부분을 차지하는C16팜바이오디젤은 저온유동성이 열악하여, 이의 경유배합재로의 활용 방법을 찾기 위하여 심도 있는 조사를 실시한 결과, C16 팜바이오디젤을 수첨반응하여 C15/C16 파라핀 혼합물로 전환시킬 경우, C16 팜바이오디젤을 구성하는 지방산 카본체인에는 불포화 본드가 거의 없기 때문에 수첨반응에서의 수소 소모량이 상대적으로 작다는 이점과 함께, 이를 저온유동성이 양호한 경유 배합재로 활용하는 것이 가능함을 발견하였고 본 발명은 이를 기초로 완성되었다.
따라서, 본 발명의 목적은 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법을 제공하는 것이다.
또한 본 발명의 다른 목적은 상기 바이오디젤(C15/C16 파라핀 혼합물)을 포함하는 경유제품을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 제조방법은,
a) 팜바이오디젤(또는 팜지방산)을 증류하여 C16팜바이오디젤(또는 C16 팜지방산)과 C18팜바이오디젤(또는 C18 팜지방산)로 분리시키는 단계;
b) 상기C16 팜바이오디젤을 가수분해하여C16 팜지방산 및 메탄올로 전환시키는 단계; 및
c) 상기 C16 팜지방산 또는 상기 a)단계의 C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계를 포함한다.
상기 다른 목적을 달성하기 위한 본 발명에 따른 바이오디젤을 함유하는 경유는,
상기 제조방법에 의하여 제조된 저온유동성이 양호한 바이오디젤(C15/C16 파라핀 혼합물)을, 경유에 2 내지 10부피%로 함유되는 것을 특징으로 하고 있다.
이하에서 본 발명을 상세히 설명한다.
본 발명은 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법으로서, 본 발명에 따른 제조 방법은 a) 팜바이오디젤(또는 팜지방산)을 증류하여 C16팜바이오디젤(또는 C16 팜지방산)과 C18팜바이오디젤(C18 팜지방산)로 분리시키는 단계; b) 상기C16 팜바이오디젤을 가수분해하여C16 팜지방산 및 메탄올로 전환시키는 단계; 및 c) 상기 C16 팜지방산 또는 상기 a)단계의C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계를 포함한다.
이하에서 본 발명의 제조방법의 각 단계에 따라 더욱 상세히 설명한다.
a) 팜바이오디젤(또는 팜지방산)을 증류하여 C16팜바이오디젤(또는 C16 팜지방산)과 C18팜바이오디젤(C18팜지방산)로 분리시키는 단계;
팜바이오디젤(또는 팜지방산)은 C16:0 (메틸팔미테이트 또는 팔미트산)과 C18:1 (메틸올레이트 또는 올레산)을 주성분으로 하고 있으며, 이는 끓는점의 차이에 따라 증류장치에서 분리가 가능하다. 증류는 5 내지 20 torr 압력으로, 180℃ 내지 230℃온도에서 행하여 진다.
팜 바이오디젤의 일 성분으로 분리되는C18 팜 바이오디젤은 성분 비율이 유채 바이오디젤과 유사하여, 물성 측면에서 산화안정도 및 10% 잔류탄소는 유채 바이오디젤보다 약간 우수하고, 저온유동성은 유채 바이오디젤보다 약간 불리하나 대두 바이오디젤과 동등한 수준이므로, 이를 경유 배합제로 사용하더라도 저온 유동성에는 큰 문제가 없으나, C16팜 바이오디젤의 경우는 표 3 및 4에서 보이는 바와 같이, 저온유동성이 배합제로 사용하기에 적합하지 않은바, 이를 C16 팜 지방산과 메탄올로 가수분해한 후 C16 팜 지방산을 수첨반응 시킨다.
팜 지방산의 일 성분으로 분리되는 C18 팜지방산은 산촉매하에서 메탄올로 에스테르화되면서 C18 팜바이오디젤로 전환될 수 있다.
b) C16 팜 바이오디젤을 가수분해하여 C16 팜 지방산 및 메탄올로 전환시키는 단계;
가수분해를 위하여, 물을 C16팜 바이오디젤에 대하여 1/15 이상의 중량비로 혼합한 후, 염기촉매를 상기 혼합물에 대하여 0.1중량% 이상 첨가시킨다. 이때, 물의 C16 팜 바이오디젤에 대한 첨가 비율이 1/15 미만이면, 일부 지방산이 가수분해되지 못하고 남아 있게 되는 문제가 있다.
염기촉매의 종류에는 특별한 제한이 없으나, 바람직하게는 소디움 메톡사이드(Sodium Metoxide)가 사용될 수 있다.
염기촉매의 함량이 0.1 wt% 미만으로 첨가되면, 가수분해에 필요한 반응시간이 지나치게 길어지는 문제가 있다.
상기의 가수분해 결과, C16바이오디젤이 C16팜 지방산 및 메탄올로 분리되며, 상기 메탄올은 진공 증발기를 통하여 회수된다.
c) 상기 C16 팜 지방산 또는 상기 a)단계의C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계;
수첨반응에서 C16 팜 바이오디젤은 수첨반응에 의하여 C15/C16 파라핀 혼합물로 전환될 수 있으나, C16 팜 바이오디젤 1분자가 최소 4분자의 수소가 필요함에 비하여, 이를 C16 팜 지방산과 메탄올로 가수분해할 경우, 메탄올을 회수할 수 있 고 C16 팜 지방산은 수첨반응에 필요한 수소가 3분자로 줄어들게 된다.
수첨반응을 통하여 상기 C16 팜지방산은 C15/C16 파라핀 혼합물로 대부분 전환되게 되는데, 증류 단계에서 불순물로 포함되는 C18지방산 혼합물 등은 수첨반응에 의하여 C17/C18파라핀 성분으로 전환되게 되나, 그 양은 미량이다.
수첨반응은 CoMo 또는 NiMo계 촉매가 채워진 연속반응기에서 촉매부피에 대하여, C16 팜 바이오디젤 또는 C16팜 지방산인 액상투입물의 시간당 통과 배수 (LHSV)는 2hr- 1이하, 수소와 액상투입물의 부피비(H2 to Oil Ratio)는 3 ㎥/kℓ 이상, 수소분압은 30bar 이상, 촉매 층의 평균온도(BAT)는 330℃ 이상에서 행하여 진다.
C16 팜 바이오디젤에 대한 직접 수첨반응도 상기와 같은 조건에서 이루어질 수 있으며, 그러한 경우 수소소모량이 C16 팜 지방산의 경우보다 많아 지게 된다.
수소와 액상투입물의 부피비가 3 미만에서는 반응에 필요한 수소가 충분히 공급되지 못하게 되고 LHSV가 2 hr- 1이상, 수소분압이 30bar 이하, BAT가 330℃ 미만이 되면, 지방산이 파라핀으로 전환되는 반응이 원활하게 이루어 지지 않게 된다.
C16 팜 지방산의 수첨반응에 사용되는 촉매는 경유의 탈황(desulfurization)용으로 사용되는 NiMo계 촉매 또는 CoMo계 촉매를 모두 사용할 수 있다.
n-파라핀으로 전환된 경우의 물성치는 하기의 표에 개시된 바와 같다. 하기의 표에서 보이는 바와 같이, C16팜 지방산은 수첨반응을 통하여, n-C15 및 n-C16 으로 전환되며, 이들은 C18팜 지방산으로부터 전환된 n-C17 및 n-C18에 비하여 유동점이 낮아, 동절기의 연료첨가제로서 바람직하게 활용이 가능하다.
팜유, 팜지방산, 팜바이오디젤의 n-파라핀으로의 전환
바이오디젤 C16:0 C18:0 C18:1 C18:2 C18:3
유동점, ℃ 30-32 37-41 -20 -35 -57
세탄가 74.5 86.9 55 42.2 22.7
비중 0.852 - 0.879 0.889 0.895
n-파라핀 n-C15 n-C16 n-C17 n-C18
유동점, ℃ 9.9 18 22-24 29.5
세탄가 95 100 105 110
비중 0.769 0.773 0.777 0.777
상기와 같이, C16 팜 지방산 또는 C16 팜 바이오디젤로부터 전환된 n-파라핀 혼합물은, 저온 유동성을 감소시키지 않으면서, 경유와 혼합하여 사용이 가능 하다.
통상적으로 동절기용 경유는 비점구간 150-250℃의 등유와 비점구간 250-360℃의 경질가스오일이 약 3:7의 비율로 혼합되고, 동절기에는 저온유동성을 향상시키기 위하여 유동성향상제가 약 600 ppm 주입되는데, 이와 같은 양으로 첨가되는 경우, 일반적으로 저온 유동점에 대한 국내외 기준을 충족하게 된다.
본 발명에 따른 상기 C15/C16 n-파라핀 혼합물이 상기 자동차용 경유에 2 내지 10부피%로 혼합되는 경우, 동일한 양의 C16팜 바이오 디젤을 경유물질과 혼합하는 경우보다 저온 유동성의 개선이 뚜렷하다. C15/C16 n-파라핀 혼합물이 상기 경유의 10부피%를 초과하여 혼합되는 경우는 저온유동성의 기준이 되는 필터막힘점 측면에서 바람직하지 않다.
이하 실시예를 통해 본 발명을 좀 더 구체적으로 설명하지만 이에 본 발명의 범주가 한정되는 것은 아니다.
실시예
증류단계
팜바이오디젤 3,000g을 10 torr 및 185℃ 조건의 증류장치에서 C16 팜바이오디젤과 C18 팜바이오디젤을 4:6의 비율로 분리했을 경우의 조성 및 물성은 아래의 표와 같다.
팜 C16/C18 바이오디젤의 성분 비율
끓는점,
C16 팜
바이오디젤
C18 팜
바이오디젤

바이오디젤
C16:0
(Methyl Palmitate)
338 90.5 % 8.1 % 43.5 %
C18:0
(Methyl Stearate)
352 2.2 % 5.9 % 4.3 %
C18:1 (Methyl Oleate) 349 6.8 % 65.9 % 39.8 %
C18:2
(Methyl Linoleate)
366 0.2 % 18.3 % 10.2 %
C18:3
(Methyl Linolenate)
- 0.1 % 0.5 % 0.3 %
팜 C16/C18 바이오디젤의 주요 물성
유럽규격 C16 팜
바이오디젤
C18 팜
바이오디젤

바이오디젤
요오드가, g/100g < 120 7 88 55
유동점, ℃ < 0
(국내규격)
30 -1 13
10% 잔류탄소, wt% < 0.30 0.05 이하 0.15 0.10
산화안정도, hr > 6.0 > 20 6.0 6.9
세탄가 > 51 72 55 65
가수분해단계
C16 팜바이오디젤 470g, 물 45g, 염기촉매(Sodium Metoxide) 1g을 1,000cc 둥근 플라스크에 넣고 둥근 플라스크를 진공증발기에 부착한다.
둥근 플라스크 내부압력 200 torr, 수조의 온도 60℃에서 진공증발기를 45분간 구동시킨다. 이때 가수분해가 일어나면서 생성되는 메탄올은 진공증발기에서 제거되면서 C16 팜바이오디젤은 C16 팜지방산으로 전환된다. 진공증발기의 압력을 40 torr로 낮추어서 미반응 물과 잔류 메탄올을 제거한다. 압력을 풀고 얻어진 C16팜지방산 용액을 50℃ 조건에서 종이필터에 통과시켜서 염기촉매를 제거한다.
C16 팜바이오디젤과 C16 팜지방산
C16 팜
바이오디젤
C18 팜
지방산
구조식 RCOOCH3 RCOOH
요오드가, g/100g 10 이하 10 이하
전산가, mgKOH/g 0.5 202
수첨반응단계
도3과 같은 CoMo촉매 100cc가 채워진 촉매반응기에 C16 팜 지방산(100 cc/hr) 과 수소(0.5 Nℓ/hr)를 통과시키면서 촉매 층의 평균온도를 370℃까지 서서히 승온하여 유지시킨 다음, 그로부터 4시간 이후부터 액상 생성물을 포집하기 시작하여 총 10시간 동안 액상 생성물을 포집하였다. 포집된 생성물로부터 수분을 층 분리하여 제거한 후, 남은 액상 생성물의 성분을 분석하였다.
수첨반응기 액상 투입물 및 액상 생성물 비교
액상 투입물 액상 생성물
구분 C16팜 지방산 C15/C16
n-파라핀 혼합물
부피 (무게)
수율
995 cc (850 g)
100%
935 cc (720 g)
84.7%
(99 g)
11.6%
조성, wt% 지방산 혼합물
C16:0 90.5
C18:0 2.2
C18:1 6.8
C18:2 0.2
C18:3 0.1
n- 파라핀 혼합물
Lighters 1
n-C15 27
n-C16 62
n-C17 2.5
n-C18 5.5
Heaviers 1.5
비중 0.85 0.77
유동점, ℃ 30 14
세탄가 72 98
유동성향상제에 대한 영향평가
C16 팜 바이오디젤과 C15/C16 n-파라핀 혼합물을 각각 경유에 혼합하였을 경우 유동성향상제(Wax Anti-settling Flow Improver)의 주입농도에 따른 필터막힘점을 측정하여 비교하였다. 필터막힘점은 경유의 저온유동성을 나타내는 중요한 지표이며, 국내 정유사의 동절기 품질기준은 "-20℃ 이하"이다.
표8. C16 팜 바이오디젤 및 n-파라핀 혼합물 이 유동성향상제의 성능에 미치는 영향

샘플명
경유 혼합비율, v% 유동성향상제 농도별
필터막힘점, ℃
등유 경질
가스오일
C16 팜
바이오
디젤
C15/C16
n-파라핀
혼합물
유동성
향상제
0 ppm
유동성
향상제
600 ppm
유동성
향상제
1,000ppm
기준 30 70 0 0 -7 -21 -24
1-1 30 68 2 0 -8 -19 -21
1-2 30 65 5 0 -9 -17 -18
1-3 30 60 10 0 -6 -10 -10
2-1 30 68 0 2 -8 -21 -24
2-2 30 65 0 5 -9 -21 -22
2-3 30 60 0 10 -10 -19 -20
상기 표와 도4에서 보는 바와 같이, C16 팜 바이오디젤의 경우는 2%만 혼합되어도 필터막힘점이 상승하여 필터막힘점 기준(-20℃ 이하)을 충족하기 위해서는 유동성향상제의 주입율을 1,000ppm 으로 늘려야 하는 것으로 관찰되었다. 하지만 C15/C16 n-파라핀 혼합물의 경우는 경유에 5% 배합될 때까지 필터막힘점의 변화가 없었으며, 10% 정도 배합되어도 유동성향상제의 주입율을 1,000ppm으로 늘리면 필터막힘점 기준을 충족하는 것으로 관찰되었다.
이상에서 살펴본 바와 같이, 본 발명에 따른 바이오디젤은 기존의 대두 바이오디젤의 원료인 대두유 보다 저렴한 팜 오일을 활용하고, 이의 적절한 가공을 통하여 국내외 기준을 만족시키는 저온유동성을 달성할 수 있는바, 산업적, 환경적으로 보다 활발한 활용이 가능하다.

Claims (5)

  1. a) 팜 바이오디젤을 증류하여 C16 팜 바이오디젤과 C18 팜 바이오디젤로 분리시키는 단계;
    b) 상기 C16 팜 바이오디젤을 가수분해하여 C16 팜 지방산 및 메탄올로 전환시키는 단계; 및
    c) 상기 C16 팜 지방산 또는 상기 a)단계의 C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계;
    를 포함하는 것을 특징으로 하는, 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법.
  2. 제 1항에 있어서, 상기 증류는 5 내지 20torr의 압력에서, 180℃ 내지 230℃의 온도조건에서 행하여지는 것을 특징으로 하는 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법.
  3. 제 1항에 있어서, 상기 가수분해 반응은 물을 C16팜 바이오디젤에 대하여 1/ 15 이상의 중량비로 혼합하고, 염기촉매를 상기 혼합물에 대하여 0.1중량%이상으로 첨가시키는 것을 특징으로 하는, 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법.
  4. 제 1항에 있어서, 상기 수첨반응이 CoMo계 또는 NiMo계 촉매가 채워진 연속 반응기에서 촉매부피에 대하여, C16 팜 바이오디젤 또는 C16팜 지방산인 액상투입물의 시간당 통과 배수 (LHSV)는 2 hr- 1이하, 수소와 상기 액상투입물의 부피비(H2 to Oil Ratio)는 3 ㎥/㎘ 이상, 수소분압은 30bar 이상, 촉매 층의 평균온도(BAT)는 330℃ 이상인 조건에서 행해지는 것을 특징으로 하는, 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법.
  5. 제 1항 내지 제 4항 중 어느 하나의 항에 따라 제조된 저온유동성이 양호한 바이오디젤이, 경유에 2 내지 10부피%로 함유되는 것을 특징으로 하는 바이오디젤을 포함하는 경유.
KR1020070008991A 2007-01-29 2007-01-29 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는방법 KR101353895B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070008991A KR101353895B1 (ko) 2007-01-29 2007-01-29 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는방법
MYPI20093022A MY171641A (en) 2007-01-29 2008-01-29 Method of making biodiesel with good low-temperature performance from palm oil
PCT/KR2008/000538 WO2008093990A1 (en) 2007-01-29 2008-01-29 Method of making biodiesel with good low-temperature performance from palm oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070008991A KR101353895B1 (ko) 2007-01-29 2007-01-29 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는방법

Publications (2)

Publication Number Publication Date
KR20080070988A KR20080070988A (ko) 2008-08-01
KR101353895B1 true KR101353895B1 (ko) 2014-01-23

Family

ID=39674250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070008991A KR101353895B1 (ko) 2007-01-29 2007-01-29 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는방법

Country Status (3)

Country Link
KR (1) KR101353895B1 (ko)
MY (1) MY171641A (ko)
WO (1) WO2008093990A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004406A1 (de) * 2008-01-14 2009-07-23 Lurgi Gmbh Verfahren und Anlage zur Herstellung von Kohlenwasserstoffen
KR101234121B1 (ko) * 2010-07-16 2013-02-19 에스케이이노베이션 주식회사 동식물유로부터 유기 상변화 물질의 제조방법
WO2013114381A1 (en) * 2012-01-30 2013-08-08 Venkata Sudhakar Edupuganti Two stage process of producing fatty acid esters from palm fatty acid distillate (pfad) using acid chloride route for biodiesel
US11566332B2 (en) 2012-03-06 2023-01-31 Board Of Trustees Of Michigan State University Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds
US10065903B2 (en) 2015-07-31 2018-09-04 Uop Llc Processes for producing hydrocarbons from a renewable feedstock
FI129869B (en) 2016-05-17 2022-10-14 Neste Oyj A composition comprising paraffins and a method for its preparation
KR102348521B1 (ko) 2019-12-09 2022-01-07 한국에너지기술연구원 염기촉매를 이용한 미세조류로부터 바이오 오일의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081881A2 (en) * 1981-12-15 1983-06-22 Societe Des Produits Nestle S.A. A process for the solvent fractionation of palm oil stearines and products obtained with said process
US20090069610A1 (en) 2006-12-01 2009-03-12 North Carolina State University Process for conversion of biomass to fuel
US20110192075A1 (en) 2010-04-06 2011-08-11 Heliae Development, Llc Methods of and Systems for Producing Biofuels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138791A (ja) * 1982-02-10 1983-08-17 Nippon Oil & Fats Co Ltd 燃料油用流動性向上剤
KR100983546B1 (ko) * 2003-06-04 2010-09-24 말레이지언 팜 오일 보드 저유동점을 가지는 팜 디젤
ATE552324T1 (de) * 2003-06-23 2012-04-15 Infineum Int Ltd Ölzusammensetzungen
MY142383A (en) * 2005-06-10 2010-11-30 Malaysian Palm Oil Board Mpob Palm- based biodiesel formulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081881A2 (en) * 1981-12-15 1983-06-22 Societe Des Produits Nestle S.A. A process for the solvent fractionation of palm oil stearines and products obtained with said process
US20090069610A1 (en) 2006-12-01 2009-03-12 North Carolina State University Process for conversion of biomass to fuel
US20110192075A1 (en) 2010-04-06 2011-08-11 Heliae Development, Llc Methods of and Systems for Producing Biofuels

Also Published As

Publication number Publication date
KR20080070988A (ko) 2008-08-01
MY171641A (en) 2019-10-22
WO2008093990A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
KR101353895B1 (ko) 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는방법
Moser Biodiesel production, properties, and feedstocks
Knothe et al. Biodiesel fuels
AU2003258753C1 (en) Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids
Nogales-Delgado et al. High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production
EP1985684B1 (en) Process to obtain Biodiesel fuel with improved properties at low temperature and comprising glycerine acetates
Leng et al. Cold flow properties of biodiesel and the improvement methods: A review
Soriano et al. Evaluation of biodiesel derived from Camelina sativa oil
KR101327934B1 (ko) 디젤유용 세탄 개량제 및 이를 포함하는 디젤유
Ahmad et al. Biodiesel from non edible oil seeds: a renewable source of bioenergy
Sreenivas et al. Development of biodiesel from castor oil
US20090049739A1 (en) Production of Fuels with Superior Low Temperature Properties from Tall Oil or Fractionated Fatty Acids
DE202012103453U1 (de) Treibstoffzusammensetzungen
Sarin et al. Biodiesel surrogates: Achieving performance demands
CN101772563B (zh) 瓦斯油组合物
US20140331549A1 (en) Biofuel Consisting of a Mixture of Naturally Occurring Fatty Acid Esters and Method for Producing Said Biofuel
AU2017279689B2 (en) Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposing fatty acids
El Diwani et al. Modification of thermal and oxidative properties of biodiesel produced from vegetable oils
Hancsók et al. Production of vegetable oil fatty acid methyl esters from used frying oil by combined acidic/alkali transesterification
KR20080017226A (ko) 바이오 디젤 연료 개질제와 연료 및 이들에 관련된 방법
JP2005220227A (ja) バイオディーゼル燃料およびその製造方法
US20080120899A1 (en) Biofuel
KR100782130B1 (ko) 산화안정성과 저온유동성이 개선된 바이오디젤유의제조방법
JP2008266487A (ja) ディーゼルエンジン用混合燃料及びその流動点降下方法
KR101168092B1 (ko) 글리세롤로부터 유동점 강하제를 제조하는 방법 및 제조된 유동점 강하제

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 7