KR101342605B1 - Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same - Google Patents

Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same Download PDF

Info

Publication number
KR101342605B1
KR101342605B1 KR1020130029909A KR20130029909A KR101342605B1 KR 101342605 B1 KR101342605 B1 KR 101342605B1 KR 1020130029909 A KR1020130029909 A KR 1020130029909A KR 20130029909 A KR20130029909 A KR 20130029909A KR 101342605 B1 KR101342605 B1 KR 101342605B1
Authority
KR
South Korea
Prior art keywords
hydrocarbon reforming
thermal conductivity
oxide carrier
reforming catalyst
high thermal
Prior art date
Application number
KR1020130029909A
Other languages
Korean (ko)
Other versions
KR20130041011A (en
Inventor
율리아 포타포바
김순호
이두환
이현철
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020130029909A priority Critical patent/KR101342605B1/en
Publication of KR20130041011A publication Critical patent/KR20130041011A/en
Application granted granted Critical
Publication of KR101342605B1 publication Critical patent/KR101342605B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Abstract

본 발명은 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는 연료처리장치에 관한 것으로서, 더욱 구체적으로는 산화물 담체에 담지된 활성촉매 성분 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 포함하는 탄화수소 개질 촉매, 그 제조방법 및 연료처리장치에 관한 것이다.
본 발명에 따른 탄화수소 개질 촉매는 반응성이 뛰어나면서도, 열전도성이 뛰어나 탄화수소 개질 반응에 필요한 열을 원활하게 전달할 수 있어서, 높은 수소 생성율을 얻을 수 있다는 효과가 있다.
The present invention relates to a hydrocarbon reforming catalyst, a method for manufacturing the same, and a fuel treating apparatus including the same, and more particularly, a hydrocarbon reforming comprising an active catalyst component supported on an oxide carrier and a high thermal conductivity material having a higher thermal conductivity than the oxide carrier. A catalyst, a method for producing the same, and a fuel processing device.
The hydrocarbon reforming catalyst according to the present invention is excellent in reactivity and also excellent in thermal conductivity, so that it is possible to smoothly transfer heat required for the hydrocarbon reforming reaction, thereby obtaining a high hydrogen production rate.

Description

탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는 연료처리장치 {Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same}Hydrocarbon reforming catalyst, method for manufacturing the same, and fuel treating apparatus comprising same {Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same}

본 발명은 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는 연료처리장치에 관한 것으로서, 더욱 구체적으로는 산화물 담체에 담지된 활성촉매 성분 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 포함하는 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는 연료처리장치에 관한 것이다.The present invention relates to a hydrocarbon reforming catalyst, a method for manufacturing the same, and a fuel treating apparatus including the same, and more particularly, a hydrocarbon reforming comprising an active catalyst component supported on an oxide carrier and a high thermal conductivity material having a higher thermal conductivity than the oxide carrier. A catalyst, a method of manufacturing the same, and a fuel treating apparatus including the same.

연료전지(Fuel cell)는 메탄올, 에탄올, 천연가스와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다.A fuel cell is a power generation system that directly converts chemical energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol and natural gas into electrical energy.

상기와 같은 연료전지 시스템은 기본적으로 시스템을 구성하기 위해 연료전지 스택 (stack), 연료처리장치 (FP: fuel processor), 연료탱크, 연료 펌프 등을 구비한다. 스택은 연료 전지의 본체를 형성하며 막-전극 접합체 (MEA: membrane electrode assembly)와 세퍼레이터 (separator 또는 bipolar plate)로 이루어진 단위 셀이 수 내지 수십 개로 적층된 구조를 가진다.The fuel cell system as described above basically includes a fuel cell stack, a fuel processor (FP), a fuel tank, a fuel pump, and the like to configure the system. The stack forms a main body of a fuel cell and has a structure in which a plurality of unit cells consisting of a membrane electrode assembly (MEA) and a separator (separator or bipolar plate) are stacked.

연료 펌프는 연료 탱크 내의 연료를 연료처리장치로 공급하며, 연료처리장치는 연료를 개질 및 정화하여 수소를 발생시키고 그 수소를 스택으로 공급한다. 연료전지 스택에서는 상기 수소를 받아 산소와 전기화학적으로 반응시켜 전기에너지를 발생시킨다.The fuel pump supplies the fuel in the fuel tank to the fuel processing apparatus, which reforms and purifies the fuel to generate hydrogen and supply the hydrogen to the stack. The fuel cell stack receives the hydrogen and reacts with oxygen electrochemically to generate electrical energy.

연료처리장치의 개질기 (reformer)는 리포밍 촉매를 이용하여 탄화수소를 개질하게 되는데, 상기 탄화수소는 황 화합물을 함유하는 반면, 상기 리포밍 촉매는 황 화합물에 의해 피독되기 쉽기 때문에 상기 탄화수소를 개질공정에 공급하기 전에 상기 황 화합물을 제거할 필요가 있다. 따라서, 상기 탄화수소는 개질공정에 진입하기 전에 탈황공정을 거치게 된다 (도 1 참조).The reformer of the fuel processing apparatus reforms a hydrocarbon by using a reforming catalyst. The hydrocarbon contains a sulfur compound, whereas the reforming catalyst is easily poisoned by the sulfur compound. It is necessary to remove the sulfur compound before feeding. Therefore, the hydrocarbon is subjected to a desulfurization process before entering the reforming process (see FIG. 1).

연료처리장치에서는 도 1에 나타낸 바와 같이 크게 탈황공정, 개질공정, 및 CO 제거 공정이 이루어지고, 다시 상기 CO 제거 공정은 고온 쉬프트 반응, 저온 쉬프트 반응, 및 프록스 반응으로 이루어진다.In the fuel processing apparatus, as shown in FIG. 1, a desulfurization process, a reforming process, and a CO removal process are largely performed, and the CO removal process is composed of a high temperature shift reaction, a low temperature shift reaction, and a proximal reaction.

개질 공정의 개질기 (reformer)는 리포밍 촉매를 이용하여 탄화수소로 이루어진 연료가스를 개질하게 되는데, 상기 개질 공정은 탄화수소에 스팀 (H2O)을 불어넣어 주로 하기 반응식 1과 같은 반응을 통해 수소를 생산하는 공정이다.The reformer of the reforming process reforms a fuel gas composed of hydrocarbons using a reforming catalyst, and the reforming process injects hydrogen (H 2 O) into the hydrocarbons, and mainly reforms hydrogen through a reaction as in Scheme 1 below. Production process.

[반응식 1][Reaction Scheme 1]

CH4 + H2O → CO + 3H2 CH 4 + H 2 O - > CO + 3H 2

C4H10 + 4H2O → 4CO + 9H2 C 4 H 10 + 4H 2 O → 4CO + 9H 2

탄화수소의 개질공정에서 일어나는 상기 반응식 1의 반응은 많은 열을 필요로 하는 흡열공정이다. 따라서, 상기 개질반응은 열의 공급을 필요로 하는 반응으로서, 고온에서 촉매를 사용하여 진행되며, 높은 수소 생성율을 얻기 위해서는 ⅰ) 높은 반응성 및 ⅱ) 반응에 필요한 열을 원활히 전달할 수 있는 높은 열전도성을 갖는 촉매가 요구된다.The reaction of Scheme 1, which occurs in the hydrocarbon reforming process, is an endothermic process that requires a lot of heat. Therefore, the reforming reaction requires a supply of heat, and proceeds using a catalyst at a high temperature, and in order to obtain high hydrogen generation rate, i) high reactivity and ii) high thermal conductivity capable of smoothly transferring heat required for the reaction. Catalyst is required.

종래에 통상적으로 사용되는 탄화수소 개질촉매는 상기 ⅰ)의 조건, 즉 높은 반응성을 갖도록 하는 데에 그 초점이 맞추어져 있으며, 일반적으로 알루미나, 실리카 등의 산화물로 이루어진 촉매 담지체를 사용하여 이러한 요구를 충족하고 있다.The hydrocarbon reforming catalysts conventionally used in the prior art are focused on the above conditions of i), that is, to have a high reactivity, and this requirement is generally used by using a catalyst support made of an oxide such as alumina or silica. Satisfying.

그러나, 더욱 높은 수준의 탄화수소 전환율을 달성하기 위해서는, 높은 반응성 및 높은 열전도성을 모두 충족시키는 탄화수소 개질 촉매의 개발이 시급한 실정이다.However, in order to achieve higher levels of hydrocarbon conversion, it is urgent to develop hydrocarbon reforming catalysts that satisfy both high reactivity and high thermal conductivity.

따라서, 본 발명에서는 상기 종래 기술의 문제점을 해결하여, 반응성이 뛰어나면서도, 열전도성이 뛰어나 탄화수소 개질 반응에 필요한 열을 원활하게 전달할 수 있어서, 높은 수소 생성율을 얻을 수 있는 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는 연료처리장치를 제공하고자 한다.Accordingly, the present invention solves the problems of the prior art, a hydrocarbon reforming catalyst that is excellent in reactivity and excellent in thermal conductivity and capable of smoothly transferring heat required for a hydrocarbon reforming reaction, thereby obtaining a high hydrogen production rate, and a method of manufacturing the same. And to provide a fuel processing apparatus comprising the same.

본 발명은 상기 목적을 달성하기 위한 일 태양에서,The present invention in one aspect for achieving the above object,

산화물 담체에 담지된 활성촉매 성분 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 포함하는 탄화수소 개질 촉매를 제공한다.A hydrocarbon reforming catalyst comprising an active catalyst component supported on an oxide carrier and a high thermal conductivity material having a higher thermal conductivity than the oxide carrier is provided.

본 발명은 상기 목적을 달성하기 위한 다른 태양에서,In another aspect, the present invention to achieve the above object,

(a) 산화물 담체 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 혼합하는 단계;(a) mixing an oxide carrier and a high thermal conductivity material having a higher thermal conductivity than the oxide carrier;

(b) 상기 (a) 단계의 혼합물에 활성 촉매 성분을 담지시키는 단계;(b) supporting the active catalyst component in the mixture of step (a);

(c) 상기 (b) 단계의 결과물을 건조시키는 단계; 및(c) drying the product of step (b); And

(d) 상기 (c) 단계의 결과물을 열처리하는 단계(d) heat-treating the resultant of step (c)

를 포함하는 탄화수소 개질 촉매의 제조방법을 제공한다.It provides a method for producing a hydrocarbon reforming catalyst comprising a.

본 발명은 상기 목적을 달성하기 위한 또 다른 태양에서,The present invention in another aspect to achieve the above object,

(a) 산화물 담체에 활성 촉매 성분을 담지시키는 단계;(a) supporting an active catalyst component on an oxide carrier;

(b) 상기 (a) 단계의 결과물을 건조시키는 단계;(b) drying the resultant of step (a);

(c) 상기 (b) 단계의 결과물과 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 혼합하는 단계;(c) mixing the resultant of step (b) with a high thermal conductivity material having a higher thermal conductivity than the oxide carrier;

(d) 상기 (c) 단계의 혼합물을 열처리하는 단계(d) heat-treating the mixture of step (c)

를 포함하는 탄화수소 개질 촉매의 제조방법을 제공한다.It provides a method for producing a hydrocarbon reforming catalyst comprising a.

또한, 본 발명은 상기 목적을 달성하기 위한 또 다른 태양에서,In another aspect, the present invention to achieve the above object,

상기 탄화수소 개질 촉매를 포함하는 연료처리장치를 제공한다.It provides a fuel processing apparatus comprising the hydrocarbon reforming catalyst.

본 발명에 따른 탄화수소 개질 촉매는 반응성이 뛰어나면서도, 열전도성이 뛰어나 탄화수소 개질 반응에 필요한 열을 원활하게 전달할 수 있어서, 높은 수소 생성율을 얻을 수 있다는 효과가 있다.The hydrocarbon reforming catalyst according to the present invention is excellent in reactivity and also excellent in thermal conductivity, so that it is possible to smoothly transfer heat required for the hydrocarbon reforming reaction, thereby obtaining a high hydrogen production rate.

도 1은 종래의 연료전지 시스템에 사용되는 연료처리장치에서 연료가 처리되는 단계를 개략적으로 나타낸 흐름도이다.
도 2는 종래의 탄화수소 개질 촉매 입자의 구조를 개략적으로 도시한 모형도이다.
도 3은 본 발명에 따른 탄화수소 개질 촉매 입자의 구조를 개략적으로 도시한 모형도이다.
도 4는 본 발명의 일 구현예에 따른 탄화수소 개질 촉매의 개략적인 제조 공정도이다.
도 5는 본 발명의 다른 구현예에 따른 탄화수소 개질 촉매의 개략적인 제조 공정도이다.
도 6은 실시예 1에 따른 탄화수소 개질 촉매 및 비교예 1 및 2에 따른 탄화수소 개질 촉매에 대한 600℃에서의 공간속도별 메탄가스 전환율을 나타낸 그래프이다.
도 7은 실시예 2 및 3에 따른 탄화수소 개질 촉매 및 비교예 3에 따른 탄화수소 개질 촉매에 대한 600℃에서의 공간속도별 메탄가스 전환율을 나타낸 그래프이다.
도 8은 실시예 2 및 실시예 4에 따른 탄화수소 개질 촉매 및 비교예 1에 따른 탄화수소 개질 촉매에 대한 700℃에서의 공간속도별 메탄가스 전환율을 나타낸 그래프이다.
<도면의 주요 부분에 대한 부호의 설명>
10 : 연료처리 단계 20 : CO 제거 단계
30 : 완성된 연료 가스
1 is a flowchart schematically illustrating a process of processing fuel in a fuel processing apparatus used in a conventional fuel cell system.
2 is a schematic diagram schematically showing the structure of a conventional hydrocarbon reforming catalyst particle.
3 is a schematic diagram schematically showing the structure of hydrocarbon reforming catalyst particles according to the present invention.
4 is a schematic manufacturing process diagram of a hydrocarbon reforming catalyst according to an embodiment of the present invention.
5 is a schematic manufacturing process diagram of a hydrocarbon reforming catalyst according to another embodiment of the present invention.
6 is a graph showing the methane gas conversion rate by space velocity at 600 ° C. for the hydrocarbon reforming catalyst according to Example 1 and the hydrocarbon reforming catalyst according to Comparative Examples 1 and 2. FIG.
7 is a graph showing methane gas conversion rate by space velocity at 600 ° C. for a hydrocarbon reforming catalyst according to Examples 2 and 3 and a hydrocarbon reforming catalyst according to Comparative Example 3. FIG.
8 is a graph showing the methane gas conversion rate by space velocity for the hydrocarbon reforming catalyst according to Examples 2 and 4 and the hydrocarbon reforming catalyst according to Comparative Example 1 at 700 ° C.
Description of the Related Art
10: fuel treatment step 20: CO removal step
30: completed fuel gas

이하, 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described more specifically.

본 발명에 따른 탄화수소 개질 촉매는 산화물 담체에 담지된 활성촉매 성분 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 포함한다.The hydrocarbon reforming catalyst according to the present invention includes an active catalyst component supported on an oxide carrier and a high thermal conductivity material having a higher thermal conductivity than the oxide carrier.

본 발명에 따른 탄화수소 개질 촉매는 이와 같이 탄화수소 개질 촉매에 요구되는 고반응성을 충족시키기 위해서 활성 촉매 성분을 분산시키기 위한 산화물 담체를 포함할 뿐만 아니라, 반응에 필요한 열을 원활히 전달할 수 있는 높은 열전도성을 충족시키기 위해서 높은 열전도성을 갖는 물질을 포함한다.The hydrocarbon reforming catalyst according to the present invention not only includes an oxide carrier for dispersing the active catalyst component in order to meet the high reactivity required for the hydrocarbon reforming catalyst, but also has a high thermal conductivity capable of smoothly transferring the heat required for the reaction. It includes materials with high thermal conductivity to meet.

따라서, 상기 산화물 담체 및 높은 열전도성을 갖는 물질을 적당한 비율로 혼합하여 사용 용도에 맞는 모양과 크기로 탄화수소 개질 촉매를 제조할 수 있게 되며, 반응성과 열전도성을 용이하게 조절할 수 있게 된다.Therefore, by mixing the oxide carrier and the material having high thermal conductivity in a suitable ratio it is possible to manufacture a hydrocarbon reforming catalyst in the shape and size suitable for the intended use, it is possible to easily control the reactivity and thermal conductivity.

도 2 및 도 3에는 종래의 탄화수소 개질 촉매 입자 및 본 발명의 탄화수소 개질 촉매 입자의 구조에 대한 개략적인 모형도를 도시하였다.2 and 3 show schematic model diagrams of the structure of the conventional hydrocarbon reforming catalyst particles and the hydrocarbon reforming catalyst particles of the present invention.

도 2를 참조하면, 종래의 탄화수소 개질 촉매는 일정한 크기 및 형태를 갖는 산화물 성형체의 표면에 반응성을 갖는 분말 형태의 촉매 금속을 코팅한 구조, 이른바 코어 앤드 쉘 (core and shell) 타입의 구조를 가지며, 이 경우, 반응에 필요한 열전달이 용이하지 않다는 문제점이 있었다.Referring to FIG. 2, the conventional hydrocarbon reforming catalyst has a structure coated with a catalyst metal in powder form having a reactivity on the surface of an oxide formed body having a constant size and shape, a so-called core and shell type structure. In this case, there was a problem that heat transfer required for the reaction was not easy.

반면에, 도 3을 참조하면, 본 발명에 따른 탄화수소 개질 촉매는 산화물 담체 분말과 높은 열전도성을 갖는 물질을 혼합 및 성형하여 제조됨으로써 반응성이 우수할 뿐만 아니라, 열전달이 더욱 용이한 형태를 갖게 된다.On the other hand, referring to Figure 3, the hydrocarbon reforming catalyst according to the present invention is prepared by mixing and molding the oxide carrier powder and a material having a high thermal conductivity not only has excellent reactivity, but also has a form of heat transfer more easily. .

바람직하게는, 상기 산화물 담체는 높은 표면적을 갖는 다공성 구조의 산화물 담체로서, 그 표면적은 10 m2/g 내지 800 m2/g이다. 상기 산화물 담체의 표면적이 10 m2/g 미만인 경우에는 담지되는 활성 촉매 성분의 분산 정도가 너무 낮아서 충분한 촉매 반응성을 얻을 수 없다는 문제점이 있고, 800 m2/g을 초과하는 경우에는 기계적 물성이 나빠지는 문제점이 있어서 바람직하지 않기 때문이다.Preferably, the oxide carrier is a porous carrier having a high surface area, the surface area of which is 10 m 2 / g to 800 m 2 / g. When the surface area of the oxide carrier is less than 10 m 2 / g, there is a problem that the dispersion degree of the supported active catalyst component is too low to obtain sufficient catalytic reactivity, and when the surface area of the oxide carrier exceeds 800 m 2 / g, the mechanical properties deteriorate. This is because there is a problem and is not preferable.

또한, 상기 높은 열전도성을 갖는 물질의 열전도성은 상온에서 15 Wm-1K-1 내지 600 Wm-1K-1인 것이 바람직하다. 상기 물질의 열전도성이 15 Wm-1K-1 미만인 경우에는 산화물 담체보다 열전도성이 낮아서 반응 효울의 향상에 기여하는 효과가 미미하다는 문제점이 있고, 600 Wm-1K- 1를 초과하는 경우에는 열전도성이 그 이상으로 높아지더라도 그에 따른 효과가 수반되지 않는다는 문제점이 있어서 바람직하지 않다.In addition, the thermal conductivity of the material having high thermal conductivity is preferably 15 Wm -1 K -1 to 600 Wm -1 K -1 at room temperature. Thermal conductivity of the material is less than 15 Wm -1 K -1 has a problem in that the effect of contributing to the improvement of the low reaction hyoul thermal conductivity than a metal-oxide support ears, 600 Wm -1 K - if 1 is exceeded Even if the thermal conductivity becomes higher than that, there is a problem that the effect is not accompanied, which is not preferable.

상기 조건을 만족시키는 산화물 담체의 구체적인 예로는, 이에 제한되는 것은 아니지만, Al2O3, SiO2, TiO2, ZrO2 및 CeO2로 이루어진 군으로부터 선택된 적어도 하나를 들 수 있다.Specific examples of the oxide carrier that satisfies the above conditions include, but are not limited to, at least one selected from the group consisting of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2, and CeO 2 .

또한, 상기 조건을 만족시키는 고열전도성 물질의 구체적인 예로는, 이에 제한되는 것은 아니지만, Al, Mg, Co, Fe, Ni 및 Mo 등의 고열전도성 금속 물질 및 흑연, 카본블랙 등의 고열전도성 탄소계 물질로 이루어진 군으로부터 선택된 적어도 하나를 들 수 있다.In addition, specific examples of the high thermally conductive material satisfying the above conditions include, but are not limited to, high thermally conductive metal materials such as Al, Mg, Co, Fe, Ni, and Mo, and high thermally conductive carbon-based materials such as graphite and carbon black. At least one selected from the group consisting of.

한편, 상기 산화물 담체의 함량은 산화물 담체 및 고열전도성 물질의 중량합을 기준으로 10 중량% 내지 90 중량%이고, 상기 고열전도성 물질의 함량은 산화물 담체 및 고열전도성 물질의 중량합을 기준으로 10 중량% 내지 90 중량%인 것이 바람직한데, 상기 범위를 벗어나 고열전도성 물질의 함량이 너무 많으면, 상대적으로 활성 촉매 성분이 담지된 산화물 담체의 함량이 적어짐으로 인해서 전체 반응 효율이 떨어지고, 상기 범위를 벗어나 산화물 담체의 함량이 너무 많으면, 상대적으로 고열전도성 물질의 함량이 적어서 촉매의 열전도도가 떨어지므로 전체적인 반응 효율이 떨어지게 된다는 문제점이 있어서 바람직하지 않다.Meanwhile, the content of the oxide carrier is 10% by weight to 90% by weight based on the weight sum of the oxide support and the high thermal conductivity material, and the content of the high thermal conductivity material is 10 weight based on the weight sum of the oxide support and the high thermal conductivity material. It is preferably in the range of% to 90% by weight. If the content of the high thermal conductivity material is too high out of the range, the overall reaction efficiency is lowered due to the less content of the oxide carrier on which the active catalyst component is loaded, and the oxide is out of the range. If the content of the carrier is too high, there is a problem in that the overall reaction efficiency is lowered because the thermal conductivity of the catalyst is lowered because the content of the relatively high thermal conductive material is low.

상기 활성 촉매 성분, 즉 촉매 금속으로는 연료 가스의 개질반응에 대해 활성이 있는 촉매 금속으로서 전이금속인 것이 바람직하며, 이에 제한되는 것은 아니지만, 루테늄 (Ru), 백금 (Pt), 로듐 (Rh), 코발트 (Co), 니켈 (Ni) 및 팔라듐 (Pd)으로 이루어진 군으로부터 선택된 적어도 하나의 금속을 예로 들 수 있다. The active catalyst component, ie, the catalyst metal, is preferably a transition metal as a catalytic metal active for reforming fuel gas, but is not limited thereto. Ruthenium (Ru), platinum (Pt), and rhodium (Rh) And at least one metal selected from the group consisting of cobalt (Co), nickel (Ni) and palladium (Pd).

상기 활성 촉매 성분의 함량은 상기 탄화수소 개질 촉매의 총중량을 기준으로 0.1 내지 20 중량%인 것이 바람직하다. 활성 촉매 성분의 함량이 0.1 중량% 미만인 경우에는 탄화수소 개질 반응에 있어서 충분한 반응 효율을 얻을 수 없다는 문제점이 있고, 20 중량%를 초과하는 경우에도 오히려 담지 촉매량 대비 충분한 반응 효율을 얻을 수 없다는 문제점이 있어서 바람직하지 않다.The content of the active catalyst component is preferably 0.1 to 20% by weight based on the total weight of the hydrocarbon reforming catalyst. If the content of the active catalyst component is less than 0.1% by weight, there is a problem that a sufficient reaction efficiency cannot be obtained in hydrocarbon reforming reaction, and even if it exceeds 20% by weight, there is a problem that a sufficient reaction efficiency cannot be obtained compared to the amount of supported catalyst. Not desirable

이하, 본 발명에 따른 탄화수소 개질 촉매의 제조방법에 대해서 상세히 설명하기로 한다. 본 발명에서는 상기 탄화수소 개질 촉매를 제조하기 위해서 크게 2가지 태양의 제조방법을 제공하며, 도 4 및 도 5에는 이러한 두 가지 태양의 제조방법에 대한 개략적인 공정도가 도시되어 있다.Hereinafter, a method for preparing a hydrocarbon reforming catalyst according to the present invention will be described in detail. In the present invention, two methods for producing the hydrocarbon reforming catalyst are largely provided, and FIGS. 4 and 5 show a schematic process diagram for the production method of these two aspects.

도 4에 따르면, 본 발명의 일 태양에 따른 탄화수소 개질 촉매의 제조방법은, (a) 산화물 담체 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 혼합하는 단계; (b) 상기 (a) 단계의 혼합물에 활성 촉매 성분을 담지시키는 단계; (c) 상기 (b) 단계의 결과물을 건조시키는 단계; 및 (d) 상기 (c) 단계의 결과물을 열처리하는 단계를 포함한다.According to FIG. 4, a method of preparing a hydrocarbon reforming catalyst according to an aspect of the present invention includes: (a) mixing an oxide support and a high thermal conductivity material having a higher thermal conductivity than the oxide support; (b) supporting the active catalyst component in the mixture of step (a); (c) drying the product of step (b); And (d) heat treating the resultant of step (c).

먼저, (a) 산화물 담체 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 혼합하는 단계를 수행한다.First, (a) performing a step of mixing the oxide carrier and a high thermal conductivity material having a higher thermal conductivity than the oxide carrier.

상기 혼합 단계는 고열전도성 물질 및 산화물 담체를 기계적 교반기 등을 사용하여 혼합함으로써 이루어지며, 고열전도성 물질의 열전도성 및 산화물 담체의 표면적 및 구체적인 예들은 상술한 바와 같다.The mixing step is performed by mixing the high thermal conductivity material and the oxide carrier using a mechanical stirrer, etc., and the thermal conductivity of the high thermal conductivity material and the surface area and specific examples of the oxide carrier are as described above.

또한, 상기 혼합되는 고열전도성 물질의 평균 입경은 0.1㎛ 내지 5mm이고, 산화물 담체의 평균 입경은 0.1㎛ 내지 5mm인 것이 바람직하다.In addition, it is preferable that the average particle diameter of the mixed high thermal conductive material is 0.1 μm to 5 mm, and the average particle diameter of the oxide carrier is 0.1 μm to 5 mm.

상기 고열전도성 물질 및 산화물 담체의 평균 입경이 0.1㎛ 이하인 경우 성형된 촉매 내부로 탄화수소 연료 및 반응 생성물의 유출입이 용이하지 못하다는 문제점이 있어서 바람직하지 않으며, 평균 입경이 5mm 이상인 경우는 고열전도성 물질과 산화물 담체간의 접촉 면적이 줄어들어 최종 촉매의 열전도성 향상의 효과가 적어지는 문제점이 있으므로 바람직하지 않다.When the average particle diameter of the high thermal conductive material and the oxide carrier is 0.1 μm or less, it is not preferable because the inflow of hydrocarbon fuel and the reaction product into the molded catalyst is not easy, and when the average particle diameter is 5 mm or more, the high thermal conductive material and It is not preferable because there is a problem that the contact area between the oxide carriers is reduced and the effect of improving the thermal conductivity of the final catalyst is small.

한편, 상기 고열전도성 물질과 산화물 담체의 혼합 중량비는 상술한 바와 같이, 1:9 내지 9:1의 범위일 수 있다.On the other hand, the mixed weight ratio of the high thermal conductive material and the oxide carrier may be in the range of 1: 9 to 9: 1 as described above.

이어서, 상기 혼합물에 활성 촉매 성분을 담지시키는 단계를 수행하는데, 이는 종래에 알려진 다양한 방법을 사용할 수 있다. 즉, 증착침전법 (deposition precipitation), 공침법 (coprecipitation), 습식 함침법 (wet impregnation), 스퍼터링 (sputtering), 기상 그래프팅 (gas-phase grafting), 액상 그래프팅 (liquid-phase grafting), 초기 함침법 (incipient-wetness impregnation) 등 당 업계에 알려진 다양한 방법을 사용하는 것이 가능하며, 특히 초기 함침법 또는 습식 함침법을 사용하는 것이 가장 바람직하다. 다만, 액체가 매개되지 않는 담지 방법을 사용하는 경우에는 후술할 건조 단계는 생략될 수도 있다.Subsequently, the step of supporting the active catalyst component in the mixture is carried out, which may use a variety of methods known in the art. Ie deposition precipitation, coprecipitation, wet impregnation, sputtering, gas-phase grafting, liquid-phase grafting, initial It is possible to use various methods known in the art, such as incipient-wetness impregnation, and in particular, it is most preferable to use an initial impregnation method or a wet impregnation method. However, when using a liquid-mediated supporting method, the drying step to be described later may be omitted.

예를 들어, 습식 함침법에 의하는 경우, 고열전도성 물질 및 산화물 담체의 혼합물에 활성 촉매 성분의 전구체 용액을 첨가하고 균일하게 혼합하는데, 예를 들어 활성 촉매 성분이 백금인 경우에는, 이러한 백금 전구체로서 Pt(NH3)4(NO3)2 등이 물 또는 메탄올, 에탄올, 이소프로필 알코올, 부틸 알코올 등과 같은 알코올계 용매에 용해된 전구체 용액을 사용할 수 있다. 혼합 방법은 특별히 한정되지 않으며, 예를 들면 40 ℃ 내지 80 ℃의 온도에서 1 시간 내지 12 시간 동안 교반하는 방법일 수 있다.For example, by the wet impregnation method, the precursor solution of the active catalyst component is added to the mixture of the high thermal conductivity material and the oxide carrier and mixed uniformly, for example, when the active catalyst component is platinum, such a platinum precursor As the Pt (NH 3 ) 4 (NO 3 ) 2 It is possible to use a precursor solution dissolved in water or an alcohol solvent such as methanol, ethanol, isopropyl alcohol, butyl alcohol and the like. The mixing method is not particularly limited, and may be, for example, a method of stirring for 1 hour to 12 hours at a temperature of 40 ° C to 80 ° C.

다음으로, 상기 혼합 용액을 건조시키는 단계를 수행하며, 바람직하게는 상기 건조 단계는 100℃ 내지 160℃의 온도에서 3 내지 5시간 동안 수행될 수 있다.Next, the step of drying the mixed solution, preferably, the drying step may be performed for 3 to 5 hours at a temperature of 100 ℃ to 160 ℃.

최종적으로, 상기 건조물을 500℃ 내지 750℃의 온도에서 2 내지 5시간 동안 열처리함으로써 펠렛화된 (pelletized) 탄화수소 개질 촉매를 제조할 수 있게 되는데, 상기 열처리 온도가 500 ℃보다 낮으면 촉매의 결정 구조가 잘 형성되지 않고, 750 ℃보다 높으면 담지된 금속의 크기가 커지게 되어 반응활성을 감소시키게 된다는 문제점이 있으며, 상기 소성 시간이 2 시간 보다 짧으면 촉매의 결정 구조가 충분히 형성되지 않을 수 있고, 5 시간 보다 길면 불필요한 시간을 더 소비하게 되어 경제적으로 불리하다는 문제점이 있어서 바람직하지 않다. 열처리 분위기는 공기 분위기도 무방하며, 특별히 제한되지는 않는다.Finally, the dried material is heat-treated at a temperature of 500 ° C. to 750 ° C. for 2 to 5 hours to prepare a pelletized hydrocarbon-modified catalyst. When the heat treatment temperature is lower than 500 ° C., the crystal structure of the catalyst Is not well formed, if the higher than 750 ℃ has a problem that the size of the supported metal is increased to reduce the reaction activity, if the calcining time is shorter than 2 hours, the crystal structure of the catalyst may not be sufficiently formed, 5 If it is longer than the time it is not preferable because there is a problem that it is economically disadvantageous to spend more unnecessary time. The heat treatment atmosphere may also be an air atmosphere, and is not particularly limited.

본 발명에서는 탄화수소 개질 촉매의 또 다른 제조방법을 제공하며, 도 5에 따르면, 본 발명의 다른 태양에 따른 탄화수소 개질 촉매의 제조방법은, (a) 산화물 담체에 활성 촉매 성분을 담지시키는 단계; (b) 상기 (a) 단계의 결과물을 건조시키는 단계; (c) 상기 (b) 단계의 결과물과 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질을 혼합하는 단계; (d) 상기 (c) 단계의 혼합물을 열처리하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method for preparing a hydrocarbon reforming catalyst. According to another aspect of the present invention, there is provided a method for preparing a hydrocarbon reforming catalyst, the method comprising: (a) supporting an active catalyst component on an oxide carrier; (b) drying the resultant of step (a); (c) mixing the resultant of step (b) with a high thermal conductivity material having a higher thermal conductivity than the oxide carrier; (d) heat-treating the mixture of step (c).

본 태양은 도 4에 도시된 태양과 비교할 때에, 산화물 담체에 활성 촉매 성분을 먼저 담지시키고, 이를 고열전도성 물질과 혼합한다는 점에서만 차이점을 보인다. 따라서, 산화물 담체에 습식 함침 등의 방법에 의해서 활성 촉매 성분을 먼저 담지하고, 이를 건조시킨 후에 고열전도성 물질과 혼합하며, 이후 공정들은 상술한 도 4에 도시된 태양과 동일한 요령으로 수행될 수 있다.This embodiment differs only in that the active catalyst component is first supported on an oxide carrier and mixed with a high thermal conductivity material when compared with the embodiment shown in FIG. 4. Therefore, the active catalyst component is first supported on the oxide carrier by a method such as wet impregnation, dried and then mixed with the high thermal conductivity material, and the subsequent steps can be carried out in the same manner as the embodiment shown in FIG. .

또한, 상기 탄화수소 개질 촉매를 포함하는 연료처리장치를 제공한다.The present invention also provides a fuel processing apparatus including the hydrocarbon reforming catalyst.

본 발명에 따른 연료처리장치는 상기 탄화수소 개질반응용 담지 촉매를 포함하는 개질장치를 제조하고, 상기 개질장치를 포함하는 연료처리장치를 제조하여 얻을 수 있다. 상기 연료가스 개질반응용 담지촉매는 예를 들면, 고정상으로 관형 반응기, 혼합 흐름 반응기에 충진되어 사용될 수 있지만, 이에 제한되는 것은 아니다.The fuel treating apparatus according to the present invention can be obtained by manufacturing a reforming apparatus including the supported catalyst for the hydrocarbon reforming reaction, and manufacturing a fuel treating apparatus including the reforming apparatus. The supported catalyst for the fuel gas reforming reaction may be used, for example, in a fixed bed, in a tubular reactor or a mixed flow reactor, but is not limited thereto.

이하, 구체적인 실시예 및 비교예를 통하여 본 발명의 구성 및 효과를 보다 상세히 설명하기로 하되, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention, and are intended to limit the scope of the present invention. no.

실시예Example 1 One

(a) 고열전도성 물질로서 Al 분말 (제조사: Goodfellow, 입경: 10㎛) 및 산화물 담체로서 Al2O3 담체 (제조사: Aldrich, 입경: 100㎛, 표면적: 150 m2g-1)를 7:3 의 중량비로 혼합하여 10g의 혼합물을 얻었다.(a) Al powder (manufacturer: Goodfellow, particle diameter: 10 mu m) as a high thermal conductivity material and Al 2 O 3 carrier (manufacturer: Aldrich, particle diameter: 100 mu m, surface area: 150 m 2 g -1 ) as an oxide carrier 7: Mixing at a weight ratio of 3 gave 10 g of the mixture.

(b) 증류수 5 ml 에 RuCl3H2O (제조사: Aldrich) 0.408g을 녹여서 Ru 수용액을 제조하였다.(b) 0.45 g of RuCl 3 H 2 O (manufactured by Aldrich) was dissolved in 5 ml of distilled water to prepare an aqueous solution of Ru.

(c) 상기 혼합물 (a) 에 상기 Ru 수용액 (b)를 초기 함침법 (incipient-wetness impregnation)을 사용하여 함침시켜서 최종 촉매 내 Ru 함량이 2 중량%가 되도록 하였다.(c) The mixture (a) was impregnated with the aqueous Ru solution (b) using an incipient-wetness impregnation so that the Ru content in the final catalyst was 2% by weight.

(d) 이어서, 상기 결과물 (c)를 120℃의 온도에서 4시간 동안 건조시킨 다음, 520℃에서 4시간 동안 공기 분위기 하에서 열처리함으로써 펠렛화된 탄화수소 개질 촉매를 제조하였다.(d) Subsequently, the resultant (c) was dried at a temperature of 120 ° C. for 4 hours, and then heat treated at 520 ° C. for 4 hours in an air atmosphere to prepare a pelletized hydrocarbon reforming catalyst.

제조하였다.Prepared.

실시예Example 2 2

(a) 증류수 3.5 ml 에 RuCl3H2O (제조사: Aldrich) 0.286g을 녹여서 만든 Ru 수용액을 Al2O3 담체 (제조사: Aldrich, 입경: 100㎛, 표면적: 150 m2g-1 ) 7g에 초기 함침법을 사용하여 함침하였다.(a) An aqueous solution of Ru prepared by dissolving 0.286 g of RuCl 3 H 2 O (manufactured by Aldrich) in 3.5 ml of distilled water was prepared using an Al 2 O 3 carrier (manufacturer: Aldrich, particle size: 100 μm, surface area: 150 m 2 g -1 ) 7 g Was impregnated using the initial impregnation method.

(b) 상기 결과물 (a)를 120℃의 온도에서 4시간 동안 건조시켰다.(b) The resultant (a) was dried at a temperature of 120 ° C. for 4 hours.

(c) 고열전도성 Al 분말 (제조사: Goodfellow, 입경: 10㎛)과 상기 결과물 (b)를 3:7의 중량비로 혼합하여 10g의 혼합물을 얻었으며, 최종 촉매 내의 Ru 함량이 1.4 중량%가 되도록 하였다. (c) a high thermal conductivity Al powder (manufacturer: Goodfellow, particle diameter: 10㎛) and the resulting product (b) in a weight ratio of 3: 7 to obtain a mixture of 10g to give a Ru content of 1.4% by weight in the final catalyst. It was.

(e) 상기 결과물 (c)를 520℃에서 4시간 동안 공기 분위기 하에서 열처리함으로써 펠렛화된 탄화수소 개질 촉매를 제조하였다.(e) The resultant (c) was heat-treated at 520 ° C. for 4 hours in an air atmosphere to prepare a pelletized hydrocarbon modified catalyst.

실시예Example 3 3

(a) 증류수 2.5 ml 에 RuCl3H2O (제조사: Aldrich) 0.204g을 녹여서 만든 Ru 수용액을 Al2O3 담체 (제조사: Aldrich, 입경: 100㎛, 표면적: 150 m2g-1 ) 5g에 초기 함침법을 사용하여 함침하였다.(a) Aqueous solution of Ru prepared by dissolving 0.204 g of RuCl 3 H 2 O (manufactured by Aldrich) in 2.5 ml of distilled water was mixed with an Al 2 O 3 carrier (manufacturer: Aldrich, particle size: 100 μm, surface area: 150 m 2 g -1 ) 5 g Was impregnated using the initial impregnation method.

(b) 상기 결과물 (a)를 120℃의 온도에서 4시간 동안 건조시켰다.(b) The resultant (a) was dried at a temperature of 120 ° C. for 4 hours.

(c) 고열전도성 Al 분말 (제조사: Goodfellow, 입경: 10㎛)과 상기 결과물 (b)를 5:5의 중량비로 혼합하여 10g의 혼합물을 얻었으며, 최종 촉매 내의 Ru 함량이 1 중량%가 되도록 하였다.(c) a high thermal conductivity Al powder (manufacturer: Goodfellow, particle diameter: 10㎛) and the resulting product (b) in a weight ratio of 5: 5 to obtain a mixture of 10g to give a Ru content of 1% by weight in the final catalyst. It was.

(e) 상기 결과물 (c)를 520℃에서 4시간 동안 공기 분위기 하에서 열처리함으로써 펠렛화된 탄화수소 개질 촉매를 제조하였다.(e) The resultant (c) was heat-treated at 520 ° C. for 4 hours in an air atmosphere to prepare a pelletized hydrocarbon modified catalyst.

실시예Example 4 4

(a) 증류수 3.5 ml에 RuCl3H2O (제조사: Aldrich) 0.286g을 녹여서 만든 Ru 수용액을 Al2O3 담체 (제조사: Aldrich, 입경: 100㎛, 표면적: 150 m2g-1 ) 7g에 초기 함침법을 사용하여 함침시켰다.(a) An aqueous solution of Ru prepared by dissolving 0.286 g of RuCl 3 H 2 O (manufactured by Aldrich) in 3.5 ml of distilled water was prepared using an Al 2 O 3 carrier (manufacturer: Aldrich, particle size: 100 μm, surface area: 150 m 2 g -1 ) 7 g Was impregnated using an initial impregnation method.

(b) 상기 결과물 (a)를 120℃의 온도에서 4시간 동안 건조시켰다.(b) The resultant (a) was dried at a temperature of 120 ° C. for 4 hours.

(c) 고열전도성 그래파이트 분말 (제조사: TIMCAL, 제품명: TIMREX HSAG300 Graphite, 입경: 1㎛ - 32㎛)과 상기 결과물 (b)를 3:7의 중량비로 혼합하여 10g의 혼합물을 얻었으며, 최종 촉매 내의 Ru 함량이 1.4 중량%가 되도록 하였다.(c) high thermal conductivity graphite powder (manufacturer: TIMCAL, product name: TIMREX HSAG300 Graphite, particle size: 1㎛-32㎛) and the resulting product (b) by mixing in a weight ratio of 3: 7 to obtain a mixture of 10g, the final catalyst The Ru content in the mixture was brought to 1.4 wt%.

(e) 상기 결과물 (c)를 520℃에서 4시간 동안 공기 분위기 하에서 열처리함으로써 펠렛화된 탄화수소 개질 촉매를 제조하였다.(e) The resultant (c) was heat-treated at 520 ° C. for 4 hours in an air atmosphere to prepare a pelletized hydrocarbon modified catalyst.

비교예Comparative Example 1 One

코어 앤드 셀 타입의 구조를 갖는 상용 탄화수소 개질 촉매인 RUA 촉매 (상품명: RUA, 제조사: Sud-Chemie, Japan, 직경 3 mm 구형)를 비교예 1로서 사용하였다. 상기 RUA 촉매 내의 활성촉매 성분인 Ru 함량은 2 중량%였다.RUA catalyst (trade name: RUA, manufacturer: Sud-Chemie, Japan, spherical diameter 3 mm), which is a commercial hydrocarbon reforming catalyst having a core and cell type structure, was used as Comparative Example 1. The Ru content, an active catalyst component in the RUA catalyst, was 2% by weight.

비교예Comparative Example 2 2

(a) 증류수 5 ml 에 RuCl3H2O (제조사: Aldrich) 0.408g을 녹여서 만든 Ru 수용액을 Al2O3 담체 (제조사: Aldrich, 입경: 100㎛, 표면적: 150 m2g-1 ) 10g에 초기 함침법을 사용하여 함침시켜서 최종 촉매 내의 Ru 함량이 2 중량%가 되도록 하였다.(a) RuCl 3 H 2 O in distilled water, 5 ml: an aqueous solution made by dissolving the Ru (manufacturer: Aldrich) 0.408g Al 2 O 3 carrier (manufacturer: Aldrich, particle size: 100㎛, specific surface area: 150 m 2 g -1) 10g Was impregnated using an initial impregnation method such that the Ru content in the final catalyst was 2% by weight.

(b) 상기 결과물 (a)를 120℃의 온도에서 4시간 동안 건조시킨 후, 520℃에서 4시간 동안 공기 분위기 하에서 열처리함으로써 펠렛화된 탄화수소 개질 촉매를 제조하였다.(b) The resultant (a) was dried at a temperature of 120 ° C. for 4 hours and then heat treated at 520 ° C. for 4 hours in an air atmosphere to prepare a pelletized hydrocarbon reforming catalyst.

비교예Comparative Example 3 3

(a) 증류수 2.5 ml에 RuCl3H2O (제조사: Aldrich) 0.204g을 녹여서 만든 Ru 수용액을 Al2O3 담체 (제조사: Aldrich, 입경: 100㎛, 표면적: 150 m2g-1 ) 5g에 초기 함침법을 사용하여 함침시켰다.(a) An aqueous solution of Ru prepared by dissolving 0.204 g of RuCl 3 H 2 O (manufactured by Aldrich) in 2.5 ml of distilled water was mixed with an Al 2 O 3 carrier (manufacturer: Aldrich, particle size: 100 μm, surface area: 150 m 2 g -1 ) 5 g Was impregnated using an initial impregnation method.

(b) 상기 결과물 (a)를 120℃의 온도에서 4시간 동안 건조시켰다.(b) The resultant (a) was dried at a temperature of 120 ° C. for 4 hours.

(c) Al2O3 담체 (제조사: Aldrich, 입경: 100㎛, 표면적: 150 m2g-1)와 상기 결과물 (b)를 5:5의 중량비로 혼합하여 10g의 혼합물을 얻었으며, 최종 촉매 내의 Ru 함량이 1 중량%가 되도록 하였다.(c) Al 2 O 3 carrier (manufacturer: Aldrich, particle diameter: 100㎛, surface area: 150 m 2 g -1 ) and the resultant (b) in a weight ratio of 5: 5 to obtain a mixture of 10g, the final The Ru content in the catalyst was brought to 1 wt%.

(d) 상기 결과물 (c)를 520℃에서 4시간 동안 공기 분위기 하에서 열처리함으로써 펠렛화된 탄화수소 개질 촉매를 제조하였다.(d) The resultant (c) was heat-treated at 520 ° C. for 4 hours in an air atmosphere to prepare a pelletized hydrocarbon reforming catalyst.

성능 시험Performance test

상기 실시예 1로부터 제조된 탄화수소 개질 촉매와 종래 상용 탄화수소 개질촉매로서 비교예 1에 제시된 RUA 및 고열전도성 물질을 포함하고 있지 않은 비교예 2에 제시된 촉매에 대한 600℃에서의 공간속도별 변환에 따른 메탄가스 전환율을 측정하였으며, 그 결과를 도 6에 도시하였다. 상기 결과로부터, 본 발명에 따른 탄화수소 개질 촉매는 600℃ 하의 다양한 공간속도에서 종래 상용 탄화수소 개질 촉매 및 고열전도성 물질을 포함하고 있지 않은 촉매에 비해서 우수한 메탄 가스 전환율을 나타낸다는 것을 알 수 있다.According to the spatial velocity conversion at 600 ° C. for the hydrocarbon reforming catalyst prepared from Example 1 and the catalyst shown in Comparative Example 2, which does not include the RUA and Comparative Example 2, which are not included in the conventional commercial hydrocarbon reforming catalyst, and the high thermal conductivity material. Methane gas conversion was measured and the results are shown in FIG. 6. From the above results, it can be seen that the hydrocarbon reforming catalyst according to the present invention shows superior methane gas conversion at various space velocities at 600 ° C. compared with the catalysts which do not contain conventional commercial hydrocarbon reforming catalysts and high thermal conductivity materials.

상기 실시예 2와 실시예 3으로부터 제조된 탄화수소 개질 촉매와 고열전도성 물질을 포함하고 있지 않은 비교예 3에 제시된 촉매에 대한 600℃ 하에서 공간속도별 변환에 따른 메탄가스 전환율을 측정하였으며, 그 결과를 도 7 에 도시하였다. 상기 결과로부터, 본 발명에 따른 탄화수소 개질 촉매는 산화물 담체와 고열전도성 물질의 다양한 중량비 조건하에서 고열전도성 물질을 포함하고 있지 않은 촉매에 비해서 우수한 메탄가스 전환율을 나타낸다는 것을 알 수 있다.The conversion rate of methane gas according to the space velocity conversion was measured at 600 ° C. for the hydrocarbon reforming catalyst prepared in Example 2 and Example 3 and the catalyst shown in Comparative Example 3 which did not include the high thermal conductive material. 7 is shown. From the above results, it can be seen that the hydrocarbon reforming catalyst according to the present invention exhibits superior methane gas conversion compared to the catalyst containing no high thermal conductivity material under various weight ratio conditions of the oxide carrier and the high thermal conductivity material.

상기 실시예 2와 실시예 4로부터 제조된 탄화수소 개질 촉매와 종래 상용 탄화수소 개질촉매로서 비교예 1에 제시된 RUA에 대한 700℃ 하에서 공간속도별 변환에 따른 메탄가스 전환율을 측정하였으며, 그 결과를 도 8에 도시하였다. 상기 결과로부터 본 발명에 따른 탄화수소 개질 촉매는 다양한 고열전도성 물질들이 사용될 수 있으며, 종래 상용 탄화수소 개질촉매에 비하여 높은 메탄가스 전환율을 나타냄을 알 수 있다.The conversion rate of methane gas according to the space velocity conversion was measured at 700 ° C. for the RUA shown in Comparative Example 1 as the hydrocarbon reforming catalyst prepared in Examples 2 and 4 and the conventional commercial hydrocarbon reforming catalyst, and the result is illustrated in FIG. 8. Shown in From the above results, the hydrocarbon reforming catalyst according to the present invention can be used a variety of high thermal conductivity materials, it can be seen that shows a high methane gas conversion rate compared to the conventional commercial hydrocarbon reforming catalyst.

Claims (18)

(a) 산화물 담체 및 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질 입자로서, Al, Mg, Co, Fe, Ni, Mo, 흑연, 및 카본블랙으로 이루어진 군으로부터 선택된 적어도 하나를 포함하고 평균 입경이 0.1㎛ 내지 5 mm인 고열전도성 물질 입자를 혼합하는 단계;
(b) 상기 (a) 단계의 혼합물에 활성 촉매 성분을 담지시키는 단계;
(c) 상기 (b) 단계의 결과물을 건조시키는 단계; 및
(d) 상기 (c) 단계의 결과물을 열처리하는 단계
를 포함하는 탄화수소 개질 촉매의 제조방법.
(a) an oxide carrier and particles of high thermal conductivity having a higher thermal conductivity than the oxide carrier, wherein the particles include at least one selected from the group consisting of Al, Mg, Co, Fe, Ni, Mo, graphite, and carbon black, and have an average particle diameter. Mixing the particles of high thermal conductivity material between 0.1 μm and 5 mm;
(b) supporting the active catalyst component in the mixture of step (a);
(c) drying the product of step (b); And
(d) heat-treating the resultant of step (c)
Method for producing a hydrocarbon reforming catalyst comprising a.
제1항에 있어서, 상기 산화물 담체의 평균 입경은 0.1㎛ 내지 5 mm인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the oxide carrier has an average particle diameter of 0.1 μm to 5 mm. 제1항에 있어서, 상기 산화물 담체는, Al2O3, SiO2, TiO2, ZrO2 및 CeO2로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the oxide carrier is at least one selected from the group consisting of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2, and CeO 2 . 제1항에 있어서, 상기 고열전도성 물질 입자와 상기 산화물 담체의 혼합 중량비는 1:9 내지 9:1인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the mixed weight ratio of the particles of the high thermal conductivity material and the oxide carrier is 1: 9 to 9: 1. 제1항에 있어서, 상기 활성 촉매 성분은, 루테늄 (Ru), 백금 (Pt), 로듐 (Rh), 코발트 (Co), 니켈 (Ni) 및 팔라듐 (Pd)으로 이루어진 군으로부터 선택된 적어도 하나의 금속인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the active catalyst component is at least one metal selected from the group consisting of ruthenium (Ru), platinum (Pt), rhodium (Rh), cobalt (Co), nickel (Ni) and palladium (Pd) Process for producing a hydrocarbon reforming catalyst, characterized in that. 제1항에 있어서, 상기 활성 촉매 성분의 함량은 상기 탄화수소 개질 촉매의 총중량을 기준으로 0.1 내지 20 중량%인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the content of the active catalyst component is 0.1 to 20% by weight based on the total weight of the hydrocarbon reforming catalyst. 제1항에 있어서, 상기 혼합물에 상기 활성 촉매 성분을 담지시키는 단계는, 증착침전법 (deposition precipitation), 공침법 (coprecipitation), 습식 함침법 (wet impregnation), 스퍼터링 (sputtering), 기상 그래프팅 (gas-phase grafting), 액상 그래프팅 (liquid-phase grafting) 또는 초기 함침법 (incipient-wetness impregnation)에 의해서 수행되는 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the supporting of the active catalyst component in the mixture comprises deposition precipitation, coprecipitation, wet impregnation, sputtering, and gas phase grafting. A process for producing a hydrocarbon reforming catalyst, characterized in that it is carried out by gas-phase grafting, liquid-phase grafting or incipient-wetness impregnation. 제1항에 있어서, 상기 건조 단계는 100℃ 내지 160℃의 온도에서 3 내지 5시간 동안 수행되는 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the drying step is performed at a temperature of 100 ° C. to 160 ° C. for 3 to 5 hours. 제1항에 있어서, 상기 열처리 단계는 500℃ 내지 750℃의 온도에서 2 내지 5시간 동안 수행되는 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 1, wherein the heat treatment is performed at a temperature of 500 ° C. to 750 ° C. for 2 to 5 hours. (a) 산화물 담체에 활성 촉매 성분을 담지시키는 단계;
(b) 상기 (a) 단계의 결과물을 건조시키는 단계;
(c) 상기 (b) 단계의 결과물과 상기 산화물 담체보다 열전도도가 높은 고열전도성 물질 입자로서, Al, Mg, Co, Fe, Ni, Mo, 흑연, 및 카본블랙으로 이루어진 군으로부터 선택된 적어도 하나를 포함하고 평균 입경이 0.1㎛ 내지 5 mm인 고열전도성 물질 입자를 혼합하는 단계;
(d) 상기 (c) 단계의 혼합물을 열처리하는 단계
를 포함하는 탄화수소 개질 촉매의 제조방법.
(a) supporting an active catalyst component on an oxide carrier;
(b) drying the resultant of step (a);
(c) at least one selected from the group consisting of Al, Mg, Co, Fe, Ni, Mo, graphite, and carbon black, as a resultant material of step (b) and particles of high thermal conductivity higher than those of the oxide carrier. Mixing the high thermal conductivity material particles having an average particle diameter of 0.1 μm to 5 mm;
(d) heat-treating the mixture of step (c)
Method for producing a hydrocarbon reforming catalyst comprising a.
제10항에 있어서, 상기 산화물 담체의 평균 입경은 0.1㎛ 내지 5 mm인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the oxide carrier has an average particle diameter of 0.1 μm to 5 mm. 제10항에 있어서, 상기 산화물 담체는, Al2O3, SiO2, TiO2, ZrO2 및 CeO2로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the oxide carrier is at least one selected from the group consisting of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2, and CeO 2 . 제10항에 있어서, 상기 고열전도성 물질 입자와 상기 산화물 담체의 혼합 중량비는 1:9 내지 9:1인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the mixing weight ratio of the high thermal conductive material particles and the oxide carrier is 1: 9 to 9: 1. 제10항에 있어서, 상기 활성 촉매 성분은, 루테늄 (Ru), 백금 (Pt), 로듐 (Rh), 코발트 (Co), 니켈 (Ni) 및 팔라듐 (Pd)으로 이루어진 군으로부터 선택된 적어도 하나의 금속인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the active catalyst component is at least one metal selected from the group consisting of ruthenium (Ru), platinum (Pt), rhodium (Rh), cobalt (Co), nickel (Ni) and palladium (Pd) Process for producing a hydrocarbon reforming catalyst, characterized in that. 제10항에 있어서, 상기 활성 촉매 성분의 함량은 상기 탄화수소 개질 촉매의 총중량을 기준으로 0.1 내지 20 중량%인 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the content of the active catalyst component is 0.1 to 20% by weight based on the total weight of the hydrocarbon reforming catalyst. 제10항에 있어서, 상기 혼합물에 상기 활성 촉매 성분을 담지시키는 단계는, 증착침전법 (deposition precipitation), 공침법 (coprecipitation), 습식 함침법 (wet impregnation), 스퍼터링 (sputtering), 기상 그래프팅 (gas-phase grafting), 액상 그래프팅 (liquid-phase grafting) 또는 초기 함침법 (incipient-wetness impregnation)에 의해서 수행되는 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the supporting of the active catalyst component in the mixture comprises deposition precipitation, coprecipitation, wet impregnation, sputtering, and gas phase grafting. A process for producing a hydrocarbon reforming catalyst, characterized in that it is carried out by gas-phase grafting, liquid-phase grafting or incipient-wetness impregnation. 제10항에 있어서, 상기 건조 단계는 100℃ 내지 160℃의 온도에서 3 내지 5시간 동안 수행되는 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the drying step is performed at a temperature of 100 ° C. to 160 ° C. for 3 to 5 hours. 제10항에 있어서, 상기 열처리 단계는 500℃ 내지 750℃의 온도에서 3 내지 5시간 동안 수행되는 것을 특징으로 하는 탄화수소 개질 촉매의 제조방법.The method of claim 10, wherein the heat treatment is performed at a temperature of 500 ° C. to 750 ° C. for 3 to 5 hours.
KR1020130029909A 2013-03-20 2013-03-20 Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same KR101342605B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130029909A KR101342605B1 (en) 2013-03-20 2013-03-20 Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130029909A KR101342605B1 (en) 2013-03-20 2013-03-20 Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020060015941A Division KR101320388B1 (en) 2006-02-18 2006-02-18 Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same

Publications (2)

Publication Number Publication Date
KR20130041011A KR20130041011A (en) 2013-04-24
KR101342605B1 true KR101342605B1 (en) 2013-12-17

Family

ID=48440501

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130029909A KR101342605B1 (en) 2013-03-20 2013-03-20 Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same

Country Status (1)

Country Link
KR (1) KR101342605B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158146A1 (en) * 2022-02-17 2023-08-24 한국화학연구원 Catalyst module for liquid organic hydrogen carrier-based dehydrogenation, and hydrogen release system using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102583243B1 (en) 2015-10-08 2023-09-27 한국과학기술원 A method for guiding based on augmented reality using mobile device
RU2685437C2 (en) * 2017-05-26 2019-04-18 ИНФРА ИксТиЭл ТЕКНОЛОДЖИ ЛИМИТЕД Catalyst for fischer-tropsch synthesis and method of its preparation
KR102183308B1 (en) 2018-09-03 2020-11-26 한국과학기술연구원 Method for deoxygenating of oxygenated hydrocarbons using hydrogenation catalyst and hydrodeoxygenation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269332A (en) * 2003-03-11 2004-09-30 Nissan Motor Co Ltd Fuel reformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269332A (en) * 2003-03-11 2004-09-30 Nissan Motor Co Ltd Fuel reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158146A1 (en) * 2022-02-17 2023-08-24 한국화학연구원 Catalyst module for liquid organic hydrogen carrier-based dehydrogenation, and hydrogen release system using same

Also Published As

Publication number Publication date
KR20130041011A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
KR101320388B1 (en) Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same
KR100670267B1 (en) Pt/Ru alloy catalyst for fuel cell
EP1818096B1 (en) Catalyst for oxidizing carbon monoxide in a reformer, and fuel cell plant including said reformer
JP5154867B2 (en) Fuel cell system reformer and fuel cell system
CN106784895A (en) A kind of CO selective methanations Ni/ZrO based on Zr MOF structures2Catalyst and preparation method thereof
JP2006253147A (en) Manufacturing method of electrocatalyst for cation exchange membrane fuel cell
TWI294413B (en) Method for converting co and hydrogen into methane and water
US8067332B2 (en) Methanation catalyst, and carbon monoxide removing system, fuel processor, and fuel cell including the same
KR100823502B1 (en) Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR101342605B1 (en) Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same
EP1818095B1 (en) Water gas shift catalyst and fuel cell system including the same
WO2010113506A1 (en) Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system
Habibi et al. Electrooxidation of formic acid and formaldehyde on the Fe3O4@ Pt core-shell nanoparticles/carbon-ceramic electrode
US20080090118A1 (en) Catalyst for oxidizing carbon monoxide for reformer used in fuel cell, method for preparing the same, and fuel cell system comprising the same
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2006253146A (en) Carried electrode catalyst and manufacturing method of catalyst
JP4227777B2 (en) Water gas shift reaction method, hydrogen production apparatus and fuel cell system using the method
JP4127685B2 (en) Carbon monoxide selective methanator, carbon monoxide shift reactor and fuel cell system
JP2004230317A (en) Desulfurization catalyst and desulfurization method for hydrocarbon, and fuel cell system
CN102438752B (en) Method for producing catalyst for use in selective oxidation reaction of carbon monoxide
TW200937722A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
KR100745743B1 (en) Carbon monoxide removing system and fuel processor and fuel cell comprising the same
KR102361486B1 (en) Preparation method of carbon-supported core-shell type alloy particles catalyst
US20080187801A1 (en) Fuel oxidizing catalyst, method for preparing the same, reformer including the same, and fuel cell system including the same
KR20070107501A (en) Methanation catalyst and fuel processor and fuel cell comprising the methanation catalyst

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee