KR101329855B1 - Method for fabricating bi-facial solar cell - Google Patents

Method for fabricating bi-facial solar cell Download PDF

Info

Publication number
KR101329855B1
KR101329855B1 KR1020120009928A KR20120009928A KR101329855B1 KR 101329855 B1 KR101329855 B1 KR 101329855B1 KR 1020120009928 A KR1020120009928 A KR 1020120009928A KR 20120009928 A KR20120009928 A KR 20120009928A KR 101329855 B1 KR101329855 B1 KR 101329855B1
Authority
KR
South Korea
Prior art keywords
type
thin film
film layer
substrate
amorphous thin
Prior art date
Application number
KR1020120009928A
Other languages
Korean (ko)
Other versions
KR20130088590A (en
Inventor
이준성
이원재
최진호
황명익
서재원
김상균
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020120009928A priority Critical patent/KR101329855B1/en
Publication of KR20130088590A publication Critical patent/KR20130088590A/en
Application granted granted Critical
Publication of KR101329855B1 publication Critical patent/KR101329855B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 기판 전면과 후면에 각각 불순물 이온을 포함하는 비정질박막층을 적층하고 이를 도핑소스로 이용하여 p형 에미터와 후면전계층을 형성하는 방법을 택함으로써 공정 효율성을 향상시킬 수 있는 양면수광형 태양전지의 제조방법에 관한 것으로서, 본 발명에 따른 양면수광형 태양전지의 제조방법은 n형 실리콘 기판을 준비하는 단계와, 상기 기판 전면에 p형 비정질박막층, 상기 기판 후면에 n형 비정질박막층을 각각 적층하는 단계와, 확산공정을 실시하여, p형 비정질박막층 내의 p형 불순물을 기판 내부로 확산시켜 p형 에미터를 형성함과 함께 상기 n형 비정질박막층 내의 n형 불순물을 기판 내부로 확산시켜 n형 후면전계층을 형성하며, 상기 p형 비정질박막층 및 n형 비정질박막층을 확산부산 산화막으로 변환시키는 단계와, 상기 기판 후면 상에 n형 후면전계층과 연결되는 후면전극을 형성하는 단계 및 상기 기판 전면의 확산부산 산화막을 레이저로 조사하여 확산부산 산화막 내에 잔존하는 p형 불순물 이온을 기판 내부로 확산시켜 고농도 에미터를 형성하고, 상기 고농도 에미터 상에 전면전극을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다. The present invention is a double-sided light-receiving type that can improve process efficiency by stacking an amorphous thin film layer containing impurity ions on the front and rear surfaces of the substrate, respectively, and forming a p-type emitter and a backside field layer using the same as a doping source. A method of manufacturing a solar cell, the method of manufacturing a double-sided light receiving solar cell according to the present invention comprises the steps of preparing an n-type silicon substrate, a p-type amorphous thin film layer on the front of the substrate, an n-type amorphous thin film layer on the back of the substrate Stacking and diffusing to form p-type impurities in the p-type amorphous thin film layer to form a p-type emitter and n-type impurities in the n-type amorphous thin film layer to diffuse into the substrate. forming an n-type backside field layer, converting the p-type amorphous thin film layer and the n-type amorphous thin film layer into a diffusion-acid oxide film, and backing the substrate Forming a back electrode connected to the n-type backside field layer on the substrate, and irradiating the diffused oxide film on the front surface of the substrate with a laser to diffuse p-type impurity ions remaining in the diffused oxide film into the substrate to form a high concentration emitter And forming a front electrode on the high concentration emitter.

Description

양면수광형 태양전지의 제조방법{Method for fabricating bi-facial solar cell}Manufacturing method of double sided light receiving solar cell {Method for fabricating bi-facial solar cell}

본 발명은 양면수광형 태양전지의 제조방법에 관한 것으로서, 보다 상세하게는 기판 전면과 후면에 각각 불순물 이온을 포함하는 비정질박막층을 적층하고 이를 도핑소스로 이용하여 p형 에미터와 n형 후면전계층을 형성하는 방법을 택함으로써 공정 효율성을 향상시킬 수 있는 양면수광형 태양전지의 제조방법에 관한 것이다.
The present invention relates to a method for manufacturing a double-sided light-receiving solar cell, and more particularly, by depositing an amorphous thin film layer containing impurity ions on the front and rear surfaces of a substrate, respectively, using a p-type emitter and an n-type backside electrode as a doping source. The present invention relates to a method for manufacturing a double-sided light-receiving solar cell which can improve process efficiency by selecting a layer forming method.

태양전지는 태양광을 수광하여 광전변환시키는 소자이다. 일반적인 태양전지는 전면과 후면에 각각 전면전극과 후면전극이 구비되는 구조를 갖는다. 그러나, 수광면인 전면에 전면전극이 구비됨에 따라, 전면전극의 면적만큼 수광면적이 줄어들게 된다. A solar cell is a device that receives sunlight and performs photoelectric conversion. A typical solar cell has a front electrode and a rear electrode on the front and rear surfaces, respectively. However, since the front electrode is provided on the front surface of the light receiving surface, the light receiving area is reduced by the area of the front electrode.

수광면적이 축소되는 문제를 해결하기 위해 후면전극형 태양전지가 제안되었다. 후면전극형 태양전지는 태양전지의 후면 상에 (+)전극과 (-)전극을 구비시켜 태양전지 전면의 수광면적을 극대화할 수 있다. In order to solve the problem that the light receiving area is reduced, a back electrode solar cell has been proposed. The back electrode solar cell can maximize the light receiving area of the front surface of the solar cell by providing a (+) electrode and a (-) electrode on the back of the solar cell.

한편, 후면전극형 태양전지를 포함한 종래의 태양전지는 전면과 후면 중 어느 한 면으로만 태양광이 수광됨에 따라, 태양광 수광에 있어 근본적인 한계가 있다. 이에, 최근에는 전면과 후면의 양면으로 수광이 가능한 양면수광형 태양전지에 대한 연구가 진행되고 있다. 일 예로, 한국특허출원 1996-38745호에는 양면 태양전지 및 그 제조방법에 대해 개시되어 있다. On the other hand, the conventional solar cell including a back-electrode type solar cell, as the solar light is received only on one side of the front and rear, there is a fundamental limitation in solar light reception. Therefore, recently, studies on double-sided light-receiving solar cells capable of receiving light on both sides of the front and rear surfaces have been conducted. For example, Korean Patent Application No. 1996-38745 discloses a double-sided solar cell and a method of manufacturing the same.

양면수광형 태양전지의 구조를 살펴보면(도 1 참조), n형 기판(101)을 기준으로 기판(101) 상부에는 p형 에미터(102)가 구비되어 p-n 접합을 이루며, 상기 p형 에미터(102) 상에는 전면전극(106)이 구비된다. 또한, 기판(101) 하부에는 n형 후면전계층(103)과 후면전극(107)이 구비되며, 기판(101) 전면과 후면에는 각각 패시베이션층(104)과 반사방지막(105)이 구비된다. Looking at the structure of a double-sided light-receiving solar cell (see Fig. 1), the p-type emitter 102 is provided on the substrate 101 relative to the n-type substrate 101 to form a pn junction, the p-type emitter The front electrode 106 is provided on the 102. In addition, an n-type back field layer 103 and a back electrode 107 are provided below the substrate 101, and a passivation layer 104 and an anti-reflection film 105 are provided on the front and rear surfaces of the substrate 101, respectively.

종래의 양면수광형 태양전지는 p형 에미터 형성을 위한 확산공정과 n형 후면전계층 형성을 위한 확산공정을 각각 실시하고, 확산부산물인 PSG막과 BSG막의 제거 공정과 함께 패시베이션 증착 공정이 추가적으로 요구된다. 이에 따라, 공정이 복잡해지는 문제점이 있다.
In the conventional double-sided light receiving solar cell, a diffusion process for forming a p-type emitter and a diffusion process for forming an n-type backside field layer are performed, respectively, and a passivation deposition process is additionally performed along with a process of removing the diffusion by-products of the PSG and BSG films. Required. Accordingly, there is a problem that the process is complicated.

한국특허출원 1996-38745호Korean Patent Application No. 1996-38745

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 기판 전면과 후면에 각각 불순물 이온을 포함하는 비정질박막층을 적층하고 이를 도핑소스로 이용하여 p형 에미터와 n형 후면전계층을 형성하는 방법을 택함으로써 공정 효율성을 향상시킬 수 있는 양면수광형 태양전지의 제조방법을 제공하는데 그 목적이 있다. The present invention has been made to solve the above problems, by laminating an amorphous thin film layer containing impurity ions on the front and rear surfaces of the substrate, respectively, and using it as a doping source to form a p-type emitter and an n-type backside field layer It is an object of the present invention to provide a method for manufacturing a double-sided light-receiving solar cell which can improve process efficiency by selecting a method.

또한, 본 발명은 도핑소스를 선택적으로 레이저 조사하여 선택적 에미터를 형성함과 함께 레이저 아이솔레이션 공정이 생략되는 구성을 제시함을 다른 목적으로 한다.
In addition, another object of the present invention is to propose a configuration in which the laser isolation process is omitted while forming a selective emitter by selectively irradiating the doping source with a laser.

상기의 목적을 달성하기 위한 본 발명에 따른 양면수광형 태양전지의 제조방법은 n형 실리콘 기판을 준비하는 단계와, 상기 기판 전면에 p형 비정질박막층, 상기 기판 후면에 n형 비정질박막층을 각각 적층하는 단계와, 확산공정을 실시하여, p형 비정질박막층 내의 p형 불순물을 기판 내부로 확산시켜 p형 에미터를 형성함과 함께 상기 n형 비정질박막층 내의 n형 불순물을 기판 내부로 확산시켜 n형 후면전계층을 형성하며, 상기 p형 비정질박막층 및 n형 비정질박막층을 확산부산 산화막으로 변환시키는 단계와, 상기 기판 후면 상에 n형 후면전계층과 연결되는 후면전극을 형성하는 단계 및 상기 기판 전면의 확산부산 산화막을 레이저로 조사하여 확산부산 산화막 내에 잔존하는 p형 불순물 이온을 기판 내부로 확산시켜 고농도 에미터를 형성하고, 상기 고농도 에미터 상에 전면전극을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다. Method for manufacturing a double-sided light-receiving solar cell according to the present invention for achieving the above object is to prepare an n-type silicon substrate, a p-type amorphous thin film layer on the front of the substrate, the n-type amorphous thin film layer on the back of the substrate, respectively And a diffusion process to diffuse the p-type impurity in the p-type amorphous thin film layer into the substrate to form a p-type emitter, and to diffuse the n-type impurity in the n-type amorphous thin film layer into the substrate. Forming a backside field layer, converting the p-type amorphous thin film layer and the n-type amorphous thin film layer into a diffusion acid oxide film, forming a back electrode connected to the n-type backside electric field layer on the back side of the substrate and the front side of the substrate Irradiating a diffused by-oxide oxide film with a laser to diffuse the p-type impurity ions remaining in the diffused-oxide oxide film into the substrate to form a high concentration emitter. And forming a front electrode on the high concentration emitter.

상기 p형 비정질박막층은 p형 불순물을 포함하는 비정질박막층이고, 상기 n형 비정질박막층은 n형 불순물을 포함하는 비정질박막층이며, 상기 비정질박막층은 비정질실리콘(a-Si), 비정질실리콘산화막(a-SiOx), 비정질실리콘질화막(a-SiNx), 비정질실리콘탄화막(a-SiC), 비정질탄소(a-C), 비정질산화알루미늄(a-AlOx) 중 어느 하나이다. The p-type amorphous thin film layer is an amorphous thin film layer containing p-type impurities, the n-type amorphous thin film layer is an amorphous thin film layer containing n-type impurities, and the amorphous thin film layer is amorphous silicon (a-Si), amorphous silicon oxide film (a- SiO x ), an amorphous silicon nitride film (a-SiN x ), an amorphous silicon carbide film (a-SiC), amorphous carbon (aC), or amorphous aluminum oxide (a-AlO x ).

상기 p형 비정질박막층과 n형 비정질박막층은 각각 PECVD를 이용하여 적층할 수 있으며, 상기 전면전극은 전기도금법을 이용하여 형성할 수 있다.
The p-type amorphous thin film layer and the n-type amorphous thin film layer may be laminated using PECVD, respectively, and the front electrode may be formed using an electroplating method.

본 발명에 따른 양면수광형 태양전지의 제조방법은 다음과 같은 효과가 있다. The method of manufacturing a double-sided light receiving solar cell according to the present invention has the following effects.

PECVD 등을 통해 기판 전면과 후면에 각각 p형 비정질 박막층, n형 비정질 박막층을 형성하고 이를 확산공정시 도핑소스로 이용함에 따라, 한 번의 확산공정을 통해 p형 에미터와 n형 후면전계층을 동시에 형성할 수 있어 공정 효율성을 향상시킬 수 있다. The p-type amorphous thin film layer and the n-type amorphous thin film layer are respectively formed on the front and rear surfaces of the substrate through PECVD and used as a doping source during the diffusion process. Can be formed at the same time, improving process efficiency.

또한, 확산공정시 p형 비정질 박막층과 n형 비정질 박막층이 불순물 이온을 소모하여 각각 확산부산 산화막 예를 들어, BSG막과 PSG막으로 전환되며, 전환된 BSG막과 PSG막이 패시베이션층으로 활용됨에 따라 별도의 패시베이션층 증착 공정이 요구되지 않는다. In addition, during the diffusion process, the p-type amorphous thin film layer and the n-type amorphous thin film layer consume impurity ions and are converted into diffusion-acid oxide films, for example, BSG and PSG films, respectively. No separate passivation layer deposition process is required.

이와 함께, 기판 전면에는 p형 에미터, 기판 후면에는 n형 후면전계층이 독립적으로 형성됨에 따라, 추가적인 아이솔레이션 공정이 요구되지 않는다.
In addition, since the p-type emitter is formed on the front surface of the substrate and the n-type back surface field layer is independently formed on the substrate, no additional isolation process is required.

도 1은 종래 기술에 따른 양면수광형 태양전지의 단면도.
도 2a 내지 도 2e는 본 발명의 일 실시예에 따른 양면수광형 태양전지의 제조방법을 설명하기 위한 공정 단면도.
1 is a cross-sectional view of a conventional double-sided light receiving type solar cell.
2A to 2E are cross-sectional views illustrating a method of manufacturing a double-sided light receiving solar cell according to an embodiment of the present invention.

이하, 도면을 참조하여 본 발명의 일 실시예에 따른 양면수광형 태양전지의 제조방법을 상세히 설명하기로 한다. Hereinafter, a method of manufacturing a double-sided light receiving solar cell according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 도 2a에 도시한 바와 같이 n형 실리콘 기판(201)을 준비한다. 그런 다음, 텍스쳐링 공정을 통해 기판(201) 표면을 요철(202) 형상으로 가공하여 빛 반사를 최소화시킨다. First, as shown in FIG. 2A, an n-type silicon substrate 201 is prepared. Then, the surface of the substrate 201 is processed into a concave-convex 202 shape through a texturing process to minimize light reflection.

이어, 상기 기판(201) 전면에 p형 불순물을 포함하는 비정질박막층(이하 p형 비정질박막층(203)이라 함)을 적층하고, 기판(201) 후면에는 n형 불순물을 포함하는 비정질박막층(이하 n형 비정질박막층(204)이라 함)을 적층한다(도 2b 참조). 상기 p형 비정질박막층(203)과 n형 비정질박막층(204)은 각각 후술하는 p형 에미터(205)와 n형 후면전계층(206)의 도핑소스의 역할을 하며, 상기 p형 비정질박막층(203)과 n형 비정질박막층(204)을 구성하는 비정질박막층으로는 비정질실리콘(a-Si), 비정질실리콘산화막(a-SiOx), 비정질실리콘질화막(a-SiNx), 비정질실리콘탄화막(a-SiC), 비정질탄소(a-C), 비정질산화알루미늄(a-AlOx) 중 어느 하나가 이용될 수 있다. 한편, 박막층들의 적층 순서는 달리 할 수 있다. Subsequently, an amorphous thin film layer (hereinafter referred to as p-type amorphous thin film layer 203) containing p-type impurities is stacked on the entire surface of the substrate 201, and an amorphous thin film layer containing n-type impurity (hereinafter n) on the back surface of the substrate 201. A type amorphous thin film layer 204) is laminated (see FIG. 2B). The p-type amorphous thin film layer 203 and the n-type amorphous thin film layer 204 serve as doping sources for the p-type emitter 205 and the n-type backside field layer 206, which will be described later, respectively. 203) and the amorphous thin film layer constituting the n-type amorphous thin film layer 204 include amorphous silicon (a-Si), amorphous silicon oxide film (a-SiO x ), amorphous silicon nitride film (a-SiN x ), and amorphous silicon carbide film ( a-SiC), amorphous carbon (aC), or amorphous aluminum oxide (a-AlO x ) may be used. Meanwhile, the stacking order of the thin film layers may be different.

상기 p형 비정질박막층(203)과 n형 비정질박막층(204)은 일 실시예로 PECVD(plasma enhanced chemical vapor deposition)를 통해 적층할 수 있으며, 비정질실리콘(a-Si)을 적용하는 경우, p형 비정질박막층(203)은 전구체(precursor)로서 SiH4, B2H6이 이용될 수 있고 n형 비정질박막층(204)은 전구체로서 SiH4, PH3가 이용될 수 있다. 각각의 전구체에 H2가 추가될 수도 있다. 소정의 챔버 내에 기판(201)을 장착시킨 상태에서, 일정 온도 하에 상기 전구체들을 챔버 내에 공급하면 기판(201) 전면과 후면 각각에 p형 비정질박막층(203), n형 비정질박막층(204)이 형성된다. p형 비정질박막층(203)과 n형 비정질박막층(204)의 적층 방법으로 상술한 PECVD 이외에 HWCVD(hot wire CVD), LPCVD(low pressure CVD)를 적용할 수도 있다. The p-type amorphous thin film layer 203 and the n-type amorphous thin film layer 204 may be stacked by plasma enhanced chemical vapor deposition (PECVD) in one embodiment, and in the case of applying amorphous silicon (a-Si), SiH 4 , B 2 H 6 may be used as the precursor of the amorphous thin film layer 203, and SiH 4 , PH 3 may be used as the precursor of the n-type amorphous thin film layer 204. H 2 may be added to each precursor. In a state where the substrate 201 is mounted in a predetermined chamber, when the precursors are supplied into the chamber at a predetermined temperature, the p-type amorphous thin film layer 203 and the n-type amorphous thin film layer 204 are formed on the front and rear surfaces of the substrate 201, respectively. do. In addition to the above-described PECVD, hot wire CVD (HWCVD) and low pressure CVD (LPCVD) may be applied as a method of stacking the p-type amorphous thin film layer 203 and the n-type amorphous thin film layer 204.

상기 기판(201) 전면과 후면에 각각 p형 비정질박막층(203)과 n형 비정질박막층(204)이 적층된 상태에서, 확산공정을 실시하여 p형 에미터(205)와 n형 후면전계층(206)을 형성한다(도 2c 참조). 구체적으로, 챔버 내에 기판(201)을 장착시킨 상태에서, 일정 온도 하에서 상기 기판(201)을 가열하면 p형 비정질박막층(203) 내의 p형 불순물 이온이 기판(201) 내부로 확산되어 p형 에미터(205)가 형성되고, n형 비정질박막층(204) 내의 n형 불순물 이온 역시 기판(201) 내부로 확산되어 n형 후면전계층(206)이 형성된다. 이와 같이, 기판(201) 전면에는 p형 에미터(205), 기판(201) 후면에는 n형 후면전계층(206)이 독립적으로 형성됨으로 인해 추가적인 아이솔레이션 공정이 요구되지 않게 된다. In the state where the p-type amorphous thin film layer 203 and the n-type amorphous thin film layer 204 are laminated on the front and rear surfaces of the substrate 201, respectively, a diffusion process is performed to form the p-type emitter 205 and the n-type backside electric field layer ( 206) (see FIG. 2C). Specifically, in a state where the substrate 201 is mounted in the chamber, when the substrate 201 is heated under a predetermined temperature, the p-type impurity ions in the p-type amorphous thin film layer 203 diffuse into the substrate 201 and the p-type emi The trench 205 is formed, and the n-type impurity ions in the n-type amorphous thin film layer 204 are also diffused into the substrate 201 to form the n-type backside field layer 206. As such, since the p-type emitter 205 is formed on the front surface of the substrate 201 and the n-type backside electric field layer 206 is formed independently on the rear surface of the substrate 201, no additional isolation process is required.

한편, p형 비정질박막층(203) 내의 p형 불순물 이온과 n형 비정질박막층(204)의 n형 불순물 이온이 기판(201) 내부로 확산됨에 따라 p형 비정질박막층(203)과 n형 비정질박막층(204)은 불순물 이온이 대부분 소모되고 소량의 불순물 이온이 잔존하는 상태를 이루게 되는데, 상기 확산공정이 산소 분위기 하에서 진행됨으로 인해 p형 비정질박막층(203)과 n형 비정질박막층(204)은 산소 및 기판의 실리콘(Si) 원소와 반응하여 산화막을 이루게 된다. 이 때, 형성되는 산화막을 확산부산 산화막(207)(208)이라 칭하기로 한다. Meanwhile, as the p-type impurity ions in the p-type amorphous thin film layer 203 and the n-type impurity ions in the n-type amorphous thin film layer 204 diffuse into the substrate 201, the p-type amorphous thin film layer 203 and the n-type amorphous thin film layer ( 204 is a state in which most of the impurity ions are consumed and a small amount of impurity ions remain, the p-type amorphous thin film layer 203 and the n-type amorphous thin film layer 204 is the oxygen and substrate due to the diffusion process is carried out in the oxygen atmosphere An oxide film is formed by reacting with a silicon (Si) element. At this time, the oxide film formed is referred to as diffusion acid oxide films 207 and 208.

일 예로, p형 비정질박막층(203)으로 붕소(B)가 도핑된 비정질실리콘 또는 비정질실리콘산화막이 이용되는 경우, 상기 확산부산 산화막(207)은 BSG(boro-silicate glass)를 이룰 수 있으며, n형 비정질박막층(204)으로 인(P)이 도핑된 비정질실리콘 또는 비정질실리콘산화막이 이용되는 경우, 상기 확산부산 산화막(208)은 PSG(phosphor-silicate glass)를 이룰 수 있다. For example, when an amorphous silicon or an amorphous silicon oxide film doped with boron (B) is used as the p-type amorphous thin film layer 203, the diffusion acid oxide film 207 may form a boro-silicate glass (BSG), n When an amorphous silicon or an amorphous silicon oxide film doped with phosphorus (P) is used as the type amorphous thin film layer 204, the diffusion acid oxide film 208 may form a PSG (phosphor-silicate glass).

이와 같이, 상기 확산공정에 의해 p형 비정질박막층(203)과 n형 비정질박막층(204)이 확산부산 산화막(207)(208)이 형성되는데, 상기 확산부산 산화막(207)(208)은 불순물 이온이 일정 부분 소모된 상태임에 따라 유전층의 성질을 갖게 되며, 따라서 상기 확산부산 산화막(207)(208)은 패시베이션층으로 이용이 가능하다. 본 발명에서, 확산공정에 의해 형성된 확산부산 산화막(207)(208)을 패시베이션층으로 이용하며, 이에 따라 별도의 패시베이션층 형성 공정이 요구되지 않는다. As described above, the diffusion type oxide thin film layers 207 and 208 are formed in the p-type amorphous thin film layer 203 and the n-type amorphous thin film layer 204 by the diffusion process, and the diffused diffusion oxide films 207 and 208 are impurity ions. As a certain portion is consumed, the dielectric layer has a property of a dielectric layer, and thus the diffusion oxide oxide layers 207 and 208 may be used as a passivation layer. In the present invention, the diffusion acid oxide films 207 and 208 formed by the diffusion process are used as the passivation layer, so that no separate passivation layer forming process is required.

다음으로, 상기 확산부산 산화막(207)(208) 즉, 패시베이션층이 형성된 상태에서, 기판 전면 및 후면의 확산부산 산화막(207)(208) 상에 각각 실리콘 질화막 재질의 반사방지막(도시하지 않음)을 적층한다. 이어, 상기 기판 후면의 반사방지막 상에 후면전극(209)을 형성한다. 이 때, 상기 반사방지막 적층 공정은 생략할 수 있다. Next, in the state in which the diffusion acid oxide films 207 and 208, that is, the passivation layer are formed, the antireflection films made of silicon nitride film (not shown) on the diffusion acid oxide films 207 and 208 of the front and rear surfaces of the substrate are respectively shown. Laminated. Subsequently, a back electrode 209 is formed on the anti-reflection film on the back of the substrate. In this case, the antireflection film stacking process may be omitted.

이와 같은 상태에서, 레이저 도핑을 이용한 고농도 에미터(210) 형성 및 전기도금을 이용한 전면전극(211) 형성 공정을 진행한다. 구체적으로, 도 2d를 참조하면 상기 기판(201) 후면의 확산부산 산화막(208)(또는 반사방지막) 상에 후면전극(209)을 형성한 상태에서, 상기 기판 전면의 확산부산 산화막(207)에 대해 레이저를 조사하면 상기 확산부산 산화막(207)에 잔존하는 p형 불순물 이온(예를 들어, 붕소 이온)이 활성화되어 p형 에미터(205) 내부에서 확산되며 궁극적으로 고농도 에미터(210)가 형성된다. 이와 같은 상태에서, 확산부산 산화막(207)을 제거하여 고농도 에미터(210)를 노출시킨 다음 도 2e에 도시한 바와 같이, 상기 고농도 에미터(210)에 전기도금법을 이용하여 전면전극(211)을 형성하면 고농도 에미터(210) 및 전면전극(211) 형성이 완료된다. 이 때, 상기 전면전극(211)은 무전해 도금방법(electroless-plating) 또는 전해 도금방법(electro-plating)을 이용할 수 있다.
In this state, the high concentration emitter 210 is formed using laser doping and the front electrode 211 is formed using electroplating. Specifically, referring to FIG. 2D, in the state in which the back electrode 209 is formed on the diffusion acid oxide film 208 (or the anti-reflection film) on the rear surface of the substrate 201, the diffusion acid oxide film 207 on the entire surface of the substrate is formed. When the laser beam is irradiated, the p-type impurity ions (eg, boron ions) remaining in the diffusion-acid oxide film 207 are activated to diffuse in the p-type emitter 205, and ultimately, the high concentration emitter 210 is formed. Is formed. In such a state, the diffusion oxide oxide film 207 is removed to expose the high concentration emitter 210, and then as shown in FIG. 2E, the front electrode 211 is applied to the high concentration emitter 210 by electroplating. Formation of the high concentration emitter 210 and the front electrode 211 is completed. In this case, the front electrode 211 may use an electroless-plating method or an electro-plating method.

201 : n형 결정질 실리콘 기판 202 : 요철
203 : p형 비정질박막층 204 : n형 비정질박막층
205 : p형 에미터 206 : n형 후면전계층
207, 208 : 확산부산 산화막
209 : 후면전극 210 : 고농도 에미터
211 : 전면전극
201: n-type crystalline silicon substrate 202: irregularities
203: p-type amorphous thin film layer 204: n-type amorphous thin film layer
205: p-type emitter 206: n-type rear field layer
207, 208: diffusion oxide film
209 back electrode 210 high concentration emitter
211: front electrode

Claims (4)

n형 실리콘 기판을 준비하는 단계;
상기 기판 전면에 p형 비정질박막층, 상기 기판 후면에 n형 비정질박막층을 각각 적층하는 단계;
확산공정을 실시하여, p형 비정질박막층 내의 p형 불순물을 기판 내부로 확산시켜 p형 에미터를 형성함과 함께 상기 n형 비정질박막층 내의 n형 불순물을 기판 내부로 확산시켜 n형 후면전계층을 형성하며, 상기 p형 비정질박막층 및 n형 비정질박막층을 확산부산 산화막으로 변환시키는 단계;
상기 기판 후면 상에 n형 후면전계층과 연결되는 후면전극을 형성하는 단계; 및
상기 기판 전면의 확산부산 산화막을 레이저로 조사하여 확산부산 산화막 내에 잔존하는 p형 불순물 이온을 기판 내부로 확산시켜 고농도 에미터를 형성하고, 상기 고농도 에미터 상에 전면전극을 형성하는 단계를 포함하여 이루어지며,
상기 p형 비정질박막층은 p형 불순물을 포함하는 비정질박막층이고, 상기 n형 비정질박막층은 n형 불순물을 포함하는 비정질박막층이며,
상기 비정질박막층은 비정질실리콘(a-Si), 비정질실리콘산화막(a-SiOx), 비정질실리콘질화막(a-SiNx), 비정질실리콘탄화막(a-SiC), 비정질탄소(a-C), 비정질산화알루미늄(a-AlOx) 중 어느 하나인 것을 특징으로 하는 특징으로 하는 양면수광형 태양전지의 제조방법.
preparing an n-type silicon substrate;
Stacking a p-type amorphous thin film layer on the front of the substrate and an n-type amorphous thin film layer on the back of the substrate, respectively;
The diffusion process is performed to diffuse the p-type impurities in the p-type amorphous thin film layer into the substrate to form a p-type emitter, and to diffuse the n-type impurities in the n-type amorphous thin film layer into the substrate to form an n-type backside field layer. Forming a p-type amorphous thin film layer and an n-type amorphous thin film layer into a diffusion acid oxide film;
Forming a rear electrode connected to an n-type rear field layer on a rear surface of the substrate; And
Irradiating a diffused by-acid oxide film on the entire surface of the substrate with a laser to diffuse p-type impurity ions remaining in the diffused-acid oxide film into the substrate to form a high concentration emitter, and forming a front electrode on the high concentration emitter; Done,
The p-type amorphous thin film layer is an amorphous thin film layer containing p-type impurities, and the n-type amorphous thin film layer is an amorphous thin film layer containing n-type impurities,
The amorphous thin film layer is amorphous silicon (a-Si), amorphous silicon oxide film (a-SiO x ), amorphous silicon nitride film (a-SiN x ), amorphous silicon carbide film (a-SiC), amorphous carbon (aC), amorphous oxidation Method of manufacturing a double-sided light receiving solar cell, characterized in that any one of aluminum (a-AlO x ).
삭제delete 제 1 항에 있어서, 상기 p형 비정질박막층과 n형 비정질박막층은 각각 PECVD를 이용하여 적층하는 것을 특징으로 하는 양면수광형 태양전지의 제조방법.
The method of claim 1, wherein the p-type amorphous thin film layer and the n-type amorphous thin film layer are laminated using PECVD, respectively.
제 1 항에 있어서, 상기 전면전극은 전기도금법을 이용하여 형성하는 것을 특징으로 하는 양면수광형 태양전지의 제조방법.The method of claim 1, wherein the front electrode is formed using an electroplating method.
KR1020120009928A 2012-01-31 2012-01-31 Method for fabricating bi-facial solar cell KR101329855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120009928A KR101329855B1 (en) 2012-01-31 2012-01-31 Method for fabricating bi-facial solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120009928A KR101329855B1 (en) 2012-01-31 2012-01-31 Method for fabricating bi-facial solar cell

Publications (2)

Publication Number Publication Date
KR20130088590A KR20130088590A (en) 2013-08-08
KR101329855B1 true KR101329855B1 (en) 2013-11-14

Family

ID=49214898

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120009928A KR101329855B1 (en) 2012-01-31 2012-01-31 Method for fabricating bi-facial solar cell

Country Status (1)

Country Link
KR (1) KR101329855B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157740B (en) * 2014-09-03 2017-02-08 苏州阿特斯阳光电力科技有限公司 N-type two-side solar cell manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091474A (en) * 2008-02-25 2009-08-28 엘지전자 주식회사 Method for forming selective emitter of solar cell using annealing by laser of top hat type and method for manufacturing solar cell using the same
WO2010126572A2 (en) * 2009-05-01 2010-11-04 Calisolar, Inc. Bifacial solar cells with back surface reflector
KR20110038092A (en) * 2008-07-01 2011-04-13 선파워 코포레이션 Front contact solar cell with formed electrically conducting layers on the front side and backside

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091474A (en) * 2008-02-25 2009-08-28 엘지전자 주식회사 Method for forming selective emitter of solar cell using annealing by laser of top hat type and method for manufacturing solar cell using the same
KR20110038092A (en) * 2008-07-01 2011-04-13 선파워 코포레이션 Front contact solar cell with formed electrically conducting layers on the front side and backside
WO2010126572A2 (en) * 2009-05-01 2010-11-04 Calisolar, Inc. Bifacial solar cells with back surface reflector

Also Published As

Publication number Publication date
KR20130088590A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
CN102468365A (en) Manufacturing method for double-face solar cell
JP2013511839A (en) Photovoltaic cell manufacturing method, photovoltaic cell manufactured thereby, and use thereof
US20110114147A1 (en) Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
KR20130048948A (en) Bi-facial solar cell and method for fabricating the same
US20110114152A1 (en) Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
KR101138554B1 (en) Solar cell and method for fabricating the same
KR20120077840A (en) Front and back contact electric field solar cell and method thereof
KR101383426B1 (en) Method for fabricating bi-facial solar cell
KR101329855B1 (en) Method for fabricating bi-facial solar cell
KR20120027904A (en) Method for manufacturing a solar cell
TW201222851A (en) Manufacturing method of bifacial solar cells
KR101371801B1 (en) Method for fabricating bi-facial solar cell
KR20150007396A (en) Method for fabricating bi-facial solar cell
KR101335082B1 (en) Method for fabricating bi-facial solar cell
KR101732742B1 (en) Bi-facial solar cell and method for fabricating the same
KR101089416B1 (en) Solar cell and method for fabricating the same
KR101391073B1 (en) Bi-facial solar cell and method for fabricating the same
KR101115104B1 (en) Solar cell and method for fabricating the same
KR101251878B1 (en) Method for manufacturing bifacial solar cell
KR101251857B1 (en) Method for manufacturing bifacial solar cell
KR101145472B1 (en) Method for fabricating solar cell
KR101101621B1 (en) Front and back contact electric field solar cell and method thereof
KR101348836B1 (en) Method for fabricating p-type and n-type doping layer of solar cell
KR101101438B1 (en) Front and back contact electric field solar cell and method thereof
KR20150024485A (en) Method for fabricating Passivated Emitter with Rear Locally diffused cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170403

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8