KR101222455B1 - 수소환원수 제조장치 - Google Patents

수소환원수 제조장치 Download PDF

Info

Publication number
KR101222455B1
KR101222455B1 KR1020120114159A KR20120114159A KR101222455B1 KR 101222455 B1 KR101222455 B1 KR 101222455B1 KR 1020120114159 A KR1020120114159 A KR 1020120114159A KR 20120114159 A KR20120114159 A KR 20120114159A KR 101222455 B1 KR101222455 B1 KR 101222455B1
Authority
KR
South Korea
Prior art keywords
hydrogen
chamber
water
liquid
line
Prior art date
Application number
KR1020120114159A
Other languages
English (en)
Inventor
최인국
최태섭
허대열
Original Assignee
(주)이노게이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이노게이트 filed Critical (주)이노게이트
Priority to KR1020120114159A priority Critical patent/KR101222455B1/ko
Application granted granted Critical
Publication of KR101222455B1 publication Critical patent/KR101222455B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • C02F1/686Devices for dosing liquid additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)

Abstract

수소환원수 제조장치가 개시된다. 수소환원수 제조장치는 수소공급유닛으로부터 공급된 수소와 저수조로부터 공급된 액체를 기액 혼합하는 용해실과; 상기 용해실로부터 분리된 순환실과; 상기 용해실과 상기 순환실 사이의 유로가 단절된 상태로, 상기 용해실에 액체를 공급하는 공급라인과; 상기 용해실과 상기 순환실 사이에서 수소 용해된 액체를 반복 순환시키면서, 수소환원수를 제조하는 제조라인과; 상기 용해실과 상기 순환실 사이의 유로가 단절된 상태로, 상기 제조라인 가동에 의해 제조된 상기 순환실 내 수소환원수와 상기 저수조 내 액체를 교환하도록 순환시키는 순환라인과; 상기 공급라인, 제조라인 및 순환라인의 가동을 선택 제어하는 제어부를 포함한다.

Description

수소환원수 제조장치{HYDROGEN-ABUNDANT WATER MAKING APPARATUS}
본 발명은 수소환원수 제조장치에 관한 것으로서, 특히 수소의 용해도를 높일 수 있도록, 2개의 격실을 가진 밀폐형 챔버를 구비하여, 환원력이 뛰어난 수소를 고농도로 함유된 수소환원수를 제조하고, 음용과 식물재배, 목욕 등의 용도에 연속적이면서도 대량으로 공급할 수 있는 수소환원수 제조장치에 관한 것이다.
건강한 삶과 노화방지에 대한 욕구와 관심이 증대하면서 환원력이 뛰어난 수소를 활용하기 위한 연구와 관련제품 개발이 여러 방면에서 이루어지고 있다. 수소는 주기율표 1번인 지구상에 존재하는 가장 가벼운 원소로, 원소기호는 H인데, 양성자 하나와 전자 하나로 이루어져 있으며, 지구상에 존재하는 수소의 대부분은 질량수가 1인 경수소지만 질량수가 2인 중수소와 질량수가 3인 삼중수소가 미량 존재하는 것으로 알려져 있다.
실생활과 관련해서, 수소는 강력한 환원력을 보유하고 있는 원소이기에, 생활습관병 등 질병의 근원물질이라고 알려져 있는 체내의 활성산소를 제거하는 용도로 널리 활용되고 있는데 물을 전기분해하여 전해환원수를 만드는 알칼리 이온수기가 일반적으로 알려져 있으며 수소를 고온, 고압의 플라즈마 상태에서 칼슘 등의 미네랄에 흡장시킨 분말제품, 마그네슘 등의 금속과 물과의 화학반응을 이용하여 수소를 생성하는 스틱제품, 용존수소 농도를 극대화하여 제조한 고농도 수소수 음료 등 다양한 형태의 제품으로 출시되고 있다.
수소의 환원력을 인체의 건강과 관련해서 적용한 상기의 상품과 기술들은 제품의 가격이 매우 높거나 용존수소농도를 제품에 정확히 표기하지 않아 용존수소의 포함 여부가 불분명한 사례가 많으며 대중의 편의성과 실효성에 기반한 합리적이고 우수한 제품을 찾아보기가 쉽지 않다.
일반적으로 많이 알려진 알칼리 이온수기는 물의 전기분해를 통해 산성수와 알칼리수를 생성하는데 전기분해 시, 생성된 용존수소의 환원 작용을 활용하기 위해서 알칼리 이온수를 사용할 때 산성수가 그대로 버려지는 문제점이 있으며, 낮은 수소농도로 인하여 수소환원수로서의 효과를 극대화하기 어렵고 알칼리수의 pH가 9 내지 10 정도로 너무 높아 위장 등에 이상이 있는 경우나 과민성 질환의 경우에는 사용할 수 없으며 강한 pH로 인하여 의료기기로 분류되므로 제조와 판매에도 제약을 받게 된다.
한편, 산화환원전위(ORP)가 낮고 용존수소를 다량으로 함유한 수소환원수가 강력한 환원작용으로 암을 비롯한 여러 질병에 효과가 있다는 연구발표가 많아지면서 수소환원수나 중성수소수를 만들어 내는 제품들이 등장하고 있는데, 이는 생체의 신진대사 과정에서 발생하는 활성산소를 제거하는 활성수소가 포함되어 있기 때문이며 활성수소는 인체 내에서 유해한 활성산소와 결합하여 안전한 물로서 배출시키므로 세포의 산화를 방지하고 각종 난치병의 치료와 노화예방에 도움을 주기 때문이다.
이처럼, 건강을 위하여 수소환원수의 강력한 환원력을 제공하는 제품들이 다양하게 출시되고 있는 반면, 환원효과 극대화를 위해 용존수소의 농도를 높이기 위한 특수한 장치를 부가하거나 목욕 등의 용도에 대량으로 사용할 수 있도록 설비용량을 대형화 할 경우, 설비가 대형화되고 제조원가가 상승하는 문제점이 있어서 간단한 설비변경만으로도 대량의 수소환원수를 제공할 수 있는 제조장치가 요구된다.
2011. 01. 18.자 "수소풍부수 제조장치"의 명칭으로 출원되어 2011. 04. 15.자 등록된 한국 특허 등록번호 제10-103721호에는 기액 혼합과 수소환원수 공급을 위해 독립된 2개의 격실을 가진 밀폐형 챔버를 이용하여, 용존수소 농도가 풍부한 수소환원수를 제조하는 기술이 개시되어 있다.
개시된 기술은 단시간 내에 안정적이고 지속적으로 수소환원수를 제조할 수 있도록 하며, 투입된 수소를 낭비 없이 사용함으로써 설비효율 증대와 대량의 수소환원수 공급이 가능하다는 장점 등을 갖는다. 하지만, 개시된 기술은 수소환원수의 제조와 제조된 고농도 수소환원수와 저수조 내 저농도 수소환원수(또는, 원수) 사이의 원활한 교환 등이 효율적으로 이루어지도록 하는 구성들에 대해서는 고려되지 않았다.
따라서, 본 발명이 해결하고자 하는 과제는 고농도 수소환원수의 효율적인 제조하는 기능, 그리고, 제조된 수소환원수와 저수조 내 원수 또는 저농도 수소환원수를 효율적으로 교환하는 기능, 더 나아가, 액체, 즉, 정수된 물을 수소환원수 제조에 최적의 조건으로 공급하는 기능 등을 선택적으로 수행할 수 있도록 한 개선된 구조의 수소환원수 제조장치를 제공하는 것이다.
또한, 본 발명의 다른 해결 과제는 정수기 및 대량의 수소환원수를 사용하는 음료제조시설, 목욕시설 등에 필요한 설비를 합리적으로 제공하며, 식물재배나 사우나시설 등에서 생성된 수소환원수를 효과적으로 순환시키면서 이용할 수 있는 수소환원수 제조장치를 제공하는 데 있다.
본 발명의 일 측면에 따른 수소환원수 제조장치는, 수소공급유닛으로부터 공급된 수소와 저수조로부터 공급된 액체를 기액 혼합하는 용해실과; 상기 용해실로부터 분리된 순환실과; 상기 용해실과 상기 순환실 사이의 유로가 단절된 상태로, 상기 용해실에 액체를 공급하는 공급라인과; 상기 용해실과 상기 순환실 사이에서 수소 용해된 액체를 반복 순환시키면서, 수소환원수를 제조하는 제조라인과; 상기 용해실과 상기 순환실 사이의 유로가 단절된 상태로, 상기 제조라인 가동에 의해 제조된 상기 순환실 내 수소환원수와 상기 저수조 내 액체를 교환하도록 순환시키는 순환라인과; 상기 공급라인, 제조라인 및 순환라인의 가동을 선택 제어하는 제어부를 포함한다.
일 실시예에 따라, 상기 공급라인은 상기 저수조와 상기 용해실 사이를 연결하는 제1 배관라인부 전체를 포함하고, 상기 제조라인은 상기 용해실과 상기 순환실 사이를 연결하는 제2 배관라인부 전체를 포함하고, 상기 순환라인은 상기 순환실과 상기 저수조 사이를 연결하는 제3 배관라인부 전체를 포함하되, 상기 제조라인은 상기 제1 배관라인부의 적어도 일부와 상기 제3 배관라인부의 적어도 일부를 공유하며, 상기 순환라인은 상기 제2 배관라인부의 일부를 공유한다.
일 실시예에 따라, 제4 배관라인부에 의해 상기 제1 배관라인부와 상기 제2 배관라인부가 연결되고 상기 제5 배관라인부에 의해 상기 제1 배관라인부와 상기 제3 배관라인부가 연결되되, 상기 공급라인은, 상기 제2 배관라인부에 설치된 제3 개폐밸브, 상기 제4 배라인부에 설치된 제5 개폐밸브 및 상기 제5 배관라인부에 설치된 제6 개폐밸브의 오프(OFF)와 상기 제1 배관라인부에 설치된 제1 개폐밸브 및 제2 개폐밸브의 온(ON)에 의해, 형성되어 가동되고, 상기 제조라인은 상기 제1 개폐밸브, 상기 제5 개폐밸브, 그리고 상기 제3 배관라인부에 설치된 제4 개폐밸브의 오프(OFF)와 상기 제2 개폐밸브, 상기 제6 개폐밸브 및 상기 제3 개폐밸브의 온(ON)에 의해, 형성되어 가동되고, 상기 순환라인은 상기 제2 개폐밸브, 상기 제3 개폐밸브 및 상기 제6 개폐밸브의 오프(OFF)와 상기 제1 개폐밸브, 상기 제4 개폐밸브 및 상기 제5 개폐밸브의 온(ON)에 의해 형성되어 가동된다.
일 실시예에 따라, 상기 용해실과 상기 순환실은 하나의 챔버 내에서 격벽에 의해 서로 분리되고, 상기 용해실은 상기 용해실 내 수위를 감지하는 수위센서, 상기 용해실 내 압력을 감지하는 압력센서 및 상기 용해실 내 기체를 배출하기 위한 에어벤트 밸브를 포함하고, 상기 제어부는 상기 수위감지센서와 상기 압력센서에서 감지된 측정값을 기초로 상기 공급라인, 상기 제조라인 및 상기 순환라인의 선택적 가동과, 상기 수소공급유닛 및 상기 에어밴트 밸브의 작동을 각각 제어한다.
일 실시예에 따라, 상기 수소환원수 제조장치는 액체를 정수하여 상기 저수조에 공급하는 정수유닛을 포함하며, 상기 정수유닛은 액체 내에 포함된 부유성 이물질, 유기물, 염소, 녹, 냄새, 바이러스를 제거하도록 다단의 여과필터를 포함하고 역삼투압 구조를 갖는 정수부를 포함한다.
일 실시예에 따라, 상기 수소공급유닛은 복수의 전기분해조가 연결되어 구성되고 고체고분자전해질을 분리막으로 사용하는 수소발생기를 포함하며, 상기 정수유닛에서 분기된 분기라인과 연결되어 상기 정수유닛에서 정수된 액체를 이용하여 수소를 발생시킨다.
일 실시예에 따라, 상기 수소환원수 제조장치는 상기 저수조에 저류된 수소환원수를 식물 재배시설이나 목욕시설 등에 공급하되, 공급된 수소환원수의 용존수소농도가 일정치 이하로 낮아지거나 이물질이 혼입된 경우, 공급된 수소환원수를 회수하여, 정제와 수소 농도를 높이도록 구성된다.
일 실시예에 따라, 수소환원수 제조장치는 상기 저수조에 공급되는 액체에 질소를 혼합하여 용존산소를 제거하는 질소 챔버와, 상기 저수조의 온도를 낮추어 용존수소농도를 높이는 냉각유닛을 더 포함한다.
일 실시예에 따라, 상기 용해실과 상기 순환실은 하나의 챔버 내에서 격벽에 의해 상하로 분리되고, 상기 용해실은 분사노즐과 상기 분사노즐로부터 분사된 액체가 충돌하는 액체충돌부를 내부에 포함하며, 상기 순환실은 상기 용해실과 격벽에 의해 분리된 채 상기 챔버의 하부에 위치하고, 상기 순환실은 상하로 나란하게 배열된 복수의 격판들에 의해 복수의 공간들로 분할되며, 상기 격판들 각각에는 유로홀이 형성되며, 상기 유로홀들에 의해, 상기 공간들 사이에서 액체의 흐름이 허용되며, 상기 격판들 중 이웃하는 격판들에 형성된 이웃하는 유로홀들은 서로 대향되지 않는 위치에 형성되며, 상기 용해실로부터의 액체 유입을 허용하는 유입구가 상기 복수의 공간들 중 최하부 공간에 위치하고, 외부로 액체 유출을 허용하는 유출구가 상기 복수의 공간들 중 최상부 공간에 위치한다.
본 발명에 따르면, 강력한 환원력을 보유한 수소가 풍부하게 함유된 수소환원수를 효율적으로 제조하여 공급할 수 있는 수소환원수 제조장치가 구현된다. 본 발명에 따르면, 단시간 내에 안정적이고 지속적으로 수소환원수를 제조할 수 있도록 해주며, 투입된 수소를 낭비 없이 사용함으로써 설비효율 증대와 대량의 수소환원수 공급이 가능하다는 장점 등을 갖는다. 또한, 본 발명은 고농도 수소환원수를 효율적으로 제조함과 동시에 제조된 수소환원수와 저수조 내 원수 또는 저농도 수소환원수를 효율적으로 교환할 수 있고, 더 나아가, 액체, 즉, 정수된 물을 수소환원수 제조에 최적의 조건으로 공급할 수 있다. 그리고, 제어부에 의해, 수소환원수의 제조, 수소환원수와 저수조 내 액체 사이의 액체 교환 , 그리고, 수소환원수 공급을 위한 가동이 자동으로 이루어져, 보다 더 효율적으로 수소환원수를 제조하는 것이 가능하다.
또한, 본 발명은 정수기 및 대량의 수소환원수를 사용하는 음료제조시설, 목욕시설 등에 필요한 설비를 합리적으로 제공하며, 식물재배나 사우나시설 등에서 생성된 수소환원수를 효과적으로 순환시키면서 이용할 수 있도록 해준다.
본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니 된다.
도 1은 본 발명의 제1실시예에 따른 수소환원수 제조장치를 설명하기 위한 구성도.
도 2는 본 발명의 제1실시예에 따른 수소환원수 제조장치의 여러 작동 상태 중 하나를 보인 도면으로서, 액체 공급라인에 의한 작동 상태를 설명하기 위한 작동 상태도.
도 3은 본 발명의 제1실시예에 따른 수소환원수 제조장치의 여러 작동 상태 중 하나를 보인 도면으로서, 수소환원수 제조라인에 의한 작동 상태를 설명하기 위한 작동 상태도.
도 4는 본 발명의 제1실시예에 따른 수소환원수 제조장치의 여러 작동 상태 중 하나를 보인 도면으로서, 수소환원수 순환라인에 의한 작동 상태를 설명하기 위한 작동 상태도.
도 5는 본 발명의 제1실시예에 따른 수소환원수 제조장치의 수소발생기 및 수소공급유닛을 설명하기 위한 도면.
도 6은 본 발명의 제2실시예 따른 수소환원수 제조장치를 설명하기 위한 개략적인 구성도.
도 7은 본 발명의 제3실시예에 의한 수소환원수 제조장치를 설명하기 위한 개략적인 구성도.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위해 과장되어 표현될 수 있다.
도 1은 본 발명의 제1실시예에 따른 수소환원수 제조장치를 설명하기 위한 구성도이고, 도 2, 도 3 및 도 4는 본 발명의 제1실시예에 따른 수소환원수 제조장치의 작동상태를 설명하기 위한 도면들이다.
도 1 내지 도 4를 참조하면, 본 발명의 제1실시예에 따른 수소환원수 제조장치는 챔버(100), 액체 공급라인(10; 도 2에 도시함), 수소환원수 제조라인(20; 도 3에 도시함), 수소환원수 순환라인(30; 도 4에 도시함), 제어부(40), 저수조(200), 수소공급유닛(300) 및 정수유닛(400)을 포함하며, 이들 구성요소들에 대하여 상세히 설명하면 다음과 같다. 이하 설명되는 본 발명의 제1 실시예에서, 각기 다른 기능을 하는 전술한 라인들(10, 20, 30)은 서로 연결된 제1 내지 제5 배관라인부(L1~L5)와 그 배관라인부(L1~L5)들에 설치된 밸브들에 개폐에 의해 형성되는 것으로서, 상기 라인들(10, 20, 30)은 상기 제1 내지 제5 배관라인부(L1~L5)들 중 적어도 하나의 배관라인부 전체 또는 일부를 공유할 수 있다.
상기 챔버(100)는 격벽(130) 및 상기 격벽(130)에 의해 구획되어 서로 독립되어 있는 2개의 밀폐형 격실, 즉, 용해실(110)과 순환실(120)을 포함한다. 상기 격벽(130)을 경계로 하여, 상기 챔버(100)의 상부에는 용해실(110)이 형성되고 상기 챔버(100)의 하부에는 순환실(120)이 형성된다.
상기 챔버(100)는 액체충돌부(11)와 분사노즐(16)을 용해실(110)에 구비한다. 상기 분사노즐(16)은 상기 용해실(110)의 외부에서 상기 용해실(110)의 내부로 인입 설치되며, 상기 액체충돌부(11)는 가압 분사된 고압의 액체와 충돌하도록 상기 용해실(110)의 내측 상부면에 위치하여 설치된다. 상기 분사노줄(16)이 상기 액체충돌부(11)를 향해 있음은 물론이다. 또한 분사노즐(16)의 액체 분사방향은 상기 용해실(110)의 상부에 형성된 액체충돌부(11)를 향하며, 상기 분사노즐(16)의 분사 위치는상기 용해실(110) 내 수면보다 높게 위치하는 것이 바람직하다.
여기서, 액체충돌부(11)는, 상기 분사노즐(16)에서 분사된 액체와 상기 용해실(110) 내 기체와의 접촉 면적을 넓힐 수 있는 돌출 형태, 바람직하게는, 뒤집힌 반구 또는 돔, 또는 절두 다각뿔 또는 원뿔 형태로 형성될 수 있다. 상기 액체충돌부(11)는, 전술한 돌출 형태에 의해, 고압의 액체와 충돌하여, 고압의 미세 액체 분자를 용해실(110) 내에 고르게 비산시키며, 이에 의해, 상기 비산된 미세 액체 분자와 상기 용해실(110)의 수면 상에 존재하는 가압된 수소 기체와의 용해도를 극대화할 수 있다.
또한 상기 용해실(110) 내부에는 압력과 수위 측정을 위해 검지유닛(140)이 구비된다. 본 실시예에 있어서, 상기 검지유닛(140)은 제1압력스위치(12), 제2압력스위치(13) 및 수위감지센서(14)를 포함한다.
상기 용해실(110)에는 제1 유입구(15)와 제1 유출구(17)가 형성되며, 상기 용해실(110)은 상기 제1 유입구(15)를 통해 액체 유입을 허용하고 상기 제1 유출구(17)를 통해 액체의 유출을 허용한다. 유출된 액체는 챔버(100)의 외부 유로를 거쳐 챔버(100) 하부의 순환실(120)로 보내진다.
저수조(200)로부터 상기 용해실(110)까지 이어진 제1 배관라인부(L1)의 선단에 전술한 분사 노즐(16)이 형성되며, 상기 분사 노즐(16)은 상기 제1 유입구(15)를 통해 상기 용해실(110) 내로 도입되어 있다. 상기 제1 유출구(17)는 액체가 존재하는 상기 용해실(110)의 하부, 더 바람직하게는, 상기 용해실(110)의 최하부 또는 그 부근에 위치한다. 상기 제1 유출구(17)는 상기 용해실(110)과 상기 순환실(120)을 연결하는 제2 배관라인부(L2)의 일단에 접속된다.
또한 상기 용해실(110)에는 수소공급유닛(300)으로부터 공급된 수소가 유입되는 수소유입구(18)가 형성된다. 상기 수소유입구(18)는 액체가 존재하는 상기 용해실(110)의 하부 측에 형성된다. 상기 수소유입구(18)에는 미세한 확산 작용으로 기액 접촉효율을 높이기 위한 버블러(19)가 추가로 구비될 수 있다.
또한 상기 용해실(110)의 상부에는 에어벤트밸브(25)가 설치되며, 상기 에어벤트밸브(25)는 상기 용해실(110) 내부의 액체 수위가 증가할 때 상기 용해실(110) 내부의 공기를 상기 용해실(110)의 외부로 배출시키는 역할을 한다.
한편, 상기 순환실(100)은, 앞에서 이미 언급한 바와 같이, 상기 용해실(110)과 격벽(130)에 의해 분리된 채 상기 챔버(100)의 하부에 위치한다. 그리고 상기 순환실(120)은 상하로 나란하게 배열된 복수의 격판(22)들을 내부에 구비하며, 상기 복수의 격판(22)들에 의해, 상기 순환실(120) 내 수용 공간은 상하 복수의 공간으로 분할된다. 그리고 상기 격판(22)들 각각에는 유로홀(21)이 형성되며, 상기 유로홀(21)에 의해, 격판(22)들에 의해 분할된 공간들 사이로 액체의 흐름이 허용된다. 서로 이웃하는 격판(22, 22)들에 형성된 이웃하는 유로홀(21, 21)들은 서로 대향되지 않는 위치, 즉, 엇갈린 위치에 형성되는 것이 바람직하다.
아울러, 상기 순환실(120)의 하부 외주면에는 제2 유입구(23)가 형성되고 상기 상부 외주면에는 제2 유출구(24)가 형성된다. 바람직하게는, 상기 제2 유입구(23)는 상기 순환실(120) 내 복수의 수용 공간들 중 최하부 수용공간에 위치한 채 전술한 제2 배관 라인부(L2)의 타단에 접속되어 상기 용해실(110)에서 수소 용해된 액체가 상기 최하부 수용공간에 유입되는 것을 허용한다. 또한 상기 제2 유출구(24)는, 상기 순환실(110)로부터 상기 저수조(200)까지 이어진 제3 배관 라인부(L3)의 일단에 접속된 채, 상기 순환실(120) 내 복수의 수용공간들 중 최상부 수용공간에 위치하며 수소 용해된 액체의 유출을 허용한다.
상기 순환실(120) 하부의 제2 유입구(23)로 유입된 액체는 상기 격판(22)들에 형성된 유로홀(21)들을 통과하여 상기 순환실(120) 상부에 위치한 제2 유출구(24)를 통해 유출된다. 이때, 순환실(120) 내부에 기체가 있을 경우 액체보다 우선하여 유출됨으로써 순환실(120) 내부는 항상 액체로 가득 찬 상태가 되며 추가적으로 기체가 유입되더라도 항상 우선적으로 유출된다. 또한 순환실(120) 내의 액체는 격판(22)과 유로홀(21)이 형성한 흐름 유도 구조로 인하여, 먼저 유입된 액체가 먼저 배출된다.
상기 제1 배관 라인부(L1)는 상기 저수조(200)와 상기 챔버(100)의 용해실(110) 사이를 연결하며, 상기 저수조(200)로부터 상기 용해실(110)을 향해 차례로 제1 개폐밸브(V1), 가압펌프(31), 제2 개폐밸브(V2), 일방향밸브(37)를 차례로 포함한다. 또한 상기 제1 배관라인부(L1)는, 상기 가압펌프(31)와 상기 제2 개폐밸브(32) 사이에서 제5 개폐밸브(V5)가 설치된 제4 배관라인부(L4)에 의해 상기 제2 배관라인부(L2)와 연결되는 한편, 상기 가압펌프(31)와 상기 제1 개폐밸브(32) 사이에서 제6 개폐밸브(V6)가 설치된 제5 배관라인부(L5)에 의해 상기 제3 배관라인부(L3)에 연결된다. 또한, 상기 제2 배관라인부(L2)에는 제3 개폐밸브(V3)가 설치되고 상기 제3 배관라인부(L3)에는 제4 개폐밸브(V4)가 설치된다. 이때, 상기 개폐 밸브들(V1, V2, V3, V4, V5 및 V6)은 상기 제어부(40)에 의해 자동으로 제어되는 솔레노이드 밸브인 것이 바람직하다.
수소환원수 제조를 위해 정수유닛(400)으로부터 정수되어 저수조(200)에 저장된 액체를 챔버(100) 내 용해실(110) 내부로 공급하며, 이를 위해, 도 2에 잘 도시된 것과 같은 액체 공급라인(10)이 이용된다. 상기 액체 공급라인(10)은, 제5 및 제6 개폐밸브(V5, V6)의 오프(off)에 의해 제4 및 제5 배관라인부(L4, L5)와 단절됨과 동시에, 제1 및 제2 개폐밸브(V1, V2)의 온(on)에 의해 활성화된 제1 배관라인부(L1)에 의해 형성되어 가동된다.
상기 액체 공급라인(10)을 통한 액체 공급량에 의해 상기 용해실(110) 내 수위가 변화하며, 상기 수위는 앞에서 언급한 수위감지센서(14)를 통해 제어될 수 있다. 상기 액체 공급라인(10)의 유로에 상기 일방향밸브(37)를 복수개로 설치할 수 있으며, 상기 일방향밸브(37)들은 상기 액체 공급라인(10), 제조라인(20), 순환라인(30) 가동시, 역방향으로 액체 흐름을 차단하여 순방향 액체 유로를 형성한다.
환원수 제조를 위해 도 3에 잘 도시된 것과 같은 수소환원수 제조라인(20)이 이용된다. 상기 수소환원수 제조라인(20)은 제1 개폐밸브(V1), 제4 개폐밸브(V4) 및 제5 개폐밸브(V5)의 오프(off)와 제2 개폐밸브(V2), 제3 개폐밸브(V3) 및 제6 개폐밸브(V6)의 온(on)에 의해 활성화된 제1 배관라인부(L1)의 일부, 제2 배관라인부(L2) 전체, 그리고, 제3 배관라인부(L3)의 일부에 의해 형성되어 가동된다.
이때, 상기 제1 배관라인부(L1)가 제1 개폐밸브(V1)의 오프에 의해 저수조(200) 측과 단절되고 상기 제3 배관라인부(L3)가 제4 개폐밸브(V4)의 오프에 의해 저수조(200) 측과 단절되고, 상기 제5 개폐밸브(V5)의 오프에 의해, 상기 제1 배관라인부(L1)가 상기 제4 배관라인부(L4) 및 이와 연결된 제2 배관라인부(L2)와 단절된다.
따라서, 상기 수소환원수 제조라인(20)은 상기 저수조(200)을 거치지 않으며, 순환실(120)로부터 가압 펌프(110)로 향하는 액체 흐름, 이와 연속하며 가압 펌프(101)로부터 용해실(110)로 향하는 액체 흐름, 그리고, 이와 연속하며 용해실(110)로부터 다시 순환실(120)로 흐르는 액체 흐름을 반복적으로 하게 된다. 이때, 가압 펌프(101)로부터 용해실(110)로 향하는 액체 흐름의 말단에서 액체가 용해실(110) 내 액체 충돌부(11)와 충돌한다.
위와 같이, 상기 수소환원수 제조라인(20)은, 액체가 용해실(110)과 순환실(120)을 반복 순환하며 수소환원수가 제조되도록 구성한 라인으로서, 설정된 압력의 수소가스가 존재하고 있는 용해실(110) 내부로 분사노즐(16)을 통해 액체가 고속으로 분무되면 액체충돌부(11)와 부딪치며 미세한 입자로 분산됨으로써 수소와 효율적인 기액혼합이 이루어진다.
제조된 수소환원수는 용해실(110) 하부의 제1 유출구(17)를 통해 용해실(110)로부터 배출되고, 배출된 수소환원수는 제2 배관라인부(L2)를 거쳐 순환실(120) 하부 제2 유입구(23)를 통해 순환실(120)에 유입된다. 상기 순환실(120)의 수용공간, 특히, 최하부 수용 공간에 유입된 수소환원수는 다수의 격판(22)들에 엇갈리게 형성된 비 대향 유로홀(21)들을 통과한 후 제2 유출구(24)를 통해 선입 선출 방식으로 유출된다. 상기 순환실(120)로부터 나온 수소환원수는 제 6개폐밸브(V6), 가압펌프(31) 및 제2 개폐밸브(V2)를 거쳐, 다시 용해실(110) 내부의 분사노즐(16)로 재공급 된다.
위와 같이 수소환원수 제조라인(20)을 구성하면, 상기 수소환원수 제조라인(20)을 통한 수소환원수의 순환 반복 가동을 미리 설정된 시간만큼 수행하여, 고농도의 수소환원수를 제조할 수 있다. 또한 제어부(40)가 순환수 제조라인(20)의 작동시간과 용해실(110) 내부의 수소압력을 가감을 제어하도록 제공됨으로써, 상기 제어부(40)를 통해, 제조된 수소환원수의 용존수소농도를 자유롭게 조절하는 것이 가능하다.
도 4에 잘 도시된 것과 같은 수소환원수 순환라인(30)은 챔버(100)의 순환실(120)과 저수조(200) 사이의 수소환원수 순환을 위해 제공된다. 상기 수소환원수 순환라인(30)은 제2 개폐밸브(V2), 제3 개폐밸브(V3) 및 제6 개폐밸브(V6)의 오프(off)와 제1 개폐밸브(V1) 제4 개폐밸브(V4) 및 제5 개폐밸브(V5)의 온(on)에 의해 활성화된 제1 배관라인부(L1)의 일부(즉, 상류부), 제4 배관라인부(L4), 제2 배관라인부(L2)의 일부(즉, 하류뷰), 그리고, 제3 배관라인부(L3)의 전체에 의해 형성된다.
상기 순환라인(30)은, 제조라인(20) 가동을 통해 용해실(110)과 순환실(120)을 반복 순환하면서 제조된 수소환원수를 상기 저수조(200)로 공급하는 역할을 함과 동시에, 저수조(200)내의 원수 또는, 저농도 수소환원수를 순환실(120)로 유입시켜 고농도의 수소환원수를 얻는 액체교환 유로로서의 역할을 한다. 상기 순환라인(30)이 가동되면, 상기 제2 유출구(24)를 통해 나온 고농도 수소환원수는 제3 배관라인부(L3) 및 이에 설치된 제4 개폐밸브(35)를 지나 저수조(200)로 공급되며, 그와 동시에, 저수조(200) 내 저농도 수소환원수는 제1개폐밸브(V1), 가압펌프(31), 제5개폐밸브(V5)를 지나 순환실(120)로 유입된다.
한편, 상기 챔버(100)의 용해실(110)은 설정된 압력의 수소가스가 항상 존재하고 있으므로, 상기 순환라인(30)이 가동하는 경우, 제1 유출구(17)와 연결된 제3개폐밸브(33)를 오프하여 상기 순환실(120)과 상기 용해실(110) 사이의 유로를 차단한다. 이러한 유로 차단에 의해, 상기 용해실(110) 외부로 수소압력이 전달되지 않는다. 이는 용해실(110) 내부의 수소압력으로 인해 액체 및 수소가스가 순환실(120)을 통해 저수조(200)로 강하게 분출됨으로써 유발되는 비산과 소음 그리고 가압펌프(51) 등 구성부품의 손상을 막는데 기여한다.
한편, 상기 액체 공급라인(10), 수소환원수 제조라인(20), 수소환원수 순환라인(30)을 구성하는 유로구성과 부품들은 본 발명에서 수소환원수를 제조하기 위한 방법을 설명하기 위한 예시로써 제시한 것이므로, 수소환원수 제조장치의 최적화를 위해, 유로구성의 일부 또는, 부품 등을 변경할 수 있다. 하지만 이러한 변경은 상기 챔버(100)와 수소공급유닛(300)을 포함하고 수조환원수 제조를 위해 이와 유사한 유로 구성을 포함한다면, 본 발명의 기술적 사상을 벗어나지 않는 것으로 봐야 할 것이다.
한편, 상기 제어부(40)는 챔버(100)에 연결된 액체 공급라인(10), 수소환원수 제조라인(20) 및 수소환원수 순환라인(30)의 선택적 가동을 제어함과 동시에 수소공급유닛(300)의 동작 제어와 정수유닛(400)의 동작을 제어한다. 상기 액체 공급라인(10), 수소환원수 제조라인(20) 및 수소환원수 순환라인(30)의 선택적 가동 제어는 위에서 설명된 제1 내지 제6 개폐밸브(V1 ~ V6)의 선택적 제어 및/또는 가압 펌프(31) 제어 등을 포함한다.
도 1 및 도 5에 잘 도시된 것과 같이, 상기 수소공급유닛(300)은 수소발생기(36)에서 전기분해를 통해 생성한 수소를 수소공급밸브(38)를 거쳐 용해실(110) 내로 공급하는데, 제1압력스위치(12)를 이용하여 미리 설정된 일정 압력에서 수소기체를 공급함으로써, 기액 혼합을 위한 압력조건을 충족하도록 구성된다. 이때, 용해실(110) 내부의 액체와 효율적인 기액 접촉을 위해, 수소 유입구(18)에 버블러(17)를 더 설치할 수 있다. 상기 버블러(17)는, 세라믹 소재 또는 부직포 등을 소성하여 제조된 다공성 필터로서, 수소기체와 액체의 기액 혼합 시, 접촉 면적을 최대로 증가시킨다. 상기 버블로(17)에 구비된 약 0.1 미크론 이하의 미세기공(micro pore)을 통하여 수소기체가 고압으로 분사되므로, 액체와 수소기체의 접촉 면적을 넓혀주며, 이에 의해, 용존효율을 더욱 높일 수 있다.
이러한 기액 혼합시의 용존효율은 단위부피당의 기액 접촉면적과 기액 접촉압력에 비례하므로, 버블러(17)의 미세기공을 통과한 수소기체는 액체와 넓은 접촉면적에서 접촉하며, 따라서, 액체 내에 효율적으로 용해될 수 있다. 한편, 수소는 약 18℃의 물 1부피에 최대 약 0.0185부피의 비율로 용해될 수 있는데, 용해실(110) 내부의 수면하에 투입된 수소기체는 분사 즉시 전량이 용해되지는 못하므로 미처 용해되지 못한 일부 수소기체는 공기방울 형태로 수면 위로 부상하게 된다. 수면 위로 부상한 수소기체는 용해실(110)의 기밀구조로 인하여 외부로 유출되지 못하므로 제어부(40)에서 미리 설정한 압력값에 도달할 때까지 상부 수용공간에 머물며 압축된 고밀도 상태가 된다.
제1 압력스위치(12)는 상기 용해실(110) 내 압력이 미리 정해진 일정 압력값에 도달하면 수소발생기(36)의 동작을 정지시키도록 상기 용해실(110) 내에 구비된다. 하지만, 혹시 있을 수 있는 제1압력스위치(12)의 오동작으로 인한 수소 유입으로 인해, 용해실(110) 내 압력이 설정 압력값을 초과하는 경우를 대비하여, 2차 안전장치로 작동하는 제2 압력스위치(13)를 상기 용해실(110) 내에 더 설치할 수 있다. 상기 제2 압력스위치(13)는 미리 정해진 압력값 초과시 수소발생기(36)의 작동을 정지시킴과 동시에 경보를 발생시키는데 참여한다.
상기 수소발생기(36)는 양극과 음극으로 구성된 두 개의 전극 사이에 고체고분자전해질이 결합된 전기분해조가 복수로 결합되어 구성된 스택(Stack)을 포함할 수 있으며, 이 스택에 의해, 전해효율을 높이고 용해실(110) 내부에서의 효과적인 기액혼합에 필요한 압력을 제공할 수 있도록 구성된다. 이는, 기체의 용해도는 압력에 비례한다는 헨리의 법칙에 근거한다. 전기분해 시에 함께 생성되는 수소와 더불어 생성되는 산소는 순수 산소 기체로서 공기 중에 방출하여, 주변의 산소 농도를 높여주거나 또는 여타의 용도로 활용될 수 있다.
상기 정수유닛(400)은 일반적인 물 필터링에 일반적으로 사용되는 필터 구조를 포함할 수 있으며, 액체에 포함된 부유성 이물질과 유기물, 염소, 녹, 냄새, 바이러스등을 제거하기 위한 다단의 필터를 포함할 수 있으며, 더욱 바람직하게는 역삼투 방식의 필터를 포함한다.
상기 정수유닛(400)은 정수부(41)를 포함하며, 상기 정수부(41)에서 정수된 후 주 정수 공급라인으로부터 분기되어 분기 정수 라인을 통해 상기 수소발생기(36)로 공급되는 전해용 물은 역삼투압 필터를 이용하여 불순물 제거율을 높인 것이다. 이에 더해, 상기 정수유닛(400)은 분기 정수 라인에 추가로 탈이온 기능을 가진 DI필터(42)를 채용하여 Ca, Mg등 용존된 이온물질들을 최대한 제거한 초순수를 공급되도록 구성함으로써 수소발생기(36) 내부의 전해용 전극에 생성될 수 있는 스케일을 최소화하고 전극사이에 위치한 고체 고분자 전해질 분리막 표면도 최적의 상태로 유지할 수 있도록 구성함이 바람직하다.
한편, 음용수 수질기준에 부합하는 수소환원수를 공급하기 위한 본 발명의 또 다른 적용으로서 목욕시설이나 식물재배 등에 수소환원수를 공급하기 위한 실시예에서는 수소발생기(36)로 공급되는 초순수 전해용 물을 제외하고는 각각의 적용에 부합하는 정수유닛들을 별도로 구성하거나 또는, 정수유닛의 구성을 제외하고 저수조(200)로 물을 공급함으로써 제조비용과 유지비용을 절감할 수 있다.
일 실시예에 따라, 상기 수소환원수 제조장치는 자화유닛(500)을 포함한다. 상기 자화유닛(500)은 상기 정수유닛(300)을 통과한 액체가 상기 저수조(200)로 유입되기 직전의 유로 상에 위치하며 복수의 영구자석이 대칭구조를 이루며 유로를 원통형으로 감싸도록 구성된다.
이때, 강력한 자속에 대하여 액체가 수직방향으로 통과하게 되면서 자력의 영향으로 물의 분자구조가 구조화된 육각수로 이온활성화 되어 체내 흡수가 용이한 상태로 변화되며 동시에 기액 혼합 효율을 높일 수 있는 클러스터가 작은 분자구조로 변화시키는 작용을 한다.
한편, 영구자석을 이용한 자화수는 물 분자의 수소원자(+)와 산소원자(-) 간에 자력에 의한 진동이 일어나서 수소원자가 순간적으로 자기장 방향으로 회전을 일으키게 됨으로써 결합각이 바뀌며 육각구조수로 재배열하는 것을 이용한 것으로 물속에 녹아있는 수소이온과 미네랄이 전하를 띄게 되며, 이때 미네랄의 양에 따라 자화상태 변화의 차이가 존재하는 것으로 알려져 있다.
이제 전술한 본 발명의 제1 실시예에 따른 수소환원수 제조장치의 작동 상태에 대하여 설명하기로 한다.
먼저, 음용수질기준에 부합하는 수소환원수를 공급하기 위해서 상기 정수유닛(400)으로 유입된 원수가 정수되고 이송되어 저수조(200)에 공급된다. 이때, 저수조(200)에 별도의 냉수탱크(210)와 온수탱크(220)를 연결하여 용도에 적합한 물을 공급하도록 구성할 수 있다. 한편, 상기 정수유닛(400)에서 분기된 액체는 탈이온을 위한 DI필터(42)를 거치면서 잔여 이온이 제거된 후 별도의 전해용 저수조 (미도시)에 저류되고 상기 수소발생기(36)로 공급된다.
상기 저수조(200)에 공급된 물의 수위가 만수위에 도달하면, 상기 제어부(40)는, 수소환원수의 제조를 위해, 도 2에 잘 도시된 공급라인(10)을 통해 챔버(100) 내부의 용해실(110)로 물을 유입시킨다. 상기 용해실(110)의 수위감지센서(14)에서는 저류되는 수위를 감지하며, 만수위가 되면 제어부(40)가 상기 수위감지센서(14)의 신신호를 수신하여 공급라인(10)의 동작을 정지시킨다. 저류 중에는 에어벤트밸브(25)를 작동하여 밀폐된 용해실 (110) 내부의 공기를 배출시키고 만수위가 되면 닫는다.
상기 용해실(110) 내부가 만수위가 되고, 공급라인(10)의 동작이 정지 되면, 이와 연속하여 상기 수소발생기(36)가 작동하여, 버블러(19)를 통해 상기 용해실(110) 내로 수소가 유입된다. 수소 유입에 의해 밀폐 상태의 용해실(110) 내부는 제1압력스위치(12)로 설정한 수소 충진 압력까지 도달하게 되며, 상기 수소 충진 압력에 도달한 때, 상기 수소발생기(36)의 동작은 정지된다.
상기 용해실(110) 내부에, 기액혼합을 위한 만수위와 압력조건이 형성되면 상기 제어부(40)는 상기 제조라인(20)을 가동하게 된다. 수소환원수를 제조하기 위해 상기 제조라인(20)은, 일정압력으로 수소가 충진된 용해실(110)과, 격벽(130)으로 분리되고 다수의 격판(22) 으로 인해 선입선출 기능을 하도록 구성된 순환실(120)을 반복하는 유로를 순환하는데 이 때, 제어부(40)에서 가동시간과 수소압력을 가감함으로써 용존수소농도(DH)의 조절이 가능하다.
수소환원수 제조를 위해 용해실(110) 내부의 액체는 제1 유출구(17)로 유출되어 제3 개폐밸브(V3)를 거쳐 순환실(120)하부의 제2 유입구(23)로 유입되며 다수의 격판(22)에 형성된 비 대향 유로홀(21)들을 통과하면서 제2 유출구(24)를 통해 선입선출된다. 이 때, 빈 공간 상태였던 순환실 (120) 내부의 공기는 물이 유입되는 부피만큼 물보다 앞서서 먼저 배출된다. 제6 개폐밸브(V6)와 가압펌프(31)를 거쳐 수소압력이 존재하는 용해실(110) 내부의 분사노즐(16)로 유입되면, 가압되어 미세한 입자로 분무되면서 액체충돌부(11)와 충돌하게 되고, 더욱 미세한 입자로 가압상태의 수소기체와 혼합되면서 수소환원수가 제조된다. 이때, 상기 제어부(40)에서 설정한 가동시간 동안 상기 제조라인(20)의 유로를 반복적으로 순환하면서 용존수소농도가 높아지게 된다.
본 발명은, 효과적인 기액혼합을 위해 물 입자를 미세하게 형성하는 단계와 수소기체에 압력을 부여하는 단계, 유로를 반복하여 순환함으로써 수소의 용해도를 높이는 단계 등을 포함한다. 덧붙여, 본 발명은 가동시간과 수소압력 가감을 통해 용존수소농도를 조절할 수 있다는 매우 효과적인 조건이 제공한다.
즉, 하기의 수식이 나타내는 바와 같이, 기체의 용해도는 기액 (氣液) 접촉압력에 비례하기 때문에, 용해실(110)의 내압을 가압상태로 유지함으로써, 용해실(110) 내에서의 수소기체 용해도를 높여서 액체의 용존수소농도를 향상시킬 수 있는 것이다.
C = Kp ( C: 가스의 용해도 K: 헨리 정수 P: 압력)
또한 제조라인(20)이 가동되면서 수소기체가 물과 혼합되어 용해되므로, 용해실(110) 내부의 압력은 점차 낮아지게 되는데, 제1압력스위치(12)가 이를 감지하면, 상기 제어부(40)가 상기 수소발생기(36)를 재가동시켜, 이에 의해, 수소기체는 버블러(19)를 통과하여 가압상태의 용해실(110) 내부로 추가 유입된다. 유입된 수소기체 기포는 용해실(110)내의 압력으로 인해 가압되어 부피가 축소됨으로써 기포의 부상속도가 현저히 저하하게 되어 기포가 수중에 체류하는 시간이 증가한다. 이는 단위면적당 액체에 포함되는 수소 기체의 기포가 비약적으로 증가한 상태를 만들며, 하기의 식으로 나타내는 a가 증가하게 되므로 용해실(110) 내에서 수소기체의 용해속도를 가속화 할 수 있는 것이다.
dCAL/dt = Ka(CA-CAL)
(CAL: 용존가스 농도, t: 시간, K: 액측 총괄 물질이동계수, a: 단위부피당의 기액 접촉면적, CA: 포화 용존가스 농도)
한편, 상기 용해실(110)의 물이 순환실(120)로 이동함으로써, 순환실(120) 내의 공기는 밀려나오게 되어, 순환하는 제조라인(20)의 유로를 따라 용해실(110)로 이동하게 되며, 동시에 물이 유출된 용해실(110)의 수위는 점차 낮아지게 된다.
일정수위 이하로 수위가 떨어져 수위감지센서(14)가 이를 감지하면, 상기 제어부(40)가 상기 제조라인(20)의 가동을 정지시킨 뒤, 상기 공급라인(10)을 재가동시켜, 상기 용해실(110) 내부 수위를 만수위까지 끌어올리게 되며, 이 때, 공기배출을 위해 에어벤트밸브(25)가 열리게 된다.
이러한 과정을 거치면서, 상기 순환실(120) 내부의 공기는 모두 배출되며, 만수위 상태에 도달하여, 수소발생기(36)에서 생성된 수소가 상기 용해실(110)에 재공급된다. 상기 수소 재공급에 의해 상기 용해실(110) 내부 압력이 설정 압력값에 도달하게 되면, 상기 제조라인(20)이 다시 가동하여 수소환원수를 제조하게 된다. 즉, 상기 제조라인(20)과 공급라인(10)의 가동이 교차적으로 이루어지면서, 초기에 존재하던 순환실(120) 내부의 공기는 모두 배출되며, 이후, 제어부(40)에 설정된 시간만큼 제조라인(20)이 가동을 하여 수소환원수를 제조하게 된다.
아울러, 제조라인(20)의 가동 시에는, 제1 유입구(15)를 통해 용해실(110)내부로 유입되는 액체의 양과, 제1 유출구(17)을 통해 유출되는 액체의 양이 동일하도록, 조절수단을 마련하여, 용해실(110) 내부의 수위가 유량에 따라 변하지 않고 안정된 작동을 하도록 구성하는 것이 좋다.
다음, 도 4에 잘 도시된 순환라인(30)이 가동되며, 상기 수환라인(30)의 가동에 의해, 수소환원수는 상기 순환실(120)로부터 상기 저수조(200)로 이송되어 공급되고, 이와 동시에 저수조(200)의 내부에 있던 원수 또는 저농도의 수소환원수는 순환실(120)로 유입되어, 고농도 수소환원수와 저농도 수소환원수(또는, 원수) 사이의 교환이 이루어진다.
이때, 순환실(120)과 연결된 용해실(110)에는 가압된 수소압력이 존재하고 있으므로, 제3개폐밸브(V3)를 닫아, 압력에 의한 급격한 배출과 수소가스의 유출을 차단하고, 순환실(120)의 내부에 저류된 수소환원수만이 저수조(200)의 물과 상호 교환되도록 한다.
상기 순환라인(30)은 순환실(120) 상부의 제2 유출구(24)로 배출된 수소환원수를 제4개폐밸브(V4)를 거쳐 저수조(200)로 공급하며, 이와 동시에 저수조(200)에 저류되어 있던 원수 또는, 저농도 수소환원수를 제1 개폐밸브(V1), 가압펌프(31) 및 제5개폐밸브(V5)를 차례대로 거치게 한 후 순환실(120)로 유입시킨다. 이때, 순환실(120)의 내부 용적과 가압펌프(31)의 압력, 유로의 직경 등을 감안하여 제어부(40)에서 적절한 가동시간을 설정한다.
상기 순환라인(30)의 가동이 끝나면, 저수조(200)에는 고농도의 수소환원수가 공급되어 있고, 따라서, 사용자는 냉수탱크(210)와 온수탱크(220)를 통해 용도에 따라 원하는 수소환원수를 이용할 수 있다.
상기 저수조 (200)의 용량을 크게 하거나 더욱 고농도의 수소환원수가 필요한 경우에는, 상기 제어부(40)를 통해 제조라인(20)과 순환라인(30)을 재가동하는 반복사이클을 구성함으로써, 사용목적에 따른 공급량 조절과 용존수소농도 조절이 가능하다.
한편, 저수조(200)에 공급된 수소환원수가 추출되어 사용됨으로써 저수조(200)의 수위가 낮아지면 상기 정수유닛(41)이 가동되어 만수위를 유지할 수 있으며, 그로 인해, 저수조(200)내부에 저류된 수소환원수의 용존수소농도가 낮아지게 된다. 이때, 상기 제어부(40)를 통해, 상기 제조라인(20)과 순환라인(30)을 반복 가동함으로써, 상기 저수조(200) 내부의 수소환원수가 항시 일정한 용존수소농도를 유지할 수 있도록 해줄 수 있다.
아래의 표 1은 본 발명에 따라 수소환원수 제조 조건을 가변하며, 수소환원수를 제조한 후 수소환원수를 분석한 실험의 결과를 보여준다.
Figure 112012083490821-pat00001
[장치 구성 공통사항: 역삼투압 방식, 정수 저수조 용량: 6(ℓ), 용해실 용량: 2(ℓ), 순환실 용량: 4(ℓ), 가압펌프압력: 60(psi), 이송유량: 1.5(ℓ/min), 순환라인 가동시간: 3(min)]
상기 표 1의 결과는 상기 용해실(110) 내부의 수소 압력을 일정하게 유지한 상태에서 기액혼합의 효율성을 비교하기 위한 실험의 결과로서, 용해실(110)과 순환실(120)을 반복하며 수소환원수를 제조하는 제조라인(20)의 가동시간을 가변하였고, 제조된 수소환원수를 저수조로 이송하여, 저류된 원수와 희석된 상태에서 용존수소농도를 측정하였다.
표 1을 참조하면, 용해실(110) 내부에서의 기액 용해 효과를 확인할 수 있다. 본 발명의 한 구성요소인 분사노즐에서 고압으로 분사되는 미세한 액체분자와 가압된 수소기체와의 용해작용, 그리고, 용해도 상승시간을 확인할 수 있으며, 일정농도 이상에서의 완만한 용해도 상승 추이를 확인할 수 있다.
실험에 사용한 수소농도 측정계기는 일본제품 ENH-1000 모델을 사용하였으며, ORP 측정기는 센서(ORN-G-S8)와 표시장치(ORP Transmitter (Model :KORP-100)를 조합하여 사용하였고, pH측정은 eco tester Ph1 모델을 사용하여 측정하였다.
아래의 [표 2]는 용해실(110) 내부의 수소압력을 일정하게 유지한 상태에서 기액혼합의 효율성을 비교한 실험의 결과를 보여주며, 제조라인(20)과 순환라인(30)을 반복하여 가동하면서 저수조(200)에 수소환원수를 공급하였다. 제조된 수소환원수가 저수조로 이송되는 반복횟수에 따라 용존수소농도의 변화를 측정하였다.
Figure 112012083490821-pat00002
아래의 표 3은 용해실(110) 내부의 수소압력이 변화할 때 기액혼합의 효율성을 비교한 실험의 결과를 보여주며, 제조라인(20)의 가동시간을 4분으로 고정한 상태에서 압력 증가에 따른 용해도의 변화를 측정하기 위한 것이며 제조된 수소환원수를 저수조로 1회 순환하여 저류된 원수와 희석된 상태에서 용존수소농도를 측정하였다.
Figure 112012083490821-pat00003
위의 표 3을 참조하면, 용해실(110) 내부의 압력증가에 따라 용존수소농도가 비례해서 증가함을 확인할 수 있다.
아래의 표 4는 제조된 수소환원수를 일정압력 상태에서 체류시켜 시간이 경과함에 따라 용존수소농도 변화를 비교한 실험의 결과를 보여준다. 용해실(110) 내부의 압력을 4 kgf/cm2 으로 유지한 상태에서 제조라인(20)을 4분간 가동시킨 뒤, 제조된 수소환원수를 순환실(120) 내에 머무르게 하였다.
Figure 112012083490821-pat00004
표 4를 참조하면, 제조라인(20)이 가동하여 수소환원수가 제조된 직후, 순환실(120)내부의 용존수소농도는 저수조(200)로 이송되어 희석된 농도에 비하여 월등히 높았으며, 체류시간이 증가함에 따라 미세한 농도변화가 있음을 알 수 있다. 이는, 제조라인(20) 가동 시 물속에 포함된 미용존 수소기체 기포가 체류시간 동안 추가로 용해되는 현상임을 유추할 수 있다.
전술한 실시예는 본 발명의 구성을 바탕으로 가장 효율적으로 수소환원수를 제조할 수 있는 장치와 방법을 제시하고 있다. 사용 목적 또는 적용 대상에 따라, 용존수소농도 가감과 대용량 장치의 구성도 용이함을 잘 나타낸다.
한편, 밀폐된 용해실(110) 내에 일정압력으로 존재하는 미 용존 수소기체는, 수소환원수를 제조하는 제조라인(20)이 가동할 경우에만, 기액혼합되어 물에 용해되며 일정량이 소모될 뿐이며, 용해실(110) 내부의 수소환원수가 순환실(120)을 통해 제조라인(20)을 순환하는 경우나, 순환라인(30)이 가동되어 저수조(200)로 출수되더라도, 물보다 가벼운 수소기체이므로, 여전히 용해실(110)의 상부 수용공간에 머무르게 된다.
즉, 밀폐구조의 용해실(110)과, 최하부에 위치한 제1 유출구(17), 제3개폐밸브(V3)의 구성으로 인해, 수소발생기(36)로부터 공급된 수소는 수소환원수를 제조하는 기액용해 과정에서만 소모되고, 그 이외에는 일체 낭비되지 않으므로 수소를 생성하는 수소발생기(36)와 관련한 설비를 소형화할 수 있으며, 이는 수소환원수 제조장치의 전체 크기를 감소시키고 수소환원수 제조장치의 제조원가를 낮추는데 기여한다. 또한, 수소가 대기 중으로의 방출도 일어나지 않는 효과적인 방식을 제공한다.
또한, 전술한 수소발생기(36)는 효과적인 기액용해 조건을 형성하기 위해 필요한 기체압력을 용해실(110)내부로 공급하도록 구성된다.
도 5는 본 발명의 제1실시예에 따른 수소발생기(36)를 설명하기 위해 도면이다.
도 1과 도 5를 함께 참조하면, 본 발명의 바람직한 제1실시예에 의한 수소환원수 제조장치에서 상기 수소공급유닛(300)은 액체가 전기분해되기 위해 소정의 전기분해조를 복수로 구비한 수소발생기(36)를 포함한다. 또한 상기 정수유닛(400)에서 분기된 분기라인이 상기 수소발생기(36)와 연결되어 있으며, 이에 따라, 상기 정수유닛(400)에 정수된 액체는 상기 수소발생기(36)로 이동된다.
상기 수소발생기(36)는 전극과 분리막이 결합된 막전극 결합체(MEA)를 복수로 결합한 스택(Stack)으로 구성되어 소형화와 효율을 높인 구성을 갖는다. 이러한 수소발생기(36)는 상기 정수유닛(400)에서 정수된 뒤 DI필터 (42)를 통과하여 이온물질이 제거된 순수를 공급받아, 그 순수를 전기분해 하여 전해 수소를 발생한 뒤 상기 용해실(110)로 공급한다.
상기 수소공급유닛(300) 내 전기분해조에 공급되는 직류전원에 의하여 (+)전극에서는 2H2O → O2 + 4H+ + 4e- 의 반응이 일어나며, (-)전극에서는 4H2O + 4e- → 2H2 +4OH- 의 반응이 일어난다. 따라서 (+)전극에서는 산소가, (-)전극에서는 수소가 발생하며, 이와 동시에 (+)전극에서는 수소이온(H+), (-)전극에서는 수산화이온(OH-)이 동일한 양으로 발생한다. 전기분해조에서 생성된 수소는 용해실(110)로 공급된다.
도 5에 가장 잘 도시된 바와 같이, 상기 수소발생기(36)는, 고체고분자전해질(Solid Polymer Electrolytes)막을 사용하는 PEM방식으로서, (+) 전극(36a)과 고체고분자전해질(36e), (-) 전극(36b)이 결합된 MEA를 복수로 결합하여 구성된다. MEA와 MEA 사이에는 전극판(36c)이 결합되며, 고체고분자전해질과 각각의 전극사이에는 촉매판(36d)이 결합되며, 양쪽 끝단에는 각각의 전극판과 절연된 상태로 보호판(36f)이 결합된다. 이러한 PEM방식의 수전해방식은 용도에 따라 MEA의 수를 증가시키며 결합할 수 있으므로 대용량의 스택(Stack)을 제조할 수 있으며, 고체상태에서 이온의 이동에 의하여 전류를 통할 수 있는 물질인 고체고분자전해질(36e)을 격막으로 사용함으로써, 전기분해를 용이하게 하기 위한 별도의 전해질을 투입할 필요가 없을 뿐만 아니라, 순수한 물만을 사용한 전기분해 방식이므로 음용 등에 있어서 안전성을 보장해주는 장점이 있다.
또한, 전기분해조 내에서 두 전극간 거리를 최소화한 밀착 구성이 구현되어 전해 효율을 높일 수 있는데, 이러한 고체고분자전해질 전기분해 방식은 통상 약 0.2~4Kgf/㎠ 정도의 압력으로 수소를 지속적으로 생성할 수 있으므로 기액혼합을 위한 일정압력을 제공할 수 있게 해준다.
전기분해를 위한 전해용 물은 물 유입포트(36i)를 통해 유입되며 전기분해를 통해 생성된 수소와 산소는 수소출구포트(36g)와 산소출구포트(36h)를 통해 배출된다. 이 때, 산소출구포트(36h)에서는 산소와 물이 동시에 배출될 수 있으므로 전해용저수조(미도시)로 이송하여 재사용할 수 있다.
상기 고체고분자전해질막은 수소 연료전지와 응용센서의 제조에도 이용되며 전해질 공업에서는 주로 격막 소재로서 널리 사용되고 있다.
또한, 전술한 정수유닛(41)은 유입되는 원수에 포함된 부유성 이물질과 유기물, 염소, 녹, 냄새 등을 제거하기 위한 다단의 여과필터로 구성된 정수시스템으로, 상기 수소발생기(36)에서 전기분해를 통해 수소를 발생하기 위해서는, Ca, Mg등 이온성 물질들이 제거된 순수화된 액체가 요구된다. 이러한 순수 액체를 공급하여 전기분해조의 전극에 탄산칼슘 등 미네랄 성분이 석출되는 것을 방지하도록, 상기 정수유닛(41)은 역삼투압 방식의 정수시스템으로 구성되는 것이 좋다.
도 6은 본 발명의 제2실시예에 따른 수소환원수 제조장치를 도시한 구성도이다.
도 6을 참조하면, 본 실시예에 따른 수소환원수 제조장치는, 식물재배시설이나 목욕 수조 등에서 대량의 수소환원수를 사용하고자 할 때, 식물재배용 또는 목용수용 저수조(200)와 수소환원수가 제조되는 챔버(100)를 포함하며, 수소환원수 제조를 위한 수소 수소환원수 제조라인의 경로 내에 상기 챔버(100)와 상기 저수조(200)가 배치된다. 상기 챔버(100)는 용해실(110)과 순환실(120)을 앞선 실시예와 같거나 유사한 구조로 포함한다. 용해실(110)을 거치지 않고, 저수조(200)와 챔버(100)의 순환실 사이에서 액체가 순환되는 순환 라인이 추가로 제공될 수 있으며, 이 순환 라인과 수소환원수 제조라인을 선택적으로 가동하는 구성은 앞선 실시예를 따를 수 있다. 상기 챔버(100)와 상기 저수조(200) 사이의 수소환원수의 연속적 순환을 위한 가압펌프(P)와, 연속적 정수 처리를 위한 정수필터(F)가 챔버(100)에 액체를 공급하는 방향으로 구비된다.
한편, 목욕을 위한 수조 등에 적용할 수 있도록, 수소환원수 공급과 더불어 공기를 흡입하여 마이크로버블을 형성하는 버블기능을 추가할 수 있다. 예컨대, 수소환원수 제조라인의 일부로서 챔버(100)로부터 저수조(200)로 돌아오는 회귀라인부를 복수개로 구성하고, 상기 복수개의 회귀라인부 중 하나에 미세한 기포생성을 위해 흡기펌프(AP)와 이젝터(E) 및 라인믹서(M)를 마련하고, 개폐밸브(V)에 의해 기포 생성 요소(들)이 설치된 회귀라인을 선택적으로 이용함으로써, 상기 버블기능을 선택적으로 이용할 수 있다.
도 7은 본 발명의 제3실시예에 따른 수소환원수 제조장치를 설명하기 위한 개략적인 구성도이다. 도 7을 참조하면, 상기 수소환원수 제조장치는, 고농도의 수소환원수를 대량으로 공급하기 위한 구성으로서, 정수유닛(400)을 거쳐 정수된 원수 내 용존산소를 제거하기 위한 질소챔버(600)과, 저수조(200) 내 원수 온도를 낮추어 제조라인 가동시 용존산소를 더욱 높여주는 냉각유닛(700)을 포함한다. 상기 질소챔버(600)는 상기 정수유닛(400)과 상기 저수조(200) 사이에 위치한 채, 상기 질소챔버(600)를 통과하는 원수중에 포함된 용존산소를 제거하여, 그 용존산소가 제거된 원수를 상기 저수조(200)로 보낸다. 또한 냉각유닛(700)은 열교환 구조 또는 칠러 구조등을 포함할 수 있다.
이상에서는 본 발명이 선호되는 실시예들에 의거하여 설명되었지만, 본 발명의 기술적 사상은 이에 한정되지 아니하고 청구항에 기재된 범위 내에서 변형이나 변경 실시가 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명백한 것이며, 그러한 변형이나 변경은 첨부된 특허청구범위에 속한다 할 것이다.
10: 액체 공급라인 11: 액체충돌부
12: 제1압력스위치 13: 제2압력스위치
14: 수위감지센서 15: 제1 유입구
16: 분사노즐 17: 제1 유출구
18: 수소유입구 19: 버블러
20: 수소환원수 제조라인 21: 유로홀
22: 격판 23: 제2 유입구
24: 제2 유출구 25: 에어벤트밸브
30: 수소환원수 순환라인 31: 가압펌프
37: 일방향밸브 38: 수소공급밸브
40: 제어부 41: 정수부
42: DI필터 100: 챔버
110: 용해실 120: 순환실
130: 격벽 140: 검지수단
200: 저수조 210: 냉수탱크
220: 온수탱크 300: 수소공급유닛
400: 정수유닛 500: 자화유닛
600: 질소챔버 700: 냉각유닛
V, V1, V2, V3, V4, V5, V6: 개폐밸브
L1, L2, L3, L4, L5: 배관라인부
E: 이젝터 F: 필터 P: 가압펌프 M: 라인믹서 AP: 흡기펌프

Claims (9)

  1. 수소공급유닛으로부터 공급된 수소와 저수조로부터 공급된 액체를 기액 혼합하는 용해실;
    상기 용해실로부터 분리된 순환실;
    상기 용해실과 상기 순환실 사이의 유로가 단절된 상태로, 상기 용해실에 액체를 공급하는 공급라인;
    상기 용해실과 상기 순환실 사이에서 수소 용해된 액체를 반복 순환시키면서, 수소환원수를 제조하는 제조라인;
    상기 용해실과 상기 순환실 사이의 유로가 단절된 상태로, 상기 제조라인 가동에 의해 제조된 상기 순환실 내 수소환원수와 상기 저수조 내 액체를 교환하도록 순환시키는 순환라인; 및
    상기 공급라인, 제조라인 및 순환라인의 가동을 선택 제어하는 제어부를 포함하는 수소환원수 제조장치.
  2. 청구항 1에 있어서, 상기 공급라인은 상기 저수조와 상기 용해실 사이를 연결하는 제1 배관라인부 전체를 포함하고, 상기 제조라인은 상기 용해실과 상기 순환실 사이를 연결하는 제2 배관라인부 전체를 포함하고, 상기 순환라인은 상기 순환실과 상기 저수조 사이를 연결하는 제3 배관라인부 전체를 포함하되, 상기 제조라인은 상기 제1 배관라인부의 적어도 일부와 상기 제3 배관라인부의 적어도 일부를 공유하며, 상기 순환라인은 상기 제2 배관라인부의 일부를 공유하는 것을 특징으로 하는 수소환원수 제조장치.
  3. 청구항 2에 있어서,
    제4 배관라인부에 의해 상기 제1 배관라인부와 상기 제2 배관라인부가 연결되고 제5 배관라인부에 의해 상기 제1 배관라인부와 상기 제3 배관라인부가 연결되되,
    상기 공급라인은, 상기 제2 배관라인부에 설치된 제3 개폐밸브, 상기 제4 배라인부에 설치된 제5 개폐밸브 및 상기 제5 배관라인부에 설치된 제6 개폐밸브의 오프(OFF)와 상기 제1 배관라인부에 설치된 제1 개폐밸브 및 제2 개폐밸브의 온(ON)에 의해, 형성되어 가동되고,
    상기 제조라인은 상기 제1 개폐밸브, 상기 제5 개폐밸브, 그리고 상기 제3 배관라인부에 설치된 제4 개폐밸브의 오프(OFF)와, 상기 제2 개폐밸브, 상기 제6 개폐밸브 및 상기 제3 개폐밸브의 온(ON)에, 의해 형성되어 가동되고,
    상기 순환라인은 상기 제2 개폐밸브, 상기 제3 개폐밸브 및 상기 제6 개폐밸브의 오프(OFF)와 상기 제1 개폐밸브, 상기 제4 개폐밸브 및 상기 제5 개폐밸브의 온(ON)에 의해, 형성되어 가동되는 것을 특징으로 하는 수소환원수 제조장치.
  4. 청구항 1에 있어서, 상기 용해실과 상기 순환실은 하나의 챔버 내에서 격벽에 의해 서로 분리되고, 상기 용해실은 상기 용해실 내 수위를 감지하는 수위센서, 상기 용해실 내 압력을 감지하는 압력센서 및 상기 용해실 내 기체를 배출하기 위한 에어벤트 밸브를 포함하고, 상기 제어부는 상기 수위감지센서와 상기 압력센서에서 감지된 측정값을 기초로 상기 공급라인, 상기 제조라인 및 상기 순환라인의 선택적 가동과, 상기 수소공급유닛 및 상기 에어밴트 밸브의 작동을 각각 제어하는 것을 특징으로 하는 수소환원수 제조장치.
  5. 청구항 1에 있어서, 액체를 정수하여 상기 저수조에 공급하는 정수유닛을 포함하며, 상기 정수유닛은 다단의 여과필터를 포함하고 역삼투압 구조를 갖는 정수부를 포함하는 것을 특징으로 하는 수소환원수 제조장치.
  6. 청구항 5항에 있어서, 상기 수소공급유닛은 복수의 전기분해조가 연결되어 구성되고 고체고분자전해질을 분리막으로 사용하는 수소발생기를 포함하며, 상기 정수유닛에서 분기된 분기라인과 연결되어 상기 정수유닛에서 정수된 액체를 이용하여 수소를 발생시키는 것을 특징으로 하는 수소환원수 제조장치.
  7. 청구항 1에 있어서, 상기 저수조에 저류된 수소환원수를 식물 재배시설이나 목욕시설에 공급하되, 공급된 수소환원수의 용존수소농도가 일정치 이하로 낮아지거나 이물질이 혼입된 경우, 공급된 수소환원소를 회수하여, 정제와 수소 농도를 높이도록 구성된 것을 특징으로 하는 수소환원수 제조장치.
  8. 청구항 1에 있어서, 상기 저수조에 공급되는 액체에 질소를 혼합하여 용존산소를 제거하는 질소 챔버와, 상기 저수조의 온도를 낮추어 용존수소농도를 높이는 냉각유닛을 더 포함하는 것을 특징으로 하는 수소환원수 제조장치.
  9. 청구항 1에 있어서, 상기 용해실과 상기 순환실은 하나의 챔버 내에서 격벽에 의해 상하로 분리되고, 상기 용해실은 분사노즐과 상기 분사노즐로부터 분사된 액체가 충돌하는 액체충돌부를 내부에 포함하며, 상기 순환실은 상기 용해실과 격벽에 의해 분리된 채 상기 챔버의 하부에 위치하고, 상기 순환실은 상하로 나란하게 배열된 복수의 격판들에 의해 복수의 공간들로 분할되며, 상기 격판들 각각에는 유로홀이 형성되며, 상기 유로홀들에 의해, 상기 공간들 사이에서 액체의 흐름이 허용되며, 상기 격판들 중 이웃하는 격판들에 형성된 이웃하는 유로홀들은 서로 대향되지 않는 위치에 형성되며, 상기 용해실로부터의 액체 유입을 허용하는 유입구가 상기 복수의 공간들 중 최하부 공간에 위치하고, 외부로 액체 유출을 허용하는 유출구가 상기 복수의 공간들 중 최상부 공간에 위치하는 것을 특징으로 하는 수소환원수 제조장치.
KR1020120114159A 2012-10-15 2012-10-15 수소환원수 제조장치 KR101222455B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120114159A KR101222455B1 (ko) 2012-10-15 2012-10-15 수소환원수 제조장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120114159A KR101222455B1 (ko) 2012-10-15 2012-10-15 수소환원수 제조장치

Publications (1)

Publication Number Publication Date
KR101222455B1 true KR101222455B1 (ko) 2013-01-15

Family

ID=47841878

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120114159A KR101222455B1 (ko) 2012-10-15 2012-10-15 수소환원수 제조장치

Country Status (1)

Country Link
KR (1) KR101222455B1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370129B1 (ko) 2013-09-24 2014-03-26 (주)이노게이트 용존 수소농도 조절기능을 갖는 수소환원수 제조장치
KR101447852B1 (ko) * 2014-03-28 2014-10-13 (주)스킨렉스 워터제트 타입 피부 케어 장치
KR101517676B1 (ko) * 2013-07-01 2015-05-04 황현태 고농도 미산성 차아염소산수 생성 장치
KR20150069112A (ko) * 2013-12-13 2015-06-23 유충춘 수소수 제조장치
KR101540404B1 (ko) * 2013-11-11 2015-07-31 주식회사 심스바이오닉스 수소수 자동판매기
KR20160062674A (ko) 2015-08-25 2016-06-02 (주)이노게이트 수소수 생성모듈을 구비한 수소수정수기
KR101682850B1 (ko) 2016-03-24 2016-12-06 조경현 복합 환원수의 제조장치
ITUB20152479A1 (it) * 2015-07-10 2017-01-10 Winland S R L Dispositivo e sistema per produrre acqua arricchita di idrogeno attivo
KR101736273B1 (ko) 2016-02-24 2017-05-17 주식회사 에이치티시 수소수 제조장치
KR20200010536A (ko) * 2020-01-20 2020-01-30 홍상열 유황온천 미네랄 수소육각 환원수 및 그 제조 방법
KR20200025081A (ko) * 2018-08-29 2020-03-10 하이월드테크 주식회사 고농도 수소수 생성장치
KR20200075810A (ko) * 2020-06-22 2020-06-26 홍상열 유황온천 미네랄 수소육각 환원수 제조 방법
KR102261122B1 (ko) 2020-07-14 2021-06-07 농업회사법인 주식회사 오케이120 혈중 니코틴 농도 감소용 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068587A (ja) 2004-08-31 2006-03-16 Mitsuo Kimura 水活性装置
JP2006198557A (ja) 2005-01-21 2006-08-03 Sato Kogyo Kk 酸化還元電位水製造装置
KR100620067B1 (ko) 2004-10-20 2006-09-13 (주)원봉 산소수/환원수 발생 정수시스템
KR101030721B1 (ko) 2011-01-18 2011-05-09 주식회사 체푸드프라임 수소풍부수 제조장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068587A (ja) 2004-08-31 2006-03-16 Mitsuo Kimura 水活性装置
KR100620067B1 (ko) 2004-10-20 2006-09-13 (주)원봉 산소수/환원수 발생 정수시스템
JP2006198557A (ja) 2005-01-21 2006-08-03 Sato Kogyo Kk 酸化還元電位水製造装置
KR101030721B1 (ko) 2011-01-18 2011-05-09 주식회사 체푸드프라임 수소풍부수 제조장치

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517676B1 (ko) * 2013-07-01 2015-05-04 황현태 고농도 미산성 차아염소산수 생성 장치
KR101370129B1 (ko) 2013-09-24 2014-03-26 (주)이노게이트 용존 수소농도 조절기능을 갖는 수소환원수 제조장치
KR101540404B1 (ko) * 2013-11-11 2015-07-31 주식회사 심스바이오닉스 수소수 자동판매기
KR20150069112A (ko) * 2013-12-13 2015-06-23 유충춘 수소수 제조장치
KR101587697B1 (ko) 2013-12-13 2016-01-22 유충춘 수소수 제조장치
KR101447852B1 (ko) * 2014-03-28 2014-10-13 (주)스킨렉스 워터제트 타입 피부 케어 장치
ITUB20152479A1 (it) * 2015-07-10 2017-01-10 Winland S R L Dispositivo e sistema per produrre acqua arricchita di idrogeno attivo
KR20160062674A (ko) 2015-08-25 2016-06-02 (주)이노게이트 수소수 생성모듈을 구비한 수소수정수기
KR101736273B1 (ko) 2016-02-24 2017-05-17 주식회사 에이치티시 수소수 제조장치
KR101682850B1 (ko) 2016-03-24 2016-12-06 조경현 복합 환원수의 제조장치
KR20200025081A (ko) * 2018-08-29 2020-03-10 하이월드테크 주식회사 고농도 수소수 생성장치
KR102122787B1 (ko) * 2018-08-29 2020-06-15 하이월드테크 주식회사 고농도 수소수 생성장치
KR20200010536A (ko) * 2020-01-20 2020-01-30 홍상열 유황온천 미네랄 수소육각 환원수 및 그 제조 방법
KR102190338B1 (ko) 2020-01-20 2020-12-14 홍상열 유황온천 미네랄 수소육각 환원수 제조 방법
KR20200075810A (ko) * 2020-06-22 2020-06-26 홍상열 유황온천 미네랄 수소육각 환원수 제조 방법
KR102130265B1 (ko) 2020-06-22 2020-07-08 홍상열 유황온천 미네랄 수소육각 환원수 제조 방법
KR102261122B1 (ko) 2020-07-14 2021-06-07 농업회사법인 주식회사 오케이120 혈중 니코틴 농도 감소용 조성물

Similar Documents

Publication Publication Date Title
KR101222455B1 (ko) 수소환원수 제조장치
KR101030721B1 (ko) 수소풍부수 제조장치
KR101370129B1 (ko) 용존 수소농도 조절기능을 갖는 수소환원수 제조장치
KR20160062674A (ko) 수소수 생성모듈을 구비한 수소수정수기
CN108275764B (zh) 可产生富氢超微气泡水的洗浴装置
KR100985918B1 (ko) 미생물 및 이물질의 혼입 차단을 위한 밀폐형 전해 수소 함유 냉·온수 정수기 및 정수 방법
KR101640592B1 (ko) 용존 수소 음료수의 제조장치 및 그 제조방법
JP2016501714A (ja) 水素水製造装置
KR101883864B1 (ko) 자화 활성 및 순환 방식을 적용한 자화수소수 정수기
CN215559587U (zh) 一种净水装置、自清洗过滤***
JP2010088972A (ja) 水素含有電解水生成装置及び給湯設備
WO2016016954A1 (ja) 電解イオン水生成方法と電解イオン水生成装置
KR101847139B1 (ko) 자화수소수 제조 장치
JP2015150512A (ja) 水素水製造装置
JP5384158B2 (ja) 飲料水製造装置
KR101409649B1 (ko) 수소화장품 제조장치
CN212451005U (zh) 一种富氢水生产及灌装***
KR101152090B1 (ko) 스케일 제거 기능을 갖는 이온수 생성장치
WO2012176554A1 (ja) 電解水生成装置
KR101741969B1 (ko) 실시간 대용량 수소수 제조장치
JP5805422B2 (ja) 溶存水素水生成装置
KR101683533B1 (ko) 수소수 제조장치
JP2009285632A (ja) 水素含有電解水整水器及び浴槽設備及び水素含有電解水の製造方法
KR20180007849A (ko) 필터 교환이 용이한 직수형 수소수기
JP4597263B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200121

Year of fee payment: 8