KR101190285B1 - Nano metal particle manufacturing equipment - Google Patents

Nano metal particle manufacturing equipment Download PDF

Info

Publication number
KR101190285B1
KR101190285B1 KR1020120026223A KR20120026223A KR101190285B1 KR 101190285 B1 KR101190285 B1 KR 101190285B1 KR 1020120026223 A KR1020120026223 A KR 1020120026223A KR 20120026223 A KR20120026223 A KR 20120026223A KR 101190285 B1 KR101190285 B1 KR 101190285B1
Authority
KR
South Korea
Prior art keywords
nmp
nano metal
nano
solution
homogenizer
Prior art date
Application number
KR1020120026223A
Other languages
Korean (ko)
Inventor
이진욱
김은주
김재환
조성희
장윤석
Original Assignee
포항공과대학교 산학협력단
효림산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단, 효림산업주식회사 filed Critical 포항공과대학교 산학협력단
Priority to KR1020120026223A priority Critical patent/KR101190285B1/en
Application granted granted Critical
Publication of KR101190285B1 publication Critical patent/KR101190285B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles

Abstract

PURPOSE: An NMP(Nano Metal Particle) production apparatus is provided to synthesize a large amount of NMP with high reactivity using a purifying agent and stably recover NMP. CONSTITUTION: An NMP production apparatus an NMP synthesizing reactor, an electromagnet(4), and a homogenizer(5). The NMP synthesizing reactor comprises a SUS(Steel Use Stainless) reaction tank(1), a stirrer(2) stirring Fe solution, NaBH4 solution, N2 gas purging distilled water, and the reactants of additives in the SUS reaction tank, and a gas purging unit(3) injecting N2 gas purging distilled water or N2 gas into the SUS reaction tank. The electromagnet is installed at the lower side of the synthesizing reactor in order to collect synthesized NMP on the bottom of the synthesizing reactor. The homogenizer disperses the NMP synthesized by the NMP synthesizing reactor or electromagnet and removes impurities. [Reference numerals] (101) Fe solution; (102) NaBH_4 solution; (103) Distilled water; (106) Additive; (3) N_2; (5) Homogenizer; (6) Ultrasonic device; (CC) Waste water; (DD) Finished product

Description

나노금속입자 제조장치{Nano Metal Particle Manufacturing Equipment}Nano Metal Particle Manufacturing Equipment

본 발명은 토양/지하수 내 유기오염물질 및 중금속 등의 환경오염 물질을 정화처리하기 위한 나노영가철(Nanoscale Zero Valent Iron; nZVI), Bimetal nZVI 등의 다양한 나노금속입자를 제조하기 위한 나노금속입자(Nano Metal Particle ; NMP, 이하 같다) 제조장치에 관한 것으로, 보다 상세하게는 SUS 반응탱크, 교반장치, N2가스퍼징(purging)수단을 포함하여 구성되는 NMP 합성반응기와; 합성된 NMP을 합성 반응기 바닥에 포집하기 위하여 합성 반응기 하부에 설치되는 전자석(Eelectromagnet)과; NMP 합성 반응기에서 합성된 NMP 또는 전자석으로 포집 및 응집된 NMP을 분산시키며 표면에 흡착된 오염물질 및 불순물을 제거하기 위한 입자균질화수단(Homogenizer);을 포함하여 구성되는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치에 관한 것이다.
The present invention provides nanometal particles for preparing various nanometal particles such as nanoscale zero valent iron (NZVI) and bimetal nZVI for purifying environmental pollutants such as organic pollutants and heavy metals in soil / groundwater. Nano Metal Particle (NMP, the same as below) manufacturing apparatus, and more specifically NMP synthesis reactor comprising a SUS reaction tank, a stirring device, N 2 gas purging means; An electromagnet installed under the synthesis reactor to collect the synthesized NMP at the bottom of the synthesis reactor; Nanometal particles comprising a; homogenizer for dispersing the NMP collected and aggregated by the NMP synthesis reactor or electromagnet synthesized in the NMP synthesis reactor and removes contaminants and impurities adsorbed on the surface; Nano Metal Particle (NMP) manufacturing apparatus.

본 발명에 따른 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 환원제인 um Borohydride를 이용한 습식 환원법 이용하여, 다양한 환경에서 유기오염물질을 분해할 수 있고 유해한 중금속을 흡착/고정화 처리할 수 있는 정화제로 다양한 환경유해물질 처리에 적용될 수 있는 반응성이 뛰어난 나노영가철(nZVI)을 대량으로 합성하여 안정적으로 회수할 수 있다.
Nano Metal Particle (NMP) manufacturing apparatus according to the present invention using a wet reduction method using a reducing agent um Borohydride, a purifying agent that can decompose organic pollutants in various environments and adsorb / fix the harmful heavy metals As a result, a large amount of highly reactive nano-iron iron (nZVI) that can be applied to various environmentally hazardous substances can be synthesized and recovered.

최근 나노크기입자는 환경오염물 제거 이외에도 다양한 응용성 때문에 환경 과학자와 기술자에게 가장 관심 있는 분야로 나노기술의 발달에 따라 최근 환경 분야에서 토양/지하수 내 유기오염물질의 처리를 위하여 나노영가철(Nano Zero Valent Iron; nZVI)의 활용 방안이 많은 주목을 받고 있다.
Recently, nano-sized particles are the fields of greatest interest to environmental scientists and engineers because of their various applications besides the removal of environmental pollutants. Recently, nano-zero particles are used for the treatment of organic pollutants in soil and groundwater in accordance with the development of nanotechnology. Valent Iron (nZVI) has received a lot of attention.

먼저 영가철에 의한 염화유기물의 제거 메커니즘을 살펴보면, 영가철로 존재하는 철(Fe0)은 다음 반응식과 같이 산화를 일으키며 산화환원쌍(redox couple)을 형성한다. 이는 영가 금속이 전자를 잃으며 양이온 형태로 존재하려는 경향에 의하여 자발적 산화에 의해 발생하는 부식반응과 유사하다.
First of all, the mechanism of removing chlorinated organic matter by iron ions is as follows. Iron (Fe 0 ), which is present as iron, is oxidized and forms a redox couple. This is similar to the corrosion reaction caused by spontaneous oxidation due to the tendency of the noble metal to lose electrons and to exist in cation form.

Fe0 ↔ Fe2 + + 2e-
Fe 0 ↔ Fe 2 + + 2e -

즉, 염화유기화합물과 반응 가능한 주요 환원제는 Fe0, Fe2 +이다. 부식반응의 경우로는 Fe0 로부터 표면에 흡착된 염화알킬로의 직접적인 전자교환에 의한 것이 주종을 이루나, 이외에도 부식반응으로 생성된 Fe2 +의 탈염소화에 의한 탈염소화 작용 등이 있다. 이들 철 환원제에 의한 알킬할라이드(alkyl halide: RX)의 탈염과정은 다음 식과 같이 나타낼 수 있다.
That is, the main reducing agent capable of reacting with the organic chloride compound is Fe 0 , Fe 2 + . In the case of the corrosion reaction and the like dechlorination operation by the dechlorination of the Fe 2 + is a yiruna predominantly, in addition to generating the corrosion reaction by direct electron exchange with the alkyl chloride adsorbed to the surface from Fe 0. The desalination process of alkyl halides (RXs) by these iron reducing agents can be expressed as follows.

Fe0+ RX + H+ ↔ Fe2 + + RH + X- Fe 0 + RX + H + ↔ Fe 2 + + RH + X -

2Fe2 + + RX + H+ ↔ 2Fe3 + + RH + X-
2Fe 2 + + RX + H + ↔ 2Fe 3 + + RH + X -

또한, 다양한 전이금속 중에서도 철은 비교적 높은 환원력(-0.3 ~ 0.7V)을 가지고 있으면서 저렴하고 구하기가 쉬워 가장 널리 사용되고 있다.
In addition, among various transition metals, iron has a relatively high reducing power (-0.3 to 0.7V) and is most widely used because it is cheap and easy to obtain.

영가철에 의한 탈염화 환원반응이 일어나기 위해서는 오염물질의 철 표면으로의 흡착과 전자전달반응이 유기적으로 연계되어야 한다. 전자 전달반응은 철 표면의 defects로부터 나온 전자가 직접 전달되거나, 반도체(Semi-conductor)의 역할을 하는 산화막 또는 산화막에 존재하는 Fe-H, Fe-OH bond들의 coordination에 의해 간접적으로 전달된다고 알려져 있다.
In order for dechlorination and reduction reactions to occur due to zero iron, the adsorption of pollutants to the iron surface and the electron transfer reaction must be organically linked. Electron transfer reaction is known to transfer electrons from defects on the surface of iron directly or indirectly by coordination of Fe-H and Fe-OH bonds in oxide or oxide film that acts as a semi-conductor. .

영가철은 그 종류에 따라 -0.3 ~ 0.7 V 의 환원전위를 가지고 있음이 보고되고 있고, 철의 환원전위 보다 낮은 전위를 갖는 환원 반응은 이론적으로 처리가 가능하다. 이러한 영가철을 이용하여 오염물질을 제거하는 연구가 계속되고 있으며, 철에 의한 탈염화 반응에 의해 처리 가능한 염화유기오염물질은 halogenated ethylenes(TCE, PCE), Halogenated Alkanes(TCM, DCM 등), Halogenated aromatics (염화페놀, PCBs, 염화다이옥신, PBDEs)등으로 처리속도에 차이는 있지만 대부분 탈염화 반응이 가능하다. Nitrate, Nitrite, Nitro-aromatics와 같은 질소화합물의 경우 매우 빠른 반응속도로 질소 가스로 환원되어 수처리에 응용가능하다. 또한 산화/환원에 의한 흡착반응에 의해 Cr, As, Pb, Zn, Ni 등의 중금속 및 우라늄 등의 방사성 물질까지 처리할 수 있음이 보고되고 있다.
It is reported that zero iron has a reduction potential of -0.3 to 0.7 V depending on the type thereof, and a reduction reaction having a lower potential than that of iron can be theoretically treated. Research on the removal of contaminants by using such ferrous iron is ongoing. Chlorinated organic pollutants that can be treated by desalination reaction with iron are halogenated ethylenes (TCE, PCE), halogenated alkanes (TCM, DCM, etc.), halogenated compounds. Aromatics (phenol chlorides, PCBs, dioxins, PBDEs), etc., vary in processing speed, but most of them can be desalted. Nitrogen compounds such as Nitrate, Nitrite, and Nitro-aromatics are reduced to nitrogen gas at a very fast reaction rate and are applicable to water treatment. In addition, it has been reported that heavy metals such as Cr, As, Pb, Zn, and Ni and radioactive materials such as uranium can be treated by adsorption reaction by oxidation / reduction.

이러한 nZVI는 합성방법이나 조건에 따라 입자 자체의 환원 반응성이 크게 달라질 수 있기 때문에 현재까지 반응성 향상을 위한 새로운 합성방법에 대한 연구가 지속적으로 이루어지고 있는 실정이다.
Since the reduction reactivity of the particles themselves may vary greatly depending on the synthesis method or conditions, such a study has been continuously conducted on a new synthesis method for improving the reactivity.

이러한 반응성 있는 철은 이용 목적에 따라 다양한 방법으로 제조할 수 있다. 대표적으로, 나노영가철 제조 기술로서 최근에 개발된 기술은 크게 물리적 합성법과 화학적 합성법으로 구분할 수 있다.
Such reactive iron can be prepared by various methods depending on the purpose of use. Representatively, recently developed technology as a nano-ferrous iron manufacturing technology can be largely divided into physical synthesis and chemical synthesis.

물리적 합성법에는 1) Inert Gas condensation, 2) Severe plastic deformation, 3) High energy ball milling 4) Ultrasound shot peening이 있으며, 화학적 합성법에는 1) Reverse Micelle(or Micro emulsion), 2) Controlled chemical coprecipitation 3) Chemical vapor condensation, 4) pulse electrodeposition 5) Liquid flame spray 6) Liquid-phase reduction 및 7) Gas-phase reduction 방법이 있다.
Physical synthesis includes 1) Inert Gas condensation, 2) Severe plastic deformation, 3) High energy ball milling 4) Ultrasound shot peening, and chemical synthesis includes 1) Reverse Micelle (or Micro emulsion), 2) Controlled chemical coprecipitation 3) Chemical vapor condensation, 4) pulse electrodeposition, 5) liquid flame spray, 6) liquid-phase reduction, and 7) gas-phase reduction.

이중 환경정화에 이용되는 합성법은 주로 Boll-milling, liquid-phase reduction(습식환원법) 및 Gas phase reduction(가스상 환원법)에 의한 방법이다. 초기에 영가철을 이용하던 반응벽체(PRB)에 사용되는 micro size ZVI 는 Boll-milling에 의해 만들어져 왔으며, 최근에는 NaBH4와 같은 환원제를 이용하여 합성하는 습식환원법에 의해 Nano size ZVI를 만들어 비표면적을 크게하여 반응성을 증가시키고, 입자크기를 줄여 토양 공극을 더욱 쉽게 이동할 수있는 nZVI를 합성하여 현장에 적용하고자 하는 연구가 활발히 진행되고 있다.
Synthesis methods used for dual environmental purification are mainly by boll-milling, liquid-phase reduction (wet reduction) and gas phase reduction (gas phase reduction). Initially, micro size ZVI used for the reaction steel (PRB), which used iron-free iron, has been made by boll-milling, and recently, nano size ZVI is made by wet reduction method synthesized using a reducing agent such as NaBH 4. In order to increase the reactivity by increasing the size of the particles, and to reduce the particle size, the research to synthesize nZVI which can move the soil pores more easily is actively conducted.

또한 고온 고압하에서 H2를 주입하여 환원하는 가스상 환원법으로 제조하여 환경정화에 적용 및 시판되고 있는 RNIP(FeH2, Reactive Nano Iron Particle)를 이용하고 있다.
In addition, RNIP (FeH2, Reactive Nano Iron Particle), which is manufactured and applied in the gas phase reduction method of injecting and reducing H 2 under high temperature and high pressure, is used for environmental purification.

하지만, 실제로 환원제(NaBH4 등)를 이용하여 실제 환경정화 현장에 사용할 수 있는 제품을 대량으로 만들 수 있는 장치는 없으므로 본 발명자들은 나노영가철 등 나노금속입자를 대량으로 생산할 수 있고, 가격도 저렴하게 제조할 수 있는 장치를 개발하기 위하여 본 발명을 완성하게 되었다.
However, in practice the reducing agent (NaBH 4 There is no device that can make a large amount of products that can be used in the actual environmental purification site using the present invention, the present inventors can produce a large amount of nano metal particles, such as nano-ferrous iron, can be manufactured at a low price The present invention has been completed for development.

본 발명은 종래의 나노영가철의 합성방법인 습식 환원법(wet reduction method)을 이용하여 대량의 나노금속입자 제조 장치 개발을 통해 뛰어난 반응성을 가진 나노영가철을 대량으로 합성할 수 있는 장치를 개발하는 것을 해결하고자 하는 과제로 한다.
The present invention is to develop a device capable of synthesizing a large amount of nano-iron iron having excellent reactivity through the development of a large amount of nano-metal particles manufacturing apparatus using a wet reduction method (synthesis method of conventional nano-iron iron) Let's solve the problem.

상기 과제를 해결하기 위하여 본 발명은 SUS 반응탱크, 교반장치, N2가스퍼징(purging)수단을 포함하여 구성되는 NMP 합성반응기와; 합성된 NMP을 합성반응기 바닥에 포집하기 위하여 합성 반응기 하부에 설치되는 전자석(Eelectromagnet)과; NMP 합성반응기에서 합성된 NMP 또는 전자석으로 포집 및 응집된 NMP을 분산시키며 표면에 흡착된 오염물질 및 불순물을 제거하기 위한 입자균질화수단(Homogenizer);을 포함하여 구성되는 나노금속입자(Nano Metal Particle ; NMP) 제조장치를 과제의 해결수단으로 한다.
In order to solve the above problems, the present invention is an NMP synthesis reactor comprising a SUS reaction tank, a stirring device, N 2 gas purging means; An electromagnet installed under the synthesis reactor to collect the synthesized NMP at the bottom of the synthesis reactor; Nano Metal Particles (Nano Metal Particles) comprising a; homogenizer for dispersing the NMP collected and aggregated into NMP synthesized in the NMP synthesis reactor or electromagnet and remove contaminants and impurities adsorbed on the surface; An NMP) manufacturing apparatus is used as a solution to a problem.

또한, 상기 NMP 합성반응기는 환원제인 Sodium Borohydride를 이용한 습식 환원법을 이용하고, N2 gas를 주입하여 혐기반응으로 표면 산화를 최소화한 반응성이 뛰어난 나노금속입자를 제조하는 것을 과제의 해결수단으로 한다.
In addition, the NMP synthesis reactor uses a wet reduction method using Sodium Borohydride as a reducing agent, and to prepare a nano metal particles with excellent reactivity to minimize surface oxidation by anaerobic reaction by injecting N 2 gas as a solution to the problem.

또한, 상기 NMP 합성반응기는 N2 가스퍼징증류수탱크, Fe용액탱크, NaBH4용액탱크, 첨가제탱크와 각각 펌프, 밸브 및 배관라인으로 연결되는 것을 과제의 해결 수단으로 한다.
In addition, the NMP synthesis reactor is N 2 The solution to the problem is to connect the gas purging distillation tank, the Fe solution tank, the NaBH 4 solution tank and the additive tank to the pump, valve and piping line, respectively.

또한, 상기 NMP 합성반응기는 환원제인 NaBH4용액이 합성반응기 내에 균질하게 주입될 수 있도록 원형의 튜브에 1mm 구멍을 뚫어 NaBH4용액이 균질하게 주입되어 나노금속입자가 균질하게 합성되는 것을 과제 해결 수단으로 한다.
In addition, the NMP synthesis reactor is a solution for reducing the NaBH 4 solution as a homogeneous NaBH 4 solution in a circular tube so that the NaBH 4 solution homogeneously injected into the synthesis reactor to homogeneously synthesize the nano-metal particles. It is done.

또한, 상기 NMP 합성반응기는 바닥의 경사가 5-10°로 형성되어 합성된 나노금속입자를 합성반응기 하부의 전자석으로 포집, 상등액을 신속하고 용이하게 제거할 수 있도록 하는 것을 과제의 해결 수단으로 한다.
In addition, the NMP synthesis reactor has a bottom slope of 5-10 ° to collect the synthesized nano-metal particles with an electromagnet beneath the synthesis reactor, the supernatant solution can be quickly and easily removed as a means of solving the problem. .

또한, 상기 입자균질화수단(Homogenizer)은 나노금속입자의 분산효과 증대 및 균질성을 증대하기 위하여 회전자와 고정자의 간격을 50~150㎛로 조절하고, 회전자를 3,200-30,000rpm으로 고속회전시켜 응집된 입자를 균질하게 하는 것을 과제의 해결 수단으로 한다.
In addition, the particle homogenizer (Homogenizer) adjusts the distance between the rotor and the stator to 50 ~ 150㎛ in order to increase the dispersion effect and homogeneity of the nano-metal particles, and agglomerated by rotating the rotor at 3,200-30,000rpm at high speed Making the particle | grains homogeneous is a solution of a subject.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 전자석(Eelectromagnet)의 과열을 방지하기 위한 냉각장치를 더 포함하여 구성되는 것을 과제의 해결 수단으로 한다.
In addition, the nano metal particle (NMP) manufacturing apparatus further comprises a cooling device for preventing overheating of the electromagnet (Eelectromagnet) as a solution to the problem.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 입자균질화수단(Homogenizer)과 연결되어 2차로 NMP을 균질하게 분산시키며 표면에 흡착된 불순물을 제거하기 위한 초음파기(ultrasonicator)를 더 포함하여 구성되는 것을 과제의 해결 수단으로 한다. In addition, the nano metal particle (NMP) manufacturing apparatus is further connected to the homogenizer (Homogenizer) further comprises a second ultrasonic homogenator (ultrasonicator) for uniformly dispersing the NMP and remove impurities adsorbed on the surface It is set as the means for solving the problem.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 NMP 합성반응기, 전자석(Eelectromagnet), 입자균질화수단(Homogenizer)의 다양한 가동조건을 자동운전할 수 있는 프로그램을 탑재하여 PLC 방식으로 제어할 수 있도록 하는 Control Panel을 더 포함하여 구성되는 것을 과제의 해결 수단으로 한다.
In addition, the nano metal particle (NMP) manufacturing apparatus is equipped with a program that can automatically operate a variety of operating conditions of the NMP synthesis reactor, electromagnets, particle homogenizer (Homogenizer) to be controlled by a PLC method It is to be included in the control panel to make it possible to solve the problem.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 나노영가철을 1~10kg/day(dry base)으로 생산할 수 있는 것을 과제 해결수단으로 한다.
In addition, the nano-metal particles (NMP) manufacturing apparatus is capable of producing nano-ferrous iron at 1 ~ 10kg / day (dry base) as a problem solving means.

본 발명에 따른 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 기존의 합성법으로 나노금속입자를 저렴하게 상용화 대량생산할 수 있도록 시스템화한 것으로 하루에 1-10kg의 나노영가철(nZVI)을 제조할 수 있으며, 또한, 본 발명에 따른 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 환원제인 Sodium Borohydride를 이용한 습식 환원법 이용하여, 다양한 환경에서 유기오염물질을 분해할 수 있고 유해한 중금속을 흡착/고정화 처리할 수 있는 정화제로 다양한 환경유해물질 처리에 적용될 수 있는 반응성이 뛰어난 나금속입자를 대량으로 합성하여 안정적으로 회수할 수 있다.
Nano Metal Particle (NMP) manufacturing apparatus according to the present invention is a system that can be commercialized and mass production of nano metal particles inexpensive by conventional synthesis method to produce 1-10kg nano-iron iron (nZVI) per day In addition, the apparatus for producing nano metal particles (NMP) according to the present invention is capable of decomposing organic pollutants in various environments and adsorbing / fixing harmful heavy metals by using a wet reduction method using a sodium borohydride as a reducing agent. As a purifying agent that can be treated, it is possible to stably recover a large amount of highly reactive bare metal particles that can be applied to various environmentally hazardous substances.

도 1은 본 발명의 일실시예에 따른 나노금속입자 제조장치 공정도
도 2는 본 발명의 일실시예에 따른 나노금속입자 제조장치 평면구성도
도 3은 본 발명의 일실시예에 따른 나노금속입자 제조장치 정면구성도
도 4는 본 발명의 일실시예에 따른 나노금속입자 제조장치 측면평면구성도
도 5는 본 발명의 일실시예에 따른 Homogenizer 개념도
도 6은 본 발명의 일실시예에 따른 PLC 제어화면사진
도 7은 본 발명의 일실시예에 따른 장치에 의해 제조된 nZVI 제품 사진
도 8은 본 발명의 일실시예에 따른 nZVI의 입자특성 및 스펙트럼데이터
1 is a process chart of the nano-metal particle manufacturing apparatus according to an embodiment of the present invention
Figure 2 is a plan view of a nano metal particle manufacturing apparatus according to an embodiment of the present invention
Figure 3 is a front view of the nano-metal particle manufacturing apparatus according to an embodiment of the present invention
Figure 4 is a side plan view of the nano-metal particle manufacturing apparatus according to an embodiment of the present invention
5 is a conceptual diagram of a Homogenizer according to an embodiment of the present invention
6 is a PLC control screen picture according to an embodiment of the present invention
Figure 7 is a photograph of the nZVI product produced by the device according to an embodiment of the present invention
8 is a particle characteristic and spectral data of nZVI according to an embodiment of the present invention

본 발명은 SUS 반응탱크, 교반장치, N2가스퍼징(purging)수단을 포함하여 구성되는 NMP 합성반응기와; 합성된 NMP을 합성반응기 바닥에 포집하기 위하여 합성 반응기 하부에 설치되는 전자석(Eelectromagnet)과; NMP 합성반응기에서 합성된 NMP 또는 전자석으로 포집 및 응집된 NMP을 분산시키며 표면에 흡착된 오염물질 및 불순물을 제거하기 위한 입자균질화수단(Homogenizer);을 포함하여 구성되는 나노금속입자(Nano Metal Particle ; NMP) 제조장치를 기술구성의 특징으로 한다.
The present invention is an NMP synthesis reactor comprising a SUS reaction tank, a stirring device, N 2 gas purging means; An electromagnet installed under the synthesis reactor to collect the synthesized NMP at the bottom of the synthesis reactor; Nano Metal Particles (Nano Metal Particles) comprising a; homogenizer for dispersing the NMP collected and aggregated into NMP synthesized in the NMP synthesis reactor or electromagnet and remove contaminants and impurities adsorbed on the surface; NMP) manufacturing apparatus is characterized by the technical configuration.

또한, 상기 NMP 합성반응기는 환원제인 Sodium Borohydride를 이용한 습식 환원법을 이용하고, N2 gas를 주입하여 혐기반응으로 표면 산화를 최소화한 반응성이 뛰어난 나노금속입자를 제조하는 것을 기술구성의 특징으로 한다.
In addition, the NMP synthesis reactor uses a wet reduction method using Sodium Borohydride as a reducing agent, and is characterized by the technical configuration of producing a highly reactive nano-metal particles with minimal surface oxidation by anaerobic reaction by injecting N 2 gas.

또한, 상기 NMP 합성반응기는 N2 가스퍼징증류수탱크, Fe용액탱크, NaBH4용액탱크, 첨가제탱크와 각각 펌프, 밸브 및 배관라인으로 연결되는 것을 기술구성의 특징으로 한다.
In addition, the NMP synthesis reactor is N 2 The gas purging distillation tank, Fe solution tank, NaBH 4 solution tank, and additive tank are connected to pumps, valves and piping lines respectively.

또한, 상기 NMP 합성반응기는 NaBH4용액이 합성반응기 내에 균질하게 주입될 수 있도록 원형의 튜브에 1mm 구멍을 뚫어 NaBH4용액이 균질하게 주입되어 나노금속입자가 균질하게 합성되는 것을 기술구성의 특징으로 한다.
Further, the NMP synthesis reactor is characterized by the technical construction that the NaBH 4 solution is homogeneously drill a 1mm hole in the round tubes to be injected are homogeneous synthetic NaBH 4 solution is homogeneously injection nano-metal particles in the synthesis reactor do.

또한, 상기 NMP 합성반응기는 바닥의 경사가 5-10°로 형성되어 합성된 나노금속입자를 합성반응기 하부의 전자석으로 포집, 상등액을 신속하고 용이하게 제거할 수 있도록 하는 것을 기술구성의 특징으로 한다.
In addition, the NMP synthesis reactor is characterized in that the inclination of the bottom is formed 5-10 ° to collect the synthesized nano metal particles with an electromagnet at the bottom of the reactor, the supernatant can be quickly and easily removed. .

또한, 상기 입자균질화수단(Homogenizer)은 나노금속입자의 분산효과 증대 및 균질성을 증대하기 위하여 회전자와 고정자의 간격을 50~150㎛로 조절하고, 회전자를 3,200-30,000rpm으로 고속회전시켜 응집된 입자를 균질하게 하는 것을 기술구성의 특징으로 한다.
In addition, the particle homogenizer (Homogenizer) adjusts the distance between the rotor and the stator to 50 ~ 150㎛ in order to increase the dispersion effect and homogeneity of the nano-metal particles, and agglomerated by rotating the rotor at 3,200-30,000rpm at high speed Homogeneous particles are characterized by a technical configuration.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 전자석(Eelectromagnet)의 과열을 방지하기 위한 냉각장치를 더 포함하여 구성되는 것을 기술구성의 특징으로 한다.
In addition, the nano metal particles (NMP) manufacturing apparatus is characterized in that it further comprises a cooling device for preventing overheating of the electromagnet (Eelectromagnet).

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 입자균질화수단(Homogenizer)과 연결되어 2차로 NMP을 균질하게 분산시키며 표면에 흡착된 불순물을 제거하기 위한 초음파기(ultrasonicator)를 더 포함하여 구성되는 것을 기술구성의 특징으로 한다.In addition, the nano metal particle (NMP) manufacturing apparatus is further connected to the homogenizer (Homogenizer) further comprises a second ultrasonic homogenator (ultrasonicator) for uniformly dispersing the NMP and remove impurities adsorbed on the surface It is characterized by the configuration of the technical configuration.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 NMP 합성반응기, 전자석(Eelectromagnet), 입자균질화수단(Homogenizer)의 다양한 가동조건을 자동운전할 수 있는 프로그램을 탑재하여 PLC 방식으로 제어할 수 있도록 하는 Control Panel을 더 포함하여 구성되는 것을 기술구성의 특징으로 한다.
In addition, the nano metal particle (NMP) manufacturing apparatus is equipped with a program that can automatically operate a variety of operating conditions of the NMP synthesis reactor, electromagnets, particle homogenizer (Homogenizer) to be controlled by a PLC method It is characterized by the technical configuration that is further configured to include a Control Panel to enable.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 나노영가철을 1~10kg/day(dry base)으로 생산할 수 있는 것을 기술구성의 특징으로 한다.
In addition, the nano-metal particles (NMP) manufacturing apparatus is characterized by the technical configuration that can produce nano-iron iron at 1 ~ 10kg / day (dry base).

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니라는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail by way of examples. These examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

우선, 본 발명은 토양/지하수 내 유기오염물질 및 중금속 등의 환경오염 물질을 정화처리하기 위한 나노영가철(Nanoscale Zero Valent Iron; nZVI), Bimetal nZVI 등의 다양한 나노금속입자를 제조하기 위한 나노금속입자(Nano Metal Particle ; NMP, 이하 같다) 제조장치에 관한 것이다.
First, the present invention provides nanometals for preparing various nanometal particles such as Nanoscale Zero Valent Iron (NZVI) and Bimetal nZVI for purifying organic pollutants in soil / groundwater and environmental pollutants such as heavy metals. The present invention relates to an apparatus for producing particles (Nano Metal Particles;

나노영가철을 이용하여 정화처리될 수 있는 상기 환경오염물질은 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE)의 할로겐 유기용매; 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs)의 할로겐 방향족 물질; 크롬, 납, 비소, 니켈의 중금속; 질산염(NO3-); 황산염(SO4-2); Polycyclic aromatic hydrocarbon(PAH); 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔; 염소화메탄 등이다.
The environmental pollutants that can be purified using nano-ferrous iron is a halogen organic solvent of Trichloroethylene (TCE), Tetrachloroethylene (PCE); Halogen aromatics such as phenol chloride, Polychlorinated Biphenyl (PCBs), Polychlorinated Dibenzodioxins (PCDDs), and Polybrominated diphenyl ethers (PBDEs); Heavy metals of chromium, lead, arsenic, nickel; Nitrate (NO3 -); Sulfate (SO 4 -2 ); Polycyclic aromatic hydrocarbons (PAH); Trichloroethane (TCA); Tetrachloroethane (PCA); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Dinitrotoluene; Chlorinated methane and the like.

본 발명에서 도 1은 본 발명의 일실시예에 따른 나노금속입자 제조장치 공정도이며, 도 2는 본 발명의 일실시예에 따른 나노금속입자 제조장치 평면구성도이고, 도 3은 본 발명의 일실시예에 따른 나노금속입자 제조장치 정면구성도이며, 도 4는 본 발명의 일실시예에 따른 나노금속입자 제조장치 측면평면구성도이고, 도 5는 본 발명의 일실시예에 따른 Homogenizer 개념도이며, 도 6은 본 발명의 일실시예에 따른 PLC 제어화면사진이고, 도 7은 본 발명의 일실시예에 따른 장치에 의해 제조된 nZVI 제품 사진이며, 도 8은 본 발명의 일실시예에 따른 nZVI의 특성치 및 스펙트럼데이터이다.
In the present invention, Figure 1 is a process diagram of a nano metal particle manufacturing apparatus according to an embodiment of the present invention, Figure 2 is a plan view of the nano metal particle manufacturing apparatus according to an embodiment of the present invention, Figure 3 is one of the present invention Front view of the nano-metal particle manufacturing apparatus according to an embodiment, Figure 4 is a side plan view of the nano-metal particle manufacturing apparatus according to an embodiment of the present invention, Figure 5 is a conceptual diagram of a Homogenizer according to an embodiment of the present invention 6 is a picture of a PLC control screen according to an embodiment of the present invention, FIG. 7 is a picture of an nZVI product manufactured by a device according to an embodiment of the present invention, and FIG. 8 is according to an embodiment of the present invention. Characteristic values and spectral data of nZVI.

본 발명에 따른 나노금속입자(Nano Metal Particle ; NMP) 제조장치를 도 1 내지 도 4를 참조하여 설명하면, SUS 반응탱크(1), 교반장치(2), N2가스퍼징(purging)수단(3)을 포함하여 구성되는 NMP 합성반응기와; 합성된 NMP을 합성반응기 바닥에 포집하기 위하여 합성 반응기 하부에 설치되는 전자석(Eelectromagnet)(4)과; NMP 합성반응기에서 합성된 NMP 또는 전자석으로 포집 및 응집된 NMP을 분산시키며 표면에 흡착된 오염물질 및 불순물을 제거하기 위한 입자균질화수단(Homogenizer)(5);을 포함하여 구성되며, 상기 NMP 합성반응기는 N2 가스퍼징증류수탱크(101), Fe용액탱크(102), NaBH4용액탱크(103), 첨가제탱크(106)와 각각 펌프, 밸브 및 배관라인으로 연결된다.
Referring to FIGS. 1 to 4, a nano metal particle manufacturing apparatus according to the present invention is described with reference to FIGS. 1 to 4, SUS reaction tank 1, a stirring apparatus 2, and N 2 gas purging means ( An NMP synthesis reactor comprising 3); An electromagnet 4 installed at the bottom of the synthesis reactor to collect the synthesized NMP at the bottom of the synthesis reactor; And a particle homogenizer (5) for dispersing the NMP collected and aggregated into NMP synthesized in the NMP synthesis reactor or electromagnet and removing contaminants and impurities adsorbed on the surface. Is N 2 Gas purging distillation tank 101, Fe solution tank 102, NaBH 4 solution tank 103, the additive tank 106 is connected to the pump, valve and piping lines, respectively.

상기 NMP 합성반응기는 Fe용액, 환원제인 NaBH4(Sodium Borohydride), N2 가스퍼징증류수 및 첨가제를 이용한 습식 환원법을 이용하고, N2 gas를 주입하여 혐기반응으로 표면 산화를 최소화한 반응성이 뛰어난 나노금속입자를 제조할 수 있으며, NaBH4용액이 합성반응기 내에 균질하게 주입될 수 있도록 원형의 튜브에 1mm 구멍을 뚫어 NaBH4용액이 균질하게 주입되어 나노금속입자가 균질하게 합성되도록 구성된다.
The NMP synthesis reactor uses a wet reduction method using Fe solution, NaBH 4 (Sodium Borohydride) as a reducing agent, N 2 gas purging distilled water and additives, and injects N 2 gas to minimize surface oxidation by anaerobic reaction. Metal particles may be prepared, and the NaBH 4 solution is homogeneously injected by homogeneously injecting a 1 mm hole into a circular tube so that the NaBH 4 solution may be homogeneously injected into the synthesis reactor.

또한, 상기 NMP 합성반응기는 바닥의 경사가 5-10°로 형성되어 합성된 나노금속입자를 합성반응기 하부의 전자석으로 포집, 상등액을 신속하고 용이하게 제거할 수 있도록 되어 있다. 또한, 상기 전자석(Eelectromagnet)(4)에는 과열을 방지하기 위한 냉각장치를 더 포함하여 구성될 수 있다.
In addition, the NMP synthesis reactor has a bottom slope of 5-10 ° to collect the synthesized nano-metal particles with an electromagnet at the bottom of the synthesis reactor, it is possible to quickly and easily remove the supernatant. In addition, the electromagnet 4 may further include a cooling device for preventing overheating.

한편, 입자균질화수단(Homogenizer)(5)은 나노금속입자의 분산효과 증대 및 균질성을 증대하기 위한 것으로, 도 5에 도시한 바와 같이, 회전자(rotor)(11)와 고정자(stator)(10)의 아주 작은 간극 사이로 회전자가 고속으로 회전하면 높은 전단에너지(high shearing force)가 발생되는데, 이 높은 전단에너지에 의해 입자가 균질화되고 표면적이 크게 늘어나며, 반응성이 높아지게 되고, 회전자(rotor)(11)의 고속회전에 의해 원심력이 발생하여 이송펌프로서의 기능이 생기게 되고, 연속적인 균질화가 가능하게 된다.
On the other hand, the particle homogenizer (Homogenizer) 5 is to increase the dispersion effect and homogeneity of the nano-metal particles, as shown in Figure 5, a rotor (rotator) 11 and a stator (stator) 10 When the rotor rotates at a high speed between the tiny gaps of), a high shearing force is generated. The high shearing energy homogenizes the particles, greatly increases the surface area, increases the reactivity, and increases the rotor ( The centrifugal force is generated by the high-speed rotation of 11) to produce the function as a transfer pump, and the continuous homogenization is possible.

상기 회전자(11)는 3,200-30,000rpm으로 고속회전되어 응집된 입자를 균질하게 하고, 고정자(10)와 회전자(11) 사이의 간격은 50~150㎛ 범위로 조절할 수 있게 되어 있다.
The rotor 11 is rotated at a high speed of 3,200-30,000rpm to make the aggregated particles homogeneous, and the distance between the stator 10 and the rotor 11 can be adjusted in the range of 50 to 150 μm.

입자균질화수단(Homogenizer)(5)의 작동상태를 설명하면, NMP 합성반응기에서 합성된 NMP용액 또는 전자석으로 포집 및 응집된 NMP용액을 입자균질화수단(Homogenizer)(5)에 공급하면 용액은 고정자(1)와 회전자(11) 사이의 좁은 간격을 통하여 원주면으로 방출된다. 이때 용액은 전단력, 원심력 및 마찰력을 받아 나노금속입자가 분산 및 균질화된다.
Referring to the operating state of the particle homogenizer 5, the NMP solution collected by the NMP synthesis reactor or the electromagnet is fed to the particle homogenizer 5, and the solution is stator ( It is discharged to the circumferential surface through a narrow gap between 1) and the rotor 11. At this time, the solution is subjected to shearing force, centrifugal force and frictional force so that the nano metal particles are dispersed and homogenized.

또한, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 입자균질화수단(Homogenizer)(5)과 연결되어 2차로 NMP을 균질하게 분산시키며 표면에 흡착된 불순물을 제거하기 위한 초음파기(ultrasonicator)(6)를 더 포함하여 구성될 수도 있다.In addition, the Nano Metal Particle (NMP) manufacturing apparatus is connected to the homogenizer (Homogenizer) (5) to homogeneously disperse NMP secondly and to remove impurities adsorbed on the surface (ultrasonicator) It may be configured to further include (6).

아울러, 상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 도 6에 도시한 바와 같이, 상기 NMP 합성반응기, 전자석(Eelectromagnet), 입자균질화수단(Homogenizer)의 다양한 가동조건을 자동운전할 수 있는 프로그램을 탑재하여 PLC 방식으로 제어할 수 있도록 하는 Control Panel(7)을 더 포함하여 구성될 수 있다.
In addition, the nano metal particles (NMP) manufacturing apparatus, as shown in Figure 6, a program capable of automatically operating a variety of operating conditions of the NMP synthesis reactor, electromagnet, particle homogenizer (Homogenizer) It may be configured to further include a Control Panel (7) to be mounted to control by a PLC method.

상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 도 7에 도시한 바와 같이, 나노영가철을 1~10kg/day(dry base)으로 생산할 수 있으며, 도 8에 도시한 본 발명의 나노금속입자 제조장치에 의해 제조된 nZVI의 특성치 및 스펙트럼데이터로부터 다양한 환경에서 유기오염물질을 분해할 수 있고 유해한 중금속을 흡착/고정화 처리할 수 있는 정화제로 다양한 환경유해물질 처리에 적용될 수 있는 반응성이 뛰어난 나노영가철(nZVI)을 대량으로 합성할 수 있음을 알 수 있다.
The Nano Metal Particle (NMP) manufacturing apparatus, as shown in Figure 7, can produce nano-ferrous iron at 1 ~ 10kg / day (dry base), the nano-metal of the present invention shown in Figure 8 Nanoparticles with high reactivity that can be applied to various environmentally hazardous substances as a purifier that can decompose organic pollutants in various environments and adsorb / immobilize harmful heavy metals from characteristics and spectral data of nZVI produced by particle manufacturing equipment. It can be seen that it is possible to synthesize a large amount of iron (nZVI).

(1) Fe 용액 제조 : FeCl3 290.44g을 증류수 3000 ml에 녹여 0.5 M Fe3+용액을 제조하여 Fe 용액탱크에 저장한다.(1) Preparation of Fe solution: Dissolve 290.44 g of FeCl 3 in 3000 ml of distilled water to prepare a 0.5 M Fe3 + solution and store it in the Fe solution tank.

(2) NaBH4 용액 제조 : NaBH4 195.11g을 6500 ml의 증류수에 녹여 0.8M의 NaBH4 용액을 제조하여 NaBH4 용액탱크에 저장한다.(2) NaBH 4 Solution Preparation: Dissolve 195.11 g of NaBH 4 in 6500 ml of distilled water to prepare a 0.8M NaBH 4 solution to give NaBH 4 Store in solution tank.

(3) Degassing Water : N2 가스로 30분동안 Purging 한 증류수를 20L 제조하여 나노영가철의 제조 및 세척수로 사용할 수 있도록 증유수 탱크에 저장한다. N2 purging은 1L/min로 30분 이상 주입하여 DO 2ppm 이하로 유지하고, 순수 탱크의 공기중 노출시 1시간 이내 사용 또는 밀폐시 6시간까지 사용이 가능하다.
(3) Degassing Water: 20L of distilled water purged for 30 minutes with N 2 gas is produced and stored in a steaming tank so that it can be used for preparing nano-iron iron and washing water. N 2 purging is injected at 1L / min for more than 30 minutes and kept below 2 ppm, and can be used within 1 hour when exposed to air in pure water tank or up to 6 hours when closed.

본 발명에 따른 나노금속입자(Nano Metal Particle ; NMP) 제조장치를 사용하여 도 1의 공정도에 따라 다음과 같이 나노영가철을 제조하였다.
Using a nano-metal particles (NMP) manufacturing apparatus according to the invention according to the process of Figure 1 was prepared nano-iron iron as follows.

(1) 반응기(1) 내의 교반장치가 가동되고, N2 가스퍼징증류수탱크(101), Fe용액탱크(102), NaBH4용액탱크(103), 첨가제탱크(106)의 밸브를 개방하여 반응기(1) 내로 Fe용액, NaBH4용액, N2 가스퍼징증류수, 첨가제를 주입하여 나노영가철을 합성한다.
(1) The stirring apparatus in the reactor 1 is operated to open the valves of the N 2 gas purging distillation tank 101, the Fe solution tank 102, the NaBH 4 solution tank 103 and the additive tank 106. (1) Inject Fe solution, NaBH 4 solution, N 2 gas purging distilled water, and additives to synthesize nano-iron iron.

(2) 합성된 나노영가철의 교반 및 세척을 위해 반응기내 합성된 영가철을 순환 시키며 교반을 하고, 반응기 내에 물을 추가로 2L 주입하여 오염물질의 탈착시킨다.
(2) For stirring and washing the synthesized nano-ferrous iron, the synthesized ferrous iron was circulated and stirred in the reactor, and additional 2 L of water was injected into the reactor to desorb the contaminants.

(3) 합성된 나노 영가철의 분산성을 증대시키기 위해 입자균질화수단(Homogenizer)(5)를 가동하여 분산기 내 고정자 및 회전자 간극을 통과시켜 응집된 나노영가철을 분산 시키며, 표면에 흡착된 오염물질 및 불순물을 제거한다.
(3) To increase the dispersibility of the synthesized nano-ferrous iron, a particle homogenizer 5 is operated to pass through the stator and rotor gaps in the disperser to disperse the aggregated nano-ferrous iron and adsorb on the surface. Remove contaminants and impurities

(4) 반응기 하부에 설치된 전자석(4)를 약 0.5-1분 동안 가동시켜 합성된 나노영가철을 반응기 바닥에 포집한다. 이때 전자석을 경사진 반응기의 바닥면에 밀착시켜 반응기 내 영가철을 효율적으로 포집할 수 있도록 하며, 전자석의 과열을 방지하기 위해 냉각장치를 사용한다.
(4) Operate the electromagnet 4 installed at the bottom of the reactor for about 0.5-1 minutes to collect the synthesized nano-iron iron on the bottom of the reactor. At this time, the electromagnet is in close contact with the bottom surface of the inclined reactor to efficiently collect zero iron in the reactor, and a cooling device is used to prevent overheating of the electromagnet.

(5) 전자석 포집 후 상등액을 배수시켜 폐수저장탱크로 보낸다. 이때 상등액을 효육적으로 배출하기 위하여 반응기 바닥은 약 5-10도 정도 경사지게 해서 영가철의 손실이 없이 상등액만 배출될 수 있도록 한다.
(5) After collecting the electromagnet, the supernatant is drained and sent to the wastewater storage tank. At this time, in order to efficiently discharge the supernatant, the bottom of the reactor is inclined about 5-10 degrees so that only the supernatant can be discharged without loss of iron.

(6) 상등액을 모두 배수 후 순수한 물을 반응기(1)내 주입하고, 이때 전자석(4)은 끄고, 대신 교반기(2)를 켜서 나노영가철을 다시 교반 및 세척할 수 있도록 한다. 또한, 입자균질화수단(Homogenizer)(5)를 가동하여 나노영가철 용액을 순환시키며 전자석으로 응집된 나노영가철을 다시 균질하게 분산될 수 있도록 한다. 이때 입자균질화수단(Homogenizer)(5)은 회전자와 고정자 사이 50~150㎛ 간극 틈을 가진 것으로 최대 분산 속도는 500ml/min 이며, 분산강도는 3,200~30,000rpm 으로 나노영가철을 분산한다.
(6) After draining all the supernatant, pure water is injected into the reactor (1). At this time, the electromagnet (4) is turned off. Instead, the stirrer (2) is turned on so that the nano-iron iron can be stirred and washed again. In addition, by operating the homogenizer (Homogenizer) (5) to circulate the nano-ferrous iron solution and to homogeneously disperse the nano-ferrous iron aggregated by the electromagnet. At this time, the homogenizer (Homogenizer) (5) has a gap of 50 ~ 150㎛ gap between the rotor and the stator, the maximum dispersion rate is 500ml / min, the dispersion strength is 3,200 ~ 30,000rpm to disperse the nano-ferrous iron.

(7) 상기 합성된 나노영가철은 상기 (4) 내지 (6) 단계를 2회 더 반복하여 영가철 표면에 흡착된 오염물질을 탈착/세척을 하고, 균질하게 분산이 될 수 있도록 반복한다.
(7) The synthesized nano-ferrous iron is repeated twice to repeat the steps (4) to (6) to desorb / wash the contaminants adsorbed on the surface of the non-ferrous iron, and to be homogeneously dispersed.

(8) 상기 (7) 단계까지 탈착/세척/분산 과정을 수행한 나노영가철은 마지막으로 물을 주입하여 원하는 규격의 나노영가철의 농도로 밀폐 보관한다.
(8) The nano-ferrous iron, which has undergone the desorption / washing / dispersion process up to the step (7), is finally infused with water and kept closed at the concentration of nano-ferrous iron of a desired specification.

이상의 공정에 따라 본 발명의 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 나노영가철을 1~10kg/day(dry base)으로 생산할 수 있다. 또한 이러한 합성 공정 사이에 다양한 나노영가철을 합성하기 위해 다양한 첨가제를 주입하는 것은 용액탱크, 밸프, 배관라인이 추가로 설치되어 언제든지 공정을 변경, 다양한 영가철을 합성 할 수 있다.
According to the above process, the nano-metal particle manufacturing apparatus of the present invention can produce nano-iron iron at 1 to 10 kg / day (dry base). In addition, injecting various additives to synthesize a variety of nano-ferrous iron between the synthesis process, the solution tank, the valve, the piping line is additionally installed can change the process at any time, to synthesize a variety of non-ferrous iron.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

1 : 반응기 2 : 교반장치 3 : 질소퍼징장치
4 : 전자석 5 : 입자균질화수단 6 : 초음파기
1 reactor 2 stirring device 3 nitrogen purging device
4: electromagnet 5: particle homogenization means 6: ultrasonicator

Claims (10)

SUS 반응탱크와, 상기 SUS 반응탱크 내부의 Fe용액, NaBH4용액, N2 가스퍼징증류수 및 첨가제의 반응혼합물을 교반하기 위한 교반장치와, 상기 SUS 반응탱크 내부로 N2 가스퍼징증류수를 주입하거나 N2 gas를 주입하기 위한 N2가스퍼징(purging)수단을 포함하여 구성되는 NMP 합성반응기와; 합성된 NMP을 합성반응기 바닥에 포집하기 위하여 합성 반응기 하부에 설치되는 전자석(Eelectromagnet)과; NMP 합성반응기에서 합성된 NMP 또는 전자석으로 포집 및 응집된 NMP을 분산시키며 표면에 흡착된 불순물을 제거하기 위한 입자균질화수단(Homogenizer);을 포함하여 구성되는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
A stirring device for stirring a SUS reaction tank, a reaction mixture of Fe solution, NaBH 4 solution, N 2 gas purging distilled water and additives in the SUS reaction tank, and injecting N 2 gas purging distilled water into the SUS reaction tank; N 2 gas was purged for introducing the N 2 gas (purging) NMP synthesis reactor which comprises a means and; An electromagnet installed under the synthesis reactor to collect the synthesized NMP at the bottom of the synthesis reactor; Nano Metal Particles characterized in that it comprises a; particle homogenizer (Homogenizer) for dispersing the NMP collected and aggregated into NMP synthesized in the NMP synthesis reactor or electromagnet and remove the impurities adsorbed on the surface ; NMP) Manufacturing Equipment
제1항에 있어서,
상기 NMP 합성반응기는 Fe용액, NaBH4용액, N2 가스퍼징증류수 및 첨가제의 반응혼합물에 N2 gas를 주입하여 혐기반응으로 표면 산화를 최소화한 나노금속입자를 제조하는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method of claim 1,
The NMP synthesis reactor injects N 2 gas into the reaction mixture of Fe solution, NaBH 4 solution, N 2 gas purging distilled water and additives to produce nano-metal particles to minimize surface oxidation by anaerobic reaction (Nano Metal Particle; NMP) Manufacturing Equipment
제1항에 있어서,
상기 NMP 합성반응기의 SUS 반응탱크는 N2 가스퍼징증류수탱크, Fe용액탱크, NaBH4용액탱크, 첨가제탱크와 각각 펌프, 밸브 및 배관라인으로 연결되어 상기 SUS 반응탱크 내부로 N2 가스퍼징증류수, Fe용액, NaBH4용액 및 첨가제 각각을 주입하도록 구성되는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method of claim 1,
The SUS reaction tank of the NMP synthesis reactor is connected to the N 2 gas purging distillation tank, Fe solution tank, NaBH 4 solution tank, the additive tank and the pump, valve and piping line, respectively, the N 2 gas purging distilled water into the SUS reaction tank, Nano Metal Particle (NMP) manufacturing apparatus, characterized in that configured to inject each of the Fe solution, NaBH 4 solution and additives
제1항에 있어서,
상기 NMP 합성반응기는 NaBH4용액이 합성반응기 내에 균질하게 주입될 수 있도록 원형의 튜브에 1mm 구멍을 뚫어 NaBH4용액이 균질하게 주입되어 나노금속입자가 균질하게 합성되는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method of claim 1,
The NMP synthesis reactor nano metal particles characterized in that the NaBH 4 solution is homogeneously drill a 1mm hole in the round tubes to be injected NaBH 4 solution is uniformly injected nano metal particles are uniformly synthesized in the synthesis reactor ( Nano Metal Particle (NMP) Manufacturing Equipment
제1항에 있어서,
상기 NMP 합성반응기는 바닥의 경사가 5-10°로 형성되어 합성된 나노금속입자를 합성반응기 하부의 전자석으로 포집하고, 상등액을 신속하고 용이하게 제거할 수 있도록 하는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method of claim 1,
The NMP synthesis reactor has a bottom slope of 5-10 ° to collect the synthesized nanometal particles with an electromagnet at the bottom of the reactor, and the nanometal particles to quickly and easily remove the supernatant ( Nano Metal Particle (NMP) Manufacturing Equipment
제1항에 있어서,
상기 입자균질화수단(Homogenizer)은 나노금속입자의 분산효과 증대 및 균질성을 증대하기 위하여 회전자와 고정자의 간격을 50~150㎛로 조절하고, 회전자를 3,200-30,000rpm으로 고속회전시켜 응집된 입자를 균질하게 하는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method of claim 1,
The particle homogenizer (Homogenizer) controls the distance between the rotor and the stator to 50 ~ 150㎛ in order to increase the dispersion effect and homogeneity of the nano-metal particles, and the particles aggregated by rotating the rotor at 3,200-30,000rpm at high speed Nano Metal Particle (NMP) manufacturing apparatus characterized in that the homogeneous
제1항에 있어서,
상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 전자석(Eelectromagnet)의 과열을 방지하기 위한 냉각장치를 더 포함하여 구성되는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method of claim 1,
The nano metal particle (NMP) manufacturing apparatus further comprises a cooling device for preventing overheating of the electromagnet (Nano metal particle) manufacturing apparatus (Nano Metal Particles (NMP))
제1항에 있어서,
상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 입자균질화수단(Homogenizer)과 연결되어 2차로 NMP을 균질하게 분산시키며 표면에 흡착된 불순물을 제거하기 위한 초음파기(ultrasonicator)를 더 포함하여 구성되는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method of claim 1,
The Nano Metal Particle (NMP) manufacturing apparatus is connected to the homogenizer (Homogenizer) further comprises a second ultrasonic homogenizer (ultrasonicator) to homogeneously disperse NMP and remove impurities adsorbed on the surface Nano Metal Particle (NMP) manufacturing apparatus characterized in that
제1항 내지 제8항중 어느 한 항에 있어서,
상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 상기 NMP 합성반응기, 전자석(Eelectromagnet), 입자균질화수단(Homogenizer)의 다양한 가동조건을 자동운전할 수 있는 프로그램을 탑재하여 PLC 방식으로 제어할 수 있도록 하는 Control Panel을 더 포함하여 구성되는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method according to any one of claims 1 to 8,
The Nano Metal Particle (NMP) manufacturing apparatus is equipped with a program that can automatically operate a variety of operating conditions of the NMP synthesis reactor, electromagnet, particle homogenizer (Homogenizer) to be controlled by a PLC method Nano Metal Particle (NMP) manufacturing apparatus characterized in that it further comprises a Control Panel
제1항 내지 제8항중 어느 한 항에 있어서,
상기 나노금속입자(Nano Metal Particle ; NMP) 제조장치는 나노영가철을 1~10kg/day(dry base)으로 생산할 수 있는 것을 특징으로 하는 나노금속입자(Nano Metal Particle ; NMP) 제조장치
The method according to any one of claims 1 to 8,
The nano metal particle (NMP) manufacturing apparatus is a nano metal particle (NMP) manufacturing apparatus characterized in that it can produce nano-ferrous iron at 1 ~ 10kg / day (dry base)
KR1020120026223A 2012-03-14 2012-03-14 Nano metal particle manufacturing equipment KR101190285B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120026223A KR101190285B1 (en) 2012-03-14 2012-03-14 Nano metal particle manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120026223A KR101190285B1 (en) 2012-03-14 2012-03-14 Nano metal particle manufacturing equipment

Publications (1)

Publication Number Publication Date
KR101190285B1 true KR101190285B1 (en) 2012-10-12

Family

ID=47287857

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120026223A KR101190285B1 (en) 2012-03-14 2012-03-14 Nano metal particle manufacturing equipment

Country Status (1)

Country Link
KR (1) KR101190285B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443147B1 (en) 2013-10-07 2014-09-24 한국에너지기술연구원 Aminoclay-coated magnetic metal composite, its manufacturing method and harvesting process of microalgae using the composite
KR20180034875A (en) * 2016-09-28 2018-04-05 재단법인 전남생물산업진흥원 Apparatus for Mass Production of Metal Oxide Nanoparticles
CN109663929A (en) * 2019-01-24 2019-04-23 兰州石化职业技术学院 A kind of preparation method of rule nanogold particle
KR20210073048A (en) * 2019-12-10 2021-06-18 고려대학교 산학협력단 Sulfur doped micro zerovalent metal and method for manufacturing the same
CN116748524A (en) * 2023-06-19 2023-09-15 海南大学 Preparation device and preparation method of high-purity nano zero-valent iron

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664546B1 (en) 2005-03-08 2007-01-03 (주)씨엔티 Carbon nano tubes mass fabrication device
KR100869547B1 (en) 2007-04-09 2008-11-19 한양대학교 산학협력단 Method of synthesizing ordered FePt nano particles by ultrasonic gas phase process
KR100874709B1 (en) 2006-11-14 2008-12-18 광주과학기술원 Synthesis of Zero Ferrous Nanowires and Application of Groundwater Treatment
KR100975822B1 (en) 2007-11-28 2010-08-13 광주과학기술원 Methods of Controllable Synthesis of Nanoscale Zerovalent Iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664546B1 (en) 2005-03-08 2007-01-03 (주)씨엔티 Carbon nano tubes mass fabrication device
KR100874709B1 (en) 2006-11-14 2008-12-18 광주과학기술원 Synthesis of Zero Ferrous Nanowires and Application of Groundwater Treatment
KR100869547B1 (en) 2007-04-09 2008-11-19 한양대학교 산학협력단 Method of synthesizing ordered FePt nano particles by ultrasonic gas phase process
KR100975822B1 (en) 2007-11-28 2010-08-13 광주과학기술원 Methods of Controllable Synthesis of Nanoscale Zerovalent Iron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443147B1 (en) 2013-10-07 2014-09-24 한국에너지기술연구원 Aminoclay-coated magnetic metal composite, its manufacturing method and harvesting process of microalgae using the composite
KR20180034875A (en) * 2016-09-28 2018-04-05 재단법인 전남생물산업진흥원 Apparatus for Mass Production of Metal Oxide Nanoparticles
CN109663929A (en) * 2019-01-24 2019-04-23 兰州石化职业技术学院 A kind of preparation method of rule nanogold particle
CN109663929B (en) * 2019-01-24 2021-07-23 兰州石化职业技术学院 Preparation method of regular nano gold particles
KR20210073048A (en) * 2019-12-10 2021-06-18 고려대학교 산학협력단 Sulfur doped micro zerovalent metal and method for manufacturing the same
KR102416159B1 (en) 2019-12-10 2022-07-01 고려대학교 산학협력단 Sulfur doped micro zerovalent metal and method for manufacturing the same
CN116748524A (en) * 2023-06-19 2023-09-15 海南大学 Preparation device and preparation method of high-purity nano zero-valent iron

Similar Documents

Publication Publication Date Title
Du et al. Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent
KR101190285B1 (en) Nano metal particle manufacturing equipment
Zhang et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation
Shan et al. Synthesis of nZVI-Ni@ BC composite as a stable catalyst to activate persulfate: Trichloroethylene degradation and insight mechanism
He et al. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water
Ai et al. Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char
Yu et al. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron
Li et al. Facile synthesis and synergistic mechanism of CoFe2O4@ three-dimensional graphene aerogels towards peroxymonosulfate activation for highly efficient degradation of recalcitrant organic pollutants
Yao et al. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles
Zhao et al. Chlortetracycline hydrochloride removal by different biochar/Fe composites: A comparative study
Wang et al. Monodispersed CuO nanoparticles supported on mineral substrates for groundwater remediation via a nonradical pathway
Hooshyar et al. Sonication enhanced removal of nickel and cobalt ions from polluted water using an iron based sorbent
Ou et al. Short-chain organic acids increase the reactivity of zerovalent iron nanoparticles toward polychlorinated aromatic pollutants
Yang et al. Degradation of γ-hexachlorocyclohexane using carboxymethylcellulose-stabilized Fe/Ni nanoparticles
Han et al. Ascorbic acid promoted sulfamethoxazole degradation in MIL-88B (Fe)/H2O2 Fenton-like system
Xu et al. Enhancing the degradation of bisphenol A by dioxygen activation using bimetallic Cu/Fe@ zeolite: Critical role of Cu (I) and superoxide radical
Zhou et al. Insights into enhanced removal of 1, 2-dichloroethane by amorphous boron-enhanced Fenton system: Performances and mechanisms
Zhou et al. Aerobic removal of iodinated contrast medium by nano-sized zero-valent iron: A combination of oxidation and reduction
Wang et al. Rational construction of micron-sized zero-valent iron/graphene composite for enhanced Cr (VI) removal from aqueous solution
Su et al. High-efficiency degradation of quinclorac via peroxymonosulfate activated by N-doped CoFe2O4/Fe0@ CEDTA hybrid catalyst
Xu et al. Enhanced heterogeneous Fenton-like degradation of nuclear-grade cationic exchange resin by nanoscale zero-valent iron: experiments and DFT calculations
Wang et al. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles
EP2989056B1 (en) Process for the preparation of a nanoiron suspension
Hu et al. Heterogeneous photo-Fenton catalyst α-Fe2O3@ g-C3N4@ NH2-MIL-101 (Fe) with dual Z-Scheme heterojunction for degradation of tetracycline
Lee et al. Ligand-assisted sequential redox degradation of tetrabromobisphenol A using bimetallic zero-valent iron nanoparticles

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151005

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161005

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee