KR101180182B1 - Solid oxide fuel cell having excellent resistance to delamination - Google Patents

Solid oxide fuel cell having excellent resistance to delamination Download PDF

Info

Publication number
KR101180182B1
KR101180182B1 KR1020100136650A KR20100136650A KR101180182B1 KR 101180182 B1 KR101180182 B1 KR 101180182B1 KR 1020100136650 A KR1020100136650 A KR 1020100136650A KR 20100136650 A KR20100136650 A KR 20100136650A KR 101180182 B1 KR101180182 B1 KR 101180182B1
Authority
KR
South Korea
Prior art keywords
electrolyte
electrolyte layer
fuel cell
layer
solid oxide
Prior art date
Application number
KR1020100136650A
Other languages
Korean (ko)
Other versions
KR20120074724A (en
Inventor
임형태
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020100136650A priority Critical patent/KR101180182B1/en
Publication of KR20120074724A publication Critical patent/KR20120074724A/en
Application granted granted Critical
Publication of KR101180182B1 publication Critical patent/KR101180182B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 연료극과 전해질의 박리를 방지함과 동시에 전해질에서의 전류의 누설을 방지할 수 있는 고체 산화물 연료전지의 전해질을 제공하기 위한 것으로,
공기극, 제1 전해질층, 제2 전해질층 및 연료극이 순차로 적층되며,
상기 제1 전해질층은 상기 제2 전해질층보다 전자전도도가 낮은 내박리성이 우수한 고체 산화물 연료전지를 제공한다.
The present invention is to provide an electrolyte of a solid oxide fuel cell that can prevent peeling of the anode and the electrolyte and at the same time prevent leakage of current in the electrolyte.
The air electrode, the first electrolyte layer, the second electrolyte layer, and the fuel electrode are sequentially stacked,
The first electrolyte layer provides a solid oxide fuel cell having excellent peeling resistance with lower electron conductivity than the second electrolyte layer.

Description

내박리성이 우수한 고체산화물 연료전지{SOLID OXIDE FUEL CELL HAVING EXCELLENT RESISTANCE TO DELAMINATION}Solid oxide fuel cell with excellent peeling resistance {SOLID OXIDE FUEL CELL HAVING EXCELLENT RESISTANCE TO DELAMINATION}

본 발명의 고체산화물 연료전지 전해질에 관한 것으로서, 보다 상세하게는 연료극과의 박리에 대한 저항성이 우수한 고체 산화물 연료전지에 관한 것이다.
The present invention relates to a solid oxide fuel cell electrolyte of the present invention, and more particularly, to a solid oxide fuel cell having excellent resistance to peeling from a fuel electrode.

연료전지는 연료(수소)의 화학에너지가 전기에너지로 직접 변환되어 직류 전류를 생산하는 능력을 갖는 전지(Cell)로 정의되며, 산화물 전해질을 통해 산화제(예를 들어, 산소)와 기상 연료(예를 들어, 수소)를 전기화학적으로 반응시킴으로써, 직류 전기를 생산하는 에너지 전환 장치로써, 종래의 전지와는 다르게 외부에서 연료와 공기를 공급하여 연속적으로 전기를 생산하는 특징을 갖는다.
A fuel cell is defined as a cell that has the ability to produce direct current by converting the chemical energy of fuel (hydrogen) directly into electrical energy, and through the oxide electrolyte, oxidant (eg oxygen) and gaseous fuel (eg For example, hydrogen) is an energy conversion device for producing direct current electricity by electrochemically reacting, and unlike the conventional battery, has a characteristic of continuously producing electricity by supplying fuel and air from the outside.

연료전지의 종류로는 고온에서 작동하는 용융탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC), 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC) 및 비교적 낮은 온도에서 작동하는 인산형 연료전지(Phosphoric Acid Fuel Cell, PAFC), 알칼리형 연료전지(Alkaline Fuel Cell, AFC), 고분자전해질 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC), 직접메탄올 연료전지(Direct Methanol Fuel Cells, DEMFC) 등이 있다.
Fuel cell types include molten carbonate fuel cells (MCFCs), solid oxide fuel cells (SOFCs) operating at high temperatures, and phosphoric acid fuel cells operating at relatively low temperatures. Cell, PAFC), Alkaline Fuel Cell (AFC), Proton Exchange Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DEMFC).

이 중 고체산화물 연료전지는 고성능의 깨끗하고 효율적인 전원이 될 수 있는 잠재력을 가지며, 다양한 전력 발생 용도로서 개발되고 있다. 고체산화물 연료전지는 공기극(cathod)과 연료극(anode) 및 전해질(electrolyte)로 구성되는 단위전지(cell)의 다층 구조물(stack)로 형성된다. 통상적인 고체산화물 연료전지의 단위전지는, 전해질로서 이트리아 안정화된 지르코니아(Yttria Stabilized Zirconia, YSZ)가 사용되고, 공기극으로는 스트론튬 도핑된 란탄 망가나이트(Lanthanum Strontium Manganite, LSM)(예를 들어, La0.8Sr0.2MnO3)가 사용되고, 연료극으로는 니켈 옥사이드(Nickel Oxide, NiO)와 YSZ가 혼합된 서메트(cermet)(NiO/YSZ)가 사용된다.
Among these, solid oxide fuel cells have the potential to be high performance, clean and efficient power sources, and are being developed for various power generation applications. The solid oxide fuel cell is formed of a multilayer stack of unit cells composed of a cathode, an anode, and an electrolyte. As a unit cell of a conventional solid oxide fuel cell, Yttria Stabilized Zirconia (YSZ) is used as an electrolyte, and strontium-doped Lanthanum Strontium Manganite (LSM) (for example, La0) is used as an air electrode. .8Sr0.2MnO3) is used, and cermet (NiO / YSZ) in which nickel oxide (NiO) and YSZ are mixed is used as a fuel electrode.

고체산화물 연료전지의 단위전지를 제조할 때, 연료극 물질과 전해질 물질이 서로 다른 열팽창 계수를 가지고 있어서, 비슷한 소성 온도에서 소성을 하더라도 연료극과 전해질을 동시에 소성하는 경우에는 휘어짐이나 크랙이 발생할 수 있으며, 전해질이 벗겨지거나 휘어짐으로 인해 자중을 이기지 못하고 단위전지가 깨지는 경우가 발생하여 불량 단위전지(cell)가 생성되기도 한다.
When manufacturing a unit cell of a solid oxide fuel cell, the anode material and the electrolyte material have different coefficients of thermal expansion, and even if firing at a similar firing temperature, bending or cracking may occur when the anode and the electrolyte are fired at the same time. Due to the peeling or bending of the electrolyte, the unit cell may be broken and the unit cell may be broken. Thus, a defective unit cell may be generated.

상기와 같은 이유 이외에 또다른 이유로 단위전지의 다층 구조물에서 불량 단위전지(cell)가 있는 경우, 높은 저항으로 인해서 인가된 전류를 견디지 못하고 불량 단위전지에서는 음의 값을 갖는 역전압 현상이 일어나게 되는 문제가 있다.
If there is a defective unit cell in the multilayer structure of the unit cell for another reason in addition to the above reason, a reverse voltage phenomenon having a negative value does not occur in the defective unit cell due to a high resistance, and thus a failure occurs. There is.

YSZ와 같은 순수한 이온전도체의 물질을 전해질로 사용하는 경우에는 역전압 발생시, 도 1에 나타난 바와 같이, 연료극과 전해질 YSZ의 계면에서 비정상적으로 높은 산소 분압이 형성되고 이로 인해 연료극과 전해질의 박리로 이어지는 문제가 있다.
In the case of using a pure ion conductor material such as YSZ as an electrolyte, when a reverse voltage is generated, as shown in FIG. 1, an abnormally high oxygen partial pressure is formed at the interface between the anode and the electrolyte YSZ, which leads to separation of the anode and the electrolyte. there is a problem.

이러한 박리현상을 방지하기 위해서, 전해질을 이온/전자 혼합 전도체로 대체하여야 하지만, 상기 이온/전자 혼합 전도체를 전해질로 사용하는 경우에는 높은 전자전도도로 인해, 전류의 누설(current leakage)의 누설이 발생할 우려가 있으며, 그 결과 개방 회로 전압(open circuit voltage)의 값이 감소하여 전지 전체의 출력이 감소하는 결과를 낳게 된다.
In order to prevent such peeling phenomenon, the electrolyte should be replaced with an ion / electron mixed conductor, but when the ion / electron mixed conductor is used as an electrolyte, leakage of current leakage may occur due to high electron conductivity. There is a concern, and as a result, the value of the open circuit voltage is reduced, resulting in a decrease in the output of the entire battery.

따라서, 상기와 같이 산소분압에 의한 연료극과 전해질의 박리를 방지하고, 전류의 누설을 방지할 수 있는 전해질에 대한 요구가 대두되고 있다.
Accordingly, there is a demand for an electrolyte capable of preventing separation of the anode and the electrolyte due to oxygen partial pressure and preventing leakage of current.

본 발명의 일측면은 연료극과 전해질의 박리를 방지함과 동시에 전해질에서의 전류의 누설을 방지하여, 개방 회로 전압을 최대한 유지할 수 있는 고체 산화물 연료전지를 제공하고자 하는 것이다.
One aspect of the present invention is to provide a solid oxide fuel cell that can prevent the separation of the anode and the electrolyte and at the same time prevent the leakage of current in the electrolyte, thereby maintaining the open circuit voltage to the maximum.

본 발명은 공기극, 제1 전해질층, 제2 전해질층 및 연료극이 순차로 적층되며, In the present invention, the cathode, the first electrolyte layer, the second electrolyte layer and the fuel electrode are sequentially stacked.

상기 제1 전해질층은 상기 제2 전해질층보다 전자전도도가 낮은 내박리성이 우수한 고체 산화물 연료전지를 제공한다.
The first electrolyte layer provides a solid oxide fuel cell having excellent peeling resistance with lower electron conductivity than the second electrolyte layer.

본 발명의 연료전지에 의하면, 불량 단위전지(cell)에서 발생되는 역전압에 의한 연료극과 전해질의 박리를 방지할 수 있으며, 전해질의 전자 전도도를 점진적으로 증가시켜 전해질 전체적으로 누설 전류를 억제하여 정상적인 개방 회로 전압을 유지할 수 있고, 세리아의 과도한 환원으로 인한 화학적 불안정성을 제거할 수 있는 장점이 있다.
According to the fuel cell of the present invention, it is possible to prevent peeling of the anode and the electrolyte due to the reverse voltage generated in the defective unit cell, and to gradually increase the electron conductivity of the electrolyte, thereby suppressing the leakage current throughout the electrolyte, thereby opening normally. The circuit voltage can be maintained and the chemical instability due to excessive reduction of ceria can be eliminated.

도 1은 종래 연료전지의 YSZ만 존재하는 경우에 산소분압과 전기전도도를 나타낸 그래프임.
도 2는 본 발명 연료전지의 산소분압과 전기전도도를 나타낸 그래프임.
도 3은 본 발명 연료전지를 나타낸 단면도임.
1 is a graph showing oxygen partial pressure and electrical conductivity when only YSZ of a conventional fuel cell is present.
Figure 2 is a graph showing the oxygen partial pressure and the electrical conductivity of the fuel cell of the present invention.
3 is a cross-sectional view showing a fuel cell of the present invention.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명의 고체 산화물 연료전지는 공기극, 제1 전해질층, 제2 전해질층 및 연료극이 순차로 적층되며, 상기 제1 전해질층은 상기 제2 전해질층보다 전자전도도가 낮다. In the solid oxide fuel cell of the present invention, an air electrode, a first electrolyte layer, a second electrolyte layer, and a fuel electrode are sequentially stacked, and the first electrolyte layer has lower electron conductivity than the second electrolyte layer.

상기 공기극과 맞닿아 있는 제1 전해질층은 산소 분압이 급격히 증가하지 않으므로, 높은 전자 전도도를 필요로 하지 않는 물질이면 충분하다. 반면, 연료극과 맞닿아 있는 제2 전해질층은 환원분위기에서 산소 분압이 급격히 증가하는 것을 방지하기 위해서, 높은 전자전도도를 갖는 물질을 포함하는 것이 바람직하다.
Since the partial pressure of oxygen does not increase rapidly in the first electrolyte layer in contact with the air electrode, a material that does not require high electron conductivity is sufficient. On the other hand, the second electrolyte layer in contact with the fuel electrode preferably includes a material having high electron conductivity in order to prevent the oxygen partial pressure from increasing rapidly in the reducing atmosphere.

한편, 상기 제1 전해질층과 제2 전해질층 사이에는 제1 전해질층보다는 전자전도도가 높고, 제2 전해질층보다는 전자전도도가 낮은 제3 전해질층을 포함하는 것이 바람직하다. 상기 제3 전해질층은 산소분압이 크게 증가하지 않은 전해질의 중간층으로, 환원 분위기에서 기계적/화학적으로 상기 제1 전해질층 및 제2 전해질층보다 상대적으로 안정하고 적절한 전자전도도를 갖는 것이 바람직하다.
On the other hand, it is preferable to include a third electrolyte layer between the first electrolyte layer and the second electrolyte layer has a higher electron conductivity than the first electrolyte layer, and a lower electron conductivity than the second electrolyte layer. The third electrolyte layer is an intermediate layer of the electrolyte in which the oxygen partial pressure does not increase significantly, and it is preferable that the third electrolyte layer has a relatively stable and appropriate electron conductivity mechanically and chemically in the reducing atmosphere.

상기 제1 전해질층은 이트리아 안정화 지르코니아(Yttria-stabilized zirconia, YSZ)층인 것이 바람직하다. 상기 YSZ는 산화지르코늄(지르코니아)에 산화이트륨(이트리아)를 첨가하여 상온에서도 안정하도록 만든 세라믹 재료이다. 연료전지의 전해질에서 이온전도체의 역할을 한다. 본 발명에서는 역전압 상태에서도 산소분압이 비정상적으로 높아지지 않은 공기극쪽 전해질에는 분압을 낮추기 위해 전자 전도도가 굳이 필요치 아니하므로 전자 전도도가 거의 없는 순수 이온 전도체인 YSZ를 공기극 쪽에 형성하여 electronic leakage 를 제거, 개방 회로 전압을 유지하는 것이 바람직하다.
The first electrolyte layer is preferably a yttria-stabilized zirconia (YSZ) layer. The YSZ is a ceramic material made of yttrium oxide (yttria) added to zirconium oxide (zirconia) to be stable at room temperature. It acts as an ion conductor in the electrolyte of a fuel cell. In the present invention, since the electron conductivity is not required to lower the partial pressure in the electrolyte on the cathode side in which the oxygen partial pressure is not abnormally increased even under reverse voltage, YSZ, which is a pure ion conductor having almost no electron conductivity, is formed on the cathode side to eliminate electronic leakage. It is desirable to maintain an open circuit voltage.

상기 제2 전해질층은 가돌리니아가 첨가된 세리아(Gadolinia Doped Ceria, GDC)층인 것이 바람직하다. 상기 GDC는 높은 전자 전도도를 갖는다. 상기 GDC는 +3 가의 (gadolinia 중) gadolinium 이 +4 가의 (ceria 중) cerium 에 도핑 되었을 때 산소 공공(oxygen vacancy)을 형성하게 되어 GDC는 산소 이온전도체가 된다. 그러나, 세리아(ceria)는 낮은 산소 분압(수소분위기) 에서 +4 에서 +3 가로 환원하려 하는 특성을 가지고 있으므로 전자 전도도가 증가하게 된다. 따라서 연료극쪽의 전해질 영역만을 ceria 물질 (GDC) 로 대체하게 되면, 높은 전자 전도도를 가지며, 산소 분압이 증가하는 것을 억제하여 박리를 방지할 수 있다.
The second electrolyte layer is preferably a gadolinia doped ceria (GDC) layer to which gadolinia is added. The GDC has high electron conductivity. The GDC forms oxygen vacancies when the gadolinium of + 3-valent (in gadolinia) is doped to the cerium of + 4-valent (in ceria) so that GDC becomes an oxygen ion conductor. However, since ceria has a characteristic of reducing the transverse +4 to +3 at low oxygen partial pressure (hydrogen atmosphere), the electron conductivity increases. Therefore, when only the electrolyte region on the anode side is replaced by the ceria material (GDC), it has a high electron conductivity and can suppress the increase in the oxygen partial pressure to prevent peeling.

상기 제3 전해질층은 세리아를 첨가한 이트리아 안정화 지르코니아(CYSZ)층인 것이 바람직하다. 상기 CYSZ는 상기 YSZ에 세리아(Ceria)를 일부 첨가한 물질로서, 상기 세리아의 첨가량은 6~10mol%인 것이 바람직하다. 세리아가 6mol% 미만이면, 전자 전도도가 낮아 산소분압이 증가하는 것을 억제하는 것이 불충분하고, 10mol%를 초과하면, 지나친 환원이 일어나서 화학적/기계적 안정성이 저하될 우려가 있기 때문이다. 보다 바람직하게는 8mol%를 첨가한다.
The third electrolyte layer is preferably a yttria stabilized zirconia (CYSZ) layer containing ceria. The CYSZ is a material in which some ceria is added to the YSZ, and the amount of the ceria added is preferably 6 to 10 mol%. If the ceria is less than 6 mol%, it is insufficient to suppress the increase in the oxygen partial pressure due to low electron conductivity, and if it exceeds 10 mol%, excessive reduction may occur and the chemical / mechanical stability may be lowered. More preferably 8 mol% is added.

상기 제1 내지 제2 전해질 및 공기극 및 연료극을 갖는 연료전지의 산소분압과 전자전도도를 도 2에 나타내었다. 도 2는 제1 전해질로 YSZ, 제2 전해질층으로 GDC, 제3 전해질층으로 CYSZ를 이용한 것이다. 도 2에 나타난 바와 같이, 연료극 쪽 전해질의 산소분압이 증가하는 것을 방지하여, 역전압으로 인한 전해질의 박리를 방지할 수 있으며, 높은 전자전도도를 점진적으로 증가시킴으로서, 전해질 전체적인 누설 전류(current leakage)는 억제되고 정상적인 개방 회로 전압(open circuit voltage)을 유지하는 것이 가능해진다.
The oxygen partial pressure and electron conductivity of the fuel cell having the first to second electrolytes, the air electrode, and the fuel electrode are shown in FIG. 2. 2 shows YSZ as the first electrolyte, GDC as the second electrolyte layer, and CYSZ as the third electrolyte layer. As shown in FIG. 2, it is possible to prevent the oxygen partial pressure of the electrolyte toward the anode from increasing, thereby preventing the electrolyte from peeling off due to reverse voltage, and gradually increasing the high electronic conductivity, thereby increasing the overall leakage current of the electrolyte. Is suppressed and it becomes possible to maintain a normal open circuit voltage.

전해질층을 3층 구조로 형성함으로서, 전해질에서 비정상적으로 높아진 산소분압을 낮출 수 있고, 개방 회로 전압(open circuit voltage)을 최대한 유지할 수 있으며, 환원으로 인한 기계적 결함을 최소화 할 수 있는 장점이 있다.
By forming the electrolyte layer in a three-layer structure, it is possible to lower the abnormally high oxygen partial pressure in the electrolyte, to maintain the open circuit voltage (maximum), and to minimize the mechanical defects due to reduction.

한편, 도 3은 본 발명의 연료전지를 나타낸 일예를 도시한 것이다. 도 3에 나타난 바와 같이, 본 발명은 전해질을 3층 구조(tri-layer)로 형성하고, 공기극(101) 쪽에서는 YSZ층(111)을 형성하고, 연료극(102) 쪽에는 GDC층(113)을 형성하고, 상기 YSZ층과 GDC층 사이에는 CYSZ층(112)이 형성된 연료전지 전해질(110)을 제공한다.
On the other hand, Figure 3 shows an example showing a fuel cell of the present invention. As shown in FIG. 3, the present invention forms an electrolyte in a tri-layer structure, forms an YSZ layer 111 on the cathode 101 side, and a GDC layer 113 on the anode 102 side. And a fuel cell electrolyte 110 having a CYSZ layer 112 formed between the YSZ layer and the GDC layer.

상기 제1 전해질층은 그 두께를 특별히 한정되는 것은 아니나, 산소분압을 낮추고, 제3 전해질층의 세리아가 전해질에서 차지하는 비중을 최소화하기 위해서는 전해질 전체 두께에서 균일한 1/3의 두께를 차지하는 것이 바람직하다.
The thickness of the first electrolyte layer is not particularly limited, but in order to lower the oxygen partial pressure and minimize the specific gravity of ceria of the third electrolyte layer in the electrolyte, the first electrolyte layer preferably has a uniform thickness of 1/3 of the total electrolyte thickness. Do.

한편, 전지의 운전 조건에 따라 산소분압 프로파일(profile)모양이 다를 수 있으므로 상기 GDC층의 두께를 특별히 한정하는 것은 아니며, 일반적인 상황을 고려하여 3등분한 3층 구조(tri-layer)를 적용하는 것이 바람직하다.
On the other hand, the oxygen partial pressure profile (profile) may be different depending on the operating conditions of the battery does not specifically limit the thickness of the GDC layer, in consideration of the general situation to apply a three-layer tri-layer (tri-layer) It is preferable.

101.....공기극 102.....연료극
110.....전해질 111.....YSZ층
112.....CYSZ층 113.....GDC층
101 ..... Air 102 ..... Fuel
110 ..... electrolyte 111 ..... YSZ layer
112 ..... CYSZ layer 113 ..... GDC layer

Claims (4)

공기극, 제1 전해질층, 제2 전해질층 및 연료극이 순차로 적층되며,
상기 제1 전해질층은 상기 제2 전해질층보다 전자전도도가 낮은 내박리성이 우수한 고체 산화물 연료전지.
The air electrode, the first electrolyte layer, the second electrolyte layer, and the fuel electrode are sequentially stacked,
The first electrolyte layer is a solid oxide fuel cell excellent in peeling resistance having a lower electron conductivity than the second electrolyte layer.
청구항 1에 있어서,
상기 제1 전해질층과 제2 전해질층 사이에 제3 전해질층이 삽입되며, 상기 제3 전해질층의 전자전도도는 상기 제1 전해질층보다 높고, 상기 제2 전해질층보다 낮은 내박리성이 우수한 고체 산화물 연료전지.
The method according to claim 1,
A third electrolyte layer is inserted between the first electrolyte layer and the second electrolyte layer, and the electron conductivity of the third electrolyte layer is higher than that of the first electrolyte layer and lower than that of the second electrolyte layer. Oxide fuel cell.
청구항 2에 있어서,
상기 제1 전해질층은 이트리아 안정화 지르코니아(YSZ)층이고, 제2 전해질층은 가돌리늄이 도핑된 세리아(GDC)층이며, 상기 제3 전해질층은 세리아를 첨가한 이트리아 안정화 지르코니아(CYSZ)층인 내박리성이 우수한 고체 산화물 연료전지.
The method according to claim 2,
The first electrolyte layer is an yttria stabilized zirconia (YSZ) layer, the second electrolyte layer is a gadolinium-doped ceria (GDC) layer, and the third electrolyte layer is an yttria stabilized zirconia (CYSZ) layer containing ceria. Solid oxide fuel cell with excellent peeling resistance.
청구항 3에 있어서,
상기 세리아를 첨가한 이트리아 안정화 지르코니아(CYSZ)층에서, 이트리아 안정화 지르코니아(YSZ)에 첨가된 세리아의 함량은 6~10mol%인 내박리성이 우수한 고체산화물 연료전지.
The method according to claim 3,
In the yttria stabilized zirconia (CYSZ) layer containing the ceria, the content of ceria added to the yttria stabilized zirconia (YSZ) is 6 ~ 10mol% solid oxide fuel cell having excellent peeling resistance.
KR1020100136650A 2010-12-28 2010-12-28 Solid oxide fuel cell having excellent resistance to delamination KR101180182B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100136650A KR101180182B1 (en) 2010-12-28 2010-12-28 Solid oxide fuel cell having excellent resistance to delamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100136650A KR101180182B1 (en) 2010-12-28 2010-12-28 Solid oxide fuel cell having excellent resistance to delamination

Publications (2)

Publication Number Publication Date
KR20120074724A KR20120074724A (en) 2012-07-06
KR101180182B1 true KR101180182B1 (en) 2012-09-05

Family

ID=46708809

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100136650A KR101180182B1 (en) 2010-12-28 2010-12-28 Solid oxide fuel cell having excellent resistance to delamination

Country Status (1)

Country Link
KR (1) KR101180182B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160087516A (en) 2015-01-14 2016-07-22 창원대학교 산학협력단 Low and intermediate-temperature type proton-conducting ceramic fuel cells containing bi-layer electrolyte structure for preventing performance degradation and method for manufacturing the same
KR102577459B1 (en) * 2023-01-30 2023-09-13 한국과학기술원 Solid oxide fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343684B1 (en) * 2015-08-25 2022-08-10 LG Chem, Ltd. Solid oxide fuel cell and cell module comprising same
KR102220867B1 (en) * 2019-04-26 2021-02-26 창원대학교 산학협력단 Solid oxide fuel cell having durable electrolyte under negative current conditions
KR102264661B1 (en) * 2019-10-16 2021-06-15 한국과학기술원 Solid oxide electrolyte including thin film electrolyte layer of multiple repetitive structures, method for manufacturing the same, solid oxide fuel cell and solid oxide electrolysis cell comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849354B2 (en) 2000-07-04 2005-02-01 Nissan Motor Co., Ltd. Solid oxide fuel cell having perovskite solid electrolytes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849354B2 (en) 2000-07-04 2005-02-01 Nissan Motor Co., Ltd. Solid oxide fuel cell having perovskite solid electrolytes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160087516A (en) 2015-01-14 2016-07-22 창원대학교 산학협력단 Low and intermediate-temperature type proton-conducting ceramic fuel cells containing bi-layer electrolyte structure for preventing performance degradation and method for manufacturing the same
KR102577459B1 (en) * 2023-01-30 2023-09-13 한국과학기술원 Solid oxide fuel cell

Also Published As

Publication number Publication date
KR20120074724A (en) 2012-07-06

Similar Documents

Publication Publication Date Title
US7514166B2 (en) Reduction of SOFC anodes to extend stack lifetime
US9118052B2 (en) Integrated natural gas powered SOFC systems
CN101682068B (en) Composite anode showing low performance loss with time
KR100886239B1 (en) Preventing method of generating by-product and solid oxide fuel cell using the preventing method and method of the solid oxide fuel cell
US20140242495A1 (en) Anode with Remarkable Stability Under Conditions of Extreme Fuel Starvation
JP5608813B2 (en) Method for producing solid oxide fuel cell unit cell
US20150255820A1 (en) Half cell for solid oxide fuel cell, and solid oxide fuel cell
US7566513B2 (en) Solid electrolyte fuel cell with a multi-layer cathode formed of a solid electrolyte and electrode admixture
US20130143142A1 (en) Composite Solid Oxide Fuel Cell Electrolyte
US20140017597A1 (en) Fuel cell
KR101180182B1 (en) Solid oxide fuel cell having excellent resistance to delamination
KR20160087516A (en) Low and intermediate-temperature type proton-conducting ceramic fuel cells containing bi-layer electrolyte structure for preventing performance degradation and method for manufacturing the same
KR101218980B1 (en) Electrode material for fuel cell, fuel cell comprising the same and a method for manufacturing the same
US20110053045A1 (en) Solid oxide fuel cell and method of manufacturing the same
JP6526204B2 (en) Solid oxide fuel cell manufacturing method, solid oxide fuel cell and cell module including the same
JP2009263741A (en) High-temperature steam electrolytic cell
JP2009129602A (en) Solid oxide fuel cell
KR102103053B1 (en) Flat-type solid oxide fuel cell
KR20200094416A (en) Direct Flame-Solid Oxide Fuel Cell under rapid start-up and shut-down condition
KR101359123B1 (en) Unit cell for solid oxide fuel cell and method for manufacturing the same
TWI788078B (en) Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
JP2005166484A (en) Fuel electrode of solid oxide fuel cell and method for producing the same
JP5294474B2 (en) High power power generation cell with laminated solid electrolyte
JP6273306B2 (en) Ceramic cell structure
CN107534175B (en) Solid oxide fuel cell and cell module including the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150831

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190828

Year of fee payment: 8