KR101174970B1 - 라인파이프용 고강도 강판 및 그 제조 방법 - Google Patents

라인파이프용 고강도 강판 및 그 제조 방법 Download PDF

Info

Publication number
KR101174970B1
KR101174970B1 KR1020100017657A KR20100017657A KR101174970B1 KR 101174970 B1 KR101174970 B1 KR 101174970B1 KR 1020100017657 A KR1020100017657 A KR 1020100017657A KR 20100017657 A KR20100017657 A KR 20100017657A KR 101174970 B1 KR101174970 B1 KR 101174970B1
Authority
KR
South Korea
Prior art keywords
weight
less
steel sheet
strength steel
high strength
Prior art date
Application number
KR1020100017657A
Other languages
English (en)
Other versions
KR20110098185A (ko
Inventor
김규태
황성두
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020100017657A priority Critical patent/KR101174970B1/ko
Publication of KR20110098185A publication Critical patent/KR20110098185A/ko
Application granted granted Critical
Publication of KR101174970B1 publication Critical patent/KR101174970B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

라인파이프용 고강도 강판 및 그 제조 방법에 관한 것으로, 보다 상세하게는 상대적으로 충격특성이 우수한 미세한 베이나이트(Bainite) 조직을 형성시킴으로써 템퍼링 공정을 생략할 수 있는 라이파이프용 고강도 강판 및 그 제조 방법에 관하여 개시한다.
본 발명은 탄소(C) : 0.02 ~ 0.06 중량%, 실리콘(Si) : 0.4 중량% 이하, 망간(Mn) : 1.8 ~ 2.5 중량%, 인(P) : 0.020 중량% 이하, 황(S) : 0.010 중량% 이하, 크롬(Cr) : 0.04 중량% 이하, 니켈(Ni) : 0.2 ~ 1.0 중량%, 몰리브덴(Mo) : 0.2 ~1.0 중량%, 알루미늄(Al) : 0.030 중량% 이하, 구리(Cu) : 0.2 ~ 1.0 중량% 이하, 티타늄(Ti) : 0.01~0.02 중량%, 니오븀(Nb) : 0.02 ~ 0.10 중량%, 바나듐(V) : 0.02 ~ 0.10 중량% 이하, 보론(B) : 0.0005 ~ 0.0050 중량%, 질소(N) : 0.007 중량% 이하, 칼슘 : 0.002 ~ 0.005 중량% 를 포함하고, 나머지는 Fe와 기타 불가피한 불순물로 조성되는 강슬라브를 슬라브재가열온도(SRT) 1100 ~ 1200 ℃로 재가열한 후 열간압연하되, 압연종료온도(FRT) 750~770℃의 범위에 열간압연을 종료하고, 냉각속도 15℃/sec 이하, 냉각종료온도(FCT) 400℃ 이상으로 열처리하여 제조되는 라인파이프용 고강도 강판를 제공한다.

Description

라인파이프용 고강도 강판 및 그 제조 방법{HIGH STRENGTH LINEPIPE STEEL AND METHOD OF MANUFACTURING THE STEEL}
본 발명은 라인파이프용 고강도 강판 및 그 제조 방법에 관한 것으로, 보다 상세하게는 상대적으로 충격특성이 우수한 미세한 베이나이트(Bainite) 조직을 형성시킴으로써 템퍼링 공정을 생략할 수 있는 라이파이프용 고강도 강판 및 그 제조 방법에 관한 것이다.
원유, 천연 가스 등의 장거리 수송 방법으로서 중요한 파이프 라인의 간선에 사용되는 라인 파이프용 강관으로서, 고강도, 고인성의 라인 파이프용 강관이 요구되고 있다.
특히, 최근 고압화에 의한 수송 효율의 향상이나, 라인 파이프의 외경 및 중량의 저감에 의한 현지 시공 능률의 향상을 위하여 고강도 라인 파이프가 요망되고 있다.
본 발명의 목적은 저온 인성이 우수한 라인파이프용 고강도 강판 및 그 제조방벙을 제공하는 것이다.
본 발명의 다른 목적은 충격특성이 우수한 미세 베이나이트 조직을 형성시킴으로써 템퍼링 공정을 생략할 수 있는 라인파이프용 고강도 강판 제조방법을 제공하는 것이다.
본 발명은 탄소(C) : 0.02 ~ 0.06 중량%, 실리콘(Si) : 0.4 중량% 이하, 망간(Mn) : 1.8 ~ 2.5 중량%, 인(P) : 0.020 중량% 이하, 황(S) : 0.010 중량% 이하, 크롬(Cr) : 0.04 중량% 이하, 니켈(Ni) : 0.2 ~ 1.0 중량%, 몰리브덴(Mo) : 0.2 ~1.0 중량%, 알루미늄(Al) : 0.030 중량% 이하, 구리(Cu) : 0.2 ~ 1.0 중량% 이하, 티타늄(Ti) : 0.01~0.02 중량%, 니오븀(Nb) : 0.02 ~ 0.10 중량%, 바나듐(V) : 0.02 ~ 0.10 중량% 이하, 보론(B) : 0.0005 ~ 0.0050 중량%, 질소(N) : 0.007 중량% 이하, 칼슘 : 0.002 ~ 0.005 중량% 를 포함하고, 나머지는 Fe와 기타 불가피한 불순물로 조성되는 강슬라브를 슬라브재가열온도(SRT) 1100 ~ 1200 ℃로 재가열한 후 열간압연하되, 압연종료온도(FRT) 750~770℃의 범위에 열간압연을 종료하고, 냉각속도 15℃/sec 이하, 냉각종료온도(FCT) 400℃ 이상으로 열처리하여 제조되는 라인파이프용 고강도 강판를 제공한다.
본 발명은 탄소(Carbon) 함량을 낮게 설계하고, 망간(Mn)량을 높여 탄소함량 감소에 따른 재질확보 및 인성향상을 유도하고, 바나듐(V)함량을 증가시킴으로서 V(C,N) 석출강화효과에 의한 강도 및 인성향상 얻을 수 있는 라인파이프용 고강도 강판 및 그 제조방법을 제공하는 효과를 가져온다.
그리고, 본 발명은 냉각종료온도를 높게 하고 냉각속도를 15℃/s 이하로 하여 상온까지의 냉각시간을 충분히 확보함으로써 V 석출물에 의한 강도 향상 효과를 증가시킬 수 있고, 상대적으로 낮은 냉각속도와 높은 냉각종료온도에 의한 결정립크기 증가를 B을 첨가에 의한 변태강화를 통해 보상할 수 있는 라인파이프용 고강도 강판 제조방법을 제공한다.
또한, 본 발명은 상대적으로 충격특성이 우수한 미세 베이나이트 조직을 형성시킴으로써 템퍼링(tempering) 공정을 생략할 수 있는 라인파이프용 고강도 강판 제조방법을 제공한다.
도 1은 압연종료온도에 따른 각성분계의 미세조직 그레인 맵(Grain map),
도 2는 Nb 함량에 따른 석출물을 나타낸 비교사진,
도 3은 각 성분계별 FRT 조건에 따른 인장강도를 나타낸 그래프,
도 4는 각 성분계별 FRT 조건에 따른 항복강도를 나타낸 그래프,
도 5는 냉각종료온도(FCT)에 따른 1번 성분계의 미세조직사진,
도 6은 냉각종료온도(FCT)에 따른 2번 성분계의 미세조직사진,
도 7은 냉각종료온도(FCT)에 따른 3번 성분계의 미세조직사진,
도 8은 2차 실험의 1번 성분계와 3번 성분계의 석출물을 나타낸 비교사진,
도 9는 2차 실험의 3번 성분계의 석출물의 확대사진,
도 10은 각 성분계별 냉각종료온도(FCT)에 따른 항복강도(YS)와 인장강도(TS)를 나타낸 그래프,
도 11은 시험온도에 따른 임팩트 에너지 측정결과를 나타낸 그래프,
도 12는 -40℃ 및 -80℃ 에서의 각 성분계별 충격에너지를 나타낸 그래프임.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 실시예에 따른 라인파이프용 고강도 강판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
라인파이프용 고강도 강판
본 발명에 따른 라인파이프용 고강판 강판은 탄소(C) : 0.02 ~ 0.06 중량%, 실리콘(Si) : 0.4 중량% 이하, 망간(Mn) : 1.8 ~ 2.5 중량%, 인(P) : 0.020 중량% 이하, 황(S) : 0.010 중량% 이하, 크롬(Cr) : 0.04 중량% 이하, 니켈(Ni) : 0.2 ~ 1.0 중량%, 몰리브덴(Mo) : 0.2 ~1.0 중량%, 알루미늄(Al) : 0.030 중량% 이하, 구리(Cu) : 0.2 ~ 1.0 중량% 이하, 티타늄(Ti) : 0.01~0.02 중량%, 니오븀(Nb) : 0.02 ~ 0.10 중량%, 바나듐(V) : 0.02 ~ 0.10 중량% 이하, 보론(B) : 0.0005 ~ 0.0050 중량%, 질소(N) : 0.007 중량% 이하, 칼슘 : 0.002 ~ 0.005 중량% 를 포함하고, 나머지는 Fe와 기타 불가피한 불순물로 구성된다.
이하, 본 발명에 따른 라인파이프용 고강판 강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.
탄소(C)
본 발명에서 탄소(C)는 강판의 강도를 확보하기 위해 첨가된다.
상기 탄소(C)는 강판 전체 중량의 0.02 ~ 0.06 중량%의 함량비로 첨가되는 것이 바람직하다. 상기 탄소(C)가 0.02 중량% 미만으로 첨가되면 제2상 조직의 분율이 저하되어 강판의 강도가 낮아지는 문제점이 있으며, 상기 탄소(C)의 함량이 0.06 중량%을 초과하면 강판의 강도는 증가하나 저온 충격인성 및 용접성이 저하되는 문제점이 있다.
실리콘(Si)
본 발명에서 실리콘(Si)은 제강공정에서 강 중의 산소를 제거하기 위한 탈산제로 첨가된다. 또한 실리콘(Si)은 고용강화 효과도 가진다.
상기 실리콘(Si)은 강판 전체 중량의 0.4 중량% 이하의 함량비로 첨가되는 것이 바람직하다. 실리콘(Si)의 함량이 0.4 중량%를 초과하면 강판 표면에 산화물을 형성하여 강판의 도금특성을 저해하고 용접성을 저하시키는 문제점이 있다.
망간(Mn)
망간(Mn)은 오스테나이트 안정화 원소로서 본 발명에서 Ar3 온도를 낮추어 제어 압연 영역을 확대시킴으로써 압연에 의한 결정립을 미세화시켜 강도 및 인성을 향상시키는 역할을 한다.
상기 망간은 강판 전체 중량의 1.8 ~ 2.5 중량%의 함량비로 첨가되는 것이 바람직하다. 상기 망간(Mn)이 1.8 중량% 미만으로 첨가되면 제2상 조직의 형성이 불충분하여 강도 향상에 기여하지 못한다. 또한, 상기 망간(Mn)의 함량이 2.5 중량%를 초과하면 강에 고용된 황을 MnS로 석출하여 저온충격인성을 저하시키는 문제점이 있다.
인(P), 황(S), 질소(N)
인(P)은 저온충격인성을 저하시키는 대표적인 원소로서 그 함량이 낮으면 낮을수록 좋다. 따라서, 인(P)의 함량은 0.02 중량% 이하로 제한하는 것이 바람직하다.
황(S)은 상기 인(P)과 함께 강의 제조시 불가피하게 함유되는 원소로서, 유화물계 개재물(MnS)을 형성하여 저온충격인성을 저하시킨다. 따라서, 황(S)의 함량은 0.01 중량% 이하로 제한하는 것이 바람직하다.
질소(N)는 강 내부에 개재물을 발생시켜 강판의 내부 품질을 저하시키므로, 극저의 함량비로 관리하는 것이 바람직하나, 이를 위해서는 강판의 제조 비용이 증가하고, 또한 질소(N) 관리의 어려움이 있다. 따라서, 본 발명에서는 질소(N)의 함량을 0.007 중량% 이하로 제한한다.
크롬(Cr)
본 발명에서 크롬(Cr)은 담금질성 향상에 유효한 원소지만, 그 함유량이 0.04 중량%를 초과하면 용접성이나 열영향부(HAZ) 인성을 저하하기 때문에, 그 함량을 0.04 중량% 이하로 제한한다.
니켈(Ni)
본 발명에서 니켈(Ni)은 결정립을 미세화하고 오스테나이트 및 페라이트에 고용되어 기지를 강화시킨다. 특히 니켈은 저온인성을 향상시키는데 효과적인 원소이다.
상기 니켈은 강판 전체 중량의 0.2 ~ 1.0 중량%의 함량비로 첨가되는 것이 바람직하다. 니켈(Ni)이 0.2 중량% 미만의 함량비로 첨가되면 상기 니켈 첨가 효과를 제대로 발휘할 수 없다. 또한, 니켈(Ni)의 함량이 1.0 중량%를 초과하면 적열취성을 유발하는 문제점이 있다.
몰리브덴(Mo)
본 발명에서 몰리브덴(Mo)은 담금질성을 높이는 것과 동시에 템퍼링 연화 저항을 높이고, 강도 상승에 유효하지만 그 함유량이 0.2 중량% 미만으로는 그 효과가 충분하지 않고, 1.0 중량%를 초과하면 용접성을 저하시킴과 동시에 탄화물의 석출에 의하여 항복비를 상승시키므로, 그 함량을 0.2 ~ 1.0 중량%한다.
알루미늄(Al)
알루미늄(Al)은 강 중의 산소를 제거하기 위한 탈산제 역할을 한다.
상기 알루미늄(Al)은 강판 전체 중량의 0.03 중량% 이하의 함량비로 첨가되는 것이 바람직하다. 알루미늄(Al)의 함량이 0.03 중량%를 초과하면 비금속 개재물인 Al2O3를 형성하여 저온충격인성을 저하시키는 문제점이 있다.
구리(Cu)
본 발명에서 구리(Cu)는 강도 상승 및 인성 개선에 유효한 원소지만, 함유량이 0.2 중량% 미만에서는 충분한 효과가 발휘되지 않고, 1.0%를 초과하면 석출경화가 현저하고, 강재 표면에 균열이 발생하기 때문에 그 범위를 0.2 ~ 1.0 중량%로 한다.
티타늄(Ti)
상기 티타늄(Ti)은 용접열영향부(HAZ)의 조직 조대화를 억제하고 HAZ 인성에 기여하는 원소로, 강판 전체 중량의 0.01 ~ 0.02 중량%의 함량비로 첨가되는 것이 바람직하다. 티타늄의 함량이 0.01 중량% 미만이면 상기의 티타늄 첨가 효과가 미미하고, 티타늄의 함량이 0.02 중량%를 초과하면 TiN석출물이 조대해져 결정립 성장을 억제하는 효과가 저하된다.
니오븀(Nb)
니오븀(Nb)은 탄소(C), 질소(N)와 결합하여 탄화물 또는 질화물을 형성한다. 이는 압연시 결정립 성장을 억제하여 결정립을 미세화시키므로 강도와 저온인성을 향상시킨다.
상기 니오븀(Nb)은 강판 전체 중량의 0.02~0.1 중량%의 함량비로 첨가되는 것이 바람직하다. 니오븀(Nb)의 함량이 0.02 중량% 미만일 경우 상기의 니오븀 첨가 효과를 제대로 발휘할 수 없다. 한편, 니오븀(Nb)의 함량이 0.1 중량%를 초과할 경우 강판의 용접성을 저하하며, 또한 니오븀(Nb) 함량 증가에 따른 강도와 저온인성은 더 이상 향상되지 않고 페라이트 내에 고용된 상태로 존재하여 오히려 충격인성을 저하시킬 위험이 있다.
보론(B)
보론(B)은 고용되면 켄칭성을 증가시키고, 또한 BN으로서 석출되면 고용 N을 저하시켜서 HAZ의 인성을 향상시키는 원소이다. 강도와 인성의 밸런스를 양호하게 하기 위해서는 첨가량을 0.0005 내지 0.0050%로 하는 것이 바람직하다.
칼슘(Ca)
칼슘(Ca)은 유화물계 개재물의 형태 제어에 의한 인성 향상에 유효한 원소이지만, 0.002 중량% 미만으로는 그 효과가 충분하지 않고, 0.005 중량% 초과하면 그 효과가 포화되고, 인성을 저하시키기 때문에, 첨가량을 0.002 ~ 0.005 중량%로 하는 것이 바람직하다.
상기 조성으로 이루어진 강판은 20% 미만의 페라이트와 80% 이상의 베이나이트 미세조직으로 이루어져, 항복강도(YS) 730~750MPa, 인장강도(TS) 820~850MPa 의 고강도를 가지며, -40℃에서 충격에너지 250J 이상으로 저온인성을 만족한다.
이러한 특성은 본 발명의 조성에 있어서 C 함량을 낮게 설계하고, Mn 량을 높여 C 함량 감소에 따른 재질 확보 및 인성 향상을 유도하고, V 함량을 증가시켜 V(C,N) 석출 강화효과에 의한 강도 및 인성 향상에 의한 것이다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
<1차 실험>
1. 강판의 제조
표 1에 기재된 조성 및 표 2에 기재된 공정 조건으로 강판을 제조하였다.
Figure 112010012705145-pat00001
2번을 기본성분계로 하여, 1번은 C함량을 감소한 것이고, 3번은 C함량을 증가한 것이며, 4번은 B를 첨가한 것이고, 5번은 Nb 함량을 증가시킨 것이고, 6번은 V를 첨가한 것이다.
Figure 112010012705145-pat00002
2. 미세조직 분석
도 1은 압연종료온도에 따른 각성분계의 미세조직 그레인 맵(Grain map)을 나타낸 것이다.
도 1을 살펴보면 압연종료온도(FRT)가 낮을수록 조직이 미세해지는 경향을 나타냄을 알 수 있다.
3. Nb 함량에 따른 석출물 비교
도 2는 Nb 함량에 따른 석출물을 나타낸 것이다.
도시된 바와 같이 0.04 중량% Nb 첨가시 Ti, Nb(미량) 탄질화물이 석출되고,
0.04 중량% Nb 첨가시 Ti 탄질화물 이외에 구형 형태의 Nb, Ti(미량) 탄질화물도 석출됨을 알 수 있다.
4. 인장강도(TS) 및 항복강도(YS)
도 3은 각 성분계별 FRT 조건에 따른 인장강도를 나타낸 것이고,
도 4는 각 성분계별 FRT 조건에 따른 항복강도를 나타낸 것이다.
도 3을 살펴보면, 인장강도는 1번(0.04wt% C)과 5번(0.08wt% Nb) 성분계를 제외하고, 목표치인 800MPa 이상에 모두 도달했음을 알 수 있다.
보론(B)을 첨가한 경우(4번 성분계) 인장강도가 약 100MPa 상승함을 알 수 있으나, Nb 첨가(5번 성분계)에 따른 인장강도의 상승효과가 미미하고, V 첨가(6번 성분계)에 따른 인장강도의 상승효과 또한 미미하였다.
또한, FRT가 높을수록 인장강도가 상승하는 결과를 나타냈다.
상기와 같은 1차 실험의 결과로부터 6번 성분계(V : 0.06wt%)의 조성을 3번 공정조건(FRT 720℃)으로 제조하는 경우, 항복강도(YS) 740MPa, 인장강도(TS) 826MPa 으로 가장 우수한 결과값을 가져오는 것을 알 수 있다.
<2차 실험>
1. 강판의 제조
표 3에 기재된 조성 및 표 4에 기재된 공정 조건으로 강판을 제조하였다.
Figure 112010012705145-pat00003
1번 성분계는 V를 0.080 중량% 첨가한 것이고, 2번 성분계는 B를 0.001 중량 % 첨가한 것이고, 3번 성분계는 V : 0.060 중량%, B : 0.001 중량% 첨가한 것이다.
Figure 112010012705145-pat00004
공정조건은 냉각종료온도(FCT)와 냉각속도에 변화를 주어 실험하였다.
2. 미세조직 분석
도 5는 냉각종료온도(FCT)에 따른 1번 성분계의 미세조직사진을 나타낸 것이고, 도 6은 냉각종료온도(FCT)에 따른 2번 성분계의 미세조직사진을 나타낸 것이고, 도 7은 냉각종료온도(FCT)에 따른 3번 성분계의 미세조직사진을 나타낸 것이다.
V 첨가시 (1번 성분계, 3번 성분계) FCT 가 높은 경우, 그래뉼러 베이나이트(granular bainite) 형태가 보이고, 모든 성분계에서 FCT가 300일 때 침사 페라이트(acicular ferrite) 형태가 나타남을 알 수 있다.
3. 석출물 비교
도 8은 1번 성분계와 3번 성분계의 석출물을 나타낸 것이고, 도 9는 3번 성분계의 석출물을 더욱 확대하여 나타낸 것이다.
기지내 석출물은 1차압연과 동일하게 모든 강에서 사각형태의 수십 nm의 Ti, Nb(미량)탄질화물이 존재하며 1번 성분계(Nb : 0.08wt%)에서는 구형태의 100nm 내외 크기의 Nb탄질화물 관찰되었다. 그리고 V 첨가강(1번, 3번 성분계)에서는 20nm~25nm V(C,N) 석출물이 관찰되었다.
4. 인장강도(TS) 및 항복강도(YS)
도 10은 각 성분계별 냉각종료온도(FCT)에 따른 항복강도(YS)와 인장강도(TS)를 나타낸 것이다.
길이방향 결과임을 생각하면 전체 조건에서 TS는 760Mpa 이상, YS는 3번 성분계(0.06wt% V & 10ppm B)를 제외하고 690Mpa 에 충족되지 않을 것으로 예상된다.
FCT 감소에 따라,
B첨가강은 YS 유지, TS 증가하는 경향을 나타냈으며,
V첨가강은 YS 감소, TS 증가하는 경향을 나타냈고,
V와 B 모두 첨가된 강은 YS 증가, TS 증가하는 경향을 나타냈다.
냉각속도(CR) 감소에 따라,
B첨가강은 YS 유지, TS 감소하는 경향을 나타냈으며,
V첨가강은 YS 유지, TS 유지하는 경향을 나타냈고,
V와 B 모두 첨가된 강은 YS 증가, TS 증가하는 경향을 나타냈다.
5. 충격 시험
도 11은 시험온도에 따른 임팩트 에너지 측정결과를 나타낸 그래프이다.
도 11을 살펴보면, 3번 성분계(0.06wt% V & 10ppm B)의 경우 -80℃까지 250J 이상의 충격에너지를 보인다.
또한, FCT 400℃, CR 10℃/s 의 경우 -80℃까지 250J 이상의 충격에너지를 보인다.
V와 B 단독으로 첨가된 강(1번 성분계와 2번 성분계)일 경우 FCT가 동일할 때 CR이 작으면 충격에너지가 더 큰 것을 알 수 있다.
도 12는 -40℃ 및 -80℃ 에서의 각 성분계별 충격에너지를 나타낸 것이다.
도 12를 살펴보면, -80℃에서는 -40℃보다 충격에너지(Impact Energy)가 20J정도 감소함을 알 수 있다. 다만, 1번 성분계(0.08wt% V)의 경우 FCT 300℃, CR 10℃/s 조건에서 50J 정도 감소하였다.
상기와 같은 결과로부터, 3번 성분계(0.06wt% V & 10ppm B)의 조성에 2번 공정조건(FRT 760℃, FCT 400℃, CR 10℃/s)으로 제조하는 경우, 항복강도(YS) 680MPa, 인장강도(TS) 822MPa, -40℃ 충격에너지 250J 이상의 결과를 가져오는 것을 알 수 있다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.

Claims (10)

  1. 탄소(C) : 0.02 ~ 0.06 중량%, 실리콘(Si) : 0 초과 0.4 중량% 이하, 망간(Mn) : 1.8 ~ 2.5 중량%, 인(P) : 0 초과 0.020 중량% 이하, 황(S) : 0 초과 0.010 중량% 이하, 크롬(Cr) : 0 초과 0.04 중량% 이하, 니켈(Ni) : 0.2 ~ 1.0 중량%, 몰리브덴(Mo) : 0.2 ~1.0 중량%, 알루미늄(Al) : 0 초과 0.030 중량% 이하, 구리(Cu) : 0.2 ~ 1.0 중량% 이하, 티타늄(Ti) : 0.01~0.02 중량%, 니오븀(Nb) : 0.02 ~ 0.10 중량%, 바나듐(V) : 0.02 ~ 0.10 중량%, 보론(B) : 0.0005 ~ 0.0050 중량%, 질소(N) : 0 초과 0.007 중량% 이하, 칼슘 : 0.002 ~ 0.005 중량% 를 포함하고, 나머지는 Fe와 기타 불가피한 불순물로 조성되는 강슬라브를 슬라브재가열온도(SRT) 1100 ~ 1200 ℃로 재가열한 후 열간압연하되,
    압연종료온도(FRT) 750~770℃의 범위에 열간압연을 종료하고,
    냉각속도 15℃/sec 이하, 냉각종료온도(FCT) 400℃ 이상으로 열처리하는 것을 특징으로 하는 라인파이프용 고강도 강판 제조 방법.
  2. 제1항에 있어서,
    냉각시작온도(SCT)는 740~760℃ 인 것을 특징으로 하는 라인파이프용 고강도 강판 제조 방법.
  3. 제1항에 있어서,
    압연시작온도는 1000~1100℃ 인 것을 특징으로 하는 라인파이프용 고강도 강판 제조 방법.
  4. 탄소(C) : 0.02 ~ 0.06 중량%, 실리콘(Si) : 0 초과 0.4 중량% 이하, 망간(Mn) : 1.8 ~ 2.5 중량%, 인(P) : 0 초과 0.020 중량% 이하, 황(S) : 0 초과 0.010 중량% 이하, 크롬(Cr) : 0 초과 0.04 중량% 이하, 니켈(Ni) : 0.2 ~ 1.0 중량%, 몰리브덴(Mo) : 0.2 ~1.0 중량%, 알루미늄(Al) : 0 초과 0.030 중량% 이하, 구리(Cu) : 0.2 ~ 1.0 중량% 이하, 티타늄(Ti) : 0.01~0.02 중량%, 니오븀(Nb) : 0.02 ~ 0.10 중량%, 바나듐(V) : 0.02 ~ 0.10 중량% 이하, 보론(B) : 0.0005 ~ 0.0050 중량%, 질소(N) : 0 초과 0.007 중량% 이하, 칼슘 : 0.002 ~ 0.005 중량% 를 포함하고, 나머지는 Fe와 기타 불가피한 불순물로 조성되는 라인파이프용 고강도 강판.
  5. 제4항에 있어서,
    상기 탄소(C)는 0.03~0.05 중량%인 것을 특징으로 하는 라인파이프용 고강도 강판.
  6. 제5항에 있어서,
    상기 바나듐(V)은 0.07~0.09 중량%인 것을 특징으로 하는 라인파이프용 고강도 강판.
  7. 제6항에 있어서,
    상기 보론(B)은 0.0005~0.0015 중량%인 것을 특징으로 하는 라인파이프용 고강도 강판.
  8. 제4항에 있어서,
    상기 강판은 항복강도(YS) 730~750MPa, 인장강도(TS) 820~850MPa 인 것을 특징으로 하는 라인파이프용 고강도 강판.
  9. 제4항에 있어서,
    상기 강판은 -40℃ 충격에너지 250J 이상인 것을 특징으로 하는 라인파이프용 고강도 강판.
  10. 제4항에 있어서,
    상기 강판의 미세조직은 20% 미만의 페라이트와 80% 이상의 베이나이트를 포함하는 것을 특징으로 하는 라인파이프용 고강도 강판.
KR1020100017657A 2010-02-26 2010-02-26 라인파이프용 고강도 강판 및 그 제조 방법 KR101174970B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100017657A KR101174970B1 (ko) 2010-02-26 2010-02-26 라인파이프용 고강도 강판 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100017657A KR101174970B1 (ko) 2010-02-26 2010-02-26 라인파이프용 고강도 강판 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20110098185A KR20110098185A (ko) 2011-09-01
KR101174970B1 true KR101174970B1 (ko) 2012-08-23

Family

ID=44951772

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100017657A KR101174970B1 (ko) 2010-02-26 2010-02-26 라인파이프용 고강도 강판 및 그 제조 방법

Country Status (1)

Country Link
KR (1) KR101174970B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751530B1 (ko) 2015-12-28 2017-06-27 주식회사 포스코 공구용 강판 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152248A (ja) 1999-11-24 2001-06-05 Nippon Steel Corp 低温靱性の優れた高張力鋼板および鋼管の製造方法
JP2002155343A (ja) 2000-11-15 2002-05-31 Nkk Corp 高張力ラインパイプ用熱延鋼帯及びその製造方法
KR100540686B1 (ko) 1997-05-19 2006-01-10 아메리칸 캐스트 아이언 파이프 컴패니 고속 연속 주조에 의해 제조된 라인파이프 및 구조용 강

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540686B1 (ko) 1997-05-19 2006-01-10 아메리칸 캐스트 아이언 파이프 컴패니 고속 연속 주조에 의해 제조된 라인파이프 및 구조용 강
JP2001152248A (ja) 1999-11-24 2001-06-05 Nippon Steel Corp 低温靱性の優れた高張力鋼板および鋼管の製造方法
JP2002155343A (ja) 2000-11-15 2002-05-31 Nkk Corp 高張力ラインパイプ用熱延鋼帯及びその製造方法

Also Published As

Publication number Publication date
KR20110098185A (ko) 2011-09-01

Similar Documents

Publication Publication Date Title
CN111465711B (zh) 拉伸强度和低温冲击韧性优异的用于压力容器的钢板及其制造方法
KR101322067B1 (ko) 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
KR101778398B1 (ko) 용접 후 열처리 저항성이 우수한 압력용기 강판 및 그 제조방법
KR101482359B1 (ko) 극저온 인성이 우수하고 저항복비 특성을 갖는 고강도 강판 및 그의 제조방법
KR102209581B1 (ko) 용접열영향부 인성이 우수한 강재 및 이의 제조방법
KR20160078624A (ko) 저온인성 및 강도가 우수한 강관용 열연강판 및 그 제조방법
KR102122643B1 (ko) 라인파이프용 강재 및 그 제조방법
KR102031451B1 (ko) 저온인성이 우수한 저항복비 고강도 강관용 강재 및 그 제조방법
KR101344640B1 (ko) 고강도 강판 및 그 제조 방법
KR101257161B1 (ko) 열연강판, 그 제조 방법 및 이를 이용한 고강도 강관 제조 방법
KR20110130983A (ko) 저온인성이 우수한 항장력 560㎫급 라인파이프용 고강도 강판 및 그 제조 방법
KR101174970B1 (ko) 라인파이프용 고강도 강판 및 그 제조 방법
KR101505279B1 (ko) 열연강판 및 그 제조 방법
KR101505262B1 (ko) 고강도 강판 및 그 제조 방법
KR20160149640A (ko) 초고강도 강재 및 그 제조방법
KR101679668B1 (ko) 저온 인성이 우수한 고강도 후판 제조 방법 및 이에 의해 제조된 저온 인성이 우수한 고강도 후판
KR20120087611A (ko) 라인파이프용 고강도 강판 및 그 제조 방법
KR20160147153A (ko) 라인파이프용 고강도 후강판 제조 방법 및 이에 의해 제조된 라인파인프용 고강도 후강판
KR20160150190A (ko) 후판 제조방법 및 이에 의해 제조된 후판
KR101615029B1 (ko) 강판 및 그 제조 방법
KR101467030B1 (ko) 고강도 강판 제조 방법
KR20150002956A (ko) 라인파이프용 후강판 및 그 제조 방법
KR101185222B1 (ko) 고강도 api 열연강판 및 그 제조 방법
KR102250324B1 (ko) 강재 및 그 제조방법
KR101185232B1 (ko) 고강도, 고인성을 갖는 api 열연강판 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180731

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190805

Year of fee payment: 8