KR101118737B1 - manufacturing method of thermoelectric material with nanodot - Google Patents

manufacturing method of thermoelectric material with nanodot Download PDF

Info

Publication number
KR101118737B1
KR101118737B1 KR1020090089261A KR20090089261A KR101118737B1 KR 101118737 B1 KR101118737 B1 KR 101118737B1 KR 1020090089261 A KR1020090089261 A KR 1020090089261A KR 20090089261 A KR20090089261 A KR 20090089261A KR 101118737 B1 KR101118737 B1 KR 101118737B1
Authority
KR
South Korea
Prior art keywords
thermoelectric
heat treatment
thermoelectric material
quartz tube
cooling process
Prior art date
Application number
KR1020090089261A
Other languages
Korean (ko)
Other versions
KR20110031846A (en
Inventor
오민욱
이희웅
김봉서
박수동
민복기
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020090089261A priority Critical patent/KR101118737B1/en
Publication of KR20110031846A publication Critical patent/KR20110031846A/en
Application granted granted Critical
Publication of KR101118737B1 publication Critical patent/KR101118737B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

본 발명은 열전재료의 제조방법에 관한 것으로서, 상세하게는 열전재료를 이루는 원료를 각 칭량하여 세척하는 제1단계와; 상기 열전재료의 조성비에 맞게 각 원료들을 칭량하는 제2단계와; 상기 칭량된 원료들을 석영관에 장입하고, 석영관 내부 압력을 진공상태로 형성한 후, 가스를 채워 석영관을 밀봉시키는 제3단계와; 상기 밀봉된 석영관을 요동로에 넣고, 1차열처리를 수행하는 제4단계와; 상기 1차열처리를 수행한 후, Tc까지 서냉과정을 수행하는 제5단계와; Tc에 이르면 Tc에서 2차열처리를 수행하는 제6단계와; Tc에서 2차열처리 후 상온까지 급속 냉각과정을 수행하는 제7단계;를 포함하여 이루어진 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법을 기술적 요지로 한다. 이에 의해 균일한 나노돗이 형성된 열전재료의 무차원성능지수가 전반적으로 높은 값을 가져 열전재료로써 매우 우수한 물성을 가짐으로써, 열전발전 및 열전냉각 분야에서 열전재료로써 널리 사용될 수 있는 이점이 있다.The present invention relates to a method for manufacturing a thermoelectric material, and specifically, a first step of weighing and washing each raw material constituting a thermoelectric material; A second step of weighing each raw material in accordance with a composition ratio of the thermoelectric material; Inserting the weighed raw materials into a quartz tube, forming a pressure inside the quartz tube in a vacuum state, and then filling the gas to seal the quartz tube; A fourth step of putting the sealed quartz tube in a rocking furnace and performing a primary heat treatment; A fifth step of performing a slow cooling process to Tc after performing the primary heat treatment; A sixth step of performing secondary heat treatment at Tc when it reaches Tc; The seventh step of performing a rapid cooling process to the room temperature after the secondary heat treatment at Tc; and a method of manufacturing a thermoelectric material formed nano-dots, characterized in that comprises a. As a result, the dimensionless performance index of the thermoelectric material in which the uniform nanodot is formed has a high overall value and thus has very excellent physical properties as a thermoelectric material, and thus it can be widely used as a thermoelectric material in thermoelectric power generation and thermoelectric cooling.

열전발전 열전재료 열전냉각 열전소자 나노돗 무차원성능지수 열전성능 Thermoelectric power thermoelectric material thermoelectric cooling thermoelement nanodot dimensionless performance index thermoelectric performance

Description

나노돗이 형성된 열전재료의 제조방법{manufacturing method of thermoelectric material with nanodot}Manufacturing method of thermoelectric material with nanodots {manufacturing method of thermoelectric material with nanodot}

본 발명은 열전재료의 제조방법에 관한 것으로서, 특히 급속 냉각과정을 수행함으로써 균일한 나노돗을 형성시켜 열전성능을 향상시키기 위한 나노돗이 형성된 열전재료의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a thermoelectric material, and more particularly, to a method of manufacturing a thermoelectric material in which nanodots are formed to improve thermoelectric performance by forming a uniform nanodot by performing a rapid cooling process.

일반적으로, 열전발전 및 열전냉각을 위해 재료로 사용되는 열전재료는 열전특성이 증가할수록 열전소자의 성능이 향상된다. 그 열전성능을 결정하는 것은, 열기전력(V), 제벡 계수(α), 펠티어 계수(π), 톰슨 계수(τ), 네른스트 계수(Q), 에팅스하우젠 계수(P), 전기 전도율(σ), 출력 인자(PF), 성능 지수(Z), 무차원성능지수(ZT=α 2 σT/κ(여기에서, T는 절대온도이다)), 열전도율(κ), 로렌츠수(L), 전기 저항율(ρ) 등의 물성이다.In general, thermoelectric materials used as materials for thermoelectric power generation and thermoelectric cooling have improved performance of thermoelectric devices as thermoelectric properties increase. The thermoelectric performance is determined by the thermoelectric power (V), Seebeck coefficient (α), Peltier coefficient (π), Thomson coefficient (τ), Nernst coefficient (Q), Ettingshausen coefficient (P), and electrical conductivity (σ). ), Output factor (PF), figure of merit (Z), dimensionless performance index (ZT = α 2 σT / κ (where T is absolute temperature)), thermal conductivity (κ), Lorentz number (L), electricity Physical properties such as resistivity (ρ).

특히, 무차원성능지수(ZT)는 열전 변환 에너지 효율을 결정하는 중요한 요소로써, 성능 지수(Z=α 2 σ/κ)의 값이 큰 열전 재료를 사용하여 열전 소자를 제조함으로써, 냉각 및 발전의 효율을 높일 수 있게 된다.In particular, the dimensionless performance index (ZT) is an important factor in determining the thermoelectric conversion energy efficiency, cooling and power generation by manufacturing a thermoelectric element using a thermoelectric material having a large value of the performance index (Z = α 2 σ / κ) It is possible to increase the efficiency of.

현재 상용화된 열전재료는 ZT~1 정도 수준이며, 그 중 AgPbmSbTem+2 합금은 도 1과 같은 결정구조를 가지며, ZT=1.7(at 700K)로 알려져 있어 열전특성이 매우 우수한 편이다. AgPbmSbTem+2 합금은 입방체 결정구조로 납(Pb)과 텔루륨(Te)이 교차하여 배치되고, 은(Ag)과 안티몬(Sb)은 납(Pb)를 치환하여 위치되어 있다.Currently commercialized thermoelectric material is ZT ~ 1 level, of which AgPb m SbTe m + 2 alloy has a crystal structure as shown in Figure 1, ZT = 1.7 (at 700K) is very excellent thermoelectric properties. AgPb m SbTe m + 2 alloy has a cubic crystal structure in which lead (Pb) and tellurium (Te) intersect, and silver (Ag) and antimony (Sb) are positioned to replace lead (Pb).

이러한 우수한 열전특성을 갖기 위해서는 전체 합금 내에 나노돗(nanodot)이 균일하게 분포되어야 하는 것으로 알려져 있다. 일반적으로 알려진 제조공정에 의한다 하더라도 나노돗이 형성되지 않거나, 원하지 않는 제2상, 제3상(2nd phase, 3rd phase)이 석출되는 등, 수 나노 크기(약 10nm 이하)의 균일한 나노돗을 형성시킬 수 있는 제조공정에 대해서는 명확히 알려진 바가 없는 실정이다.In order to have such excellent thermoelectric properties, it is known that nanodots should be uniformly distributed in the entire alloy. Even though it depends on the general manufacturing process, known or not forming a nano-Dot, unwanted phase 2, phase 3 (2 nd phase, 3 rd phase), such as the precipitated, can a uniform nano-sized (about 10nm or less) The manufacturing process capable of forming nanodots is not clearly known.

본 발명은 상기 문제점을 해결하기 위한 것으로, 급속 냉각과정을 수행함으로써 균일한 나노돗을 형성시켜 열전성능을 향상시키기 위한 나노돗이 형성된 열전재료의 제조방법의 제공을 그 목적으로 한다.An object of the present invention is to provide a method for producing a thermoelectric material in which nanodots are formed to improve thermoelectric performance by forming a uniform nanodot by performing a rapid cooling process.

상기 목적을 달성하기 위해 본 발명은, 열전재료를 이루는 원료를 각 칭량하여 세척하는 제1단계와; 상기 열전재료의 조성비에 맞게 각 원료들을 칭량하는 제2단계와; 상기 칭량된 원료들을 석영관에 장입하고, 석영관 내부 압력을 진공상태로 형성한 후, 가스를 채워 석영관을 밀봉시키는 제3단계와; 상기 밀봉된 석영관을 요동로(rocking furnace)에 넣고, 1차열처리를 수행하는 제4단계와; 상기 1차열처리를 수행한 후, Tc까지 서냉과정을 수행하는 제5단계와; Tc에 이르면 Tc에서 2차열처리를 수행하는 제6단계와; Tc에서 2차열처리 후 상온까지 급속 냉각과정을 수행하는 제7단계;를 포함하여 이루어진 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법을 기술적 요지로 한다.In order to achieve the above object, the present invention includes a first step of weighing and washing each raw material constituting the thermoelectric material; A second step of weighing each raw material in accordance with a composition ratio of the thermoelectric material; Inserting the weighed raw materials into a quartz tube, forming a pressure inside the quartz tube in a vacuum state, and then filling the gas to seal the quartz tube; A fourth step of placing the sealed quartz tube in a rocking furnace and performing a primary heat treatment; A fifth step of performing a slow cooling process to Tc after performing the primary heat treatment; A sixth step of performing secondary heat treatment at Tc when it reaches Tc; The seventh step of performing a rapid cooling process to the room temperature after the secondary heat treatment at Tc; and a method of manufacturing a thermoelectric material formed nano-dots, characterized in that comprises a.

또한, 상기 열전재료는 AgPbmSbTem+2(m≥1,자연수)인 것이 바람직하다.In addition, the thermoelectric material is preferably AgPb m SbTe m + 2 ( m1 , natural number).

여기에서, 상기 제4단계의 1차열처리는 900℃ 이상 1500℃ 이하의 온도에서 30분 이상 72시간 이하 동안 이루어지는 것이 바람직하며, 또한, 상기 제5단계의 서냉과정은 냉각속도 360℃/시간 이하로 이루어지는 것이 바람직하다.Here, the first heat treatment of the fourth step is preferably performed for 30 minutes or more and 72 hours or less at a temperature of 900 ° C or more and 1500 ° C or less, and the slow cooling process of the fifth step is a cooling rate of 360 ° C / hour or less It is preferable that it consists of.

또한, 상기 제6단계의 2차열처리는 Tc에서 30분 이상 48시간 이내 동안 이루어지는 것이 바람직하며, 또한, 상기 제7단계의 급속 냉각과정은 냉각속도 0.1℃/초 이상 1000℃/초 이하로 이루어지는 것이 바람직하다.In addition, the second heat treatment of the sixth step is preferably performed for 30 minutes or more within 48 hours at Tc, and the rapid cooling process of the seventh step is performed at a cooling rate of 0.1 ° C / second or more and 1000 ° C / second or less. It is preferable.

또한, Tc는 400℃ 이상 750℃ 이하인 것이 바람직하다.Moreover, it is preferable that Tc is 400 degreeC or more and 750 degrees C or less.

상기 구성에 의해 본 발명에 따른 열전재료, 특히 AgPbmSbTem+2에 균일한 나노돗을 형성시킴으로써, 낮은 열확산도, 큰 제벡계수, 낮은 비저항, 높은 출력인자, 낮은 열전도도를 가지게 되어 무차원성능지수를 향상시켜 우수한 열전재료가 될 수 있으며, 이에 의해 열전발전 및 열전냉각 분야에서 열전재료로써 널리 사용 될 수 있는 효과가 있다.By forming a uniform nanodot in the thermoelectric material, in particular AgPb m SbTe m + 2 according to the present invention by the above configuration, it has a low thermal diffusivity, large Seebeck coefficient, low specific resistance, high output factor, low thermal conductivity, dimensionless It can be an excellent thermoelectric material by improving the performance index, thereby having an effect that can be widely used as a thermoelectric material in the field of thermoelectric power generation and thermoelectric cooling.

본 발명은 열전재료의 열전특성을 향상시키기 위한 제조방법에 관한 것으로서, 이하에서는 열전재료 중에 열전특성이 우수한 것으로 알려진 AgPbmSbTem+2에 열전특성의 향상을 위한 나노돗을 형성시키기 위한 방법을 중심으로 설명하고자 한다.The present invention relates to a manufacturing method for improving the thermoelectric properties of the thermoelectric material, hereinafter, a method for forming nano-dots for improving the thermoelectric properties in the AgPb m SbTe m +2 known to have excellent thermoelectric properties in the thermoelectric material The explanation will be centered.

먼저, 제1단계로 순수한(99.999%) Ag, Pb, Sb, Te 원료를 각 칭량하여 세척하고, 제2단계로 세척이 완료되면 상기 각 원료들을 AgPbmSbTem+2에 있어서, m에 따라 각 원료를 정밀 저울을 이용하여 칭량하여 준비한다.First, pure (99.999%) Ag, Pb, Sb, Te raw materials are weighed and washed in the first step, and when the washing is completed in the second step, the raw materials are AgPb m SbTe m + 2 according to m. Each raw material is weighed and prepared using a precision balance.

그리고, 제3단계로 상기 칭량된 원료들을 석영관에 장입하고, 석영관 내부 압력을 일정 압력 이하의 진공상태로 만든 후, 아르곤(Ar) 가스를 채워 석영관을 밀봉시키고, 제4단계로 밀봉된 석영관을 전기로에 넣어 900℃ 이상 1500℃ 이하에서 30분~72시간 동안 1차열처리를 수행한다.In the third step, the weighed raw materials are charged into a quartz tube, and the internal pressure of the quartz tube is brought to a vacuum below a predetermined pressure, and then filled with argon (Ar) gas to seal the quartz tube and sealed in the fourth step. The primary quartz tube was put into an electric furnace and subjected to primary heat treatment for 30 minutes to 72 hours at 900 ° C or higher and 1500 ° C or lower.

그리고, 제5단계로 일정 시간 및 온도에서 1차열처리가 완료되면, 전기로 내부에서 Tc(400℃ 이상에서 750℃ 이하)까지 시간당 360℃ 이하로 서냉과정을 수행하고, 제6단계로 Tc에 이르면 Tc에서 30분~48시간 동안 2차열처리를 수행한 후, 제7단계로 Tc에서 상온까지 0.1℃/초 이상 1000℃/초 이하의 속도로 급속 냉각과정을 수행한다. 상기 급속 냉각과정은 가열된 샘플을 물에 담가 급속하게 냉각시키는 수냉(水冷)법이나 오일, 액체금속(갈륨 등) 또는 가스(헬륨 등) 등을 이용하여 냉각시킨다.In the fifth step, when the first heat treatment is completed at a predetermined time and temperature, a slow cooling process is performed at 360 ° C. or less per hour up to Tc (400 ° C. or more and 750 ° C. or less) in the electric furnace, and a sixth step is applied to Tc. As soon as the secondary heat treatment is performed for 30 minutes to 48 hours at Tc, the rapid cooling process is performed at a rate of 0.1 ° C./sec or more and 1000 ° C./sec or less from Tc to room temperature in the seventh step. In the rapid cooling process, the heated sample is cooled by using a water cooling method in which water is rapidly cooled by dipping in water, oil, a liquid metal (gallium, etc.), or a gas (helium, etc.).

여기에서, 상기 제4단계 및 Tc 온도 사이에서 나노돗이 형성되며, Tc 온도 이하에서 열처리 공정을 겪게 되면 나노돗 이외의 상들이 형성되기 때문에 Tc 온도 이하에서는 제7단계의 급속 냉각과정을 시켜야 한다.Herein, nanodots are formed between the fourth step and the Tc temperature, and when the heat treatment process is performed at or below the Tc temperature, phases other than nanodots are formed. .

도 2는 상기의 열처리 및 냉각 과정을 도식화한 것으로, 제4단계의 1차열처리를 거친 후 제5단계의 Tc 까지 서냉과정, 제6단계의 2차열처리, 제7단계의 급속 냉각과정을 나타낸 것이다.Figure 2 is a schematic of the heat treatment and cooling process described above, after the first heat treatment of the fourth stage after the slow cooling process to Tc of the fifth stage, the second heat treatment of the sixth stage, the rapid cooling process of the seventh stage will be.

이러한 과정은 나노돗의 형성이 특정 온도 구간에서 발생하고, 그 구간 이외에 다른 온도 구간에서 냉각되면 나노돗 이외의 상들이 석출되게 되므로, 나노돗이 형성되는 온도 구간(제4단계 및 제5단계, 제6단계)에서는 일정온도에서 열처리 및 서냉을 하고, 그 외의 온도 구간에서는 급냉(제7단계)을 하게 된다. 이렇게 형성된 나노돗은 급냉 과정에서 서로 뭉치거나 또는 특정 위치에서 석출될 수 있는 시간이 부족하므로 균일하게 형성되는 것이다.In this process, the formation of nanodots occurs in a certain temperature section, and when cooled in another temperature section other than the section, phases other than nanodots are precipitated, so that the temperature range in which nanodots are formed (steps 4 and 5, In the sixth step, heat treatment and slow cooling are performed at a constant temperature, and in the other temperature section, quenching is performed (seventh step). The nano-dots formed as described above are uniformly formed because they lack time to be aggregated together or precipitated at a specific location in the quenching process.

이와 같이 AgPbmSbTem+2에는 상기 서냉 및 급속 냉각과정을 통해 균일한 나노돗이 형성되며, 이러한 균일한 나노돗의 형성은 열전특성을 향상시키게 된다.As described above, uniform nanodots are formed in the AgPb m SbTe m + 2 through the slow cooling and rapid cooling processes, and the formation of the uniform nanodots improves the thermoelectric properties.

일반적으로, 나노돗이 형성되며 전자 및 포논(phonon)의 흐름이 나노돗에 의해 산란되게 되는데, 그 결과 전기전도도가 감소하고 열전도도 또한 감소하게 된다. 그러나, 전기전도도의 감소보다는 열전도도의 감소효과가 훨씬 더 크기 때문에 나노돗이 형성되면 무차원성능지수는 전체적으로 증가하게 된다. 이러한 현상을 나노돗의 선택적 산란 효과라고 할 수 있는데, 선택적 산란 효과는 나노돗의 크기 및 분포에 영향을 받으므로, 나노놋이 균일하게 분포되어 있지 않고 특정하게 뭉쳐 있거나 나노돗의 크기가 크면 전기전도도의 감소 효과도 증가하게 되어 나노돗 형성에 의한 무차원성능지수의 향상을 기대하기 어렵게 된다.Generally, nanodots are formed and the flow of electrons and phonons is scattered by the nanodots, resulting in reduced electrical conductivity and also reduced thermal conductivity. However, since the effect of reducing the thermal conductivity is much greater than the decrease in the electrical conductivity, when the nanodot is formed, the dimensionless performance index increases as a whole. This phenomenon can be referred to as the selective scattering effect of nanodots. The selective scattering effect is influenced by the size and distribution of nanodots. The effect of reducing conductivity is also increased, making it difficult to expect an improvement in the dimensionless performance index due to nanodot formation.

따라서, 본 발명에 따른 일정 온도 및 시간에서 열처리, 서냉 및 급냉과정을 거침으로써, AgPbmSbTem+2 재료에 균일한 나노돗을 형성시킴으로써 전체적으로 재료의 무차원성능지수를 향상시켜 열전특성 또한 향상시키게 되는 것이다. 이러한 방법은 AgPbmSbTem+2 뿐만 아니라 다른 열전재료에서도 Tc를 파악하여 동일한 열처리 및 냉각과정을 거치게 되면 균일한 나노돗을 형성시킬 수 있다.Therefore, by performing a heat treatment, slow cooling and quenching process at a constant temperature and time according to the present invention, by forming a uniform nano-dot in AgPb m SbTe m + 2 material to improve the overall dimensionless performance index of the material to improve the thermoelectric properties also It is to be made. This method can form uniform nanodots by identifying Tc in other thermoelectric materials as well as AgPb m SbTe m + 2 and undergoing the same heat treatment and cooling process.

이하에서는 본 발명의 바람직한 실시예를 설명하고자 한다.Hereinafter will be described a preferred embodiment of the present invention.

순도 99.999%의 Ag, Pb, Sb, Te 원료를 아세톤, 에탄올 등을 이용하여 세척한 후, AgPbmSbTem+2에 있어서, m이 18인 AgPb18SbTe20의 조성에 맞게 정밀 저울을 이용하여 각 원료들을 칭량하여 준비한다.Ag, Pb, Sb, Te raw materials with a purity of 99.999% were washed with acetone, ethanol, and the like, and then, in AgPb m SbTe m + 2 , m was 18, using a precision balance in accordance with the composition of AgPb 18 SbTe 20 . Each raw material is weighed and prepared.

그리고, 상기 칭량된 원료들을 석영관에 장입하고, 석영관 내부 압력이 10-5Torr 수준이 되도록 한다. 10-5Torr의 진공상태가 되며, 아르곤(Ar) 가스를 채워 석영관을 밀봉한다. 밀봉된 석영관을 전기로인 요동로(rocking furnace)에 넣고 960℃에서 1차열처리한 후 Tc인 550℃로 로냉(furnace cooling)을 수행하여 서서히 냉각시킨다. 냉각속도는 360℃/시간 이하로, 바람직하게는 200℃/시간으로 냉각시킨다. 로냉 후 Tc인 550℃에 이르면, 10시간 동안 2차열처리를 하고, 그 후 상온까지 100℃/초로 수냉으로 급속 냉각을 수행한다.Then, the weighed raw material is charged into a quartz tube, and the pressure inside the quartz tube is 10 -5 Torr. It becomes a vacuum state of 10 -5 Torr and is filled with argon (Ar) gas to seal the quartz tube. The sealed quartz tube was placed in a rocking furnace, which is an electric furnace, and subjected to primary heat treatment at 960 ° C, followed by slow cooling by performing furnace cooling at 550 ° C, which is Tc. The cooling rate is 360 ° C./hour or less, preferably 200 ° C./hour. After quenching, when the temperature reaches 550 ° C, which is Tc, secondary heat treatment is performed for 10 hours, and then rapid cooling is performed by water cooling at 100 ° C / sec to room temperature.

이와 같이 제조된 AgPb18SbTe20을 투과전자현미경(TEM)으로 관찰하면 도 3과 같이 검은색의 나노돗만이 균일하게 분포되어 있는 것을 확인할 수 있었다. 이는 나노돗이 형성되는 온도 구간에서는 열처리 및 서냉 과정을 수행하고, 그 외의 온도 구간에서는 급속 냉각을 수행하여 다른 상의 형성은 억제시키고 나노돗만이 형성되도록 하였기 때문이다.Observing AgPb 18 SbTe 20 thus prepared with a transmission electron microscope (TEM), it was confirmed that only black nanodots were uniformly distributed as shown in FIG. 3. This is because heat treatment and slow cooling process are performed in the temperature range in which the nanodots are formed, and rapid cooling is performed in the other temperature ranges so that the formation of another phase is suppressed and only the nanodots are formed.

도 4는 도3의 나노돗을 확대하여 찍은 TEM 사진을 나타낸 것으로, 2~10nm 크기의 나노돗이 형성되었음을 확인할 수 있었다.Figure 4 shows a TEM picture taken by enlarging the nanodot of Figure 3, it could be confirmed that the nanodot of 2 ~ 10nm size was formed.

도 5는 이와 같이 제조된 AgPb18SbTe20의 열전특성을 측정한 데이타이다. 550℃ 온도 구간에서 열처리한 경우 나노돗 형성에 의해 열전도도가 현저히 감소함을 확인할 수 있었고, 그 결과 열전특성은 향상되었다.5 is data for measuring thermoelectric properties of AgPb 18 SbTe 20 thus prepared. When the heat treatment in the temperature range of 550 ℃ can be seen that the thermal conductivity is significantly reduced by the formation of nano-dots, the result was improved thermoelectric properties.

이와 같이, 본 발명에 따라 일정한 열처리, 서냉 및 급냉 과정을 거침으로써 AgPbmSbTem+2는 균일한 나노돗의 형성에 의해 무차원성능지수(ZT)가 높은 값을 가지는 것을 확인할 수 있었으며, 이는 열전특성을 향상시켜 열전발전 및 열전냉각 분야에서 열전재료로써 널리 활용될 것으로 기대된다.As described above, AgPb m SbTe m + 2 was found to have a high dimensionless performance index (ZT) by forming uniform nano-dots by undergoing a constant heat treatment, slow cooling, and rapid cooling process according to the present invention. It is expected to be widely used as a thermoelectric material in thermoelectric power generation and thermoelectric cooling by improving thermoelectric characteristics.

또한, 열전재료의 종류에 따라 Tc를 파악하여 나노돗이 형성되는 구간에서는 열처리 및 서냉과정을 수행하고 그 외 구간에서는 급냉과정을 수행함으로써, AgPbmSbTem+2 외에 다른 열전재료에도 동일한 과정을 거쳐 균일한 나노돗의 형성이 가능하게 된다.In addition, by performing the heat treatment and slow cooling process in the section where the nano dop is formed by identifying the Tc according to the type of thermoelectric material, and performing the quenching process in the other section, the same process is applied to other thermoelectric materials besides AgPb m SbTe m + 2 . Through this, uniform nanodots can be formed.

도 1 - AgPbmSbTem+2의 결정구조를 나타낸 도.1-A diagram showing the crystal structure of AgPb m SbTe m + 2 .

도 2 - 본 발명에 따른 열처리 및 냉각 과정을 모식화한 도.2 is a schematic view illustrating a heat treatment and cooling process according to the present invention.

도 3 - 본 발명에 따라 제조된 AgPb18SbTe20의 TEM 사진을 나타낸 도.Figure 3-TEM picture of AgPb 18 SbTe 20 prepared according to the present invention.

도 4 - 도 3의 나노돗 부분을 확대한 TEM 사진을 나타낸 도.4 to 3 are enlarged TEM photographs of the nanodot portion of FIG. 3.

도 5 - 본 발명에 따라 제조된 AgPb18SbTe20의 열전도도를 측정한 데이타를 나타낸 도.Figure 5 is a diagram showing the data measured the thermal conductivity of AgPb 18 SbTe 20 prepared according to the present invention.

Claims (7)

열전재료를 이루는 원료를 각 칭량하여 세척하는 제1단계와;A first step of weighing and washing the raw materials constituting the thermoelectric material; 상기 열전재료의 조성비에 맞게 각 원료들을 칭량하는 제2단계와;A second step of weighing each raw material in accordance with a composition ratio of the thermoelectric material; 상기 칭량된 원료들을 석영관에 장입하고, 석영관 내부 압력을 진공상태로 형성한 후, 가스를 채워 석영관을 밀봉시키는 제3단계와;Inserting the weighed raw materials into a quartz tube, forming a pressure inside the quartz tube in a vacuum state, and then filling the gas to seal the quartz tube; 상기 밀봉된 석영관을 요동로에 넣고, 1차열처리를 수행하는 제4단계와;A fourth step of putting the sealed quartz tube in a rocking furnace and performing a primary heat treatment; 상기 1차열처리를 수행한 후, Tc까지 서냉과정을 수행하는 제5단계와;A fifth step of performing a slow cooling process to Tc after performing the primary heat treatment; Tc에 이르면 Tc에서 2차열처리를 수행하는 제6단계와;A sixth step of performing secondary heat treatment at Tc when it reaches Tc; Tc에서 2차열처리 후 상온까지 급속 냉각과정을 수행하는 제7단계;를 포함하여 이루어진 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법.A seventh step of performing a rapid cooling process up to room temperature after the secondary heat treatment at Tc; Nano-doped thermoelectric material manufacturing method comprising a. 제 1항에 있어서, 상기 열전재료는 AgPbmSbTem+2(m≥1,자연수)인 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법.The method of claim 1, wherein the thermoelectric material is AgPb m SbTe m + 2 ( m ≧ 1, natural number). 제 1항 또는 제 2항에 있어서, 상기 제4단계의 1차열처리는 900℃ 이상 1500℃ 이하의 온도에서 30분~72시간 동안 이루어지는 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법.The method according to claim 1 or 2, wherein the primary heat treatment of the fourth step is performed for 30 minutes to 72 hours at a temperature of 900 ° C or more and 1500 ° C or less. 제 1항 또는 제 2항에 있어서, 상기 제5단계의 서냉과정은 냉각속도 360℃/시간 이하로 이루어지는 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법.The method of claim 1, wherein the slow cooling process of the fifth step is performed at a cooling rate of 360 ° C./hour or less. 제 1항 또는 제 2항에 있어서, 상기 제6단계의 2차열처리는 Tc에서 30분~48시간 동안 이루어지는 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법.The method of claim 1 or 2, wherein the secondary heat treatment of the sixth step is performed for 30 minutes to 48 hours at Tc. 제 1항 또는 제 2항에 있어서, 상기 제7단계의 급속 냉각과정은 냉각속도 0.1℃/초 이상 1000℃/초 이하로 이루어지는 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법.The method of claim 1, wherein the rapid cooling of the seventh step is performed at a cooling rate of 0.1 ° C./sec or more and 1000 ° C./sec or less. 제 1항 또는 제 2항에 있어서, Tc는 400℃ 이상 750℃ 이하인 것을 특징으로 하는 나노돗이 형성된 열전재료의 제조방법.The method for producing a thermoelectric material with a nano-dot according to claim 1 or 2, wherein Tc is 400 ° C or higher and 750 ° C or lower.
KR1020090089261A 2009-09-21 2009-09-21 manufacturing method of thermoelectric material with nanodot KR101118737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090089261A KR101118737B1 (en) 2009-09-21 2009-09-21 manufacturing method of thermoelectric material with nanodot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090089261A KR101118737B1 (en) 2009-09-21 2009-09-21 manufacturing method of thermoelectric material with nanodot

Publications (2)

Publication Number Publication Date
KR20110031846A KR20110031846A (en) 2011-03-29
KR101118737B1 true KR101118737B1 (en) 2012-03-12

Family

ID=43936776

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090089261A KR101118737B1 (en) 2009-09-21 2009-09-21 manufacturing method of thermoelectric material with nanodot

Country Status (1)

Country Link
KR (1) KR101118737B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282962A (en) 2002-03-26 2003-10-03 Univ Waseda Thermoelectric material and its manufacturing method
JP2006237460A (en) 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Process for producing thermoelectric material
JP2008523579A (en) 2004-10-29 2008-07-03 マサチューセッツ・インスティチュート・オブ・テクノロジー(エムアイティー) Nanocomposites with high thermoelectric figure of merit
JP2008543110A (en) 2005-06-06 2008-11-27 ミシガン ステイト ユニバーシティー Thermoelectric composition and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282962A (en) 2002-03-26 2003-10-03 Univ Waseda Thermoelectric material and its manufacturing method
JP2008523579A (en) 2004-10-29 2008-07-03 マサチューセッツ・インスティチュート・オブ・テクノロジー(エムアイティー) Nanocomposites with high thermoelectric figure of merit
JP2006237460A (en) 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Process for producing thermoelectric material
JP2008543110A (en) 2005-06-06 2008-11-27 ミシガン ステイト ユニバーシティー Thermoelectric composition and method

Also Published As

Publication number Publication date
KR20110031846A (en) 2011-03-29

Similar Documents

Publication Publication Date Title
JP6266099B2 (en) High performance P-type thermoelectric material having reversible phase transition and method for producing the same
US7559215B2 (en) Methods of drawing high density nanowire arrays in a glassy matrix
US20070131269A1 (en) High density nanowire arrays in glassy matrix
Koenig et al. Thermoelectric efficiency of (1− x)(GeTe) x (Bi 2 Se 0.2 Te 2.8) and implementation into highly performing thermoelectric power generators
KR20110079490A (en) Fabrication method for te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby
Lucas et al. Thermoelectric bulk glasses based on the Cu–As–Te–Se system
CN109671840B (en) Antimony tellurium selenium matrix alloy construction method for thermoelectric material and antimony tellurium selenium matrix thermoelectric material
Wang et al. Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions
Nishikawa et al. Thermoelectric properties of molten Bi2Te3, CuI, and AgI
KR101264311B1 (en) fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion
KR101417968B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
KR20130078478A (en) Fabrication method for te-based thermoelectric materials containing twins formed by addition of dopant and nano particle sintering
Kaibe et al. Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency
JP5199114B2 (en) High density nanowire arrays in a glassy matrix
KR101631858B1 (en) Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
KR101323320B1 (en) GeTe thermoelectric material doped with Ag and Sb and manufacturing method thereby
KR101118737B1 (en) manufacturing method of thermoelectric material with nanodot
KR101104386B1 (en) fabrication method for Zn4Sb3 thermoelectric materials
US20100083996A1 (en) Methods of drawing wire arrays
KR102198207B1 (en) Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
WO2018131532A1 (en) Thermoelectric conversion element and method for manufacturing same
KR102269404B1 (en) Selenium content increased thermal element
KR101304428B1 (en) Thermoelectric leg, method for manufacturing thereof and thermoelectric module for generation
KR101215562B1 (en) GeTe thermoelectric material doped Sb and manufacturing method thereby
KR101323321B1 (en) MnTe thermoelectric material doped with Sb and manufacturing method thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180206

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee