KR101113074B1 - Cathode active material, and cathode, lithium secondary battery comprising the same - Google Patents

Cathode active material, and cathode, lithium secondary battery comprising the same Download PDF

Info

Publication number
KR101113074B1
KR101113074B1 KR1020100049755A KR20100049755A KR101113074B1 KR 101113074 B1 KR101113074 B1 KR 101113074B1 KR 1020100049755 A KR1020100049755 A KR 1020100049755A KR 20100049755 A KR20100049755 A KR 20100049755A KR 101113074 B1 KR101113074 B1 KR 101113074B1
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
diameter
lithium
current collector
Prior art date
Application number
KR1020100049755A
Other languages
Korean (ko)
Other versions
KR20100131921A (en
Inventor
홍승택
박혜웅
전호진
박성준
최대식
윤난지
김여진
최승돈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20100131921A publication Critical patent/KR20100131921A/en
Application granted granted Critical
Publication of KR101113074B1 publication Critical patent/KR101113074B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 양극 활물질로서 열 안정성이 우수한 활물질을 채용하고, 여기에 높은 체적 밀도를 갖도록 입경크기가 다른 2 종의 활물질을 사용함으로써 안전성이 향상된 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것이다. 본 발명은, 평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질 및 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 포함하는 것을 특징으로 한다.
본 발명에 의한 복합 양극 활물질은 대구경 양극 활물질 및 소구경 양극 활물질을 포함하며 이들을 일정한 입경비 및 중량비로 혼합하여 충진 밀도를 향상시키는 것이 가능하고, 고안정성 물질 및 고전도성 물질을 포함하여 종래의 양극 활물질에 비해 향상된 체적 밀도, 방전 용량, 열 안정성 및 고율 방전 특성을 나타내는 효과가 있다.
The present invention relates to a positive electrode active material, and a positive electrode and a lithium secondary battery including the same, and more particularly, an active material having excellent thermal stability as a positive electrode active material, and two kinds of active materials having different particle sizes so as to have a high volume density. It relates to a positive electrode active material having improved safety by using, and a positive electrode and a lithium secondary battery comprising the same. The present invention is characterized by including a small diameter active material having an average particle diameter of 0.5 µm, a maximum particle diameter of less than 1 µm, and a large diameter active material having an average particle diameter of 5 to 20 µm and a maximum particle diameter of less than 100 µm.
The composite positive electrode active material according to the present invention includes a large diameter positive electrode active material and a small diameter positive electrode active material, and it is possible to improve the filling density by mixing them at a constant particle size ratio and weight ratio, and includes a conventional positive electrode including a high stability material and a high conductivity material. Compared to the active material, there is an effect of showing improved volume density, discharge capacity, thermal stability, and high rate discharge characteristics.

Description

양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지{CATHODE ACTIVE MATERIAL, AND CATHODE, LITHIUM SECONDARY BATTERY COMPRISING THE SAME}Cathode active material, and a cathode, a lithium secondary battery including the same {CATHODE ACTIVE MATERIAL, AND CATHODE, LITHIUM SECONDARY BATTERY COMPRISING THE SAME}

본 발명은 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 양극 활물질로서 열 안정성이 우수한 활물질을 채용하고, 여기에 높은 체적 밀도를 갖도록 입경크기가 다른 2 종의 활물질을 사용함으로써 안전성이 향상된 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것이다.
The present invention relates to a positive electrode active material, and a positive electrode and a lithium secondary battery including the same, and more particularly, an active material having excellent thermal stability as a positive electrode active material, and two kinds of active materials having different particle sizes so as to have a high volume density. It relates to a positive electrode active material having improved safety by using, and a positive electrode and a lithium secondary battery comprising the same.

리튬 이차 전지는 종래의 니켈카드뮴 이차 전지 등에 비해 고전압 및 고용량 특성을 구비한다. 특히, 양극 활물질로서 LiCoO2, LiNiO2, LiMn2O4 로 대표되는 리튬 전이 금속을 사용하고, 음극 활물질로서 그래파이트, 탄소 섬유 등의 카본을 사용하면, 4V 이상의 고전압을 발생시킬 수 있을 뿐 아니라, 단락 등의 부작용 우려도 적은 바, 휴대전화, 노트북 피씨, 디지털 카메라 등과 같은 모바일 전자 기기의 휴대용 전원으로서 그 활용도가 높은 실정이다.
Lithium secondary batteries have high voltage and high capacity characteristics compared to conventional nickel cadmium secondary batteries. In particular, when a lithium transition metal represented by LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as the positive electrode active material, and carbon such as graphite or carbon fiber is used as the negative electrode active material, not only a high voltage of 4V or more can be generated, As there is little concern about side effects such as short circuit, it is highly utilized as a portable power source for mobile electronic devices such as mobile phones, notebook PCs and digital cameras.

모바일 기기가 지속적으로 경량화 소형화 되면서도 다양한 기능이 부여되는 등의 형태로 점차 고기능화 되어가고, 고온이나 저온환경하에서의 사용도 요구되는 등, 보다 높은 수준의 전기 용량, 충방전, 및 안정성 특성이 요구되고 있다.
As mobile devices continue to become lightweight and compact, they are becoming increasingly functional in the form of various functions, and higher levels of capacitance, charge and discharge, and stability characteristics are required. .

따라서 양극 활물질로 단순히 일정한 형태의 LiCoO2 분말을 사용하는 종래의 리튬 전지로는 상기에서 필요로 하는 전지 특성을 얻을 수 없다는 문제가 있으며 이러한 요구를 충족시키기 위하여 다양한 종래의 기술이 제시되었다.
Therefore, there is a problem in that a conventional lithium battery using a certain type of LiCoO 2 powder as a positive electrode active material cannot obtain the battery characteristics required above, and various conventional technologies have been proposed to satisfy these requirements.

예를 들어, 양극 활물질 입자를 코팅하는 방법이 제안되었다. 그러나, 이러한 방법은 공정의 복잡화를 야기하여 실제 적용이 곤란한 문제점이 있었다.
For example, a method of coating the positive electrode active material particles has been proposed. However, this method has a problem in that the practical application is difficult because of the complexity of the process.

또 다른 방법으로는, 활물질 입자의 충진 밀도를 향상시키는 방법이 제안되었다. 이러한 방법과 관련한 종래의 기술로는 아래에 기술한 특허문헌을 예시할 수 있다.As another method, a method of improving the packing density of active material particles has been proposed. As a conventional technique related to such a method, the patent document described below can be illustrated.

일본 특허 공개 제 2000-082466 호는 리튬 코발트 복합 산화물 입자의 평균 입경이 0.1 내지 50 ㎛이면서 입자 분포에서 2개의 피크가 존재하는 양극 활물질을 개시하고 있다. Japanese Patent Laid-Open No. 2000-082466 discloses a positive electrode active material in which the average particle diameter of lithium cobalt composite oxide particles is 0.1 to 50 µm and two peaks are present in the particle distribution.

대한민국 특허 공개 제 2002-0057825 호는 평균 입경이 7 내지 25 ㎛인 양극 활물질과 평균 입경이 2 내지 6 ㎛인 양극 활물질을 혼합한 양극 활물질을 개시하고 있다. Korean Patent Laid-Open Publication No. 2002-0057825 discloses a cathode active material in which a cathode active material having an average particle diameter of 7 to 25 µm and a cathode active material having an average particle diameter of 2 to 6 µm are mixed.

일본 특허 공개 제2004-119218 호는 평균 입경 7 내지 20 ㎛인 양극 활물질과 평균 입경이 상기 활물질의 10 내지 30%인 양극 활물질을 혼합한 양극 활물질을 개시하고 있다.
Japanese Patent Laid-Open No. 2004-119218 discloses a cathode active material in which a cathode active material having an average particle diameter of 7 to 20 µm and a cathode active material having an average particle diameter of 10 to 30% of the active material are mixed.

상기 종래 기술들은 평균 입경이 다른 2 종류 이상의 양극 활물질을 혼합하거나 평균 입경의 최대값이 2 개 이상인 양극 활물질을 사용한 것으로서 양극 활물질을 조밀하게 충진시켜 전지 용량을 향상시키고자 하는 것이다.
The conventional techniques are to mix two or more kinds of positive electrode active materials having different average particle diameters or to use two or more positive electrode active materials having a maximum average particle size to densify the positive electrode active material to improve battery capacity.

한편, 입경크기가 다른 2가지 활물질을 사용하는 경우 활물질간 접촉저항이 커질 수 있다. 또한 입경크기가 1 ㎛ 이하 크기의 활물질을 사용하는 경우 활물질간의 접촉저항이 매우 커질 수 있다.On the other hand, when two active materials having different particle sizes are used, the contact resistance between the active materials may increase. In addition, when an active material having a particle size of 1 μm or less is used, contact resistance between the active materials may be very large.

또한 활물질과 집전체를 압연하여 전극을 제조할 때에, 혼합된 활물질의 입경에 따라 롤 프레스의 힘이 고르게 분산되지 않는 경우도 발생하는 문제점이 있다.
In addition, when the electrode is manufactured by rolling the active material and the current collector, there is a problem that the force of the roll press is not evenly distributed depending on the particle diameter of the mixed active material.

따라서 2 종류 이상의 양극 활물질을 보다 적절히 혼합 및 충진시켜 체적 밀도를 향상시키는 것이 요구된다.
Therefore, it is required to improve the volume density by mixing and filling two or more kinds of positive electrode active materials more appropriately.

또한, 고전압 안정성, 열 안정성, 고율 방전 특성 등의 물성도 향상된 리튬 전지를 제공할 수 있는 복합 양극 활물질을 얻는 것이 여전히 필요한 실정이다. 특히, 열 안정성이 우수한 양극 활물질은 전기전도도 등이 좋지 않아 전지의 전반적인 성능을 열화시킬 수 있고, 이에 따라 전지 제조시에 많이 사용되고 있지 않은 실정이다.
In addition, it is still necessary to obtain a composite cathode active material capable of providing a lithium battery having improved physical properties such as high voltage stability, thermal stability, and high rate discharge characteristics. In particular, the positive electrode active material having excellent thermal stability may deteriorate the overall performance of the battery due to poor electrical conductivity and the like, and thus is not widely used in battery manufacturing.

이에, 본 발명은 양극 활물질로서 열 안정성이 우수한 물질을 채용하고, 이에 적절한 입경을 가진 2 가지 활물질을 최적의 비율로 혼합하여 활물질간 접촉저항이 큰 문제점을 개선하며, 양극 롤 프레스시 힘의 분산을 최소화하여 충진 밀도(packing density) 및 출력 밀도가 우수한 양극활물질을 제공함을 목적으로 한다.
Accordingly, the present invention employs a material having excellent thermal stability as a positive electrode active material, by mixing the two active materials having an appropriate particle size in an optimum ratio to improve the problem of large contact resistance between the active material, the dispersion of force during the positive electrode roll press The purpose of the present invention is to provide a cathode active material having a high packing density and a high output density by minimizing this.

본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서,The present invention has been made to solve the above problems of the prior art,

평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질 및 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 포함하는 것을 특징으로 하는 양극 활물질을 제공한다.Provided is a positive electrode active material comprising a small diameter active material having an average particle diameter of 0.5 μm, a maximum particle diameter of less than 1 μm, and a large diameter active material having an average particle diameter of 5 to 20 μm and a maximum particle diameter of less than 100 μm.

또한, 상기 소구경 활물질은 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질을 제공한다.In addition, the small-diameter active material provides a positive electrode active material having an olivine structure of lithium metal phosphate.

구체적으로, 상기 소구경 활물질은 리튬철인산염(LiFePO4)인 것을 특징으로 하는 양극 활물질 및 카본 코팅된 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질을 제공한다.Specifically, the small-diameter active material provides a cathode active material, characterized in that the lithium iron phosphate (LiFePO 4 ) and an olivine structure of carbon-coated lithium metal phosphate.

또한, 상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 7 + x : 3 - x (단, 0 ≤ x < 3) 범위 이내인 것을 특징으로 하는 양극 활물질을 제공한다.In addition, there is provided a positive electrode active material, characterized in that the weight ratio of the small-diameter active material and the large-diameter active material is within the range of small-diameter active material: large diameter active material = 7 + x: 3-x (where 0 ≦ x <3).

구체적으로, 상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 9 : 1 인 것을 특징으로 하는 양극 활물질을 제공한다.Specifically, the cathode active material is characterized in that the weight ratio of the small-diameter active material and the large-diameter active material is a small-diameter active material: large diameter active material = 9: 1.

또한, 상기 대구경 활물질은 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬망간코발트산화물, 리튬망간니켈산화물, 리튬코발트니켈산화물, 및 리튬망간코발트니켈산화물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 양극 활물질을 제공한다.
In addition, the large diameter active material is at least one member selected from the group consisting of lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium manganese cobalt oxide, lithium manganese nickel oxide, lithium cobalt nickel oxide, and lithium manganese cobalt nickel oxide. A cathode active material is provided.

한편, 본 발명은 a) 제1항의 양극 활물질; b) 도전재; 및 c) 집전체를 포함하는 것을 특징으로 하는 양극을 제공한다.On the other hand, the present invention a) the positive electrode active material of claim 1; b) conductive material; And c) provides a positive electrode comprising a current collector.

또한, 상기 집전체는 표면에 요철구조가 형성된 것을 특징으로 하는 양극을 제공한다.In addition, the current collector provides a positive electrode characterized in that the concave-convex structure is formed on the surface.

구체적으로, 상기 요철구조는 에칭에 의해 형성된 것을 특징으로 하는 양극을 제공하고, 이 경우 상기 집전체의 에칭된 깊이는 집전체 전체 두께의 1/3 이하인 것을 특징으로 하는 양극을 제공한다.Specifically, the uneven structure provides an anode, characterized in that formed by etching, in which case the etched depth of the current collector provides a cathode, characterized in that less than 1/3 of the total thickness of the current collector.

또한, 상기 요철구조가 형성된 집전체 표면의 평균 표면조도(Ra)는 0.02 ㎛ 이상인 것을 특징으로 하는 양극을 제공한다.In addition, the average surface roughness (Ra) of the surface of the current collector on which the uneven structure is formed provides a positive electrode, characterized in that 0.02 ㎛ or more.

또한, 상기 집전체는 120 ㎌/㎠ 이하의 캐퍼시티를 가진 것을 특징으로 하는 양극을 제공한다.In addition, the current collector provides a positive electrode having a capacity of 120 mW / cm 2 or less.

또한, 상기 집전체는 알루미늄 재질인 것을 특징으로 하는 양극을 제공한다.In addition, the current collector provides an anode, characterized in that the aluminum material.

또한, 상기 도전재는 카본블랙 또는 흑연 미립자인 것을 특징으로 하는 양극을 제공한다.In addition, the conductive material provides a positive electrode characterized in that the carbon black or graphite fine particles.

또한, 상기 양극은 d) 결착제를 더 포함하는 것을 특징으로 하는 양극을 제공한다.In addition, the positive electrode provides a positive electrode further comprises a d) a binder.

또한, 상기 양극의 두께는 150 ~ 170 ㎛인 것을 특징으로 하는 양극을 제공한다.
In addition, the thickness of the positive electrode provides a positive electrode, characterized in that 150 ~ 170 ㎛.

한편, 본 발명은 상기와 같은 양극을 구비하는 리튬 이차 전지를 제공한다.On the other hand, the present invention provides a lithium secondary battery having the positive electrode as described above.

또한, 상기 전지의 출력 밀도는 1000 W/Kg 이상인 것을 특징으로 하는 리튬 이차 전지를 제공한다.
In addition, the output density of the battery provides a lithium secondary battery, characterized in that 1000 W / Kg or more.

본 발명에 의한 복합 양극 활물질은 대구경 양극 활물질 및 소구경 양극 활물질을 포함하며 이들을 일정한 입경비 및 중량비로 혼합하여 충진 밀도를 향상시키는 것이 가능하고 고안정성 물질 및 고전도성 물질을 포함하여 종래의 양극 활물질에 비해 향상된 체적 밀도, 방전 용량, 열 안정성 및 고율 방전 특성을 나타내는 효과가 있다.The composite positive electrode active material according to the present invention includes a large diameter positive electrode active material and a small diameter positive electrode active material, and it is possible to improve the filling density by mixing them at a constant particle size ratio and weight ratio, and includes a conventional positive electrode active material including a high stability material and a high conductivity material. Compared with the improved volume density, discharge capacity, thermal stability and high rate discharge characteristics.

또한, 본 발명의 양극 활물질을 표면에 요철구조가 형성된 집전체에 적용할 경우 집전체와 활물질간의 결착력과 전류 경로(Current Path)가 증대되어 고온저장 성능, 에너지 밀도 및 출력 또한 향상되는 효과가 있다.
In addition, when the positive electrode active material of the present invention is applied to a current collector having a concave-convex structure on the surface, the binding force between the current collector and the active material and the current path are increased, thereby improving high temperature storage performance, energy density, and output power. .

도 1은 본 발명의 일 실시예에 따른 양극을 도시한 단면도이다.1 is a cross-sectional view showing a positive electrode according to an embodiment of the present invention.

이하, 본 발명에 관하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은,The present invention,

평균입경이 상호 다른 소구경 활물질 및 대구경 활물질을 포함하는 양극 활물질에 있어서, 상기 소구경 활물질은 평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 것이고, 상기 대구경 활물질은 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 것임을 특징으로 한다.
In a positive electrode active material comprising a small diameter active material and a large diameter active material having a different average particle diameter, the small diameter active material is an average particle diameter of 0.5 ㎛, the maximum particle size of less than 1 ㎛, the large diameter active material is an average particle diameter of 5 ~ 20 ㎛, the maximum particle size 100 It is characterized by being less than 탆.

리튬 전지용 양극의 전기 용량을 향상시키기 위한 방법들 중의 하나는 단일 또는 이종 분말의 분포를 최적화하는 방법이다. 즉, 단일 종류의 분말을 충진할 경우에 입자들 사이에는 일정한 공극이 생기게 되므로, 이 공극 사이에 보다 작은 입자 크기의 다른 입자가 채워지게 되는 방법이다. 따라서 보다 조밀한 충진을 위해 크기가 다른 2 종류의 입자를 사용하여 대구경 입자들 사이의 빈 공간을 소구경 입자로 채워져야 하고, 이 경우 이러한 입자들 사이의 크기의 비가 중요하게 된다.One of the methods for improving the capacitance of a positive electrode for a lithium battery is to optimize the distribution of single or heterogeneous powders. That is, when a single type of powder is filled, a certain void is formed between the particles, so that other particles having a smaller particle size are filled between the pores. Therefore, two types of particles having different sizes should be used to fill the empty spaces between the large-diameter particles with the small-diameter particles for more compact filling, and in this case, the ratio of the size between these particles becomes important.

본 발명에서는 양극 활물질로서 평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질과 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 혼합 사용한다. 상기와 같은 입경비로 소구경 활물질과 대구경 활물질을 혼합할 경우, 충진 밀도 및 출력 밀도가 모두 향상되고, 양극 두께 또한 감소시킬 수 있다.
In the present invention, a cathode active material having an average particle diameter of 0.5 µm and a maximum particle diameter of less than 1 µm and a large diameter active material having an average particle diameter of 5 to 20 µm and a maximum particle diameter of less than 100 µm are mixed and used as the cathode active material. When the small-diameter active material and the large-diameter active material are mixed at the particle size ratio as described above, both the filling density and the output density may be improved, and the anode thickness may also be reduced.

또한 본 발명에 있어서, 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 7 + x : 3 - x (단, 0 ≤ x < 3) 범위 이내인 것이 바람직하다. 더 바람직하게는 상기 활물질은 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 9 : 1 인 것이다. 본 발명의 실시예에서 보듯이 상기와 같은 비율로 구성할 경우 양극의 두께 감소와 더불어 출력 밀도를 1000 W/Kg 이상의 수준으로 높일 수 있다.
In the present invention, it is preferable that the weight ratio of the small-diameter active material and the large-diameter active material is within the range of the small-diameter active material: large-diameter active material = 7 + x: 3-x (where 0 ≦ x <3). More preferably, the active material is a small diameter active material: a large diameter active material: a large diameter active material = 9: 1 is a weight ratio of the small diameter active material and the large diameter active material. As shown in the embodiment of the present invention when configured in the above ratio can increase the power density to 1000 W / Kg or more in addition to reducing the thickness of the anode.

본 발명에 있어서, 상기 소구경 활물질은 리튬메탈인산염의 올리빈 구조를 가지는 활물질인 것이 바람직하다. 구체적으로 상기 리튬메탈인산염은 LiMPO4 (여기서 M = Co, Ni, Fe, Cr, Zn, Cu 또는 Ta)의 구조를 가지는 것이 바람직하고, 특히 리튬철인산염(LiFePO4)인 것이 더욱 바람직하다. In the present invention, the small diameter active material is preferably an active material having an olivine structure of lithium metal phosphate. Specifically, the lithium metal phosphate preferably has a structure of LiMPO 4 (where M = Co, Ni, Fe, Cr, Zn, Cu or Ta), and more preferably lithium iron phosphate (LiFePO 4 ).

리튬철인산염은 다른 양극활물질에 비해 매우 우수한 열 안정성을 가지고 있으므로, 리튬 이차 전지의 안전성을 향상시킬 수 있는 장점이 있다. 다만, 리튬철인산염의 경우 낮은 전기전도도를 가지는 특성으로 인해 출력특성 및 Rate특성이 저하될 우려가 있다. 이를 해결하기 위해서 활물질의 입경을 작게 제조하는 것이 바람직하나, 리튬철인산염 활물질의 경우, 전극 프레스를 실시할 때 작은 입자의 힘분산효과로 인해 효과적으로 전극의 두께를 감소시키기 어렵기 때문에, 이러한 단점을 보완 수정하기 위해 대구경의 활물질을 첨가하여 전극 밀도를 높혀야 하는 것이다. 예를 들어 본 발명에 의할 경우 양극을 150 ~ 170 ㎛ 정도의 두께로 얇게 제조할 수 있다. 한편, 카본 코팅된 올리빈을 적용하면 활물질의 집전체에 대한 접착력이 더욱 향상되는 효과가 발휘된다.
Since lithium iron phosphate has a very excellent thermal stability compared to other cathode active materials, there is an advantage that can improve the safety of the lithium secondary battery. However, in the case of lithium iron phosphate, the output characteristic and the rate characteristic may be deteriorated due to the characteristics having low electrical conductivity. In order to solve this problem, it is preferable to make the particle size of the active material small. However, in the case of the lithium iron phosphate active material, it is difficult to effectively reduce the thickness of the electrode due to the force dispersion effect of the small particles when the electrode is pressed. In order to compensate for this, a large diameter active material should be added to increase the electrode density. For example, according to the present invention, the anode may be manufactured to a thin thickness of about 150 to 170 μm. On the other hand, applying the carbon-coated olivine has the effect that the adhesion of the active material to the current collector is further improved.

본 발명에 있어서, 상기 대구경 활물질은 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬망간코발트산화물, 리튬망간니켈산화물, 리튬코발트니켈산화물, 및 리튬망간코발트니켈산화물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.
In the present invention, the large diameter active material is one selected from the group consisting of lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium manganese cobalt oxide, lithium manganese nickel oxide, lithium cobalt nickel oxide, and lithium manganese cobalt nickel oxide. The above can be used.

한편, 본 발명은 a) 제1항의 양극 활물질; b) 도전재; 및 c) 집전체를 포함하는 것을 특징으로 하는 양극에 관한 것이다. 바람직하게는 d) 결착제를 더 포함하도록 한다.
On the other hand, the present invention a) the positive electrode active material of claim 1; b) conductive material; And c) relates to a positive electrode comprising a current collector. Preferably d) further comprises a binder.

본 발명의 양극은 전술한 바와 같은 양극 활물질을 사용하고, 당해 기술분야에 알려진 양극제조방법을 사용하여 제조될 수 있다. 예를 들어 상기 활물질, 도전재, 결착제를 포함하는 재료를 일정한 형상으로 성형하여도 좋고 상기의 재료를 알루미늄박이나 메쉬 등의 집전체에 도포시키는 방법으로 제조된 것도 바람직하다. 더욱 구체적으로는 양극 재료 조성물(통상적으로 양극 재료 조성물은 양극 활물질, 도전재 및 결착제 등을 포함한다)을 제조하여, 이를 알루미늄박이나 메쉬 집전체에 직접 코팅하거나, 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 양극 활물질 필름을 알루미늄박이나 메쉬 집전체에 라미네이션하여 양극을 얻는다. 본 발명의 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 열거한 형태 이외의 형태라도 가능하다.
The positive electrode of the present invention may be manufactured using the positive electrode active material as described above, and using a positive electrode manufacturing method known in the art. For example, the material containing the active material, the conductive material, and the binder may be molded into a certain shape, or may be manufactured by a method of applying the material to a current collector such as aluminum foil or a mesh. More specifically, a positive electrode material composition (typically the positive electrode material composition includes a positive electrode active material, a conductive material and a binder, etc.) is prepared and coated directly on an aluminum foil or a mesh current collector, or cast on a separate support The positive electrode active material film which peeled from this support body is laminated on aluminum foil or a mesh collector, and a positive electrode is obtained. The positive electrode of the present invention is not limited to the above-listed forms, but may be in a form other than the enumerated forms.

전지는 고용량화를 위해서 대량의 전류를 충방전하는 것이 필수적이며 이를 위하여는 전극의 전기 저항이 낮은 재료가 요구되고 있다. 따라서 전극의 저항을 감소시키기 위하여 각종 도전재의 첨가가 일반적이며 주로 사용되는 도전재로는 카본블랙, 흑연 미립자 등이 있다.
In order to increase the capacity of the battery, it is necessary to charge and discharge a large amount of current, and for this purpose, a material having low electrical resistance of the electrode is required. Therefore, in order to reduce the resistance of the electrode, the addition of various conductive materials is common, and mainly used conductive materials include carbon black and graphite fine particles.

본 발명의 양극에 있어서, 상기 집전체는 당해 기술분야에 사용되는 집전체를 제한없이 사용할 수 있다. 다만, 상기 집전체 표면에는 활물질의 충진 측면 또는 집전체와 활물질간의 결착력 측면에서 에칭 등의 방법으로 요철구조를 형성하는 것이 바람직하다. 이 경우 집전체와 활물질간의 결착력이 가혹조건에서도 안정적으로 확보되어 고온 저장 및 사이클 성능이 향상된다. 또한 활물질과 집전체간의 전류 경로(Current Path)의 확보가 용이해져 출력이 증대(올리빈의 경우 약 30% 이상)되고 에너지 밀도도 향상(약 6 ~ 7 %)된다. 특히, 로딩량이 적을 때 집전체 표면에 요철구조가 형성된 것이 효과적일 수 있다. In the positive electrode of the present invention, the current collector may use any current collector used in the art without limitation. However, it is preferable to form the uneven structure on the surface of the current collector by etching or the like in terms of the filling side of the active material or the binding force between the current collector and the active material. In this case, the binding force between the current collector and the active material is stably secured even under severe conditions, thereby improving high temperature storage and cycle performance. In addition, it is easy to secure a current path (Current Path) between the active material and the current collector to increase the output (about 30% or more in the case of olivine) and improve the energy density (about 6 to 7%). In particular, when the loading amount is small, it may be effective that the uneven structure is formed on the surface of the current collector.

또한, 상기 요철구조가 형성된 집전체의 재질로는 알루미늄(Al)을 사용하는 것이 바람직하며, 결착력 향상을 극대화 하기 위하여 요철구조가 형성된 집전체 표면의 평균 표면조도(Ra)는 0.02 ㎛ 이상이 되도록 요철구조 형성의 정도를 조절함이 바람직하다.In addition, it is preferable to use aluminum (Al) as a material of the current collector on which the uneven structure is formed, and in order to maximize the improvement of binding force, the average surface roughness Ra of the current collector surface on which the uneven structure is formed is 0.02 μm or more. It is desirable to control the degree of formation of the uneven structure.

더불어, 에칭된 영역의 깊이는 상기 집전체 전체 두께의 1/3 이하인 것이 바람직하다. 에칭된 영역의 깊이가 1/3보다 크게 되면, 상기 집전체의 기계적 강도가 취약해져서 리튬 이차 전지 제조시 집전체가 끊어지는 문제가 발생할 수 있다.  In addition, the depth of the etched region is preferably 1/3 or less of the total thickness of the current collector. When the depth of the etched region is greater than 1/3, the mechanical strength of the current collector becomes weak, which may cause a problem that the current collector is broken when the lithium secondary battery is manufactured.

도 1을 참조하면, 본 발명에 따라 표면이 에칭된 집전체 상에 평균입경이 상호 다른 소구경 활물질과 대구경 활물질을 도포한 경우 효과적으로 전류(이온)의 경로가 형성됨을 알 수 있다.
Referring to FIG. 1, it can be seen that a path of a current (ion) is effectively formed when a small diameter active material and a large diameter active material having different average particle diameters are applied onto a current-etched current collector according to the present invention.

상기 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. The current collector is generally made to a thickness of 3 to 500 μm.

또한, 상기 집전체는 120 ㎌/㎠ 이하의 캐퍼시티(capacity)를 가진 것이 바람직하다. 에칭된 집전체는 표면의 불규칙한 굴곡으로 인해 표면적이 증가되므로, 집전체의 에칭정도를 나타냄에 있어 단위면적당 캐퍼시티를 사용하여 나타낼 수 있다. 에칭정도가 상기 범위를 초과하는 경우 집전체의 기계적 강도가 취약해져서 리튬 이차 전지 제조시 집전체가 끊어지는 문제가 발생할 수 있다.
In addition, the current collector preferably has a capacity of 120 mW / cm 2 or less. Since the etched current collector has an increased surface area due to irregular curvature of the surface, it can be represented by using the capacity per unit area in indicating the etching degree of the current collector. When the degree of etching exceeds the above range, the mechanical strength of the current collector becomes weak, which may cause a problem that the current collector is broken when the lithium secondary battery is manufactured.

집전체 표면에 요철구조를 형성하는 방법 중 하나인 에칭은 화학적 에칭방법 또는 전기화학적 에칭방법을 사용하여 수행할 수 있다. Etching, which is one of the methods of forming the uneven structure on the surface of the current collector, may be performed using a chemical etching method or an electrochemical etching method.

상기 집전체에 에칭하는 화학적 에칭방법에서는 산성용액 또는 알카리용액이 사용될 수 있다. 화학적 에칭방법에 사용되는 산성용액으로는 염산, 황산, 염화제2철 등이 사용될 수 있다. 또한 화학적 에칭방법에 사용되는 알카리용액은 수산화나트륨을 포함하는 용액이 사용될 수도 있다. 다만, 화학적 에칭방법에 사용되는 용액으로는 상기에 언급한 내용에 한정하는 것은 아니며, 알루미늄을 부식시킬 수 있는 다양한 용액이 사용될 수 있음은 물론이다.In the chemical etching method of etching the current collector, an acidic solution or an alkaline solution may be used. As the acid solution used in the chemical etching method, hydrochloric acid, sulfuric acid, ferric chloride, etc. may be used. In addition, the alkaline solution used in the chemical etching method may be a solution containing sodium hydroxide. However, the solution used in the chemical etching method is not limited to the above-mentioned content, of course, a variety of solutions that can corrode aluminum can be used.

상기 알루미늄의 화학적 에칭방법은 전처리과정과 에칭과정을 포함하여 형성된다. 상기 전처리과정은 알루미늄 박막을 수산화나트륨(NaOH)을 포함하는 알카리 용액을 사용하여 알카리 처리하여 상기 집전체의 표면에 잔존하는 기름 성분 및 산화피막을 제거하는 과정이다.The chemical etching method of the aluminum is formed including a pretreatment process and an etching process. The pretreatment is an alkali treatment of an aluminum thin film using an alkali solution containing sodium hydroxide (NaOH) to remove oil components and oxide films remaining on the surface of the current collector.

상기 에칭과정은 알루미늄 박막을 산성용액 또는 알카리용액에 침적하여 상기 알루미늄 박막의 표면에 요철을 형성하는 과정이다. 상기에서 언급한 바와 같이 이때 사용되는 산성용액으로는 염산, 황산, 염화 제2철 등이 사용될 수 있다. 또한 상기 산성용액은 적정한 농도와 상온보다 높은 온도를 유지하여 에칭 과정이 효율적으로 진행될 수 있도록 한다. 예를 들면, 산성용액으로 염산을 사용하는 경우에는 염산의 농도를 0.8 ~ 2.0M으로 조정하며, 온도는 35 ~ 45℃를 유지하여 에칭공정을 진행할 수 있다.
The etching process is a process of forming irregularities on the surface of the aluminum thin film by immersing the aluminum thin film in an acidic solution or an alkaline solution. As mentioned above, hydrochloric acid, sulfuric acid, ferric chloride, etc. may be used as the acid solution used at this time. In addition, the acid solution maintains a proper concentration and a temperature higher than room temperature so that the etching process can proceed efficiently. For example, when hydrochloric acid is used as the acid solution, the concentration of hydrochloric acid is adjusted to 0.8 to 2.0 M, and the temperature may be maintained at 35 to 45 ° C. to proceed with the etching process.

상기 집전체에 에칭영역을 형성하는 방법으로 상기 화학적 에칭방법 외에 전기화학적 에칭방법이 사용된다. 전기화학적 에칭방법은 화학적 에칭방법보다 에칭을 빠르게 진행하기 위해서 알루미늄 금속에 전류를 공급한다. 즉, 알루미늄 금속을 산성용액 또는 알카리용액에 침적한 상태에서 알루미늄 금속에 직류전류 또는 교류전류를 가하게 된다. 이때, 가해지는 전류는 필요한 에칭영역과 깊이에 따라 적정한 값을 공급하게 된다. 예를 들면, 전기화학적 에칭방법에서는 전류밀도가 수 mA/㎠ 내지 수백 mA/㎠인 전류를 사용하게 된다. 또한 교류전류를 사용하는 경우에는 적정한 교류 주파수 범위를 갖는 전류를 공급하게 된다.As a method of forming an etching region in the current collector, an electrochemical etching method is used in addition to the chemical etching method. The electrochemical etching method supplies current to the aluminum metal in order to proceed with etching faster than the chemical etching method. That is, a direct current or an alternating current is applied to the aluminum metal while the aluminum metal is immersed in an acidic solution or an alkaline solution. At this time, the applied current is supplied with an appropriate value according to the required etching region and depth. For example, the electrochemical etching method uses a current having a current density of several mA / cm 2 to several hundred mA / cm 2. In the case of using an alternating current, a current having an appropriate alternating frequency range is supplied.

상기 집전체를 에칭하는 방법은 상기 설명한 것 이외에 일반적으로 알루미늄 금속에 에칭하는 방법이 사용될 수 있음은 물론이다.
As a method of etching the current collector, in addition to those described above, a method of etching aluminum metal may be generally used.

또한 본 발명의 리튬 이차 전지는 상기 양극을 구비하는 것을 특징으로 한다. 본 발명의 리튬 이차 전지는 다음과 같이 제조할 수 있다.
In addition, the lithium secondary battery of the present invention is characterized by comprising the positive electrode. The lithium secondary battery of the present invention can be produced as follows.

우선, 본 발명의 전지에 포함되는 양극은 상기 설명한 바와 같이 제조하여 준비될 수 있다.First, the positive electrode included in the battery of the present invention may be prepared and prepared as described above.

음극의 경우 우선, 음극 활물질, 도전재, 결착제 및 용매를 혼합하여 음극 활물질 조성물을 준비한다. 상기 음극 활물질 조성물을 금속 집전체 상에 직접 코팅 및 건조하여 음극을 준비한다. 상기 음극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 금속 집전체 상에 라미네이션하여 음극을 제조하는 것도 가능하다.In the case of the negative electrode, first, a negative electrode active material, a conductive material, a binder, and a solvent are mixed to prepare a negative electrode active material composition. The negative electrode active material composition is directly coated and dried on a metal current collector to prepare a negative electrode. It is also possible to produce the negative electrode by casting the negative electrode active material composition on a separate support, and then laminating the film obtained by peeling from the support on a metal current collector.

상기 음극 활물질로는 리튬 금속, 리튬 합금, 탄소 재료, 주기율표 14, 15족의 금속을 주체로 하는 산화물, 탄소 화합물, 탄소 규소 화합물, 산화 규소 화합물, 황화 티탄, 탄화 붕소 화합물, 탄소 금속 복합물 등을 들 수 있다. 탄소 재료로서는 여러가지 열분해 조건으로 유기물을 열분해 한 것이나 인조 흑연, 천연 흑연, 토양 흑연, 팽창 흑연, 비늘 조각 형태 흑연 등을 사용할 수 있다.
Examples of the negative electrode active material include a lithium metal, a lithium alloy, a carbon material, oxides, carbon compounds, carbon silicon compounds, silicon oxide compounds, titanium sulfides, boron carbide compounds, and carbon metal composites mainly composed of metals of the Periodic Tables 14 and 15. Can be mentioned. As the carbon material, those obtained by pyrolysing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scaly graphite, and the like can be used.

도전재로는 카본 블랙을 사용할 수 있으며, 결착제로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌, 카르복시메틸셀룰로오스 및 그 혼합물, 스티렌 부타디엔 고무계 폴리머를 사용하며, 용매로는 N-메틸피롤리돈, 아세톤, 물 등을 사용할 수 있다. 이 때 음극 활물질, 도전재, 결착제 및 용매의 함량은 당해업계에 알려진 리튬 전지 제조에 통상적으로 사용하는 수준이면 적당하다.
Carbon black may be used as the conductive material, and vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene, or carboxy Methyl cellulose, mixtures thereof, and styrene butadiene rubber-based polymers are used, and as the solvent, N-methylpyrrolidone, acetone, water, and the like can be used. At this time, the content of the negative electrode active material, the conductive material, the binder, and the solvent is appropriate as long as it is a level normally used for producing lithium batteries known in the art.

상기한 양극과 음극 사이에 세퍼레이터를 배치하여 전지 구조체를 형성한다. 이러한 전지 구조체를 와인딩하거나 접어서 원통형 전지 케이스나 각형 전지 케이스에 넣은 다음, 유기 전해액을 주입하면 리튬 이온 전지가 완성된다.The separator is disposed between the positive electrode and the negative electrode to form a battery structure. The battery structure is wound or folded, placed in a cylindrical battery case or a square battery case, and then injected with an organic electrolyte to complete a lithium ion battery.

또한 상기 전지 구조체를 바이셀 구조로 적층한 다음, 이를 유기 전해액에 함침시키고, 얻어진 결과물을 파우치에 넣어 밀봉하면 리튬 이온 폴리머 전지가 완성된다.
In addition, after stacking the battery structure in a bi-cell structure, it is impregnated in an organic electrolyte, and the resultant is placed in a pouch and sealed to complete a lithium ion polymer battery.

상기 세퍼레이터로는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용가능하다. 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 이를 보다 구체적으로 설명하면, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE), 그 조합물 중에서 선택된 재질로서, 부직포 또는 직포형태이어도 무방하다. 이를 보다 상세하게 설명하면 리튬 이온 전지의 경우에는 폴리에틸렌, 폴리프로필렌 등과 같은 재료로 된 권취가능한 세퍼레이터를 사용하며, 리튬 이온 폴리머 전지의 경우에는 유기전해액 함침 능력이 우수한 세퍼레이터를 사용하는데, 이러한 세퍼레이터는 하기 방법에 따라 제조가능하다.As the separator, any one commonly used in a lithium battery may be used. In particular, it is preferable that it is low resistance with respect to the ion migration of electrolyte, and is excellent in electrolyte-moisture capability. More specifically, the material selected from glass fiber, polyester, teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and combinations thereof may be nonwoven or woven. In more detail, a lithium ion battery uses a rollable separator made of a material such as polyethylene or polypropylene, and a lithium ion polymer battery uses a separator having excellent organic electrolyte impregnation ability. It can be manufactured according to the method.

즉, 고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물을 준비한 다음, 상기 세퍼레이터 조성물을 양극 상부에 직접 코팅 및 건조하여 세퍼레이터 필름을 형성하거나, 또는 상기 세퍼레이터 조성물을 지지체상에 캐스팅 및 건조한 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름을 양극 상부에 라미네이션하여 형성할 수 있다.That is, a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and then the separator composition is directly coated and dried on an anode to form a separator film, or the separator composition is cast and dried on a support, and then the support The separator film peeled off can be laminated and formed on the upper portion of the positive electrode.

상기 고분자 수지는 특별히 한정되지는 않으며, 양극판의 결착제에 사용되는 물질들이 모두 사용가능하다. 예를 들면 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 그 혼합물을 사용할 수 있다.The polymer resin is not particularly limited, and any materials used for the binder of the positive electrode may be used. For example, vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate and mixtures thereof can be used.

전해액으로는 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸 카보네이트, 에틸 메틸 카보네이트, 메틸 프로필 카보네이트, 부틸렌 카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 디에틸렌글리콜 또는 디메틸에테르 등의 용매 또는 이들의 혼합 용매에 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N,LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x +1SO2)(CyF2y +1SO2)(단 x,y는 자연수), LiCl, LiI 등의 리튬 염으로 이루어진 전해질 중의 1종 또는 이들을 2종 이상 혼합한 것을 용해하여 사용할 수 있다.
Examples of the electrolyte include propylene carbonate, ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and dioxo Column, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate LiPF 6 , LiBF 4 in a solvent such as methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, dibutyl carbonate, diethylene glycol or dimethyl ether, or a mixed solvent thereof. , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN ( C x F 2x +1 SO 2 ) (C y F 2y +1 SO 2 ) (where x and y are natural water), one or more electrolytes consisting of lithium salts such as LiCl and LiI or a mixture of two or more thereof are dissolved Can be used.

이하의 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 본 발명의 범위를 한정하기 위한 것은 아니다.
The present invention will be described in more detail with reference to the following examples and comparative examples. However, Examples are only for illustrating the present invention, but not for limiting the scope of the present invention.

실시예Example

실시예Example 1 One

양극 활물질로 평균 입경 11㎛(최대입경 100㎛ 미만)의 LiMn0 .1Co0 .1Ni0 .8O2 분말 0.2g, 평균 입경 0.5㎛(최대입경 1㎛ 미만)의 LiFePO4 분말 1.8g 을 사용하고, 도전재로서 평균지름 6㎛의 아세틸렌 블랙 분말 0.6g 및 결착제로서 폴리불화비닐리덴(PVdF) 0.045g을 혼합하고 5mL의 N-메틸-피롤리돈을 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 슬러리를 제조하였다.LiMn 0 11㎛ having an average particle size (maximum particle size less than 100㎛) as a cathode active material .1 Co 0 .1 Ni 0 .8 O 2 powder 0.2g, LiFePO 4 powder having an average particle size of 0.5㎛ 1.8g (maximum grain size less than 1㎛) 0.6g of acetylene black powder having an average diameter of 6 μm as a conductive material and 0.045g of polyvinylidene fluoride (PVdF) as a binder, 5mL of N-methyl-pyrrolidone were added, followed by using a mechanical stirrer. And stirred for 30 minutes to prepare a slurry.

이 슬러리를 닥터 블레이드(doctor blade)를 사용하여 알루미늄(Al) 집전체 위에 약 200㎛의 두께로 도포하고 건조한 후 진공, 섭씨 110℃의 조건에서 다시 한번 건조하여 양극을 제조하였다. 최종적으로, 상기 양극을 롤 프레스(roll press)로 압연하여 시트 형태로 만들어 양극을 제조하였다.
The slurry was applied to an aluminum current collector using a doctor blade to a thickness of about 200 μm, dried, and dried again under vacuum and 110 ° C. to prepare a positive electrode. Finally, the positive electrode was rolled in a roll press to form a sheet to prepare a positive electrode.

실시예Example 2 2

양극 활물질로 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0 .1Co0 .1Ni0 .8O2 분말 0.6g, 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 1.4g 을 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
LiMn 0 11㎛ having an average particle size (maximum particle size less than 100 ㎛) as a cathode active material .1 Co 0 .1 Ni 0 .8 O 2 powder 0.6g, LiFePO 4 powder having an average particle size of 0.5 ㎛ 1.4g (maximum grain size less than 1 ㎛) Except for using the positive electrode was prepared in the same manner as in Example 1.

실시예Example 3 3

양극 활물질로 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0 .1Co0 .1Ni0 .8O2 분말 1g, 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 1g 을 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
A positive electrode active material average particle diameter 11㎛ LiMn 0 .1 of (maximum particle diameter less than 100 ㎛) Co 0 .1 Ni 0 .8 O 2 powder 1g, average particle size 0.5 ㎛ using the LiFePO 4 powder 1g of (maximum particle diameter less than 1 ㎛) Except that, a positive electrode was prepared in the same manner as in Example 1.

실시예Example 4 4

양극 활물질로서 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0 .1Co0 .1Ni0 .8O2 분말 1.4g, 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 0.6g 을 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
LiMn 0 11㎛ having an average particle size (maximum particle size less than 100 ㎛) as a positive electrode active material .1 Co 0 .1 Ni 0 .8 O 2 powder 1.4g, LiFePO 4 powder having an average particle size of 0.5 ㎛ 0.6g (maximum grain size less than 1 ㎛) Except for using the positive electrode was prepared in the same manner as in Example 1.

실시예Example 5 5

전기화학적으로 에칭된 알루미늄(Al) 집전체를 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다. 이때 집전체의 단위 면적당 캐퍼시티는 약 108 ㎌/㎠ 이었다.
A positive electrode was prepared in the same manner as in Example 1 except that an electrochemically etched aluminum (Al) current collector was used. At this time, the capacity per unit area of the current collector was about 108 mW / cm 2.

비교예Comparative example 1 One

양극 활물질로서 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 2g 을 단독 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
A positive electrode was prepared in the same manner as in Example 1, except that 2 g of LiFePO 4 powder having an average particle diameter of 0.5 μm (less than a maximum particle size of less than 1 μm) was used alone.

비교예Comparative example 2 2

양극 활물질로서 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0 .1Co0 .1Ni0 .8O2 분말 2g 을 단독 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
An average particle size 11㎛ LiMn 0 .1 Co 0 .1 Ni 0 .8 O is the anode in the same manner as in Example 1 except that 2g with the sole 2 of the powder (maximum particle size less than 100 ㎛) was prepared as a positive electrode active material.

상기 실시예 및 비교예에 대해서 물성을 측정하였고, 결과는 하기 표 1과 같았다.The physical properties of the Examples and Comparative Examples were measured, and the results are shown in Table 1 below.

소구경 활물질 대 대구경 활물질의 중량비Weight ratio of small diameter active material to large diameter active material 충진 밀도
(g/㎤)
Filling density
(g / cm3)
양극 두께
(㎛)
Anode thickness
(Μm)
출력 밀도 (W/Kg)Power density (W / Kg)
실시예 1Example 1 9 : 19: 1 0.10470.1047 163163 18001800 실시예 2Example 2 7 : 37: 3 0.10890.1089 160160 16001600 실시예 3Example 3 5 : 55: 5 0.11760.1176 155155 15001500 실시예 4Example 4 3 : 73: 7 0.11840.1184 153153 14001400 실시예 5Example 5 9 : 1(에칭 O)9: 1 (etching O) 0.10470.1047 163163 19001900 비교예 1Comparative Example 1 10 : 010: 0 0.08640.0864 181181 15001500 비교예 2Comparative Example 2 0 : 100: 10 0.11900.1190 150150 900900

상기 표 1에 나타난 바와 같이, 실시예처럼 소구경 활물질과 대구경 활물질을 특정 입경비로 혼합 사용한 경우 충진 밀도 및 출력 밀도가 우수하였고, 양극 두께 또한 적절한 수준으로 감소시킬 수 있었다. 특히, 집전체를 에칭처리하면 집전체와 활물질의 결착력 향상과 더불어 출력 밀도 또한 더욱 증가시킬 수 있었다. As shown in Table 1, when the small-diameter active material and the large-diameter active material were mixed at a specific particle size ratio, the filling density and the output density were excellent, and the anode thickness was also reduced to an appropriate level. In particular, when the current collector is etched, the binding density between the current collector and the active material may be improved and the output density may be further increased.

또한, 대구경 활물질의 중량비가 늘어나면 충진 밀도는 전반적으로 늘어나지만, 충진 밀도가 늘어나는 경우라도 활물질간 접촉저항이 증가하여 출력 밀도 향상 효과는 없는 바, 소구경 활물질 대 대구경 활물질의 중량비를 소구경 활물질 : 대구경 활물질 = 7 + x : 3 - x (단, 0 ≤ x < 3) 범위 이내로 하는 것이 적절한 것임을 알 수 있다.
In addition, as the weight ratio of the large-diameter active material increases, the filling density generally increases, but even when the filling density increases, the contact resistance between the active materials increases, so that there is no effect of improving the output density. : Large-diameter active material = 7 + x: It is understood that it is suitable to set it within the range (x <3>).

Claims (19)

평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질 및 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 포함하고,
상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 3 + x : 7 - x (단, 0 ≤ x ≤ 6) 범위 이내인 것을 특징으로 하는 양극 활물질.
A small diameter active material having an average particle diameter of 0.5 μm, a maximum particle diameter of less than 1 μm, and a large diameter active material having an average particle diameter of 5 to 20 μm and a maximum particle diameter of less than 100 μm,
The cathode active material, characterized in that the weight ratio of the small-diameter active material and the large-diameter active material is within the range of small-diameter active material: large diameter active material = 3 + x: 7-x (where 0 ≦ x ≦ 6).
제1항에 있어서,
상기 소구경 활물질은 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질.
The method of claim 1,
The small diameter active material has an olivine structure of lithium metal phosphate.
제1항 또는 제2항에 있어서,
상기 소구경 활물질은 리튬철인산염(LiFePO4)인 것을 특징으로 하는 양극 활물질.
The method according to claim 1 or 2,
The small diameter active material is a lithium iron phosphate (LiFePO 4 ) positive electrode active material, characterized in that.
제2항에 있어서,
상기 소구경 활물질은 카본 코팅된 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질.
The method of claim 2,
The small diameter active material has a olivine structure of carbon-coated lithium metal phosphate.
삭제delete 제1항에 있어서,
상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 9 : 1 인 것을 특징으로 하는 양극 활물질.
The method of claim 1,
The cathode active material, characterized in that the weight ratio of the small-diameter active material and the large-diameter active material is a small diameter active material: large diameter active material = 9: 1.
제1항에 있어서,
상기 대구경 활물질은 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬망간코발트산화물, 리튬망간니켈산화물, 리튬코발트니켈산화물, 및 리튬망간코발트니켈산화물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 양극 활물질.
The method of claim 1,
The large diameter active material is at least one selected from the group consisting of lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium manganese cobalt oxide, lithium manganese nickel oxide, lithium cobalt nickel oxide, and lithium manganese cobalt nickel oxide. Positive electrode active material.
a) 제1항의 양극 활물질;
b) 도전재; 및
c) 집전체를 포함하는 것을 특징으로 하는 양극.
a) the positive electrode active material of claim 1;
b) conductive material; And
c) a positive electrode comprising a current collector.
제8항에 있어서,
상기 집전체는 표면에 요철구조가 형성된 것을 특징으로 하는 양극.
The method of claim 8,
The collector is a positive electrode, characterized in that the concave-convex structure is formed on the surface.
제9항에 있어서,
상기 요철구조는 에칭에 의해 형성된 것을 특징으로 하는 양극.
10. The method of claim 9,
The uneven structure is an anode, characterized in that formed by etching.
제10항에 있어서,
상기 집전체의 에칭된 깊이는 집전체 전체 두께의 1/3 이하인 것을 특징으로 하는 양극.
The method of claim 10,
And wherein the etched depth of the current collector is 1/3 or less of the total thickness of the current collector.
제9항에 있어서,
상기 요철구조가 형성된 집전체 표면의 평균 표면조도(Ra)는 0.02 ㎛ 이상인 것을 특징으로 하는 양극.
10. The method of claim 9,
An average surface roughness (Ra) of the surface of the current collector on which the uneven structure is formed is 0.02 μm or more.
제9항에 있어서,
상기 집전체는 120 ㎌/㎠ 이하의 캐퍼시티를 가진 것을 특징으로 하는 양극.
10. The method of claim 9,
The current collector has a capacity of 120 ㎌ / ㎠ or less positive electrode.
제9항에 있어서,
상기 집전체는 알루미늄 재질인 것을 특징으로 하는 양극.
10. The method of claim 9,
The current collector is a cathode, characterized in that the aluminum material.
제8항에 있어서,
상기 도전재는 카본블랙 또는 흑연 미립자인 것을 특징으로 하는 양극.
The method of claim 8,
The conductive material is a positive electrode, characterized in that the carbon black or graphite fine particles.
제8항에 있어서,
상기 양극은 d) 결착제를 더 포함하는 것을 특징으로 하는 양극.
The method of claim 8,
The positive electrode further comprises d) a binder.
제8항에 있어서,
상기 양극의 두께는 150 ~ 170 ㎛인 것을 특징으로 하는 양극.
The method of claim 8,
The anode is characterized in that the thickness of 150 ~ 170 ㎛.
제8항의 양극을 구비하는 리튬 이차 전지.
A lithium secondary battery comprising the positive electrode of claim 8.
제18항에 있어서,
상기 전지의 출력 밀도는 1000 W/Kg 이상인 것을 특징으로 하는 리튬 이차 전지.
The method of claim 18,
The power density of the battery is a lithium secondary battery, characterized in that 1000 W / Kg or more.
KR1020100049755A 2009-06-08 2010-05-27 Cathode active material, and cathode, lithium secondary battery comprising the same KR101113074B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090050404 2009-06-08
KR1020090050404 2009-06-08

Publications (2)

Publication Number Publication Date
KR20100131921A KR20100131921A (en) 2010-12-16
KR101113074B1 true KR101113074B1 (en) 2012-02-16

Family

ID=43507807

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100049755A KR101113074B1 (en) 2009-06-08 2010-05-27 Cathode active material, and cathode, lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR101113074B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196816A1 (en) * 2013-06-05 2014-12-11 주식회사 엘지화학 Novel secondary battery
KR20160129856A (en) * 2014-03-05 2016-11-09 닛뽄 케미콘 가부시끼가이샤 Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2654108B1 (en) 2010-12-17 2019-08-14 Eliiy Power Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
WO2012111951A2 (en) * 2011-02-15 2012-08-23 주식회사 엘지화학 Cathode mixture for secondary battery and secondary battery comprising same
US9190656B2 (en) 2011-10-20 2015-11-17 Hyundai Motor Company Cathode current collector for electrical energy storage device and method for manufacturing the same
JP6465538B2 (en) 2012-02-01 2019-02-06 日産自動車株式会社 Method for producing solid solution lithium-containing transition metal oxide, method for producing positive electrode for nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP6156713B2 (en) 2012-03-07 2017-07-05 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
JP6112380B2 (en) 2012-03-07 2017-04-12 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
CN104205425A (en) * 2012-04-18 2014-12-10 株式会社Lg化学 Electrode having multi-layer structure and manufacturing method therefor
JP5273274B1 (en) * 2012-04-27 2013-08-28 東洋インキScホールディングス株式会社 Lithium secondary battery electrode forming composition, secondary battery electrode
KR101511935B1 (en) * 2012-08-01 2015-04-14 주식회사 엘지화학 Electrode Assembly for Secondary Battery and Lithium Secondary Battery Comprising the Same
KR101718057B1 (en) 2012-08-02 2017-03-20 삼성에스디아이 주식회사 Positive active material, and positive electrode and lithium battery containing the material
KR101595625B1 (en) * 2013-11-26 2016-02-18 지에스에너지 주식회사 Transition metal oxidegraphene composite microparticle and cathode for lithium secondary battery comprising the same
KR102307910B1 (en) 2014-12-31 2021-10-05 삼성에스디아이 주식회사 Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
KR20170023227A (en) 2015-08-19 2017-03-03 한양대학교 산학협력단 Manufacturing method for negative electrode materials
KR102086533B1 (en) * 2016-03-25 2020-03-09 주식회사 엘지화학 Positive electrode active material for secondary battery and secondary battery comprising the same
JP6951363B2 (en) * 2016-05-27 2021-10-20 ユミコア Positive electrode for lithium-ion battery
KR102339704B1 (en) 2020-06-18 2021-12-15 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
KR102397756B1 (en) 2020-09-02 2022-05-13 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
KR102479276B1 (en) 2020-10-14 2022-12-20 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
KR20230054263A (en) 2021-10-15 2023-04-24 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery using the same
KR102647676B1 (en) 2021-10-26 2024-03-14 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
FR3141561A1 (en) * 2022-10-27 2024-05-03 Saft Multilayer electrode
WO2024101841A1 (en) * 2022-11-07 2024-05-16 주식회사 엘지에너지솔루션 Positive electrode and lithium secondary battery manufactured using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
KR100387017B1 (en) 1998-03-23 2003-06-12 스미토모 긴조쿠 고잔 가부시키가이샤 Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
KR20060091486A (en) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2008198465A (en) 2007-02-13 2008-08-28 Sanyo Electric Co Ltd Positive electrode for non-aqueous electrolyte secondary battery, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387017B1 (en) 1998-03-23 2003-06-12 스미토모 긴조쿠 고잔 가부시키가이샤 Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
KR20060091486A (en) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2008198465A (en) 2007-02-13 2008-08-28 Sanyo Electric Co Ltd Positive electrode for non-aqueous electrolyte secondary battery, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196816A1 (en) * 2013-06-05 2014-12-11 주식회사 엘지화학 Novel secondary battery
US10044029B2 (en) 2013-06-05 2018-08-07 Lg Chem, Ltd. Secondary battery
KR20160129856A (en) * 2014-03-05 2016-11-09 닛뽄 케미콘 가부시끼가이샤 Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
KR102400346B1 (en) * 2014-03-05 2022-05-20 닛뽄 케미콘 가부시끼가이샤 Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material

Also Published As

Publication number Publication date
KR20100131921A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
KR101113074B1 (en) Cathode active material, and cathode, lithium secondary battery comprising the same
JP5682970B2 (en) Positive electrode active material, positive electrode including the same, and lithium secondary battery
JP4884774B2 (en) Method for producing electrode for electrochemical cell
EP1851814B1 (en) Secondary battery of improved lithium ion mobility and cell capacity
EP2863457B1 (en) Lithium secondary battery comprising multilayered active material layer
EP0848435B1 (en) Lithium battery and production method thereof
KR20060091486A (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2008226605A (en) Nonaqueous electrolyte secondary battery
EP2495795A1 (en) Lithium secondary battery
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
KR100975875B1 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2007273183A (en) Negative electrode and secondary battery
KR20090092104A (en) Electrode comprising niobium oxide and lithium battery using the same
EP3016197A1 (en) Lithium secondary battery
JP2004192896A (en) Cathode active substance, its manufacturing method and nonaqueous electrolyte secondary battery
EP3255708B1 (en) Lithium-ion secondary battery
KR100766961B1 (en) Rechargeable lithium battery
US20230223535A1 (en) Negative electrode and secondary battery including the same
KR102209653B1 (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
CN112952195A (en) Electrolyte for lithium metal battery forming stable film and lithium metal battery comprising same
JP2004342548A (en) Positive electrode active material for lithium secondary battery, manufacturing method for same, positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP2007134276A (en) Negative electrode for lithium-ion secondary battery, method of manufacturing same, and lithium-ion secondary battery
KR20200084591A (en) Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
KR102621786B1 (en) Si Anode and Lithium Secondary Battery Comprising The Same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160118

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 9