KR101060589B1 - 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치 - Google Patents

광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치 Download PDF

Info

Publication number
KR101060589B1
KR101060589B1 KR1020100059420A KR20100059420A KR101060589B1 KR 101060589 B1 KR101060589 B1 KR 101060589B1 KR 1020100059420 A KR1020100059420 A KR 1020100059420A KR 20100059420 A KR20100059420 A KR 20100059420A KR 101060589 B1 KR101060589 B1 KR 101060589B1
Authority
KR
South Korea
Prior art keywords
light
conveyor
delete delete
plastic
color
Prior art date
Application number
KR1020100059420A
Other languages
English (en)
Inventor
장정훈
서강일
이덕희
Original Assignee
(주)이오니아이엔티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이오니아이엔티 filed Critical (주)이오니아이엔티
Priority to KR1020100059420A priority Critical patent/KR101060589B1/ko
Application granted granted Critical
Publication of KR101060589B1 publication Critical patent/KR101060589B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0054Sorting of waste or refuse

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)

Abstract

본 발명은 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치와 그 선별 방법에 관한 것으로, 그 목적은 폐플라스틱을 근적외선분광법에 의해 선별시 동시에 색상 선별도 가능토록 한 폐플라스틱 선별 장치를 제공하는데 있다.
본 발명의 구성은 다양한 성분과 색상을 가진 폐플라스틱을 이송하는 컨베이어와; 컨베이어 상부에 설치되어 광선을 조사하는 다수개의 광원과; 상기 광원으로부터 조사된 광선이 폐플라스틱의 표면을 반사하여 입사된 광선을 검출하는 다수개의 프로브와; 다수개의 프로브에서 입사된 광선을 근적외선과 가시광선으로 분리하는 광분배장치와; 광분배장치에서 나온 근적외선을 흡수스펙트럼 전자신호 값으로 변환시키는 NIR분광기와; 광분배장치에서 나온 가시광선을 색상신호로 변환시키는 RGB센서와; NIR분광기와 RGB센서로부터 입력된 전자신호와 색상신호를 분석하여 기 저장된 데이터베이스와 비교하여 선별할 플라스틱 성분과 색상인지를 판단하여 선별대상 성분 및 색상일 경우 해당 프로브 영역을 담당하는 에어토출기를 작동시키는 분석제어부;로 구성되는 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치를 발명의 특징으로 한다.

Description

광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치{Apparatus for realtime separating component and color of wasted plastic using optical multiplexer}
본 발명은 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치에 관한 것으로, 자세하게는 프로브에서 입사된 광원을 광분배장치를 이용 근적외선과 가시광선으로 분리하여 선별하고자 하는 플라스틱의 성분 및 색상을 선별하는 장치에 관한 것이다.
재활용재로 사용되는 폐플라스틱 중 대표적인 것으로 PET, PE, PP, PS, ABS, PVC가 있다.
최근에는 이러한 폐플라스틱을 이용하여 RDF(Refused Drived Fuel) 또는 RPF(Refuse Plastic Fuel)로 활용하기 위해 PVC 성분만을 제외한 성분을 선별하거나, 폐플라스틱을 이용하여 화학 원사로 재활용하기 위해 PET 성분만을 선별하기 위해 근적외선을 이용한 근적외선분광법을 통해 필요 성분의 폐플라스틱을 선별하고 있다.
RDF 또는 RPF 제조시 PVC를 제외하는 것은 PVC는 고분자를 이루는 원소 중 염소성분이 포함되기 때문에 PVC가 함유된 RDF또는 RPF는 연소시 유독가스인 염소가스가 발생되어 환경문제 뿐만 아니라 인체에 치명적인 독성을 가지기 때문이다. 따라서 폐기물 또는 폐플라스틱을 선별하여 RDF 또는 RPF 제조시 PVC를 선별하는 공정이 아주 중요한데, 이를 위해 최근에는 근적외선분광법을 이용하여 PVC를 선별하는 공정이 사용되고 있다. 참고로 근적외선은 햇빛이나 발열체로부터 방출되는 빛을 스펙트럼으로 분산시켰을 때 적색 스펙트럼의 끝보다 바깥쪽에 있는 것이 적외선이며, 이 가운데 파장이 가장 짧은 0.75~3㎛인 것을 근적외선이라고 한다. 적외선은 일반적으로 가시광선이나 자외선에 비해 강한 열작용을 지니고 있어 공업용이나 의료용으로 많이 이용된다. 이러한 근적외선은 전자스펙트럼을 포함하여 열작용 외에 사진작용, 광전작용(光電作用), 형광작용(螢光作用)을 나타내므로 검출기에는 사진건판ㅇ 광전지ㅇ 광전관 ㅇ 열전대(熱電對)ㅇ 인광체(燐光體) 등이 쓰인다. 사진건판과 광전관은 1.2㎛의 파장만이 검출 가능하다.
또한 화학 원사로 재활용하기 위해 PET 성분만을 선별하는 이유는 이러한 PET 성분만이 원사로 활용하기 적합하기 때문이다. 이를 위해 전술한 바와 같은 RDF 또는 RPF 제조시 PVC를 제외시켜 선별시 사용되는 근적외선분광법을 이용하여 PET 성분만을 선별하면 된다. 하지만 이러한 원사 생산을 위해 선별되는 PET은 색상별 선별이 아님으로 인해 수작업에 의한 색상 선별을 거쳐야만 원사로 활용될수 있다. 그 이유는 같은 계열의 색상별로 선별되지 않고 여러 색상의 플라스틱이 함께 열에 의해 녹게 되면 혼합색 특성상 검은색 쪽으로 변할수 있어서 다양한 색깔의 원사를 생산할 수 없기 때문이다.
상기한 폐플라스틱의 재활용 관련한 실시예 설명에서 보인바와 같이 다양한 플라스틱의 성분에 따른 선별방법은 근적외선분광법이 광범위하게 이용되고 있지만, 한 가지 단점은 성분별로 분류된 폐플라스틱을 다시 색상별로 선별시 자동화된 선별 방법이 제공되지 않아 수작업으로 선별한다는 점이다. 따라서 자동화된 색상 선별공정의 필요성이 대두되고 있는 실정이다.
이하 상기한 근적외선분광법을 이용한 종래의 선별 방법을 설명한다.
도 6은 종래 근적외선분광법에 의한 성분선별을 보인 개념도인데, 도시된 바와 같이 종래 성분 선별 방법은 컨베이어를 통해 이송중인 플라스틱에 근적외선을 직접 투과하여 반사된 근적외선 데이터의 흡수스펙트럼 분석 작업을 통해 플라스틱의 종류를 알아내는 방법이다.
구체적으로 도시된 바와 같이 폐플라스틱 재활용품을 이송중인 컨베이어의 끝단부에 근적외선이 조사되도록 근적외선 조사 광원을 컨베이어 끝단부에 설치하고, 상부에는 반사된 근적외선을 검출하는 프로브가 설치된다.
또한 다수개의 프로브에서 검출된 근적외선을 파장별 빛으로 나누어주도록 각각의 프로브에서 연결된 광섬유와 대응하여 연결되는 복수개의 입력단인 광섬유체결부를 구비한 광분배장치가 설치되고, 광분배장치로부터 분배된 빛을 분광스펙트럼띠로 만들어주는 NIR분광기와 NIR분광기에서 생성된 분광스펙트럼의 흡수량값과 기 저장된 분광스펙트럼 흡수량 데이터를 비교하여 선별하고자 하는 플라스틱 성분에 해당하는 흡수량 값이 검출될 경우 에어토출기를 작동시키는 분석제어부로 구성된다. 도면중 컨베이어용 Encoder는 도시편의상 회로 연결선은 생략되었지만 컨베이어의 구동 모터 속도등을 제어하는 장치이고, 공기압센서는 도시편의상 회로 연결선은 생략되었지만 에어토출기에 공급되는 압축공기량을 측정하는 센서이다.
또한 도시 편의상 컨베이어의 측면방향에서 본 도면이 생략되었지만 상기 광원, 프로브 및 에어토출기는 복수개로 구성되어 각각의 영역별에서 검출된 근적외선을 처리하게 된다.
하지만 상기 종래의 근적외선분광법을 이용한 성분 분석시 사용되는 광분배장치는 보통 총 32개의 프로브만을 인식하는 장치로 근적외선을 이용한 성분 분석하는데 사용할 수 있지만 근적외선만을 처리하는 장치이므로 가시광선을 처리할 수 없어 색상 색상선별을 할 수 없는 구조로 되어있다.
따라서 색상선별을 위해서는 별도의 색상을 선별할 수 있는 광학 선별장치를 구비해야 하나, 이 경우 장치 구성이 복잡해 진다는 구조적인 문제점이 있다. 즉, 색상 선별을 위한 광원과, 이 광원으로부터 색상을 검출하기 위한 추가적인 프로브가 필요하여 장치 구성이 복잡해진다는 단점이 있다.
하지만 이보다 더욱 문제가 되는 것은 색상선별을 위한 추가적인 장치를 설치한다 해도 동일한 위치에 장치를 설치할 수 없어, 선별시 영역 오차 및 에어토출기 선별시간에 오차가 생길 수 있다는 문제가 있다.
그 이유는 컨베이어의 진행방향 기준이 컨베이어의 폭 방향을 다수개의 영역으로 나누고, 개별 영역당 하나의 프로브를 위치시켜 프로브로부터 입력되는 근적외선 및 가시광선 정보에 따라 선별코자 하는 플라스틱 성분이 검출되면 해당 영역의 프로브 하부에 위치한 에어토출기로부터 고압 에어를 토출시켜 낙하하는 플라스틱을 선별하게 구성됨으로 인해, 색상 선별을 위한 별도의 광원과 프로브가 장치될 경우 컨베이어의 폭 방향별도 설치된 영역별 검출 오차가 생길수 있고, 근적외선과 가시광선을 별도로 처리하여 일치시키는데 따른 처리 정보량의 증가에 따른 능동적인 대처가 어렵고, 이에 따라 다양한 제품의 구성하기 어렵다는 단점을 가지기 때문이다.
상기에서 근적외선분광법을 이용한 플라스틱의 성분 분석시 사용되는 광원, 프로브의 세부 구성이나 원리는 근적외선분광법에 사용되는 공지의 기술이므로 더 구체적인 설명은 생략한다.
이하 종래 광분배장치를 보다 자세히 살펴본다.
도 7은 근적외선분광법에 사용되는 광분배기를 보인 개념도인데, 도시된 것처럼 광원(할로겐램프)이 컨베이어를 통해 이송중인 폐플라스틱을 조사하면 반사된 가시광선 및 근적외선이 32개의 프로브와 연결된 광섬유를 통해 32개의 광 입사부인 광섬유체결부를 구비한 광분배장치로 입사하게 된다. 구체적으로 광섬유체결부에서 총 32개의 광섬유가 체결되고, 이렇게 체결된 광섬유로 광원이 인입되면, 회전미러에서 32개의 광섬유에서 인입되는 광원(가시광선 및 근적외선)을 각각 반사하여 고정미러에 의해 근적외선이 근적외선 포집용 렌즈에 의해서 다시 초점이 맞춰져 포집되어 NIR분광기로 전달되어 분광스펙트럼이 생성된다. 모터는 회전 미러를 회전시키면서 총 32개의 광섬유에서 동시에 인입되는 광원을 순차적으로 고정 미러로 보내는 역할을 하도록 구성된다.
하지만 상기와 같이 구성된 종래의 광분배장치는 근적외선을 이용한 성분 분석을 위한 하나의 반사경만을 사용하여, 광원의 포집이 제대로 이루어지지 않아 광원의 포집이 제대로 이루어지지 않는 다는 문제점이 있고,
또한 기존의 근적외선을 검출하는 장치는 총 32개의 프로브만을 인식하는 장치로 인해 최대 4개의 플라스틱 성분만을 선별할 수 있다는 단점이 있고,
가장 중요한 문제점은 종래의 광분배장치는 색상선별을 할 수 없다는 구조적 문제점이 있어 종래 근적외선을 이용한 근적외선분광법에 의해서는 플라스틱별 성분별 선별만 가능하고, 별도의 가시광선을 처리하여 색상을 선별하는 장치가 구비되지 않는 한 색상 선별이 불가능함을 알 수 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 폐플라스틱을 근적외선분광법에 의해 선별시 동시에 색상 선별도 가능토록 한 폐플라스틱 선별 장치를 제공하는 데 있다.
본 발명은 다른 목적은 폐플라스틱을 근적외선분광법에 의해 선별시 동시에 색상 선별도 가능토록 하되, 하나의 컨베이어를 통한 선별공정에서 성분 및 색상 선별을 위한 근적외선과 가시광선의 포집이 가능한 하나의 광분배장치를 사용토록 한 폐플라스틱 선별 장치를 제공하는 데 있다.
본 발명은 다른 목적은 폐플라스틱을 근적외선분광법에 의해 선별시 색상도 동시에 선별하도록, 하나의 컨베이어를 통해 1차로 플라스틱을 재질별로 성분 선별한 후, 성분별로 분석되어 분류된 폐플라스틱을 또 다른 컨베이어에서 2차로 색상별로 선별토록 하되, 이때 성분 및 색상을 선별시 동일한 장치를 사용하여 1차 선별시는 근적외선과 가시광선 중 플라스틱 성분 선별을 위해 근적외선만을 사용하고, 2차 선별시는 근적외선 및 가시광선 중 플라스틱의 색상 선별을 위해 가시광선만을 사용토록 한 폐플라스틱 선별 장치를 제공하는 데 있다.
본 발명의 다른 목적은 근적외선분광법에 사용되는 광분배장치가 다수개의 반사경을 이용하여 광원의 포집 효율을 높여 성분선별 및 색상선별시의 선별능력을 높인 폐플라스틱 선별 장치를 제공하는 데 있다.
본 발명의 다른 목적은 근적외선분광법에 사용되는 광분배장치가 64개의 프로브로부터 입사된 신호를 받아 처리토록 구성함으로써 동시에 8개의 성분별 분석이 가능토록 한 폐플라스틱 선별 장치를 제공하는 데 있다.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 다양한 성분과 색상을 가진 폐플라스틱을 이송하는 제 1 컨베이어와; 제 1 컨베이어에서 선별된 특정 성분의 다양한 색상을 가진 폐플라스틱을 이송하는 제 2 컨베이어와; 제 1, 2 컨베이어 상부에 설치되어 광선을 조사하는 다수개의 광원과; 상기 광원으로부터 조사된 광선이 폐플라스틱의 표면을 반사하여 입사된 광선을 검출하도록 제 1, 2 컨베이어 상부에 각각 설치된 다수개의 프로브와 프로브에서 입사된 광선을 분리하는 광분배장치와; 상기 제 1 컨베이어 및 제 2 컨베이어 하부에 설치되어 폐플라스틱을 토출시키는 에어토출기;를 포함하는 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치에 있어서,
다수개의 프로브에서 입사된 광선을 근적외선과 가시광선으로 분리하도록, 64개의 프로브와 연결된 광섬유가 체결되는 광섬유체결부와, 광섬유체결부를 통해 64개의 광섬유에서 동시에 인입된 광선을 순차적으로 고정미러로 보내도록 1초당 최대 70Hz의 회전속도를 갖는 모터와 연결되어 회전하는 회전미러와, 입사된 광선을 다이크로익 미러로 출사시키는 고정미러와, 고정미러로부터 반사된 광선을 포집하는 광원 포집용 렌즈와, 광원 포집용 렌즈로 포집된 광선을 근적외선과 가시광선으로 분리하는 다이크로익 미러와, 다이크로익 미러를 통과한 근적외선을 포집하여 초점을 맞춘 후 NIR분광기로 출사시키는 근적외선 포집용 렌즈 및 다이크로익 미러에 반사된 가시광선을 포집하여 초점을 맞춘후 RGB센서로 출사시키도록 다이크로익 미러가 설치된 원통관 전단에서 분지된 원통분지관에 설치된 가시광선 포집용 렌즈를 포함하여 구성된 광분배장치와;
광분배장치에서 나온 제 1 컨베이어 상의 플라스틱의 근적외선을 흡수스펙트럼 전자신호 값으로 변환시키는 NIR분광기와;
광분배장치에서 나온 제 2 컨베이어 상의 가시광선을 색상신호로 변환시키는 RGB센서와;
NIR분광기와 RGB센서로부터 입력된 전자신호와 색상신호를 분석하여 기 저장된 데이터베이스와 비교하여 선별할 플라스틱 성분과 색상인지를 판단하여 선별대상 성분 및 색상일 경우 해당 제 1 컨베이어 및 제 2 컨베이어의 프로브 영역을 담당하는 에어토출기를 작동시키는 분석제어부;로 구성한 것을 특징으로 하는 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치를 제공함으로써 달성된다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
상기와 같이 본 발명은 폐플라스틱을 근적외선분광법에 의해 선별시 동시에 색상 선별이 가능하여 색상 선별을 위한 별도의 추가 장치없이도 하나의 시스템에서 색 선별이 가능하다는 장점과,
또한 상기와 같이 폐플라스틱을 근적외선분광법에 의해 선별시 동시에 색상 선별시 하나의 컨베이어를 통한 선별공정에서 성분 및 색상 선별을 위한 근적외선과 가시광선의 포집이 하나의 광분배장치에 의해 가능하다는 장점과,
또한 필요에 따라 하나의 컨베이어를 통해 1차 성분 분석에 의한 성분별 선별을 하고, 1차 성분별 분석되어 분류된 폐플라스틱을 또 다른 컨베이어에서 2차로 색상별로 선별할 수 있으며, 이때 근적외선과 가시광선의 동시 분배가 가능한 동일한 광분배장치를 이용하여 1차에서는 근적외선 정보만을 사용하고, 2차에서는 색상정보를 위한 가시광선 정보만을 이용토록 함으로써 별도의 장치 없이 하나의 장치를 2가지 목적으로 다르게 사용할 수 있다는 장점과,
또한 근적외선분광법에 사용되는 광분배장치가 다수개의 반사경을 이용하여 광원의 포집 효율을 높여 성분선별 및 색상선별시의 선별능력을 높였다는 장점과,
또한 근적외선분광법에 사용되는 광분배장치가 64개의 프로브로부터 입사된 신호를 받아 처리토록 구성함으로써 동시에 8개의 성분별 분석이 가능하다는 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명인 것이다.
도 1은 본 발명에 따른 전체 구성을 보인 개념도이고,
도 2는 본 발명에 따른 프로브와 에어토출기의 영역별 위치를 보인 예시도이고,
도 3은 본 발명에 따른 광분배장치의 개략적인 구성도이고,
도 4는 하나의 컨베이어로 구성한 성분 및 색상 동시선별 원리를 보인 개념도이고,
도 5는 2개의 컨베이어로 구성한 성분 및 색상 다단선별 원리를 보인 개념도이고,
도 6은 종래 근적외선분광법에 의한 성분선별을 보인 개념도이고,
도 7은 근적외선분광법에 사용되는 광분배기를 보인 개념도이다.
이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
도 1은 본 발명에 따른 전체 구성을 보인 개념도이다. 도시된 바와 같이 컨베이어(1)를 따라 폐플라스틱이 이송되도록 구성되고, 컨베이어(1)의 끝단부 근처 상부에는 플라스틱이 낙하하기 전에 플라스틱의 성분 분석과 색상 선별을 위한 광원(2)과 폐플라스틱으로부터 반사된 빛이 입사되는 프로브(3)가 설치된다. 이때 이송되는 플라스틱은 모든 종류의 플라스틱이 가능하지만 바람직하게는 대표적인 재활용 플라스틱인 PET, PE, PP, PS, ABS, PVC 등이 이송되도록 구성한다.
상기 프로브(3)는 광분배장치(4)의 입력단인 광섬유체결부가 64개로 구성되므로 최대 총 64개를 설치할 수 있다. 이와 같이 구성하면 동시에 8개의 성분별 분석이 가능토록 구성하였다. 이 64개의 프로브(3)는 광섬유와 연결되어 각각 광분배장치(4)의 입력단인 광섬유체결부와 연결 구성한다. 64개의 프로브(3)는 컨베이어(1) 벨트 폭의 크기에 따라 컨베이어(1) 상부에 위치하게 구성한다. 물론 이와 같이 모든 프로브(3)가 항시 한 컨베이어(1) 상부에 64개가 모드 위치해야 하는 것은 아니고 컨베이어(1)의 실제 폭과 프로브(3)의 크기에 따라 그 수가 달라질 수 있다. 또한, 하나의 컨베이어(1)가 아닌 2개의 컨베이어(1)에 나누어 다단 선별시 32개씩 나누어 설치할 수도 있고, 마찬가지로 다단선별시도 컨베이어(1)의 폭에 따라 그 설치 개수가 달라질수 있음은 물론이다.
광원(2)은 바람직하게는 할로겐램프를 사용하여 컨베이어 벨트의 길이방향 기준으로 프로브(3)의 전.후에 위치시켜, 컨베이어(1)를 통해 이송되는 폐플라스틱이 프로브(3) 밑으로 지나갈 때, 광원(2)에서 조사된 빛이 플라스틱 표면에 반사되어 프로브(3)로 인입되도록 구성하였다. 또한 광원(2)은 최소한 프로브(3) 4개당 2개를 설치하여 충분한 조사가 이루어 지도록 하였다. 광원(2)의 설치방향은 프로브(3)를 가운데 위치시키고, 이를 기준으로 양측에 광원(2)을 경사지게 설치하였다.
광분배장치(4)에서는 프로브(3)를 통해 광섬유로 인입된 광선을 가시광선과 근적외선으로 나누고, 이후 각각 근적외선과 가시광선으로 분리된 광선 중 가시광선은 RGB센서(5)로 가고, 근적외선은 NIR분광기(6)로 가서 광자를 전자로 변환시켜 분석제어부(7)로 신호를 전달하도록 구성하였다.
분석제어부(7)는 입인된 전자신호를 색상신호와 NIR분광기(6)에서 나오는 전자신호를 분석하며, 또한 이미 데이터베이스로 만들어진 범용 플라스틱(PET, PE, PP, PS, ABS, PVC 등)의 흡수 스펙트럼의 값과 인입되는 근적외선 흡수스펙트럼 값과 비교하여 매칭이 될 경우 플라스틱 성분을 인식하고, 또한 RGB센서(5)에서 나오는 색상신호 또한 HSI값(색상(Hue), 채도(Saturation), 명도(Intensity))으로 변환하여 도출된 값을 이용하여 성분과 색상을 동시에 인식하게 구성된다.
또한 분석제어부(7)는 사전에 정의된 처리절차에 따라 64개의 프로브(3) 중 특정프로브(3)에서 검출된 플라스틱의 성분 및 색상이 선별하고자 하는 값에 해당하면, 해당 프로브(3) 하단에 위치한 에어토출기(8)를 작동시켜 낙하하는 플라스틱을 선별토록 한다.
이때 프로브(3)에서 검출된 후 컨베이어(1) 끝단까지 이송하는데 걸리는 시간 및 낙하시 에어토출기(8)에 의해 토출된 고압 공기와 만나는 시간 등은 사전에 계산하여 정밀한 토출이 되도록 구성한다.
도면 중 컨베이어용 Encoder(9)는 도시편의상 회로 연결선은 생략되었지만 컨베이어(1)의 구동 모터 속도 등을 제어하는 장치이고, 공기압센서(10)는 도시편의상 회로 연결선은 생략되었지만 에어토출기(8)에 공급되는 압축공기량을 측정하는 센서이다. 이와 같은 장치의 정보가 종합되어야만 상기에서 설명한 바와 같이 정밀한 에어토출기(8)의 제어가 가능하여 플라스틱의 정밀 선별이 이루어지게 된다.
도 2는 본 발명에 따른 프로브와 에어토출기의 영역별 위치를 보인 예시도이인데, 도시된 바와 같이 다수개의 프로브(3)가 컨베이어(1)의 폭방향 기준으로 일정 폭 만큼의 영역별로 상부쪽에 설치되어 배열구성되어 있음을 알 수 있다. 이와 같이 구성됨으로써 각각의 영역별에서 반사된 광원에 의해 조사된 광선(근적외선 및 가시광선)이 입사됨을 알 수 있고,
컨베이어(1)의 하부쪽에는 프로브(3)에 대응하는 영역별로 각각 에어토출기(8)가 형성되어 있음을 알 수 있다.
또한 한 실시예에 따라 도시된 것처럼 에어토출기(8)가 상하 2열로 서로 다른 각도로 구성되어 있음을 알 수 있어서 동일영역에서 선별하는 플라스틱의 종류 또는 색상의 가지수를 다단 선별할 수 있게 된다.
이와 같이 에어토출기(8)는 하나의 열로만 구성할 수 있고, 2열 이상 복수단 구성할 수도 있다. 하지만 과도한 다단 배열을 선별시 어려움이 있으므로 1~2단 배열로 구성하는 것이 바람직하다.
도 3은 본 발명에 따른 광분배장치의 개략적인 구성도이다. 도시된 바와 같이 본 발명에 따른 성분 및 색상 동시 선별을 위해 64개의 광선이 입사되면 가시광선과 근적외선으로 나누는 광분배장치(4)는 광원(2)인 할로겐램프를 이용하여 외부에서 가시광선 및 근적외선을 재활용품 플라스틱에 조사하여, 플라스틱에서 반사되는 광선을 포집하여 최대 64개의 광 입사부로 인입하게 되는데, 이렇게 인입된 광선은 각속도제어에 의한 회전을 하는 회전미러(47)에 의해 1초당 최대 70Hz의 회전속도를 갖고 하나의 고정미러(41)에 광선을 출사하면, 출사된 광선은 다이크로익 미러(45)를 통과하면서 근적외선과 가시광선으로 분리되는 구조를 갖는다.
구체적으로, 도시된 바와 같이 광섬유체결부(42)에서 총 64개의 광섬유가 체결되고, 이렇게 체결된 광섬유를 통해 광원이 인입되면, 회전미러(47)에서 64개의 광섬유에서 인입되는 광선을 각각 반사하여 고정미러(41)를 통하여 광원 포집용 렌즈(44)를 통해 1차로 광선을 모은후 통과하고, 통과된 광선은 다이크로익(Dichroic) 미러(45)를 통과하면서, 근적외선은 그대로 투과하여 근적외선 포집용 렌즈(46)에 의해서 다시 초점이 맞춰지고, 가시광선은 다이크로익(Dichroic) 미러(45)에 반사되어 가시광선 포집용 렌즈(43)에 의해서 초첨이 맞춰진다.
이후 상기 근적외선 포집용 렌즈(46)를 통과한 근적외선은 NIR분광기(6)로 가고, 가시광선 포집용 렌즈(43)를 통과한 가시광선은 RGB센서(5)로 가게 된다.
회전미러(47) 하부와 연결된 모터(48)는 회전미러(47)를 최대 1초에 70Hz로 회전하면서 총 64개의 광섬유에서 동시에 인입되는 광선을 순차적으로 고정미러(41)로 보내는 역할을 한다.
상기 가시광선 포집용 렌즈(43)는 다이크로익(Dichroic) 미러(45)가 설치된 원통관 전단에서 분지된 원통분지관에 설치된다.
상기 근적외선 포집용 렌즈(46)는 다이크로익(Dichroic) 미러(45)가 설치된 원통관에 설치된다.
도 4는 하나의 컨베이어로 구성한 성분 및 색상 동시선별 원리를 보인 개념도인데, 도시된 바와 같이 컨베이어(1)를 통해 다양한 성분과 다양한 색상을 가진 플라스틱이 공급되면, 컨베이어(1)의 끝단부에 설치된 광원(2)으로부터 빛이 컨베이어(1)쪽으로 조사하게 되고, 이후 컨베이어상을 이송중인 플라스틱의 표면에 반사한후 프로브(3)에 입사하게 된다. 이후 프로브(3)에서 인입된 빛은 광섬유를 통해 광분배장치(4)로 전달되고, 광분배장치(4)에서는 입사된 빛을 근적외선과 가시광선으로 분리하여 가시광선은 RGB센서(5)로 근적외선은 NIR분광기(6)로 전달하게 된다. 이후 RGB센서(5)와 NIR분광기(6)에서 광자가 전자로 변환되어 분석제어부(7)로 신호를 전달하게 된다.
분석제어부(7)는 입인된 전자신호를 색상신호와 NIR분광기(6)에서 나오는 전자신호를 분석하며, 또한 이미 데이터베이스로 만들어진 범용 플라스틱(PET, PE, PP, PS, ABS, PVC 등)의 흡수 스펙트럼의 값과 인입되는 근적외선 흡수스펙트럼 값과 비교하여 매칭이 될 경우 플라스틱 성분을 인식하고, 또한 RGB센서(5)에서 나오는 신호 또한 HSI값(색상(Hue), 채도(Saturation), 명도(Intensity))으로 변환하여 도출된 값을 이용하여 성분과 색상을 동시에 인식하게 구성된다.
또한 분석제어부(7)는 사전에 정의된 처리절차에 따라 64개의 프로브(3)중 특정프로브(3)에서 검출된 플라스틱의 성분 및 색상이 선별하고자 하는 값에 해당하면, 해당 프로브(3) 하단에 위치한 에어토출기(8)를 작동시켜 낙하하는 플라스틱을 선별하게 된다.
상기와 같이 구성함으로써 하나의 컨베이어(1)를 통한 선별공정에서 성분 및 색상 선별이 가능함을 알 수 있다.
상기한 구성에 따라 하나의 컨베이어(1)에서 플라스틱의 성분과 색상을 동시 선별하는 방법을 단계별로 설명하면 다음과 같다.
본 발명의 선별단계는 다양한 성분과 색상을 가진 플라스틱을 컨베이어로 공급하는 단계와;
이송중인 플라스틱에 빛을 조사하여 반사된 빛을 프로브(3)로 입사시키는 단계와;
입사된 빛을 광분배장치(4)에서 근적외선과 가시광선으로 분리하는 단계와;
상기 분리된 가시광선을 RGB센서(5)가 색상신호로 변환시키는 단계와;
상기 분리된 근적외선으로부터 NIR분광기(6)가 흡수 스펙트럼의 값 신호로 변환시키는 단계와;
분석제어부(7)가 NIR분광기(6)의 흡수 스펙트럼의 값 신호와 기 데이터베이스로 만들어진 범용 플라스틱의 흡수 스펙트럼의 값과 비교하여 플라스틱 성분을 인식하는 단계와;
분석제어부(7)가 RGB센서(5)의 색상신호를 HSI값으로 변환시켜 도출된 값을 가지고 기 데이터베이스로 만들어진 색상별 HSI값과 비교하여 플라스틱의 색상을 인식하는 단계와;
분석제어부(7)가 인식된 성분과 색상이 사전 정의된 선별대상 플라스틱에 해당하는지를 판단하여 선별대상 플라스틱일 경우 해당 정보를 보낸 프로브(3)의 영역에 해당하는 에어토출기(8)를 작동시켜 낙하중인 플라스틱을 선별하는 단계;로 구성된다.
상기 에어토출기(8)는 다수의 영역에 걸친 프로브(3)에 해당하면 해당 프로브(3)에 대응하는 에어토출기(8)를 모두 작동시키게 된다.
도 5는 2개의 컨베이어로 구성한 성분 및 색상 다단선별 원리를 보인 개념도로 2개의 컨베이어(1, 1')를 이용한 성분 및 색상을 선별하는 다단 선별 임을 알수 있다. 1차 컨베이어(1)에서는 먼저 성분 분석을 하고, 이를 통해 특정 성분의 플라스틱만을 이용하여 2차 컨베이어(1')에서 재차 색상 선별을 하도록 구성하였다. 이와 같이 구성하면 대량으로 성분 및 색상을 선별할 수 있게 된다.
먼저 1차 컨베이어(1)에 의한 성분 분석을 설명하면, 도시된 바와 같이 다양한 성분과 다양한 색상을 가진 플라스틱이 공급되어 컨베이어(1)의 끝단부에 설치된 광원(2)으로부터 빛이 컨베이어(1)쪽으로 조사하게 되고, 이후 컨베이어(1)상을 이송중인 플라스틱의 표면에 반사한후 프로브(3)에 입사하게 된다. 이후 프로브(3)에서 인입된 빛은 광섬유를 통해 광분배장치(4)로 전달되고, 광분배장치(4)에서는 입사된 빛을 근적외선과 가시광선으로 분리하여 가시광선은 RGB센서(5)로 근적외선은 NIR분광기(6)로 전달하게 된다. 이후 RGB센서(5)와 NIR분광기(6)에서 광자가 전자로 변환되어 분석제어부(7)로 신호를 전달하게 된다.
분석제어부(7)는 입인된 전자신호중 NIR분광기(6)에서 나오는 전자신호만을 분석하여, 또한 이미 데이터베이스로 만들어진 범용 플라스틱(PET, PE, PP, PS, ABS, PVC 등)의 흡수 스펙트럼의 값과 인입되는 근적외선 흡수스펙트럼 값과 비교하여 매칭이 될 경우 플라스틱 성분을 인식하여, 64개의 프로브(3) 중 특정 프로브(3)에서 검출된 플라스틱의 성분이 선별하고자 하는 값에 해당하면, 해당 프로브(3) 하단에 위치한 에어토출기(8)를 작동시켜 낙하하는 플라스틱을 선별하게 된다.
상기와 같은 성분 분석을 위해 선별 전에 분석제어부(7)에 선별하고자 하는 플라스틱의 종류를 입력하여 특정 성분에 대한 값이 검출시 작동되도록 구성한다.
또한 2차 컨베이어(1')에 의한 색상 분석을 설명하면 도시된 바와 같이 1차 컨베이어(1)를 통해 선별하고자 하는 플라스틱만 에어토출기(8)에 의해 선별되어 2차 컨베이어(1')로 공급되면, 컨베이어(1')를 통해 특정 성분의 플라스틱과 다양한 색상을 가진 플라스틱이 공급되게 된다. 이후 컨베이어(1')의 끝단부에 설치된 광원(2)으로부터 빛이 컨베이어(1')쪽으로 조사하게 되고, 이후 컨베이어상을 이송중인 플라스틱의 표면에 반사한후 프로브(3)에 입사하게 된다. 이후 프로브(3)에서 인입된 빛은 광섬유를 통해 광분배장치(4)로 전달되고, 광분배장치(4)에서는 입사된 빛을 근적외선과 가시광선으로 분리하여 가시광선은 RGB센서(5)로 근적외선은 NIR분광기(6)로 전달하게 된다. 이후 RGB센서(5)와 NIR분광기(6)에서 광자가 전자로 변환되어 분석제어부(7)로 신호를 전달하게 된다.
분석제어부(7)는 입인된 전자신호 중 색상신호만을 분석하게 된다. 이를 위해 RGB센서(5)에서 나오는 신호를 HSI값(색상(Hue), 채도(Saturation), 명도(Intensity))으로 변환하여 도출된 값을 이용하여 색상을 인식하게 되고, 이후 사전에 정의된 처리절차에 따라 64개의 프로브(3) 중 특정 프로브(3)에서 검출된 플라스틱의 색상이 선별하고자 하는 값에 해당하면, 해당 프로브(3) 하단에 위치한 에어토출기(8)를 작동시켜 낙하하는 플라스틱을 선별하게 된다.
이때 에어토출기(8)를 다단으로 구성하여 한번에 2가지 이상을 선별할게 구성할수 있다. 도면에서의 특정 성분을 가진 2가지 색상을 선별하는 공정을 보여주고 있다.
상기처럼 본 발명은 분석제어부(7)의 사전 설정에 의해 1차 컨베이어(1)에서는 성분분석을 하고, 2차 컨베이어(1)에서는 색상선별을 하도록 구성할 수 있는데, 이때 사용되는 광분배장치(4)는 동일한 장치를 사용함으로 인해 별도의 장치를 각각 준비할 필요가 없어 시스템을 구성하는데 매운 간편하고 편리함을 알 수 있다.
상기한 구성에 따라 2개의 컨베이어(1, 1')에서 플라스틱의 성분과 색상을 다단 선별하는 방법을 단계별로 설명하면 다음과 같다.
먼저 1차 컨베이어에서 성분별 선별 단계를 살펴본다.
본 발명의 선별 단계는 다양한 성분과 색상을 가진 플라스틱을 컨베이어(1)로 공급하는 단계와;
이송중인 플라스틱에 빛을 조사하여 반사된 빛을 프로브(3)로 입사시키는 단계와;
입사된 빛을 광분배장치(4)에서 근적외선과 가시광선으로 분리하는 단계와;
상기 분리된 근적외선으로부터 NIR분광기(6)가 흡수 스펙트럼의 값 신호로 변환시키는 단계와;
분석제어부(7)가 NIR분광기(6)의 흡수 스펙트럼의 값 신호와 기 데이터베이스로 만들어진 범용 플라스틱의 흡수 스펙트럼의 값과 비교하여 플라스틱 성분을 인식하는 단계와;
분석제어부(7)가 인식된 성분이 사전 정의된 선별대상 플라스틱에 해당하는지를 판단하여 선별대상 플라스틱일 경우 해당 정보를 보낸 프로브(3)의 영역에 해당하는 에어토출기(8)를 작동시켜 낙하중인 플라스틱을 선별하는 단계;로 구성된 1차 성분 선별 단계와;
상기 1차 성분 선별 단계에 의해 선별된 플라스틱을 가지고 2차 컨베이어(1')에서 색상별 선별하는 단계를 살펴본다.
본 발명의 선별단계는 특정 성분으로 이루어진 다양한 색상을 가진 플라스틱을 컨베이어(1')로 공급하는 단계와;
이송중인 플라스틱에 빛을 조사하여 반사된 빛을 프로브(3)로 입사시키는 단계와;
입사된 빛을 광분배장치(4)에서 근적외선과 가시광선으로 분리하는 단계와;
상기 분리된 가시광선을 RGB센서(5)가 색상신호로 변환시키는 단계와;
분석제어부(7)가 RGB센서(5)의 색상신호를 HSI값으로 변환시켜 도출된 값을 가지고 기 데이터베이스로 만들어진 색상별 HSI값과 비교하여 플라스틱의 색상을 인식하는 단계와;
분석제어부(7)가 인식된 색상이 사전 정의된 선별대상 플라스틱에 해당하는지를 판단하여 선별대상 플라스틱일 경우 해당 정보를 보낸 프로브(3)의 영역에 해당하는 에어토출기(8)를 작동시켜 낙하중인 플라스틱을 선별하는 단계;로 구성된 2차 색상 선별 단계;로 이루어진다.
상기 에어토출기(8)는 다수의 영역에 걸친 프로브(3)에 해당하면 해당 프로브(3)에 대응하는 에어토출기(8)를 모두 작동시키게 된다.
이하 본 발명의 바림직한 실시예이다.
(실시예 1)
이하 실시예 1은 컨베이어를 통해 이송중인 폐플라스틱 중 파란색의 PET를 동시에 선별하는 방법을 설명한다. 실시예에서는 3개의 플라스틱을 사용하였다. 이하에서 도면 번호는 도 1 내지 5에 도시된 도면번호에 준한다.
진동호퍼 등의 공급장치를 통해 플라스틱으로 분류된 PET, PE, PP, PS, ABS, PVC로 이루어진 다양한 색상을 가진 플라스틱을 컨베이어로 공급되면, 다수개의 프로브(3)가 컨베이어쪽으로 할로겐램프 광원(2)에서 빛을 지속적으로 조사하게 된다. 이때 흰색의 PP와 파란색의 PET성분 및 빨강색의 PET성분 플라스틱이 각각 다른 영역의 컨베이어벨트 위에서 이송되다가 낙하지점 이전의 위치에서 광원(2)으로부터 조사된 빛을 받아 이를 다시 반사시켜 각각의 영역별로 설치된 프로브(3)로 입사시키게 된다.
각각의 영역별 프로브(3)로 입사된 빛은 하나의 광분배장치(4)에서 근적외선과 가시광선으로 분리되어 각각 가시광선은 RGB센서(5)를 거치면서 색상신호를 분석제어부(7)로 보내고, 근적외선은 NIR분광기(6)를 거치면서 흡수 스펙트럼의 값 신호를 분석제어부(7)로 보내게 된다.
분석제어부(7)는 NIR분광기(6)로부터 전송된 플라스틱의 흡수 스펙트럼의 값 신호와 기 데이터베이스로 만들어진 범용 플라스틱의 흡수 스펙트럼의 값과 비교하여 전달된 흡수스펙트럼의 정보중 1개의 PP와 2개의 선별코자 하는 PET 성분 플라스틱이 있음을 인식하게 된다.
또한 동시에 분석제어부(7)는 RGB센서(5)의 색상신호를 HSI값으로 변환시켜 도출된 값을 가지고 기 데이터베이스로 만들어진 색상별 HSI값과 비교하여 플라스틱의 색상이 흰색, 파란색, 빨강색 임을 인식하여 선별토자 하는 파란색이 있음을 확인하게 된다.
이후 분석제어부(7)는 특정영역에서 검출된 2개의 PET 플라스틱 중 하나의 PET 플라스틱 색상이 선별코자 하는 파란색에 해당함을 인식하여 해당 프로브(3)의 하부에 위치한 영역의 컨베이어 하단에 위치한 프로브(3)에 대응하는 에어토출기(8)를 작동시켜 파란색의 PET 성분 플라스틱을 선별시킨다. 나머지 흰색의 PP와 빨강색의 PET 성분 플라스틱은 에어토출기(8) 작동 없이 그냥 낙하시킨다. 이에 따라 특정 성분을 가진 특정 색상의 플라스틱을 선별하게 된다.
(실시예 2)
이하 실시예 2는 컨베이어를 통해 이송중인 폐플라스틱 중 1차 선별 컨베이어에서는 PE를 선별하고, 선별된 PE중 2차 컨베이어에서는 파란색과 흰색 PE를 다단 선별하는 방법을 설명한다. 실시예에서는 4개의 플라스틱을 사용하였다. 이하에서 도면 번호는 도 1 내지 5에 도시된 도면번호에 준한다.
진동호퍼 등의 공급장치를 통해 플라스틱으로 분류된 PET, PE, PP, PS, ABS, PVC로 이루어진 다양한 색상을 가진 플라스틱을 컨베이어로 공급되면, 다수개의 프로브(3)가 컨베이어(1)쪽으로 할로겐램프 광원(2)에서 빛을 지속적으로 조사하게 된다. 이때 녹색의 PE와 흰색의 PE와 파란색의 PE 및 녹색의 PET성분 플라스틱이 각각 다른 영역의 컨베이어벨트 위에서 이송되다가 낙하지점 이전의 위치에서 광원(2)으로부터 조사된 빛을 받아 이를 다시 반사시켜 각각의 영역별로 설치된 프로브(3)로 입사시키게 된다.
각각의 영역별 프로브(3)로 입사된 빛은 하나의 광분배장치(4)에서 근적외선과 가시광선으로 분리되어 각각 가시광선은 RGB센서(5)를 거치면서 색상신호를 분석제어부(7)로 보내고, 근적외선은 NIR분광기(6)를 거치면서 흡수 스펙트럼의 값 신호를 분석제어부(7)로 보내게 된다.
분석제어부(7)는 NIR분광기(6)로부터 전송된 플라스틱의 흡수 스펙트럼의 값 신호와 기 데이터베이스로 만들어진 범용 플라스틱의 흡수 스펙트럼의 값과 비교하여 전달된 흡수스펙트럼의 정보중 선별코자 하는 3개의 PE와 1개의 PET 성분 플라스틱이 있음을 인식하게 된다.
이후 분석제어부(7)는 특정영역에서 검출된 3개의 PE 플라스틱을 검출한 프로브(3)의 하부에 위치한 영역의 컨베이어 하단에 위치한 프로브(3)에 대응하는 에어토출기(8)를 작동시켜 PET 성분 플라스틱을 선별시킨다.
이와 같은 작업이 종료되면 성분별 1차 선별이 종료되게 된다.
이후 선별된 녹색의 PE와 흰색의 PE와 파란색의 PE를 2차 컨베이어(1')를 통해 이송시켰다. 3개의 플라스틱은 컨베이어(1') 끝단부쪽으로 이송되면 다수개의 프로브(3)가 컨베이어(1')쪽으로 할로겐램프 광원(2)에서 빛을 지속적으로 조사하게 된다. 이때 녹색의 PE와 흰색의 PE와 파란색의 PE 성분 플라스틱이 각각 다른 영역의 컨베이어벨트 위에서 이송되다가 낙하지점 이전의 위치에서 광원(2)으로부터 조사된 빛을 받아 이를 다시 반사시켜 각각의 영역별로 설치된 프로브(3)로 입사시키게 된다.
각각의 영역별 프로브(3)로 입사된 빛은 하나의 광분배장치(4)에서 근적외선과 가시광선으로 분리되어 각각 가시광선은 RGB센서(5)를 거치면서 색상신호를 분석제어부(7)로 보내고, 근적외선은 NIR분광기(6)를 거치면서 흡수 스펙트럼의 값 신호를 분석제어부(7)로 보내게 된다.
분석제어부(7)는 RGB센서(5)의 색상신호를 HSI값으로 변환시켜 도출된 값을 가지고 기 데이터베이스로 만들어진 색상별 HSI값과 비교하여 플라스틱의 색상이 녹색 흰색, 파란색, 빨강색임을 인식하여 선별코자 하는 파란색과 흰색이 있음을 확인하게 된다.
이후 분석제어부(7)는 특정영역에서 검출된 2개의 파란색 및 흰색 PE 플라스틱을 검출한 프로브(3)의 하부에 위치한 영역의 컨베이어 하단에 다단으로 위치한 프로브(3)에 대응하는 에어토출기(8)를 작동시켜 PET 성분 플라스틱을 선별시킨다.
이때 파란색은 상부단 에어토출기(8)를 작동시키고, 흰색은 상부단 하부에 위치한 에어토출기(8)를 작동시켜 토출시킨다. 상부와 하부단의 에어토출기(8)는 토출각도가 다르게 설정됨으로 인해 선별되어 야적되는 위치가 분리되어 자동화된 색상선별이 이루어지게 된다. 이러한 과정이 끝나면 색상별 2차 선별이 종료되게 된다.
상기와 같은 1차와 2차 다단 선별에 의해 특정성분을 가진 플라스틱이 특정 색상별로 선별되게 된다.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
<도면의 주요 부분에 대한 부호의 설명>
(1, 1') : 컨베이어 (2) : 광원
(3) : 프로브 (4) : 광분배장치
(5) : RGB센서 (6) : NIR분광기
(7) : 분석제어부 (8) : 에어토출기
(9) : 컨베이어용 Encoder (10) : 공기압센서
(41) : 고정미러 (42) : 광섬유 체결부
(43) : 가시광선 포집용 렌즈 (44) : 광원 포집용 렌즈
(45) : 다이크로익 미러 (46) : 근적외선 포집용 렌즈
(47) : 회전미러 (48) : 모터

Claims (14)

  1. 삭제
  2. 다양한 성분과 색상을 가진 폐플라스틱을 이송하는 제 1 컨베이어와; 제 1 컨베이어에서 선별된 특정 성분의 다양한 색상을 가진 폐플라스틱을 이송하는 제 2 컨베이어와; 제 1, 2 컨베이어 상부에 설치되어 광선을 조사하는 다수개의 광원과; 상기 광원으로부터 조사된 광선이 폐플라스틱의 표면을 반사하여 입사된 광선을 검출하도록 제 1, 2 컨베이어 상부에 각각 설치된 다수개의 프로브와 프로브에서 입사된 광선을 분리하는 광분배장치와; 상기 제 1 컨베이어 및 제 2 컨베이어 하부에 설치되어 폐플라스틱을 토출시키는 에어토출기;를 포함하는 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치에 있어서,
    다수개의 프로브에서 입사된 광선을 근적외선과 가시광선으로 분리하도록, 64개의 프로브와 연결된 광섬유가 체결되는 광섬유체결부와, 광섬유체결부를 통해 64개의 광섬유에서 동시에 인입된 광선을 순차적으로 고정미러로 보내도록 1초당 최대 70Hz의 회전속도를 갖는 모터와 연결되어 회전하는 회전미러와, 입사된 광선을 다이크로익 미러로 출사시키는 고정미러와, 고정미러로부터 반사된 광선을 포집하는 광원 포집용 렌즈와, 광원 포집용 렌즈로 포집된 광선을 근적외선과 가시광선으로 분리하는 다이크로익 미러와, 다이크로익 미러를 통과한 근적외선을 포집하여 초점을 맞춘 후 NIR분광기로 출사시키는 근적외선 포집용 렌즈 및 다이크로익 미러에 반사된 가시광선을 포집하여 초점을 맞춘후 RGB센서로 출사시키도록 다이크로익 미러가 설치된 원통관 전단에서 분지된 원통분지관에 설치된 가시광선 포집용 렌즈를 포함하여 구성된 광분배장치와;
    광분배장치에서 나온 제 1 컨베이어 상의 플라스틱의 근적외선을 흡수스펙트럼 전자신호 값으로 변환시키는 NIR분광기와;
    광분배장치에서 나온 제 2 컨베이어 상의 가시광선을 색상신호로 변환시키는 RGB센서와;
    NIR분광기와 RGB센서로부터 입력된 전자신호와 색상신호를 분석하여 기 저장된 데이터베이스와 비교하여 선별할 플라스틱 성분과 색상인지를 판단하여 선별대상 성분 및 색상일 경우 해당 제 1 컨베이어 및 제 2 컨베이어의 프로브 영역을 담당하는 에어토출기를 작동시키는 분석제어부;로 구성한 것을 특징으로 하는 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치.
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
KR1020100059420A 2010-06-23 2010-06-23 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치 KR101060589B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100059420A KR101060589B1 (ko) 2010-06-23 2010-06-23 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100059420A KR101060589B1 (ko) 2010-06-23 2010-06-23 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치

Publications (1)

Publication Number Publication Date
KR101060589B1 true KR101060589B1 (ko) 2011-08-31

Family

ID=44933962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100059420A KR101060589B1 (ko) 2010-06-23 2010-06-23 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치

Country Status (1)

Country Link
KR (1) KR101060589B1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167094B1 (ko) 2011-10-26 2012-07-20 한국 천문 연구원 Eo 및 ir 겸용 광학장치
KR101556228B1 (ko) 2014-06-03 2015-09-30 주식회사 세종메이저인터내쇼날 분광기를 이용한 플라스틱의 재질별 선별 분류장치
WO2021085760A1 (ko) * 2019-10-31 2021-05-06 탑스이앤씨 주식회사 레이저 분광 기술을 이용한 플라스틱 재질 분석 시스템.
KR20220085460A (ko) 2020-12-15 2022-06-22 주식회사 넥스트이앤엠 근적외선 분광법을 이용한 미세플라스틱 식별시스템 및 그의 동작방법
KR20220093623A (ko) 2020-12-28 2022-07-05 주식회사 넥스트이앤엠 근적외선 분광법을 이용한 미세플라스틱 정량분석시스템 및 그의 동작방법
KR102416760B1 (ko) * 2022-01-14 2022-07-07 주식회사 에코피엘 3d프린터용 폐플라스틱을 재활용한 원료의 연속 직공급장치
KR102563293B1 (ko) 2022-02-03 2023-08-04 주식회사 리플라 측정 대상의 종류 판별장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030132142A1 (en) * 1996-02-16 2003-07-17 Huron Valley Steel Corporation Metal scrap sorting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030132142A1 (en) * 1996-02-16 2003-07-17 Huron Valley Steel Corporation Metal scrap sorting system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167094B1 (ko) 2011-10-26 2012-07-20 한국 천문 연구원 Eo 및 ir 겸용 광학장치
WO2013062200A1 (ko) * 2011-10-26 2013-05-02 한국 천문 연구원 Eo 및 ir 겸용 광학장치
KR101556228B1 (ko) 2014-06-03 2015-09-30 주식회사 세종메이저인터내쇼날 분광기를 이용한 플라스틱의 재질별 선별 분류장치
WO2021085760A1 (ko) * 2019-10-31 2021-05-06 탑스이앤씨 주식회사 레이저 분광 기술을 이용한 플라스틱 재질 분석 시스템.
KR20220085460A (ko) 2020-12-15 2022-06-22 주식회사 넥스트이앤엠 근적외선 분광법을 이용한 미세플라스틱 식별시스템 및 그의 동작방법
KR20220093623A (ko) 2020-12-28 2022-07-05 주식회사 넥스트이앤엠 근적외선 분광법을 이용한 미세플라스틱 정량분석시스템 및 그의 동작방법
KR102416760B1 (ko) * 2022-01-14 2022-07-07 주식회사 에코피엘 3d프린터용 폐플라스틱을 재활용한 원료의 연속 직공급장치
KR102563293B1 (ko) 2022-02-03 2023-08-04 주식회사 리플라 측정 대상의 종류 판별장치

Similar Documents

Publication Publication Date Title
KR101060589B1 (ko) 광분배장치를 이용한 실시간 폐플라스틱의 성분 및 색상 선별장치
KR100293582B1 (ko) 곡립색채선별장치
US7339660B1 (en) Illumination device for product examination
KR100755224B1 (ko) Ccd 선형 센서로 구성되는 광검출 장치를 갖는입상체용 색선별 장치
US6509537B1 (en) Method and device for detecting and differentiating between contaminations and accepts as well as between different colors in solid particles
CN107505285B (zh) 一种物料在线分选装置及其扫描成像光谱装置
JP4203319B2 (ja) 本質的に単層の流れの中を移動する物体を自動的に検査するための装置および方法
JP6668249B2 (ja) 検査装置
AU683969B2 (en) Cereal grain color sorting apparatus
US9924105B2 (en) System and method for individually inspecting objects in a stream of products and a sorting apparatus comprising such system
US20110317001A1 (en) Multisensor array for the optical inspection and sorting of bulk materials
JP2008302314A (ja) 光学式米粒選別機
EP2382059A1 (en) Sorting method and apparatus
JP6584624B2 (ja) 識別装置および選別システム
CN105107760A (zh) 一种主动激发式光致多光谱成像的分选设备
EP0517950B1 (en) Sorting machine
US5158181A (en) Optical sorter
KR101298109B1 (ko) 가시광 대역 플라스틱 판별 장치 및 이를 이용한 플라스틱 분류 시스템
CN1138503A (zh) 采用夹层探测器的分选机
CN1074947C (zh) 采用双频率光探测器的分选机
CN107234074A (zh) 一种分时led双红外在线物料分选装置及分选方法
Chen et al. Sensor-based sorting
JP3506312B2 (ja) 穀粒色彩選別方法及びその装置
CN204866599U (zh) 一种主动激发式光致多光谱成像的分选设备
WO2023104832A1 (en) Material identification apparatus and method

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140919

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160824

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170824

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190617

Year of fee payment: 9