KR101012847B1 - manufacturing method of compound sollar cell using ??? nanorod and the compound sollar cell - Google Patents

manufacturing method of compound sollar cell using ??? nanorod and the compound sollar cell Download PDF

Info

Publication number
KR101012847B1
KR101012847B1 KR1020080083681A KR20080083681A KR101012847B1 KR 101012847 B1 KR101012847 B1 KR 101012847B1 KR 1020080083681 A KR1020080083681 A KR 1020080083681A KR 20080083681 A KR20080083681 A KR 20080083681A KR 101012847 B1 KR101012847 B1 KR 101012847B1
Authority
KR
South Korea
Prior art keywords
layer
zno
solar cell
compound solar
nanorod
Prior art date
Application number
KR1020080083681A
Other languages
Korean (ko)
Other versions
KR20100025068A (en
Inventor
조채용
정예슬
정세영
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020080083681A priority Critical patent/KR101012847B1/en
Publication of KR20100025068A publication Critical patent/KR20100025068A/en
Application granted granted Critical
Publication of KR101012847B1 publication Critical patent/KR101012847B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 화합물 태양전지에 관한 것으로서, 글라스 상층에 윈도우층을 형성시키는 제1단계와; 상기 윈도우층 상층에 ZnO 나노막대층을 형성시키는 제2단계와; 상기 ZnO 나노막대층의 ZnO 나노막대를 따라 버퍼층을 형성시키는 제3단계와; 상기 버퍼층 상층에 광흡수층을 형성시키는 제4단계와; 상기 광흡수층 상층에 전극층을 형성시키는 제5단계와; 상기 전극층 상층에 기판을 형성시키는 제6단계;를 포함하여 이루어지는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법 및 이 제조방법에 의한 ZnO 나노막대를 이용한 화합물 태양전지를 기술적 요지로 한다. 이에 따라, 광흡수층과 윈도우층 사이에 ZnO 나노막대층을 버퍼층을 사이로 두고 형성시킴으로써, 전자의 확산계수를 높여 태양전지의 전기적, 광학적 특성을 향상시켜, 태양전지의 효율을 더 높일 수 있으며, ZnO 나노막대의 크기를 조절함으로써, 태양전지의 효율을 용이하게 제어할 수 있는 효과가 있으며, 또한, 상기 윈도우층 또는 ZnO 나노막대층을 플라즈마 처리함으로써, 상기 윈도우층과 ZnO 나노막대층, 그리고 상기 ZnO 나노막대층과 버퍼층과의 부착력을 개선시켜, 태양전지의 성능이 오래 지속시키는 이점이 있다.The present invention relates to a compound solar cell, comprising: a first step of forming a window layer on an upper glass layer; Forming a ZnO nanorod layer on the window layer; Forming a buffer layer along the ZnO nanorods of the ZnO nanorod layer; Forming a light absorption layer on the buffer layer; A fifth step of forming an electrode layer on the light absorption layer; A method of manufacturing a compound solar cell using a ZnO nanorod, and a compound solar cell using the ZnO nanorod according to the manufacturing method, comprising a sixth step of forming a substrate on the electrode layer. . Accordingly, the ZnO nanorod layer is formed between the light absorption layer and the window layer with the buffer layer interposed therebetween, thereby increasing the electron diffusion coefficient and improving the electrical and optical properties of the solar cell, thereby increasing the efficiency of the solar cell. By controlling the size of the nanorod, there is an effect that can easily control the efficiency of the solar cell, and also, by plasma treatment of the window layer or ZnO nanorod layer, the window layer and the ZnO nanorod layer, and the ZnO By improving the adhesion between the nano-bar layer and the buffer layer, there is an advantage that the performance of the solar cell lasts long.

화합물 태양전지 ZnO 나노막대 플렉시블 플라즈마 Compound Solar Cell ZnO Nanorod Flexible Plasma

Description

ZnO 나노막대를 이용한 화합물 태양전지의 제조방법 및 이에 의한 화합물 태양전지{manufacturing method of compound sollar cell using ZnO nanorod and the compound sollar cell}Manufacturing method of compound sollar cell using photon nanorod and the compound sollar cell}

본 발명은 화합물 태양전지에 관한 것으로서, 특히 광흡수층과 윈도우층 사이에 ZnO 나노막대층을 버퍼층을 사이로 두고 형성시킴으로써, 전자의 확산계수를 높여 태양전지의 전기적, 광학적 특성을 향상시켜, 태양전지의 성능을 개선하기 위한 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법 및 이에 의한 화합물 태양전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound solar cell. In particular, a ZnO nanorod layer is formed between a light absorption layer and a window layer with a buffer layer interposed therebetween, thereby increasing the electron diffusion coefficient and improving the electrical and optical characteristics of the solar cell. The present invention relates to a method for manufacturing a compound solar cell using a ZnO nanorod for improving performance and a compound solar cell thereby.

최근 천연자원의 고갈과 화력 및 원자력 발전에 대한 환경 및 안정성 등의 문제가 대두되면서 환경친화적인 에너지에 대한 연구가 활발해지고 있다. 이러한 환경친화적인 발전시스템에 있어서 태양광 에너지는 중요한 대체에너지로 주목받고 있다.Recently, with the depletion of natural resources, environmental and stability issues for thermal and nuclear power generation, research on environmentally friendly energy is being actively conducted. In such environmentally friendly power generation system, solar energy is attracting attention as an important alternative energy.

이러한 태양광 에너지는 고갈되지 않는 무한정의 영구적인 에너지원으로서, 환경오염이 없으며, 폭발 등의 위험이 없어 안정적이며, 규모나 지역에 관계없이 설치가 가능하고, 유지비용이 적게 들며, 태양전지, 모듈, 제조장비, 설치 등의 여 러 분야에 적용이 가능하다.This solar energy is an endless and permanent energy source that is not depleted. It is free from environmental pollution, there is no risk of explosion, and it is stable. It can be installed regardless of size or region, and maintenance costs are low. It can be applied to various fields such as module, manufacturing equipment and installation.

특히, 본 발명에서는 태양광 에너지를 이용한 태양전지에 대해 살펴보고자 한다. 일반적으로 태양전지는 결정질 실리콘 태양전지, 화합물 태양전지, 적층형 태양전지 등으로 나누어진다.In particular, the present invention will look for a solar cell using the solar energy. Generally, solar cells are divided into crystalline silicon solar cells, compound solar cells, stacked solar cells, and the like.

상기 결정질 실리콘 태양전지는 200㎛ 내외의 기판으로 인해 생산 단가를 감소시키는데 한계가 있으며, 특히 실리콘 원소재의 공급 불안 또한 문제점으로 지적되고 있다.The crystalline silicon solar cell is limited to reduce the production cost due to the substrate of about 200㎛, in particular, the supply instability of the silicon raw material is also pointed out as a problem.

따라서, 결정질 실리콘 태양전지 대신 유리 등의 저가의 기판을 사용하고 5㎛ 내외의 얇은 층만으로도 태양전지를 제조할 수 있는 화합물 태양전지로 박막 태양전지에 대한 연구가 활발하며, 특히, CIGS 박막 태양전지의 경우 생산단가가 저렴하여 최근들어 가장 활발히 연구되고 있다.Therefore, research on thin film solar cells is active with compound solar cells that use low-cost substrates such as glass instead of crystalline silicon solar cells and can manufacture solar cells with only a thin layer of about 5 μm. In particular, CIGS thin film solar cells In the case of low production cost has been the most active research in recent years.

상기 CIGS 태양전지는 광흡수계수가 높고 화학적으로 안정하여 다른 박막 태양전지에 비해 효율이 높으면서도 안정하며, 효율 또한 결정질 실리콘 태양전지의 효율과 유사하다. 대면적 모듈의 경우 11%~13% 효율을 나타내고 있어 실리콘 박막 및 CdTe 태양전지에 비해 높다.The CIGS solar cell has a high light absorption coefficient and is chemically stable, which is high in efficiency and stable compared to other thin film solar cells, and its efficiency is similar to that of crystalline silicon solar cells. The large area modules show 11% to 13% efficiency, which is higher than silicon thin films and CdTe solar cells.

이러한 CIGS 태양전지의 구조는, 도 1에 도시된 바와 같이, 기판(10), 배면전극(20), 광흡수층(30), 버퍼층(40), 윈도우층(50) 등을 포함하여 이루어진다.As shown in FIG. 1, the structure of the CIGS solar cell includes a substrate 10, a back electrode 20, a light absorption layer 30, a buffer layer 40, a window layer 50, and the like.

일반적으로 기판(10)으로서는 유리(glass) 기판(10)을 사용하고, 배면전극(20)으로는 Mo와 같은 금속, 광흡수층(30)으로는 상기에서 언급한 CIGS, 버퍼층(40)으로는 ZnS를 사용하고, 윈도우층(50)으로는 AZO와 i-ZnS에 대한 연구가 가장 활발하다.In general, a glass substrate 10 is used as the substrate 10, and a metal such as Mo is used as the back electrode 20, and the CIGS and the buffer layer 40 mentioned above are used as the light absorption layer 30. ZnS is used, and as the window layer 50, research on AZO and i-ZnS is most active.

특히, 상기 구조의 태양전지는 사용 목적이나 용도에 따라 태양전지의 효율을 제어하기 위해서는 박막의 두께를 조절하거나, AZO 등에 불순물을 도핑하는 방법에 의하여 왔다. 그러나, 이러한 방법은 그다지 용이하지 않을 뿐만 아니라, 정확한 효율을 예상할 수 없어, 에너지의 낭비를 초래할 염려가 있다.In particular, the solar cell of the above structure has come by a method of controlling the thickness of the thin film or doping impurities in AZO or the like in order to control the efficiency of the solar cell according to the purpose or use. However, such a method is not very easy, and accurate efficiency cannot be predicted, resulting in waste of energy.

또한, 상용화의 적용을 위해 태양전지의 효율을 더욱 높일 필요가 있으며, 각 물질 간의 부착력을 향상시켜 태양전지의 성능을 지속시킬 필요가 있다.In addition, it is necessary to further increase the efficiency of the solar cell in order to apply the commercialization, it is necessary to improve the adhesion between each material to maintain the performance of the solar cell.

본 발명은 상기 문제점을 해결하기 위한 것으로서, 광흡수층과 윈도우층 사이에 ZnO 나노막대층을 버퍼층을 사이로 두고 형성시킴으로써, 전자의 확산계수를 높여 태양전지의 전기적, 광학적 특성을 향상시켜, 태양전지의 성능을 개선하기 위한 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법 및 이에 의한 화합물 태양전지의 제공을 그 목적으로 한다.The present invention is to solve the above problems, by forming a ZnO nano-rod layer between the light absorbing layer and the window layer with a buffer layer, thereby increasing the electron diffusion coefficient to improve the electrical and optical characteristics of the solar cell, It is an object of the present invention to provide a method for producing a compound solar cell using a ZnO nanorod for improving performance and a compound solar cell thereby.

상기 목적을 달성하기 위해 본 발명은, 글라스 상층에 윈도우층을 형성시키는 제1단계와; 상기 윈도우층 상층에 ZnO 나노막대층을 형성시키는 제2단계와; 상기 ZnO 나노막대층의 ZnO 나노막대를 따라 버퍼층을 형성시키는 제3단계와; 상기 버퍼층 상층에 광흡수층을 형성시키는 제4단계와; 상기 광흡수층 상층에 전극층을 형성시키는 제5단계와; 상기 전극층 상층에 기판을 형성시키는 제6단계;를 포함하여 이루어지는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법 및 이 제조방법에 의한 ZnO 나노막대를 이용한 화합물 태양전지를 기술적 요지로 한다.The present invention to achieve the above object, the first step of forming a window layer on the glass upper layer; Forming a ZnO nanorod layer on the window layer; Forming a buffer layer along the ZnO nanorods of the ZnO nanorod layer; Forming a light absorption layer on the buffer layer; A fifth step of forming an electrode layer on the light absorption layer; A method of manufacturing a compound solar cell using a ZnO nanorod, and a compound solar cell using the ZnO nanorod according to the manufacturing method, comprising a sixth step of forming a substrate on the electrode layer. .

여기에서, 상기 제6단계 이후에 태양전지의 용도에 따라 상기 제1단계의 글라스를 제거시키는 공정이 더 추가되는 것이 바람직하다.Here, after the sixth step, the step of removing the glass of the first step is further added according to the use of the solar cell.

또한, 상기 윈도우층은, ZnO 박막층, 상기 ZnO에 Al이나 B가 도핑된 AZO 박막층 및 BZO 박막층 중에 어느 하나인 것이 바람직하며, 상기 윈도우층은, RF 스파 터링법(sputtering), 리액티브 스파터링법(reactive sputtering), 그리고 MOCVD(Metal Organic Chemical Vapor Deposition)법 중에 어느 하나의 방법에 의해 형성되는 것이 바람직하다. 또한, 상기 윈도우층의 형성 후에, 상기 윈도우층의 플라즈마 처리 공정이 더 이루어지는 것이 바람직하다.The window layer may be any one of a ZnO thin film layer, an AZO thin film layer in which Al or B is doped with ZnO, and a BZO thin film layer. The window layer may be RF sputtering or reactive sputtering. (reactive sputtering) and MOCVD (Metal Organic Chemical Vapor Deposition) is preferably formed by any one of the methods. In addition, it is preferable that a plasma treatment process of the window layer is further performed after the formation of the window layer.

또한, 상기 ZnO 나노막대층은, 튜브 퍼니스를 이용하여 형성되는 것이 바람직하며, 상기 ZnO 나노막대층의 형성 후에, 상기 ZnO 나노막대층의 플라즈마 처리 공정이 더 이루어지는 것이 바람직하다.In addition, the ZnO nanorod layer is preferably formed using a tube furnace, and after the formation of the ZnO nanorod layer, it is preferable that a plasma treatment step of the ZnO nanorod layer is further performed.

또한, 상기 버퍼층은, ZnS, CdS, ZnSe, InS, InOOH 및 ZnOOH 중의 어느 하나를 사용하는 것이 바람직하며, 상기 버퍼층은, CBD(Chemical Bath Deposition)법 또는 RF 스파터링법에 의해 형성되는 것이 바람직하다.In addition, the buffer layer is preferably any one of ZnS, CdS, ZnSe, InS, InOOH, and ZnOOH, and the buffer layer is preferably formed by a chemical bath deposition (CBD) method or an RF spattering method. .

또한, 상기 광흡수층은, CIS 또는 CIGS인 것이 바람직하며, 상기 광흡수층은, 이배퍼레이션법(evaporation) 및 RF 스파터링법(sputtering), 전기증착법(electrodeposition)에 의해 형성되는 것이 바람직하다.The light absorbing layer is preferably CIS or CIGS, and the light absorbing layer is preferably formed by an evaporation method, an RF sputtering method, or an electrodeposition method.

또한, 상기 전극층은, Mo, Ni, Au, Al 및 Cu 중에 어느 하나를 사용하는 것이 바람직하며, 상기 전극층은, DC 스파터링법에 의해 형성되는 것이 바람직하다.Moreover, it is preferable to use any one of Mo, Ni, Au, Al, and Cu as the said electrode layer, and it is preferable that the said electrode layer is formed by the DC spattering method.

또한, 상기 기판은, 글라스(glass), 구리판(Cu plate), 구리 테이프(Cu tape), 세라믹 기판 및 서스판(SUS plate) 중에 어느 하나를 상기 전극층 상부에 본딩하여 형성시키거나, 폴리머를 상기 전극층 상층에 코팅하여 형성시키는 것이 바람직하다.In addition, the substrate may be formed by bonding any one of glass, a copper plate, a copper tape, a ceramic substrate, and a SUS plate on the electrode layer, or the polymer. It is preferable to form a coating on the upper electrode layer.

상기 과제 해결 수단에 의해 본 발명은, 광흡수층과 윈도우층 사이에 ZnO 나노막대층을 버퍼층을 사이로 두고 형성시킴으로써, 전자의 확산계수를 높여 태양전지의 전기적, 광학적 특성을 향상시켜, 태양전지의 효율을 더 높일 수 있으며, ZnO 나노막대의 크기를 조절함으로써, 태양전지의 효율을 용이하게 제어할 수 있는 효과가 있다.According to the above problem solving means, the present invention provides a ZnO nanorod layer between the light absorption layer and the window layer with the buffer layer interposed therebetween, thereby increasing the electron diffusion coefficient and improving the electrical and optical characteristics of the solar cell. It is possible to further increase, and by adjusting the size of the ZnO nano-rod, there is an effect that can easily control the efficiency of the solar cell.

또한, 상기 윈도우층 또는 ZnO 나노막대층을 플라즈마 처리함으로써, 상기 윈도우층과 ZnO 나노막대층, 그리고 상기 ZnO 나노막대층과 버퍼층과의 부착력을 개선시켜, 태양전지의 성능이 오래 지속시키는 효과가 있다. In addition, plasma treatment of the window layer or the ZnO nanorod layer improves the adhesion between the window layer and the ZnO nanorod layer, and the ZnO nanorod layer and the buffer layer, thereby maintaining the performance of the solar cell for a long time. .

본 발명은 태양전지의 성능 및 효율을 향상시키기 위하여 ZnO 나노막대를 이용하여 광흡수층에 형성한 것으로서, 글라스 상층에 윈도우층을 형성시키고, 광흡수층과 윈도우층 사이에 버퍼층과 함께 ZnO 나노막대층을 형성시키며, 전극층과, 최종 기판을 형성시켜 화합물 태양전지를 제조하는 것이다.The present invention is formed on the light absorption layer using the ZnO nano-rod to improve the performance and efficiency of the solar cell, to form a window layer on the upper glass layer, the ZnO nano-rod layer with a buffer layer between the light absorption layer and the window layer To form an electrode layer and a final substrate to produce a compound solar cell.

이하에서는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하고자 한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

도 2 및 도 3은 기판에 따른 본 발명의 실시예를 나타낸 것으로, 도면에서 윗쪽이 태양광을 흡수하는 부분이다. 도시된 바와 같이, 본 발명에 따른 ZnO 나노막대를 이용한 화합물 반도체는, 글라스(100), 윈도우층(200), ZnO 나노막대층(300), 광흡수층(500), 전극층(600) 및 기판(700)으로 크게 구성된다.2 and 3 show an embodiment of the present invention according to the substrate, the upper portion of the figure absorbs sunlight. As shown, the compound semiconductor using the ZnO nanorod according to the present invention, the glass 100, the window layer 200, the ZnO nanorod layer 300, the light absorption layer 500, the electrode layer 600 and the substrate ( 700).

태양광은 글라스(glass)(100)를 통해 윈도우층(200)으로 입사되므로, 상기 글라스(100)는 태양광의 투과율이 높은 투명한 재질로 형성되며, 상기 글라스(100) 상면에는 태양전지에 입사되는 태양광의 반사 손실을 최소화하도록 반사방지막(MgF2)이 형성되어 있다.Since sunlight is incident on the window layer 200 through the glass 100, the glass 100 is formed of a transparent material having a high transmittance of sunlight, and the glass 100 is incident on the solar cell. An anti-reflection film MgF 2 is formed to minimize reflection loss of sunlight.

상기 글라스(100)는 경우에 따라서, 태양전지 제조공정 중 최종 단계에서 제거함으로써 글라스(100)로 인해 차단되는 UV광까지 모두 흡수되도록 하여, 태양광의 흡수율을 높일 수도 있다. 이는 또한, 후술할 플렉시블한 재질의 기판(700)이 사용될 때는 글라스(100)는 제거하는 것이 더욱 바람직하다.In some cases, by removing the glass 100 in the final step of the solar cell manufacturing process, the glass 100 may absorb all the UV light blocked by the glass 100, thereby increasing the absorption rate of the solar light. It is also more preferable that the glass 100 is removed when the flexible substrate 700 is used.

그리고, 상기 글라스(100) 상층에는 윈도우층(200)이 형성되며, 상기 윈도우층(200)은 일반적으로 화합물 태양전지에 있어서, n형 반도체로서 후술할 광흡수층(500)으로 사용되는 CIS나 CIGS과 pn접합을 형성하며, 상기 윈도우층(200)은 태양전지 전면의 투명전극으로서의 기능을 하기 때문에 광투과율이 높아야하고 전기전도성이 좋아야 한다.In addition, a window layer 200 is formed on the glass 100, and the window layer 200 is generally a CIS or CIGS used as a light absorption layer 500 to be described later as an n-type semiconductor in a compound solar cell. And a pn junction, and the window layer 200 functions as a transparent electrode in front of the solar cell, so the light transmittance should be high and the electrical conductivity should be good.

상기 윈도우층(200)으로 사용되는 재료는 ZnO, 상기 ZnO에 Al이나 B가 도핑된 AZO 및 BZO 중에 어느 하나를 사용한다. 상기 ZnO는 에너지밴드갭이 약 3.3eV이고, 약 80% 이상의 높은 광투과도를 가진다. 또한 Al이나 B 등으로 도핑하여 10-4Ω㎝ 이하의 낮은 저항값을 얻을 수 있다. B을 도핑하기도 하는데, 근적외선 영역의 광투과도가 증가하여 단락전류를 증가시키는 효과가 있어, 용도에 따라 AZO나 BZO를 사용하는 것이 바람직하다. 상기 윈도우층(200)은, RF 스파터링(RF sputtering) 방법으로 ZnO 타겟을 사용하여 증착하는 방법과, Zn 금속을 이용한 리액티브 스파 터링(reactive sputtering), 그리고 MOCVD(Metal Organic Chemical Vapor Deposition) 방법 등이 현재 사용되고 있다.The material used for the window layer 200 may be any one of ZnO, AZO and BZO doped with Al or B in the ZnO. The ZnO has an energy band gap of about 3.3 eV and a high light transmittance of about 80% or more. In addition, a low resistance value of 10 −4 Ωcm or less can be obtained by doping with Al, B, or the like. It is also doped with B, the light transmittance in the near infrared region is increased to increase the short-circuit current, it is preferable to use AZO or BZO depending on the application. The window layer 200 is deposited using a ZnO target by RF sputtering, reactive sputtering using Zn metal, and a metal organic chemical vapor deposition (MOCVD) method. Etc. are currently used.

전기광학적 특성이 뛰어난 ITO(Indium Tin Oxide) 박막을 ZnO 박막 위에 증착한 2중 구조를 사용하거나, CdS 박막 위에 우선 도핑하지 않은 i형의 ZnO 박막을 증착한 다음, 그 위에 낮은 저항을 가진 n형의 ZnO 박막을 증착하여 사용하는 방법도 알려져 있다.Either using a double structure in which an indium tin oxide (ITO) thin film having excellent electro-optic properties is deposited on a ZnO thin film, or an undoped i-type ZnO thin film is first deposited on a CdS thin film, and then a low resistance n-type thin film is deposited thereon. A method of depositing and using a ZnO thin film is also known.

이러한 상기 윈도우층(200)의 형성 후에 증착된 윈도우층(200)을 플라즈마 처리함으로써, 전기적, 광학적 특성을 향상시켜 태양전지의 효율을 향상시키며, 후술할 ZnO 나노막대층(300)과의 부착력도 우수하여, 태양전지의 성능을 유지할 수 있도록 한다.Plasma treatment of the window layer 200 deposited after the formation of the window layer 200 improves the electrical and optical characteristics to improve the efficiency of the solar cell, and also the adhesion force with the ZnO nanorod layer 300 to be described later. Excellent to maintain the performance of the solar cell.

다음으로, 상기 ZnO 나노막대층(300)은 상기 윈도우층(200) 상층의 광흡수층(500) 내부에 형성되는 것으로, 태양전지의 효율을 향상시키는 역할을 하게 된다.Next, the ZnO nanorod layer 300 is formed inside the light absorption layer 500 on the window layer 200, thereby improving the efficiency of the solar cell.

상기 ZnO 나노막대층(300)은 ZnO 나노막대가 모두 단결정이므로 전자의 확산계수가 일반적인 ZnO 박막층이나 벌크 등에 비해 월등히 높은 특징이 있어 전기적, 광학적 특성이 우수하다. 상기 ZnO 나노막대의 제조방법은 촉매를 사용한 VLS(vapor-liquid-solid)법과 촉매를 사용하지 않는 VS법, PECVD(plasma-enhanced chemical vapor deposition), PLD(pulsed laser deposition), MOVPE(metalorganic vapor phase epitaxy) 등이 있으며, 여기에서는 촉매를 사용하지 않고 튜브 퍼니스(tube furnace)를 이용하여 500~600℃ 정도의 낮은 온도에서 증착한다.Since the ZnO nanorods 300 are all single crystals of the ZnO nanorods, the electron diffusion coefficient is much higher than that of a general ZnO thin film layer or bulk, which is excellent in electrical and optical characteristics. The ZnO nanorods may be prepared by using a vapor-liquid-solid (VLS) method using a catalyst, a VS method without a catalyst, plasma-enhanced chemical vapor deposition (PECVD), pulsed laser deposition (PLD), and metalorganic vapor phase (MOVPE). epitaxy, etc., in which deposition is performed at a low temperature of 500-600 ° C. using a tube furnace without using a catalyst.

또한, 상기 ZnO 나노막대층(300)을 형성한 후, 플라즈마 처리를 별도로 수행하여 전기적, 광학적 특성을 더욱 향상시키며, 표면 에너지 증가로 후술할 버퍼층(400)과의 부착력을 향상시켜, 태양전지의 성능을 오랫동안 지속시켜준다.In addition, after the ZnO nanorod layer 300 is formed, plasma treatment is performed separately to further improve electrical and optical properties, and surface adhesion is increased to improve adhesion to the buffer layer 400 to be described later. Long lasting performance.

또한, ZnO 나노막대의 밀도 및 크기(직경, 길이)의 제어가 가능하여 태양전지의 효율을 용이하게 조절할 수 있다.In addition, the density and size (diameter, length) of the ZnO nanorods can be controlled to easily control the efficiency of the solar cell.

다음으로, 상기 버퍼층(400)은 상기 ZnO 나노막대층(300)의 ZnO 나노막대를 따라 형성된 것으로, 본 발명에 따른 화합물 태양전지는 후술할 광흡수층(500)으로 p형 반도체인 Cu(In,Ga)Se2 박막과 n형 반도체인 윈도우층(200)(window layer)으로 사용되는 ZnO(또는 AZO, BZO) 박막이 pn 접합을 형성함에 의해, 두 물질 간의 격자상수와 에너지밴드갭의 차이가 크기 때문에 양호한 접합을 형성하기 위해서는 밴드갭이 두 물질의 중간에 위치하는 버퍼층(400)이 필요하다.Next, the buffer layer 400 is formed along the ZnO nanorod of the ZnO nanorod layer 300, the compound solar cell according to the present invention is a light absorption layer 500 to be described later as a p-type semiconductor Cu (In, Since the ZnO (or AZO, BZO) thin film used as the Ga) Se 2 thin film and the window layer 200 which is an n-type semiconductor forms a pn junction, the difference in lattice constant and energy band gap between the two materials is reduced. Due to its size, a buffer layer 400 is required in which a band gap is located between two materials to form a good junction.

상기 버퍼층(400)으로는, ZnS, CdS, ZnSe, InS, InOOH 및 ZnOOH 중의 어느 하나를 사용하며, 상기 버퍼층(400)은, CBD(Chemical Bath Deposition)법 또는 RF 스파터링법에 의해 형성된다.As the buffer layer 400, any one of ZnS, CdS, ZnSe, InS, InOOH, and ZnOOH is used, and the buffer layer 400 is formed by a chemical bath deposition (CBD) method or an RF spattering method.

다음으로, 상기 광흡수층(500)은, CIS(CuInSe2)나 CIGS(Cu(InxGa1 -x)Se2)를 사용한다. 상기 삼원화합물인 CuInSe2는 에너지밴드갭이 1.04eV로 단락전류는 높으나, 개방전압이 낮아 높은 효율을 얻을 수 없는 단점이 있어, 현재 개방전압을 높이기 위해 CuInSe2의 In의 일부를 Ga 원소로 대치하거나 Se를 S로 대치하는 방법을 사용하고 있다.Next, the light absorption layer 500 uses CIS (CuInSe 2 ) or CIGS (Cu (In x Ga 1 -x ) Se 2 ). CuInSe 2 , a ternary compound, has an energy band gap of 1.04 eV and has a short circuit current, but has a disadvantage in that high efficiency cannot be obtained due to a low open voltage. In order to increase the open voltage, a portion of In of CuInSe 2 is replaced with Ga element. Or replace Se with S.

CuGaSe2는 밴드갭이 액 1.5eV로 Ga이 첨가된 Cu(InxGa1 -x)Se2 화합물 반도체의 밴드갭은 Ga 첨가량에 따라 조절이 가능하다. 하지만 광흡수층(500)의 에너지밴드갭이 클 경우 개방전압을 증가하지만, 오히려 단락전류가 감소하므로 Ga의 적정한 함량조절이 필요하다.CuGaSe 2 has a bandgap of 1.5 eV, and the band gap of the Cu (In x Ga 1- x ) Se 2 compound semiconductor to which Ga is added can be adjusted according to the amount of Ga added. However, when the energy band gap of the light absorption layer 500 is large, the open circuit voltage is increased. However, since the short circuit current is reduced, proper content control of Ga is required.

이와 같이, CIS 박막은 다원화합물이기 때문에 제조공정이 매우 까다롭다. 물리적인 박막제조방법으로는 이배퍼레이션(evaporation), 셀렌화 스파터링법(sputtering+selenization), 화학적인 방법으로는 전자증착법(electrodeposition) 등이 있고, 각 방법에 있어서도 출발물질(금속, 2원 화합물 등)의 종류에 따라 다양한 제조방법이 동원될 수 있다. 현재까지 가장 좋은 효율을 얻을 수 있었던 것은 이배퍼레에션 방법으로 출발물질로 4개의 금속원소-Cu, In, Ga, Se-를 사용한 것이다. CIS 또는 CIGS 박막의 특성은 이와 같이 박막의 조성뿐만 아니라 기판(700)의 온도, 증착시간 등에 의해서도 크게 변하기 때문에 증착균일도가 유지되도록 엄밀한 공정제어가 필수적이다.As such, since the CIS thin film is a multi-element compound, the manufacturing process is very difficult. Physical thin film manufacturing methods include evaporation, selenization and sputtering methods, and chemical methods, such as electrodeposition, and starting materials (metals, binary elements). Various preparation methods can be mobilized depending on the kind of the compound). The best efficiency to date has been achieved by using the four metal elements—Cu, In, Ga, Se— as the starting material in the evaporation method. Since the characteristics of the CIS or CIGS thin film are greatly changed not only by the composition of the thin film but also by the temperature and deposition time of the substrate 700, strict process control is essential to maintain the deposition uniformity.

다음으로, 상기 전극층(600)은, 전극으로 사용되는 모든 금속의 경우 사용할 수 있으며, 특히 Mo, Ni, Au, Al 및 Cu 중에 어느 하나를 사용하는 것이 바람직하며, 높은 전기전도도, CIGS에의 오믹접촉(ohmic contact), Se 분위기 하에서의 고온 안정성 때문에 Mo를 사용하는 것이 더욱 바람직하다. Mo 전극층(600)은 전극으로서 비저항이 낮아야 하고 또한 열팽창계수의 차이로 인하여 박리현상이 일어나지 않도록 기판(700)에의 점착성이 뛰어나야 한다.Next, the electrode layer 600 may be used for all metals used as electrodes, and in particular, any one of Mo, Ni, Au, Al, and Cu may be used, and high electrical conductivity and ohmic contact with CIGS may be used. (ohmic contact), Mo is more preferable to use Mo because of the high temperature stability under Se atmosphere. The Mo electrode layer 600 should have a low resistivity as an electrode and excellent adhesion to the substrate 700 so that peeling does not occur due to a difference in thermal expansion coefficient.

그리고, 상기 기판(700)은 글라스(glass), 구리판(Cu plate), 구리 테이프(Cu tape), 세라믹 기판(700) 및 서스판(SUS plate) 중에 어느 하나를 상기 전극층(600) 상부에 본딩하여 형성시키거나, 폴리머(polymer)를 상기 전극층(600) 상층에 코팅하여 형성시킨다. 상기 기판(700)의 유연한 정도에 따라 플렉시블한 태양전지를 제조할 수 있어, 태양전지의 활용도를 높일 수 있게 된다.In addition, the substrate 700 bonds one of glass, a copper plate, a copper tape, a ceramic substrate 700, and a sustain plate to the electrode layer 600. Or by coating a polymer on the upper layer of the electrode layer 600. According to the flexibility of the substrate 700, a flexible solar cell can be manufactured, thereby increasing the utilization of the solar cell.

상기 구성요소의 순서로 제조되는 태양전지에 있어서, 상기 윈도우층(200) 하측에 형성된 글라스(100)를 제거시킬 수도 있다. 이는 태양전지 제조공정 중 최종 단계에서 제거함으로써 글라스(100)로 인해 차단되는 UV광까지 모두 흡수되도록 하여, 태양광의 흡수율을 높일 수도 있다. 이는 또한, 상기 플렉시블한 재질의 기판(700)이 사용될 때는 글라스(100)는 제거하는 것이 더욱 바람직한 것이다.In the solar cell manufactured in the order of the components, the glass 100 formed under the window layer 200 may be removed. This is to remove all the UV light blocked by the glass 100 by removing in the final step of the solar cell manufacturing process, it is also possible to increase the absorption rate of sunlight. It is also more preferable that the glass 100 is removed when the flexible substrate 700 is used.

상기와 같이 구성된 본 발명에 따른 화합물 태양전지는, 광흡수층(500)과 윈도우층(200) 사이에 ZnO 나노막대층(300)을 버퍼층(400)을 사이로 두고 형성시킴으로써, 전자의 확산계수를 높여 태양전지의 전기적, 광학적 특성을 향상시켜, 고효율의 태양전지를 제공하게 되는 것이다.In the compound solar cell according to the present invention configured as described above, the ZnO nanorod layer 300 is formed between the light absorption layer 500 and the window layer 200 with the buffer layer 400 therebetween, thereby increasing the electron diffusion coefficient. By improving the electrical and optical characteristics of the solar cell, to provide a high efficiency solar cell.

또한, 상기 윈도우층(200) 또는 ZnO 나노막대층(300)을 플라즈마 처리함으로써, 상기 윈도우층(200)과 ZnO 나노막대층(300), 그리고 상기 ZnO 나노막대층(300)과 버퍼층(400)과의 부착력을 개선시켜, 태양전지의 성능이 오래 지속되도록 한 것이다. In addition, the window layer 200 or the ZnO nanorod layer 300 may be plasma-processed to provide the window layer 200, the ZnO nanorod layer 300, and the ZnO nanorod layer 300 and the buffer layer 400. Improved adhesion to the solar cell, so that the performance of the solar cell is long lasting.

도 1 - 종래 화합물 태양전지에 대한 모식도.1-Schematic diagram of a conventional compound solar cell.

도 2, 도 3 - 기판에 따른 본 발명의 실시예를 나타낸 모식도.Figure 2, Figure 3-schematic diagram showing an embodiment of the present invention according to the substrate.

<도면에 사용된 주요부호에 대한 설명><Description of Major Symbols Used in Drawings>

100 : 글라스 200 : 윈도우층100: glass 200: window layer

300 : ZnO 나노막대층 400 : 버퍼층300: ZnO nano bar layer 400: buffer layer

500 : 광흡수층 600 : 전극층500: light absorption layer 600: electrode layer

700 : 기판700: Substrate

Claims (24)

글라스(100) 상층에 ZnO 박막층, 상기 ZnO에 Al이나 B가 도핑된 AZO 박막층 및 BZO 박막층 중에 어느 하나로 이루어진 윈도우층(200)을 형성시키고, 상기 윈도우층(200)에 플라즈마 처리 공정을 수행하는 제1단계와;A ZnO thin film layer formed on the glass 100, a AZO thin film layer doped with Al or B on the ZnO, and a window layer 200 formed of any one of the BZO thin film layer, and the plasma processing process is performed on the window layer 200 Step 1; 상기 플라즈마 처리된 윈도우층(200) 상층에 ZnO 나노막대층(300)을 형성시키는 제2단계와;Forming a ZnO nano-rod layer 300 on the plasma-treated window layer 200; 상기 ZnO 나노막대층(300)의 ZnO 나노막대를 따라 버퍼층(400)을 형성시키는 제3단계와;A third step of forming a buffer layer 400 along the ZnO nanorods of the ZnO nanorod layer 300; 상기 버퍼층(400) 상층에 광흡수층(500)을 형성시키는 제4단계와;A fourth step of forming a light absorption layer 500 on the buffer layer 400; 상기 광흡수층(500) 상층에 전극층(600)을 형성시키는 제5단계와;A fifth step of forming an electrode layer 600 on the light absorbing layer 500; 상기 전극층(600) 상층에 기판(700)을 형성시키는 제6단계;를 포함하여 이루어지는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.And a sixth step of forming a substrate (700) on the electrode layer (600). The method of manufacturing a compound solar cell using a ZnO nanorod, characterized in that it comprises a. 삭제delete 제 1항에 있어서, 상기 윈도우층(200)은,The method of claim 1, wherein the window layer 200, RF 스파터링법(sputtering), 리액티브 스파터링법(reactive sputtering), 그리고 MOCVD(Metal Organic Chemical Vapor Deposition)법 중에 어느 하나의 방법에 의해 형성되는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.A compound solar cell using ZnO nanorods, which is formed by any one of RF sputtering, reactive sputtering, and metal organic chemical vapor deposition (MOCVD). Manufacturing method. 삭제delete 제 1항에 있어서, 상기 ZnO 나노막대층(300)은,According to claim 1, The ZnO nano-rod layer 300, 튜브 퍼니스를 이용하여 형성되는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.Method for producing a compound solar cell using a ZnO nanorods, characterized in that formed using a tube furnace. 제 5항에 있어서, 상기 ZnO 나노막대층(300)의 형성 후에,According to claim 5, After the formation of the ZnO nano-rod layer 300, 상기 ZnO 나노막대층(300)의 플라즈마 처리 공정이 더 이루어지는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.Method for manufacturing a compound solar cell using the ZnO nano-rod, characterized in that the plasma processing step of the ZnO nano-rod layer (300) is further made. 제 1항에 있어서, 상기 버퍼층(400)은,The method of claim 1, wherein the buffer layer 400, ZnS, CdS, ZnSe, InS, InOOH 및 ZnOOH 중의 어느 하나를 사용하는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.ZnS, CdS, ZnSe, InS, InOOH and ZnOOH any one of the manufacturing method of a compound solar cell using a ZnO nano-rod, characterized in that. 제 7항에 있어서, 상기 버퍼층(400)은,The method of claim 7, wherein the buffer layer 400, CBD(Chemical Bath Deposition)법 또는 RF 스파터링법에 의해 형성되는 것을 특징으로하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.A method of manufacturing a compound solar cell using a ZnO nanorod, characterized in that formed by a chemical bath deposition (CBD) method or an RF spattering method. 제 1항에 있어서, 상기 광흡수층(500)은,The method of claim 1, wherein the light absorption layer 500, CIS 또는 CIGS인 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.Method for producing a compound solar cell using a ZnO nano-rod, characterized in that the CIS or CIGS. 제 9항에 있어서, 상기 광흡수층(500)은,10. The method of claim 9, wherein the light absorption layer 500, 이배퍼레이션법(evaporation) 및 RF 스파터링법(sputtering), 전기증착법(electrodeposition)에 의해 형성되는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.A method of manufacturing a compound solar cell using a ZnO nanorod, characterized in that formed by evaporation, RF sputtering, electrodeposition. 제 1항에 있어서, 상기 전극층(600)은,The method of claim 1, wherein the electrode layer 600, Mo, Ni, Au, Al 및 Cu 중에 어느 하나를 사용하는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.Method for producing a compound solar cell using a ZnO nanorod, characterized in that any one of Mo, Ni, Au, Al and Cu. 제 11항에 있어서, 상기 전극층(600)은,The method of claim 11, wherein the electrode layer 600, DC 스파터링법에 의해 형성되는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.A method for producing a compound solar cell using a ZnO nanorod, characterized in that formed by the DC spattering method. 제 1항에 있어서, 상기 기판(700)은,The method of claim 1, wherein the substrate 700, 글라스(glass), 구리판(Cu plate), 구리 테이프(Cu tape), 세라믹 기판(700) 및 서스판(SUS plate) 중에 어느 하나를 상기 전극층(600) 상부에 본딩하여 형성시키거나, 폴리머를 상기 전극층(600) 상층에 코팅하여 형성시키는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.Glass, copper plate (Cu plate), copper tape (Cu tape), the ceramic substrate 700 and the sustain plate (SUS plate) is formed by bonding any one of the upper electrode layer 600, or the polymer Method of manufacturing a compound solar cell using a ZnO nano-rod characterized in that the coating is formed on the upper electrode layer (600). 제 1항, 제 3항 및 제 5항 내지 제 13항 중의 어느 한 항에 있어서, 상기 제6단계 이후에 상기 제1단계의 글라스(100)를 제거시키는 공정이 더 추가되는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법.The ZnO according to any one of claims 1, 3 and 5 to 13, further comprising a step of removing the glass 100 of the first step after the sixth step. Method for producing a compound solar cell using a nano-rod. 삭제delete 글라스(100)와;Glass 100; 상기 글라스(100) 상층에 형성되며, 플라즈마 처리된 윈도우층(200)과;A window layer 200 formed on the glass 100 and plasma-treated; 상기 윈도우층(200) 상층에 형성되는 ZnO 나노막대층(300)과;A ZnO nanorod layer 300 formed on the window layer 200; 상기 ZnO 나노막대층(300)의 ZnO 나노막대를 따라 형성된 버퍼층(400)과;A buffer layer 400 formed along the ZnO nanorods of the ZnO nanorod layer 300; 상기 버퍼층(400) 상층에 형성된 광흡수층(500)과;A light absorption layer 500 formed on the buffer layer 400; 상기 광흡수층(500) 상층에 형성된 전극층(600)과;An electrode layer 600 formed on the light absorption layer 500; 상기 전극층(600) 상층에 형성된 기판(700);을 포함하여 구성되는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지.Compound solar cell using a ZnO nano-rod characterized in that it comprises a; substrate 700 formed on the electrode layer (600). 제 16항에 있어서, 상기 윈도우층(200)은,The method of claim 16, wherein the window layer 200, ZnO 박막층, 상기 ZnO에 Al이나 B가 도핑된 AZO 박막층 및 BZO 박막층 중에 어느 하나인 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지.A ZnO thin film layer, a compound solar cell using a ZnO nanorods, characterized in that any one of the ZnO doped Al or B doped AZO thin film layer and BZO thin film layer. 삭제delete 제 16항에 있어서, 상기 ZnO 나노막대층(300)은 플라즈마 처리된 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지.The compound solar cell of claim 16, wherein the ZnO nanorod layer (300) is plasma treated. 제 16항에 있어서, 상기 버퍼층(400)은,The method of claim 16, wherein the buffer layer 400, ZnS, CdS, ZnSe, InS, InOOH 및 ZnOOH 중의 어느 하나를 사용하는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지.A compound solar cell using a ZnO nanorod, wherein any one of ZnS, CdS, ZnSe, InS, InOOH, and ZnOOH is used. 제 16항에 있어서, 상기 광흡수층(500)은,The method of claim 16, wherein the light absorption layer 500, CIS 또는 CIGS인 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지.Compound solar cell using ZnO nanorods, characterized in that the CIS or CIGS. 제 16항에 있어서, 상기 전극층(600)은,The method of claim 16, wherein the electrode layer 600, Mo, Ni, Au, Al 및 Cu 중에 어느 하나를 사용하는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지.Compound solar cell using a ZnO nano-rod, characterized in that any one of Mo, Ni, Au, Al and Cu. 제 16항에 있어서, 상기 기판(700)은,The method of claim 16, wherein the substrate 700, 글라스(glass), 구리판(Cu plate) 및 서스판(SUS plate) 중에 어느 하나를 상기 전극층(600) 상부에 본딩하여 형성되거나, 폴리머를 상기 전극층(600) 상층에 코팅하여 형성되는 것을 특징으로 하는 ZnO 나노막대를 이용한 화합물 태양전지.It is formed by bonding any one of glass, a copper plate (Cu plate) and a sus plate (SUS plate) on the upper electrode layer 600, or is formed by coating a polymer on the upper layer of the electrode layer 600 Compound solar cell using ZnO nanorods. 삭제delete
KR1020080083681A 2008-08-27 2008-08-27 manufacturing method of compound sollar cell using ??? nanorod and the compound sollar cell KR101012847B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080083681A KR101012847B1 (en) 2008-08-27 2008-08-27 manufacturing method of compound sollar cell using ??? nanorod and the compound sollar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080083681A KR101012847B1 (en) 2008-08-27 2008-08-27 manufacturing method of compound sollar cell using ??? nanorod and the compound sollar cell

Publications (2)

Publication Number Publication Date
KR20100025068A KR20100025068A (en) 2010-03-09
KR101012847B1 true KR101012847B1 (en) 2011-02-08

Family

ID=42176669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080083681A KR101012847B1 (en) 2008-08-27 2008-08-27 manufacturing method of compound sollar cell using ??? nanorod and the compound sollar cell

Country Status (1)

Country Link
KR (1) KR101012847B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271158B1 (en) * 2010-12-31 2013-06-04 인하대학교 산학협력단 flag Type Hybrid Solar-cell manufacture method using ZnO Nano-wire
KR101210171B1 (en) * 2011-04-26 2012-12-07 중앙대학교 산학협력단 Solar cell apparatus and method of fabricating the same
KR101220041B1 (en) * 2011-05-11 2013-01-21 성균관대학교산학협력단 Ultraviolet detector with buffer layered metalic oxide nanostructures and fire monitoring apparatus using ultraviolet detector with buffer layered metalic oxide nanostructures
KR101234056B1 (en) * 2011-05-16 2013-02-15 주식회사 석원 Manufacturing method for CIGS solar cell
US9452929B2 (en) * 2011-06-01 2016-09-27 Gwangju Institute Of Science And Technology Photoelectrode including zinc oxide hemisphere, method of fabricating the same and dye-sensitized solar cell using the same
KR101435458B1 (en) * 2011-12-12 2014-09-01 동국대학교 산학협력단 Solar cell using nanorod and preparing method of the same
CN113130790B (en) * 2019-12-31 2022-09-27 Tcl科技集团股份有限公司 Nano material, preparation method thereof and quantum dot light-emitting diode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
국제저널논문 Solar Energy Materials & Solar Cells, Vol. 92, pp.1016-1019 (2008.04.11.)*

Also Published As

Publication number Publication date
KR20100025068A (en) 2010-03-09

Similar Documents

Publication Publication Date Title
KR101012847B1 (en) manufacturing method of compound sollar cell using ??? nanorod and the compound sollar cell
KR20100073717A (en) Solar cell and method of fabricating the same
JP2011003877A (en) Solar cell, and method of fabricating the same
KR20110107760A (en) Thin film photovoltaic cell
US20140238479A1 (en) Thin film solar cell
US20100200059A1 (en) Dual-side light-absorbing thin film solar cell
KR101154774B1 (en) Solar cell apparatus and method of fabricating the same
KR20130111815A (en) Solar cell apparatus and method of fabricating the same
KR101428146B1 (en) Solar cell module and method of fabricating the same
KR101283183B1 (en) Solar cell apparatus and method of fabricating the same
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
KR20100096642A (en) Manufacturing method of compound sollar cell using window layer by atmospheric plasma treatment and the compound sollar cell
CN103339741B (en) Solar cell device and its manufacture method
KR101215624B1 (en) Cigs-based compound thin film solarcells and the method of manufacturing the same
KR101218503B1 (en) Method of fabricating solar cell module by using Al thin film.
KR101504343B1 (en) Manufacturing method of compound semiconductor solar cell
KR101180998B1 (en) Solar cell and method of fabricating the same
KR101338782B1 (en) Solar cell and method of fabricating the same
KR101305603B1 (en) Solar cell apparatus and method of fabricating the same
KR101846337B1 (en) Solar cell apparatus and method of fabricating the same
KR101814814B1 (en) Solar cell and method of fabricating the same
KR101327010B1 (en) Solar cell and method of fabricating the same
KR101273093B1 (en) Solar cell and method of fabricating the same
KR101428147B1 (en) Solar cell apparatus and method of fabricating the same
KR20130074701A (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 5

R401 Registration of restoration
LAPS Lapse due to unpaid annual fee