KR101327010B1 - Solar cell and method of fabricating the same - Google Patents

Solar cell and method of fabricating the same Download PDF

Info

Publication number
KR101327010B1
KR101327010B1 KR1020110138721A KR20110138721A KR101327010B1 KR 101327010 B1 KR101327010 B1 KR 101327010B1 KR 1020110138721 A KR1020110138721 A KR 1020110138721A KR 20110138721 A KR20110138721 A KR 20110138721A KR 101327010 B1 KR101327010 B1 KR 101327010B1
Authority
KR
South Korea
Prior art keywords
layer
solar cell
support substrate
heat conducting
conducting layer
Prior art date
Application number
KR1020110138721A
Other languages
Korean (ko)
Other versions
KR20130071304A (en
Inventor
지석재
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110138721A priority Critical patent/KR101327010B1/en
Priority to PCT/KR2012/010980 priority patent/WO2013094943A1/en
Publication of KR20130071304A publication Critical patent/KR20130071304A/en
Application granted granted Critical
Publication of KR101327010B1 publication Critical patent/KR101327010B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

실시예에 따른 태양전지는 지지기판; 및, 상기 지지기판의 상부에 형성되는 열 전도층;을 포함한다.The solar cell according to the embodiment includes a support substrate; And a heat conducting layer formed on the support substrate.

Description

태양전지 및 이의 제조방법{SOLAR CELL AND METHOD OF FABRICATING THE SAME}SOLAR CELL AND METHOD OF FABRICATING THE SAME

실시예는 태양전지 및 이의 제조방법에 관한 것이다.An embodiment relates to a solar cell and a manufacturing method thereof.

태양전지(Solar Cell 또는 Photovoltaic Cell)는 태양광을 직접 전기로 변환시키는 태양광발전의 핵심소자이다.Solar cells (Solar Cells or Photovoltaic Cells) are the key elements of photovoltaic power generation that convert sunlight directly into electricity.

반도체의 pn접합으로 만든 태양전지에 반도체의 금지대폭(Eg: Band-gap Energy)보다 큰 에너지를 가진 태양광이 입사되면 전자-정공 쌍이 생성되는데, 이들 전자-정공이 pn 접합부에 형성된 전기장에 의해 전자는 n층으로, 정공은 p층으로 모이게 됨에 따라 pn간에 기전력(광기전력: Photovoltage)이 발생하게 된다. 이때 양단의 전극에 부하를 연결하면 전류가 흐르게 되는 것이 동작원리이다.When solar light having energy greater than the band-gap energy (Eg) is incident on a solar cell made of a pn junction of a semiconductor, electron-hole pairs are generated, and these electron-holes are formed by an electric field formed at a pn junction. As electrons are collected in n layers and holes are collected in p layers, electromotive force (photovoltage) is generated between pn. At this time, when the load is connected to the electrodes at both ends, current flows.

최근 에너지의 수요가 증가함에 따라서, 태양광 에너지를 전기에너지로 변환시키는 태양전지에 대한 개발이 진행되고 있다.Recently, as the demand for energy increases, development of solar cells for converting solar energy into electrical energy is in progress.

특히, 유리기판, 후면 전극층, p형 CIGS계 광 흡수층, 고 저항 버퍼층, n형 윈도우층 등을 포함하는 기판 구조의 pn 헤테로 접합 장치인 CIGS계 태양전지가 널리 사용되고 있다.In particular, a CIGS-based solar cell, which is a pn heterojunction device having a substrate structure including a glass substrate, a back electrode layer, a p-type CIGS-based light absorbing layer, a high resistance buffer layer, an n-type window layer, and the like, is widely used.

일반적으로 태양전지의 경우, 대면적 기판으로 갈수록 지지기판의 중앙과 가장자리의 열분포 불균일에 의해 지지기판의 상면에 형성되는 후면 전극층, p형 CIGS계 광 흡수층, 고 저항 버퍼층, n형 윈도우층이 중앙과 가장자리의 열특성이 달라지게 되어 광효율이 저하될 수 있다.In general, in the case of a solar cell, a rear electrode layer, a p-type CIGS-based light absorbing layer, a high resistance buffer layer, and an n-type window layer formed on the upper surface of the support substrate due to uneven distribution of heat from the center and the edge of the support substrate toward the large-area substrate Thermal characteristics of the edges and the edges are changed, so the light efficiency may be reduced.

이를 해소하기 위해 종래 기술의 경우, 지지기판의 온도 균일도를 향상시키기 위해서 증착 장비의 히터 구조 및 제어 등의 하드웨어 개선 기술을 적용하고 있으나 ±5% 이내의 온도 균일도를 달성하기 위해서 고가의 투자비가 필요한 문제점이 있다.In order to solve this problem, in the prior art, hardware improvement techniques such as heater structure and control of deposition equipment are applied to improve the temperature uniformity of the supporting substrate, but an expensive investment cost is required to achieve temperature uniformity within ± 5%. There is a problem.

본 발명에서는 상기의 문제점을 해소하기 위해 지지기판 상에 열 전도층을 형성하여 상기 기판의 상부에 형성되는 막의 온도 균일도를 향상시킴으로써, 태양전지의 출력 및 광-전 변환 효율을 향상시키고자 한다.In the present invention, to solve the above problems by forming a thermal conducting layer on the support substrate to improve the temperature uniformity of the film formed on the substrate, to improve the output and photo-electric conversion efficiency of the solar cell.

실시예에 따른 태양전지는 지지기판; 및, 상기 지지기판의 상부에 형성되는 열 전도층;을 포함한다.The solar cell according to the embodiment includes a support substrate; And a heat conducting layer formed on the support substrate.

발명의 실시예에 따르면, 태양전지에 사용되는 지지기판의 둘레영역에 열전도가 다른 물질을 얇게 도포하여 중앙영역과 둘레영역의 열분포 균일도를 향상하여 태양전지의 출력 및 광-전 변환 효율을 향상시킬 수 있다.According to an embodiment of the present invention, by applying a thin layer of material having different thermal conductivity to the peripheral region of the support substrate used in the solar cell to improve the thermal distribution uniformity of the central region and the peripheral region to improve the output and photoelectric conversion efficiency of the solar cell. Can be.

그리고, 고가의 하드웨어 투자비 없이 지지기판 상부에 열전도가 높은 물질을 증착하여 열구배(Thermal Gradient)를 향상시킬 수 있다.The thermal gradient can be improved by depositing a material having high thermal conductivity on the support substrate without expensive hardware investment cost.

또한, 지지기판이 유리기판 등의 리지드한 기판이나, 금속기판 등의 플렉서블한 경우에도 적용할 수 있어, 생산성을 향상시킬 수 있다.Further, the substrate can be applied to a rigid substrate such as a glass substrate or a flexible substrate such as a metal substrate, thereby improving productivity.

도 1은 실시예에 따른 태양전지를 도시한 사시도이다.
도 2는 실시예에 따른 태양전지의 지지기판 및 열 전도층을 도시한 단면도이다.
도 3 내지 도 5는 실시예에 따른 태양전지 패널을 제조하는 과정을 도시한 도면들이다.
도 6은 온도차에 따른 광 흡수층의 모포로지(Morphology)를 나타낸 도면이다.
1 is a perspective view illustrating a solar cell according to an embodiment.
2 is a cross-sectional view showing a support substrate and a heat conducting layer of the solar cell according to the embodiment.
3 to 5 are views illustrating a process of manufacturing the solar cell panel according to the embodiment.
6 is a diagram illustrating morphology of a light absorbing layer according to a temperature difference.

실시예의 설명에 있어서, 각 기판, 층, 막 또는 전극 등이 각 기판, 층, 막, 또는 전극 등의 "상(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상(on)"과 "아래(under)"는 "직접(directly)" 또는 "다른 구성요소를 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 구성요소의 상 또는 아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.
In the description of the embodiments, where each substrate, layer, film, or electrode is described as being formed "on" or "under" of each substrate, layer, film, or electrode, etc. , "On" and "under" include both "directly" or "indirectly" formed through other components. In addition, the upper or lower reference of each component is described with reference to the drawings. The size of each component in the drawings may be exaggerated for the sake of explanation and does not mean the size actually applied.

도 1은 실시예에 따른 태양전지를 도시한 사시도이다. 도 2는 실시예에 따른 태양전지의 지지기판 및 열 전도층을 도시한 단면도이다. 도 1 및 도 2를 참조하면, 태양전지 패널은 지지기판(100), 열 전도층(150), 후면전극층(200), 광 흡수층(300), 버퍼층(400) 및 윈도우층(500)을 포함한다.1 is a perspective view illustrating a solar cell according to an embodiment. 2 is a cross-sectional view showing a support substrate and a heat conducting layer of the solar cell according to the embodiment. 1 and 2, the solar cell panel includes a support substrate 100, a heat conduction layer 150, a back electrode layer 200, a light absorbing layer 300, a buffer layer 400, and a window layer 500. do.

상기 지지기판(100)은 플레이트 형상을 가지며, 상기 열 전도층(150), 후면전극층(200), 광 흡수층(300), 버퍼층(400) 및 윈도우층(500)을 지지한다.The support substrate 100 has a plate shape and supports the heat conducting layer 150, the back electrode layer 200, the light absorbing layer 300, the buffer layer 400, and the window layer 500.

상기 지지기판(100)은 절연체일 수 있다. 상기 지지기판(100)은 유리기판, 폴리머와 같은 플라스틱기판, 또는 금속기판일 수 있다. 이외에, 지지기판(100)의 재질로 알루미나와 같은 세라믹 기판, 스테인레스 스틸, 유연성이 있는 고분자 등이 사용될 수 있다. 상기 지지기판(100)은 투명할 수 있고 리지드하거나 플렉서블할 수 있다.The support substrate 100 may be an insulator. The support substrate 100 may be a glass substrate, a plastic substrate such as a polymer, or a metal substrate. In addition, a ceramic substrate such as alumina, stainless steel, a flexible polymer, or the like may be used as the material of the support substrate 100. The support substrate 100 may be transparent, rigid, or flexible.

상기 지지기판(100)으로 소다 라임 글래스가 사용되는 경우, 소다 라임 글래스에 함유된 나트륨(Na)이 태양전지의 제조공정 중에 CIGS로 형성된 광 흡수층(300)으로 확산될 수 있는데, 이에 의해 광 흡수층(300)의 전하 농도가 증가하게 될 수 있다. 이는 태양전지의 광전 변환 효율을 증가시킬 수 있는 요인이 될 수 있다.When soda lime glass is used as the support substrate 100, sodium (Na) contained in the soda lime glass may diffuse into the light absorbing layer 300 formed of CIGS during the manufacturing process of the solar cell, whereby the light absorbing layer The charge concentration of 300 may be increased. This can be a factor for increasing the photoelectric conversion efficiency of the solar cell.

상기 지지기판(100) 상에는 열 전도층(150)이 형성된다. 상기 열 전도층(150)은 상기 지지기판(100)의 둘레영역에 형성될 수 있다. 상기 열 전도층(150)의 폭(b)은 상기 지지기판(100)의 중심에서 둘레까지의 전체길이(a)의 10% 내지 40%의 비율로 형성될 수 있다. 이는 가로축과 세로축에 적용될 수 있으며, 상기 열 전도층(150)이 차지하는 폭의 비율은 가로축과 세로축 각각이 상이할 수 있다.The heat conducting layer 150 is formed on the support substrate 100. The heat conducting layer 150 may be formed in the peripheral region of the support substrate 100. The width b of the thermal conductive layer 150 may be formed at a rate of 10% to 40% of the total length a from the center to the circumference of the support substrate 100. This may be applied to the horizontal axis and the vertical axis, and the ratio of the width occupied by the thermal conductive layer 150 may be different from each of the horizontal axis and the vertical axis.

상기 열 전도층(150)의 증착 두께는 상기 지지기판(100)의 두께에 대응하여 결정될 수 있다. 예를 들어, 상기 지지기판(100)이 2.8mm의 두께인 경우, 상기 열 전도층(150)은 20nm 내지 140nm의 두께로 형성될 수 있으며, 상기 지지기판(100)이 0.8mm의 두께인 경우, 상기 열 전도층(150)은 5nm 내지 40nm의 두께로 형성될 수 있다. 즉, 상기 열 전도층(150)은 상기 지지기판(100) 두께의 1/160 내지 1/140의 두께로 형성될 수 있다.The deposition thickness of the thermal conductive layer 150 may be determined corresponding to the thickness of the support substrate 100. For example, when the support substrate 100 is 2.8 mm thick, the heat conducting layer 150 may be formed with a thickness of 20 nm to 140 nm, and when the support substrate 100 is 0.8 mm thick. The heat conduction layer 150 may be formed to a thickness of 5 nm to 40 nm. That is, the thermal conductive layer 150 may be formed to have a thickness of 1/160 to 1/140 of the thickness of the support substrate 100.

상기 열 전도층(150)은 전기적으로 절연성이 우수하고, 열전도 특성이 우수한 물질을 포함할 수 있으며, 구체적으로 열팽창계수가 3.5ppm/K 내지 4.5ppm/K이며, 녹는점이 2000℃ 이상의 물질을 포함할 수 있다.The thermally conductive layer 150 may include a material having excellent electrical insulation and excellent thermal conductivity, and specifically, a thermal expansion coefficient of 3.5 ppm / K to 4.5 ppm / K and a melting point of 2000 ° C. or more. can do.

예를 들어, 상기 열 전도층(150)은 SiC를 포함하여 형성될 수 있으며, 타 금속물과의 조합에 따라 열전도율 및 열팽창계수를 조절할 수 있다.For example, the thermal conductive layer 150 may be formed including SiC, and may adjust thermal conductivity and thermal expansion coefficient according to a combination with another metal material.

상기 지지기판(100)이 소다라임 글래스로 형성되는 경우, 열전도율은 0.9W/mK 내지 1.3W/mK이고, 열팽창 계수는 8.5ppm/K 내지 9.5ppm/K이다. 상기 열 전도층(150)이 SiC를 포함하여 형성되는 경우, 열전도율은 360W/mK 내지 490W/mK이고, 열팽창 계수는 4ppm/K이다. 그리고, 후면전극층(200)이 몰리브덴(Mo)을 포함하여 형성되는 경우, 열전도율은 138W/mK이고, 열팽창 계수는 4.8ppm/K이다.When the support substrate 100 is formed of soda-lime glass, the thermal conductivity is 0.9W / mK to 1.3W / mK, and the thermal expansion coefficient is 8.5ppm / K to 9.5ppm / K. When the thermally conductive layer 150 is formed of SiC, the thermal conductivity is 360 W / mK to 490 W / mK, and the thermal expansion coefficient is 4 ppm / K. In addition, when the rear electrode layer 200 includes molybdenum (Mo), the thermal conductivity is 138 W / mK, and the thermal expansion coefficient is 4.8 ppm / K.

상기 지지기판(100) 상에는 후면전극층(200)이 배치된다. 상기 후면전극층(200)은 도전층이다. 상기 후면전극층(200)은 태양전지 중 상기 광 흡수층(300)에서 생성된 전하가 이동하도록 하여 태양전지의 외부로 전류를 흐르게 할 수 있다. 상기 후면전극층(200)은 이러한 기능을 수행하기 위하여 전기 전도도가 높고 비저항이 작아야 한다.The back electrode layer 200 is disposed on the support substrate 100. The rear electrode layer 200 is a conductive layer. The back electrode layer 200 may allow electric charges generated in the light absorbing layer 300 of the solar cell to move to allow current to flow to the outside of the solar cell. The back electrode layer 200 should have high electrical conductivity and low specific resistance in order to perform this function.

또한, 상기 후면전극층(200)은 CIGS 화합물 형성시 수반되는 황(S) 또는 셀레늄(Se) 분위기 하에서의 열처리 시 고온 안정성이 유지되어야 한다. 또한, 상기 후면전극층(200)은 열팽창 계수의 차이로 인하여 상기 지지기판(100)과 박리현상이 발생되지 않도록 상기 지지기판(100)과 접착성이 우수하여야 한다. 이러한 후면전극층(200)을 형성하는 물질로는 몰리브덴(Mo)이 사용될 수 있다.In addition, the back electrode layer 200 should maintain high temperature stability during heat treatment under sulfur (S) or selenium (Se) atmosphere accompanying CIGS compound formation. In addition, the back electrode layer 200 should be excellent in adhesion with the support substrate 100 so that peeling does not occur with the support substrate 100 due to a difference in thermal expansion coefficient. Molybdenum (Mo) may be used as a material for forming the back electrode layer 200.

상기 후면전극층(200) 상에는 광 흡수층(300)이 형성될 수 있다. 상기 광 흡수층(300)은 p형 반도체 화합물을 포함한다. 더 자세하게, 상기 광 흡수층(300)은 Ⅰ-Ⅲ-Ⅵ족 계 화합물을 포함한다. 예를 들어, 상기 광 흡수층(300)은 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계) 결정 구조, 구리-인듐-셀레나이드계 또는 구리-갈륨-셀레나이드계 결정 구조를 가질 수 있다. 상기 광 흡수층(300)의 에너지 밴드갭(band gap)은 약 1.1eV 내지 1.2eV일 수 있다.The light absorbing layer 300 may be formed on the back electrode layer 200. The light absorbing layer 300 includes a p-type semiconductor compound. In more detail, the light absorbing layer 300 includes a group I-III-VI compound. For example, the light absorbing layer 300 is copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2; CIGS-based) crystal structure, a copper-indium-selenide-based or copper-gallium-selenide Crystal structure. The energy band gap of the light absorbing layer 300 may be about 1.1 eV to 1.2 eV.

상기 광 흡수층(300)이 CIGS인 경우, 격자상수는 약 0.575nm의 값을 가질 수 있다.When the light absorbing layer 300 is CIGS, the lattice constant may have a value of about 0.575 nm.

상기 광 흡수층(300) 상에 버퍼층(400)이 배치된다. CIGS 화합물을 광 흡수층(300)으로 갖는 태양전지는 p형 반도체인 CIGS 화합물 박막과 n형 반도체인 윈도우층(500) 간에 pn 접합을 형성한다. 하지만 두 물질은 격자상수와 밴드갭 에너지의 차이가 크기 때문에 양호한 접합을 형성하기 위해서는 밴드갭이 두 물질의 중간에 위치하는 버퍼층이 필요하다.The buffer layer 400 is disposed on the light absorbing layer 300. The solar cell having the CIGS compound as the light absorbing layer 300 forms a pn junction between the CIGS compound thin film as the p-type semiconductor and the window layer 500 as the n-type semiconductor. However, since the two materials have a large difference between the lattice constant and the band gap energy, a buffer layer in which a band gap is located between two materials is required in order to form a good junction.

상기 버퍼층(400)의 에너지 밴드갭은 2.2eV 내지 2.5eV일 수 있다. 상기 버퍼층(400)을 형성하는 물질로는 CdS, ZnS등이 있고 태양전지의 발전 효율 측면에서 CdS가 상대적으로 우수하다.The energy bandgap of the buffer layer 400 may be 2.2 eV to 2.5 eV. Materials for forming the buffer layer 400 include CdS, ZnS and the like, and CdS is relatively excellent in terms of power generation efficiency of the solar cell.

상기 버퍼층(400)은 10nm 내지 100nm의 두께로, 바람직하게는 50nm 내지 80nm의 두께로 형성될 수 있다. The buffer layer 400 may be formed to a thickness of 10nm to 100nm, preferably 50nm to 80nm.

상기 버퍼층(400) 상에 고저항 버퍼층(미도시)이 배치될 수 있다. 상기 고저항 버퍼층은 불순물이 도핑되지 않은 징크 옥사이드(i-ZnO)를 포함한다. 상기 고저항 버퍼층의 에너지 밴드갭은 약 3.1eV 내지 3.3eV이다.A high resistance buffer layer (not shown) may be disposed on the buffer layer 400. The high resistance buffer layer includes zinc oxide (i-ZnO) that is not doped with impurities. The energy bandgap of the high resistance buffer layer is about 3.1 eV to 3.3 eV.

상기 버퍼층(400) 상에 윈도우층(500)이 배치된다. 상기 윈도우층(500)은 투명하며, 도전층이다. 또한, 상기 윈도우층(500)의 저항은 상기 후면전극층(200)의 저항보다 높다.The window layer 500 is disposed on the buffer layer 400. The window layer 500 is transparent and a conductive layer. In addition, the resistance of the window layer 500 is higher than that of the back electrode layer 200.

상기 윈도우층(500)은 산화물을 포함한다. 예를 들어, 상기 윈도우층(500)은 징크 옥사이드(zinc oxide), 인듐 틴 옥사이드(induim tin oxide;ITO) 또는 인듐 징크 옥사이드(induim zinc oxide;IZO) 등을 포함할 수 있다.The window layer 500 includes an oxide. For example, the window layer 500 may include zinc oxide, indium tin oxide (ITO), or indium zinc oxide (IZO).

또한, 상기 윈도우층(500)은 알루미늄 도핑된 징크 옥사이드(Al doped zinc oxide;AZO) 또는 갈륨 도핑된 징크 옥사이드(Ga doped zinc oxide;GZO) 등을 포함할 수 있다.In addition, the window layer 500 may include aluminum doped zinc oxide (AZO) or gallium doped zinc oxide (GZO).

본 발명의 실시예에 따른 태양전지에 따르면, 태양전지에 사용되는 지지기판의 둘레영역에 열전도가 다른 물질을 얇게 도포하여 중앙영역과 둘레영역의 열분포 균일도를 향상하여 태양전지의 출력 및 광-전 변환 효율을 향상시킬 수 있다.According to the solar cell according to the embodiment of the present invention, by applying a thin layer of different thermal conductivity to the peripheral region of the support substrate used in the solar cell to improve the uniformity of the thermal distribution of the central region and the peripheral region of the solar cell output and photo-electric Conversion efficiency can be improved.

그리고, 고가의 하드웨어 투자비 없이 지지기판 상부에 열전도가 높은 물질을 증착하여 열구배(Thermal Gradient)를 향상시킬 수 있다.The thermal gradient can be improved by depositing a material having high thermal conductivity on the support substrate without expensive hardware investment cost.

또한, 지지기판이 유리기판 등의 리지드한 기판이나, 금속기판 등의 플렉서블한 경우에도 적용할 수 있어, 생산성을 향상시킬 수 있다.
Further, the substrate can be applied to a rigid substrate such as a glass substrate or a flexible substrate such as a metal substrate, thereby improving productivity.

도 3 내지 도 5는 실시예에 따른 태양전지의 제조방법을 도시한 단면도들이다. 본 제조방법에 관한 설명은 앞서 설명한 태양전지에 대한 설명을 참고한다. 앞서 설명한 태양전지에 대한 설명은 본 제조방법에 관한 설명에 본질적으로 결합될 수 있다.3 to 5 are cross-sectional views illustrating a method of manufacturing a solar cell according to an embodiment. For a description of the present manufacturing method, refer to the description of the solar cell described above. The description of the solar cell described above may be essentially combined with the description of the present manufacturing method.

도 3을 참조하면, 지지기판(100) 상에 열전도층(150)이 형성된다. 단면에서는 상기 열전도층(150)이 상기 지지기판(100)의 전면에 형성되는 것으로 도시되었으나, 도 1에 도시된 바와 같이, 둘레영역에 형성된다. 상기 열전도층(150)은 에피택셜 공정으로 증착될 수 있으나, 이에 대해 한정하는 것은 아니다. Referring to FIG. 3, a thermal conductive layer 150 is formed on the support substrate 100. In the cross-section, the heat conductive layer 150 is shown to be formed on the front surface of the support substrate 100, but as shown in FIG. The thermal conductive layer 150 may be deposited by an epitaxial process, but is not limited thereto.

도 4를 참조하면, 상기 열전도층(150) 상에 후면전극층(200)이 형성된다. 상기 후면전극층(200)은 몰리브덴을 사용하여 증착될 수 있다. Referring to FIG. 4, a back electrode layer 200 is formed on the heat conductive layer 150. The back electrode layer 200 may be deposited using molybdenum.

다음으로, 상기 열전도층(150) 상에 광 흡수층(300)이 형성된다. 상기 광 흡수층(300)은 예를 들어, 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.Next, the light absorbing layer 300 is formed on the heat conductive layer 150. The light absorbing layer 300 may be, for example, copper, indium, gallium, or selenium while simultaneously or separately evaporating a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2; CIGS-based) light absorbing layer ( A method of forming 300 and a method of forming a metal precursor film and then forming it by a selenization process are widely used.

금속 프리커서 막을 형성시킨 후 셀레니제이션 하는 것을 세분화하면, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서, 상기 후면전극(200) 상에 금속 프리커서 막이 형성된다.When a metal precursor film is formed and then subjected to selenization, a metal precursor film is formed on the rear electrode 200 by a sputtering process using a copper target, an indium target, and a gallium target.

이후, 상기 금속 프리커서 막은 셀레니제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)이 형성된다.Thereafter, the metal precursor film is formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2; CIGS-based) light absorbing layer 300 by a selenization process.

이와는 다르게, 상기 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정 및 상기 셀레니제이션 공정은 동시에 진행될 수 있다.Alternatively, the copper target, the indium target, the sputtering process using the gallium target, and the selenization process may be performed simultaneously.

이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 광 흡수층(300)이 형성될 수 있다.Alternatively, the CIS-based or CIG-based optical absorption layer 300 can be formed by using only a copper target and an indium target, or by a sputtering process and a selenization process using a copper target and a gallium target.

상기 광 흡수층(300)은 1.5μm 내지 2.5μm의 두께로 형성될 수 있으나, 이에 대해 한정하지는 않는다.The light absorbing layer 300 may be formed to a thickness of 1.5μm to 2.5μm, but is not limited thereto.

도 5를 참조하면, 상기 광 흡수층(300) 상에 버퍼층(400)이 형성된다. 상기 버퍼층(400)은 CdS를 포함하여 형성될 수 있으며, PVD 또는 도금의 방법으로 형성될 수 있다.Referring to FIG. 5, a buffer layer 400 is formed on the light absorbing layer 300. The buffer layer 400 may be formed including CdS, and may be formed by PVD or plating.

다음으로, 상기 버퍼층(400) 상에 윈도우층(500)이 형성된다. 상기 윈도우층(500)은 상기 버퍼층(400) 상에 투명한 도전물질이 증착되어 형성된다.Next, the window layer 500 is formed on the buffer layer 400. The window layer 500 is formed by depositing a transparent conductive material on the buffer layer 400.

도 6은 온도차에 따른 광 흡수층의 모포로지(Morphology)를 나타낸 도면이다. 도 6은 열 전도층이 형성되지 않은 소다라임 글래스의 지지기판의 상부에 형성된 광 흡수층의 모포로지를 나타낸 것이다. 좌측은 중앙부를 나타내고, 우측은 둘레영역을 나타낸다. 좌측은 630℃이고, 우측은 600℃의 온도가 측정되었다.6 is a diagram illustrating morphology of a light absorbing layer according to a temperature difference. 6 shows the morphology of the light absorbing layer formed on the support substrate of the soda-lime glass in which the heat conducting layer is not formed. The left side shows the central portion, and the right side shows the peripheral region. The left side was 630 degreeC, and the right side was temperature of 600 degreeC.

동일 지지기판의 중앙부와 둘레영역의 CIGS 광 흡수층의 성장 모습을 관찰한 결과, 온도 균일도가 5% 이내로 우수하고, 동일 조성비였음에도 불구하고, 성장형태가 상이함을 알 수 있다. 즉, 온도가 높은 중앙부에서의 그레인(Grain)의 크기가 크고, 표면이 상대적으로 고르게 성장되었음을 알 수 있다. As a result of observing the growth state of the CIGS light absorbing layer in the center portion and the periphery region of the same support substrate, it can be seen that the temperature uniformity is excellent within 5% and the growth pattern is different despite the same composition ratio. That is, it can be seen that the grain size in the central portion where the temperature is high is large and the surface is grown relatively evenly.

발명의 실시예에서와 같이, 열전도층(150)을 상기 지지기판(100)의 둘레영역에 형성함으로써, 둘레영역에서도 그레인의 크기 및 표면 형상이 우수한 CIGS 광 흡수층을 형성할 수 있다. As in the embodiment of the present invention, by forming the thermal conductive layer 150 in the peripheral region of the support substrate 100, it is possible to form a CIGS light absorbing layer having excellent grain size and surface shape in the peripheral region.

또한, 이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In addition, the features, structures, effects and the like described in the embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, and the like illustrated in the embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.

이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (10)

지지기판; 및,
상기 지지기판의 상부에 형성되는 열 전도층;을 포함하며,
상기 열 전도층은 상기 지지기판의 둘레영역에 형성되는 태양전지.
A support substrate; And
And a heat conducting layer formed on the support substrate.
The heat conducting layer is a solar cell is formed in the peripheral region of the support substrate.
삭제delete 제1항에 있어서,
상기 열 전도층의 폭은 상기 지지기판의 중심에서 둘레까지의 전체길이 10% 내지 40%의 비율로 형성되는 태양전지.
The method of claim 1,
The width of the heat conducting layer is a solar cell formed at a rate of 10% to 40% of the total length from the center to the perimeter of the support substrate.
제1항에 있어서,
열 전도층은 상기 지지기판 두께의 1/160 내지 1/140의 두께로 형성되는 태양전지.
The method of claim 1,
The heat conducting layer is a solar cell formed of a thickness of 1/160 to 1/140 of the thickness of the support substrate.
제1항에 있어서,
상기 열 전도층은 SiC를 포함하여 형성되는 태양전지.
The method of claim 1,
The heat conducting layer is formed of a solar cell including SiC.
제1항에 있어서,
상기 열 전도층의 열전도율은 360W/mK 내지 490W/mK인 태양전지.
The method of claim 1,
The thermal conductivity of the thermal conductive layer is a solar cell of 360W / mK to 490W / mK.
제6항에 있어서,
상기 지지기판은 소다라임 글래스를 포함하는 태양전지.
The method according to claim 6,
The support substrate is a solar cell comprising a soda lime glass.
지지기판 상에 열 전도층을 형성하는 단계; 및,
상기 열 전도층 상에 후면전극층을 형성하는 단계를 포함하며,
상기 열 전도층은 상기 지지기판의 둘레영역에 형성되는 태양전지의 제조방법.
Forming a heat conducting layer on the support substrate; And
Forming a back electrode layer on the thermal conductive layer;
The heat conducting layer is a manufacturing method of a solar cell is formed in the peripheral region of the support substrate.
제8항에 있어서,
상기 열 전도층의 폭은 상기 지지기판의 중심에서 둘레까지의 전체길이의 10% 내지 40%의 비율로 형성되는 태양전지의 제조방법.
9. The method of claim 8,
The width of the heat conducting layer is a method of manufacturing a solar cell is formed at a rate of 10% to 40% of the total length from the center to the circumference of the support substrate.
제8항에 있어서,
상기 열 전도층은 SiC를 포함하여 형성되는 태양전지의 제조방법.

9. The method of claim 8,
The heat conducting layer is a method of manufacturing a solar cell containing SiC.

KR1020110138721A 2011-12-20 2011-12-20 Solar cell and method of fabricating the same KR101327010B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110138721A KR101327010B1 (en) 2011-12-20 2011-12-20 Solar cell and method of fabricating the same
PCT/KR2012/010980 WO2013094943A1 (en) 2011-12-20 2012-12-17 Solar cell and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110138721A KR101327010B1 (en) 2011-12-20 2011-12-20 Solar cell and method of fabricating the same

Publications (2)

Publication Number Publication Date
KR20130071304A KR20130071304A (en) 2013-06-28
KR101327010B1 true KR101327010B1 (en) 2013-11-13

Family

ID=48668774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110138721A KR101327010B1 (en) 2011-12-20 2011-12-20 Solar cell and method of fabricating the same

Country Status (2)

Country Link
KR (1) KR101327010B1 (en)
WO (1) WO2013094943A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140349B (en) * 2015-07-20 2016-06-08 莆田市威特电子有限公司 A kind of preparation method of high light non-crystal silicon solar cell plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974212A (en) * 1995-09-05 1997-03-18 Canon Inc Photovoltaic element array
KR20110036152A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Apparatus for solar power generation and method of fabricating the same
KR101070672B1 (en) 2009-06-25 2011-10-07 동우 화인켐 주식회사 Adhesive sheet composition for solar battery, adhesive sheet and solar battery using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261015A (en) * 1997-12-17 2002-09-13 Matsushita Electric Ind Co Ltd Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
JP2001102612A (en) * 1999-10-01 2001-04-13 Bridgestone Corp Substrate for solar cell, and solar cell
JP2004311455A (en) * 2003-02-17 2004-11-04 Kyocera Corp Solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974212A (en) * 1995-09-05 1997-03-18 Canon Inc Photovoltaic element array
KR101070672B1 (en) 2009-06-25 2011-10-07 동우 화인켐 주식회사 Adhesive sheet composition for solar battery, adhesive sheet and solar battery using the same
KR20110036152A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Apparatus for solar power generation and method of fabricating the same

Also Published As

Publication number Publication date
WO2013094943A1 (en) 2013-06-27
KR20130071304A (en) 2013-06-28

Similar Documents

Publication Publication Date Title
KR20130111815A (en) Solar cell apparatus and method of fabricating the same
KR101283183B1 (en) Solar cell apparatus and method of fabricating the same
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
KR101241708B1 (en) Solar cell apparatus and method of fabricating the same
KR101300791B1 (en) Method for enhancing conductivity of molybdenum layer
KR101154696B1 (en) Solar cell apparatus and method of fabricating the same
KR20110001814A (en) Solar cell and method of fabricating the same
KR101327010B1 (en) Solar cell and method of fabricating the same
KR20120043315A (en) Solar cell having a absorption layer of compound semiconductor
KR20110116485A (en) Method for fabricating solar cell
KR101283240B1 (en) Solar cell and method of fabricating the same
KR101072101B1 (en) Solar cell and method of fabricating the same
KR101305603B1 (en) Solar cell apparatus and method of fabricating the same
KR101846337B1 (en) Solar cell apparatus and method of fabricating the same
KR101283174B1 (en) Solar cell apparatus and method of fabricating the same
KR101372026B1 (en) Solar cell apparatus and method of fabricating the same
KR20130074701A (en) Solar cell apparatus and method of fabricating the same
KR101349417B1 (en) Solar cell apparatus and method of fabricating the same
KR101326968B1 (en) Solar cell apparatus and method of fabricating the same
KR101382943B1 (en) Solar cell apparatus and method of fabricating the same
KR101305845B1 (en) Solar cell apparatus and method of fabricating the same
KR101273095B1 (en) Solar cell and method for fabricating of the same
KR101273093B1 (en) Solar cell and method of fabricating the same
KR101338751B1 (en) Solar cell and method of fabricating the same
KR20130059970A (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161006

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171011

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191010

Year of fee payment: 7