KR100965125B1 - Li/mno2 cell manufacturing method - Google Patents

Li/mno2 cell manufacturing method Download PDF

Info

Publication number
KR100965125B1
KR100965125B1 KR1020090068484A KR20090068484A KR100965125B1 KR 100965125 B1 KR100965125 B1 KR 100965125B1 KR 1020090068484 A KR1020090068484 A KR 1020090068484A KR 20090068484 A KR20090068484 A KR 20090068484A KR 100965125 B1 KR100965125 B1 KR 100965125B1
Authority
KR
South Korea
Prior art keywords
battery
weight
positive electrode
lithium
pvdf
Prior art date
Application number
KR1020090068484A
Other languages
Korean (ko)
Inventor
김상필
이영복
김상윤
권문태
Original Assignee
배트로닉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배트로닉스(주) filed Critical 배트로닉스(주)
Priority to KR1020090068484A priority Critical patent/KR100965125B1/en
Application granted granted Critical
Publication of KR100965125B1 publication Critical patent/KR100965125B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5088Initial activation; predischarge; Stabilisation of initial voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A thin film lithium/manganese battery is provided to maintain mechanical strength and ion conductance and to ensure chemical stability and electrical characteristic. CONSTITUTION: A method for manufacturing a thin film lithium/manganese battery comprises: a step of preparing a cathode slurry; a step of applying the positive slurry on an aluminum foil; a step of drying the aluminum foil to obtain a cathode(1); a step of preparing a anode(2); a step of forming a gel polymer electrolyte layer(4) on the cathode surface; a step of adding polyethylene separator(3) and anode laminate on the aluminum laminate film for thermal fusion to obtain a battery; a step of performing pre-discharging to the battery to obtain thin film Li/MnO_2.

Description

박막형 리튬/산화망간 전지 제조방법{Li/MnO2 cell manufacturing method}Thin film lithium / manganese oxide battery manufacturing method {Li / MnO2 cell manufacturing method}

본 발명은 박막형 리튬/산화망간 전지 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a thin film lithium / manganese oxide battery.

박막형 리튬이차전지로는 반도체에서 박막 증착 기술을 이용하는 전고상 박막형 전지 및 알루미늄 파우치를 사용하는 액체형 리튬이온폴리머전지가 있다. 전고상 박막형 전지의 경우 반도체에서 사용되는 증착장비를 사용하기 때문에 초기 투자 비용이 높을 뿐만 아니라 양산공정이 복잡하며, 전지 용량(1mAh 이하)이 매우 작아 이의 사용 분야는 제한되어 있다. 또한 알루미늄 파우치를 사용하는 리튬이온폴리머전지의 경우 통상 액체전해액을 사용하기 때문에 전해액의 누액 문제점이 있 고, 기계적 강도가 약하여 전극간의 계면저항 증가에 의한 성능 열화가 있으며, 자가방전율(self-discharge)이 통상 5∼10%/월 수준이다. 따라서 별도의 충전장치가 요구되지 않은 시스템에 부적절하다고 할 수 있다. Thin-film lithium secondary batteries include all-solid-state thin film batteries using thin film deposition techniques in semiconductors and liquid lithium ion polymer batteries using aluminum pouches. All-solid-state thin film battery uses a deposition equipment used in the semiconductor, not only high initial investment cost, but also complicated production process, the battery capacity (1mAh or less) is very small, its field of use is limited. In addition, in the case of a lithium ion polymer battery using an aluminum pouch, a liquid electrolyte is usually used, so there is a problem of leakage of the electrolyte, and mechanical strength is weak, resulting in deterioration of performance due to an increase in interfacial resistance between electrodes, and self-discharge. This is usually 5-10% / month level. Therefore, it can be said to be inadequate for a system that does not require a separate charging device.

따라서 소전류로 장기간 사용되는 기기의 전원으로서 자가방전율 특성이 우수한 일차전지가 유리하다. 특히 이들 일차전지중 에너지밀도가 높은 Li/MnO2 전지가 가장 유력하다. 통상 Li/MnO2 전지는 와운드(Wound)형 또는 바빈(Bobbin)형이 있으며 주로 카메라용으로 사용되고 있다. Li/MnO2 전지는 양극활물질로 이산화망간(MnO2), 음극활물질로 리튬합금, 격리막으로 폴리에칠렌 또는 폴리프로필렌 고분자막을 사용하며, 전해액으로는 비수전해액, 외장재로 금속캔을 사용한다. Therefore, a primary battery having excellent self-discharge rate characteristics is advantageous as a power source for devices that are used for a long time with a small current. In particular, Li / MnO 2 batteries having high energy density are the most prominent among these primary batteries. In general, a Li / MnO 2 battery has a round type or a bobbin type and is mainly used for a camera. Li / MnO 2 batteries use manganese dioxide (MnO2) as a cathode active material, lithium alloy as a cathode active material, polyethylene or polypropylene polymer membrane as a separator, and non-aqueous electrolyte as a electrolyte and a metal can as an exterior material.

만약 Li/MnO2 전지에서 시트상의 양극, 음극 및 외장재로 알루미늄 파우치를 사용할 경우, 박막형 전지를 제조하는 것이 용이하다. 최근 박막형 전지는 새로운 시장이 형성되고 있는 스마트카드, RFID 태그, 보안카드 전원용, 군용 등 응용 분야가 확장되고 있는 추세이다. If the aluminum pouch is used as a sheet-shaped positive electrode, negative electrode, and an exterior material in a Li / MnO 2 battery, it is easy to manufacture a thin film battery. In recent years, thin-film batteries are expanding in applications such as smart cards, RFID tags, security card power supplies, and military applications.

본 발명은 두께가 얇고 유연성(flexible)을 지닌 박막형 리튬일차전지에 관한 것인데, 통상 알루미늄 라미네이트 필름으로 포장된 박형 리튬일차전지는 기계적 강도가 약하기에 유통 기간중의 미세한 가스 발생에도 전지의 두께가 팽창되고, 결국 이것은 전극간의 계면 저항을 상승시키는 요인이 되어 급격한 용량 감소를 유발하게 된다는 문제점이 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film lithium primary battery having a thin thickness and flexibility. In general, a thin lithium primary battery packaged with an aluminum laminate film has a weak mechanical strength, so that the thickness of the battery expands even when a minute gas is generated during distribution. As a result, this causes a problem of increasing the interfacial resistance between the electrodes, causing a sudden decrease in capacity.

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 겔폴리머전해질를 이용하여 기계적 강도 및 이온전도도를 유지하여 전기화학적 화학적 안정성과 전기적 특성 및 제조 공정성 우수한 리튬일차전지를 제공하는 방법을 제시하는 것을 목적으로 한다.The present invention has been made to solve the above problems, the present invention is to provide a lithium primary battery excellent in electrochemical chemical stability, electrical properties and manufacturing process by maintaining the mechanical strength and ionic conductivity using a gel polymer electrolyte The purpose is to present.

본 발명은 전술한 바와 같은 목적을 달성하기 위하여, 박막형 리튬/산화망간 전지용 겔폴리머전해질 조성물에 있어서, 상기 겔폴리머전해질은 리튬염, 유기용매로 구성된 비수전해액 및 PVDF-HFP 공중합체를 함유하는 고분자 매트릭스를 포함하고, 상기 PVDF-HFP 공중합체는 HFP 함량이 7 중량% 이하인 제 1 PVDF-HFP 공중합체 및 HFP 함량이 7 중량% 이상인 제 2 PVDF-HFP 공중합체로 구성하되, 상기 제 1 PVDF-HFP 공중합체 및 상기 제 2 PVDF-HFP 공중합체가 상호 혼합되는 박막형 리튬/산화망간 전지용 겔폴리머 전해질 조성물을 제공한다.The present invention, in order to achieve the object as described above, in the gel polymer electrolyte composition for thin-film lithium / manganese oxide battery, the gel polymer electrolyte is a polymer containing a lithium salt, a non-aqueous electrolyte consisting of an organic solvent and PVDF-HFP copolymer Wherein the PVDF-HFP copolymer comprises a first PVDF-HFP copolymer having an HFP content of 7 wt% or less and a second PVDF-HFP copolymer having an HFP content of 7 wt% or more, wherein the first PVDF- Provided is a gel polymer electrolyte composition for a thin-film lithium / manganese oxide battery in which an HFP copolymer and the second PVDF-HFP copolymer are mixed with each other.

상기 제 1 PVDF-HFP 공중합체 및 상기 제 2 PVDF-HFP 공중합체는 상기 공중합체 전체 중량대비 각각 5∼40 중량% 및 95∼60중량%의 범위에서 혼합되는 것이 바람직하다.The first PVDF-HFP copolymer and the second PVDF-HFP copolymer are preferably mixed in the range of 5 to 40% by weight and 95 to 60% by weight based on the total weight of the copolymer.

상기 제 1 PVDF-HFP 공중합체 및 상기 제 2 PVDF-HFP 공중합체의 평균 HFP 함량은 6.5∼7.5 중량% 범위이고, 평균 분자량은 200,000 ∼ 300,000 범위인 것이 바람직하다.The average HFP content of the first PVDF-HFP copolymer and the second PVDF-HFP copolymer is preferably in the range of 6.5 to 7.5 wt%, and the average molecular weight is in the range of 200,000 to 300,000.

또한 본 발명은 전술한 바와 같은 목적을 달성하기 위하여, 상기 조성물이 적용되며, 상기 박막형 리튬/산화망간 전지의 양극은 이산화망간, 카본블랙, PVDF, 알루미늄 포일을 포함하여 구성되는 박막형 리튬/산화망간 전지를 제공한다.In addition, the present invention is applied to the composition, in order to achieve the object as described above, the anode of the thin-film lithium / manganese oxide battery is a thin-film lithium / manganese oxide battery comprising a manganese dioxide, carbon black, PVDF, aluminum foil To provide.

상기 양극에 사용되는 바인더는 PVDF 또는 SBR-CMC을 포함하도록 하는 것이 바람직하다.It is preferable that the binder used for the positive electrode include PVDF or SBR-CMC.

또한, 본 발명은 전술한 바와 같은 목적을 달성하기 위하여, 양극 전극 표면에 겔폴리머 전해질을 도포하는 단계; 양극과 음극 및 이들 사이에 격리막을 개재하는 단계; 상기 격리막을 열압착 하여 양극, 격리막 사이로 겔폴리머 전해질을 함침하는 단계;를 포함하며, 이로써 양극, 음극 및 격리막을 일체화시킨 박막형 리튬/산화망간 전지의 제조방법을 제공한다.In addition, the present invention comprises the steps of applying a gel polymer electrolyte to the surface of the positive electrode to achieve the object as described above; Interposing an anode and a cathode and a separator therebetween; And impregnating the gel polymer electrolyte between the cathode and the separator by thermocompression bonding the separator, thereby providing a method of manufacturing a thin film lithium / manganese oxide battery in which the cathode, the anode, and the separator are integrated.

상술한 바와 같이, 본 발명에 따른 리튬/산화망간 전지는 겔폴리머전해질용 고분자매트릭스로 PVDF-HFP 공중합체를 사용하여 양극, 음극 및 격리막을 일체화 한 것으로서, 기계적 강도를 유지하면서, 전기적 특성이 우수한 작용효과가 기대된다.As described above, the lithium / manganese oxide battery according to the present invention is a polymer matrix for gel polymer electrolyte, which integrates a positive electrode, a negative electrode and a separator using a PVDF-HFP copolymer, and maintains mechanical strength, and has excellent electrical characteristics. The effect is expected.

이하 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 박막형 Li/MnO2 전지의 구조를 개략적으로 나타낸 단면도이다. 도 1에서 박막형 Li/MnO2 전지는 양극(1); 음극(2); 상기 양극(1) 및 상 기 음극(2)을 분리하는 격리막(3); 비수전해액 및 고분자 매트릭스로 구성되는 겔폴리머전해질(4), 외장재로 알루미늄 라미네이트필름치(5), 양극 단자(6), 음극 단자(7)를 포함한다.1 is a cross-sectional view schematically showing the structure of a thin film Li / MnO 2 battery according to the present invention. In FIG. 1, a thin film Li / MnO 2 cell includes a positive electrode 1; Cathode 2; A separator (3) separating the positive electrode (1) and the negative electrode (2); A gel polymer electrolyte 4 composed of a nonaqueous electrolyte and a polymer matrix, an aluminum laminate film value 5 as an exterior material, a positive terminal 6 and a negative terminal 7 are included.

좀 더 구체적으로, 양극(1)은 양극활물질, 도전재 및 결착제로 구성되는 합제층과 이 합제층이 부착되는 양극집전체로 구성된다. 양극활물질로는 이산화망간(MnO2)이 사용되고, 전극의 전자전도성을 증가시키는 도전재로는 카본블랙이 사용되며, 결착제로는 폴리불화비닐리덴플루오라이드(Poly Vinylidene Fluoride: 이하 "PVDF"라 한다)가 사용되고, 이들 양극활물질, 도전재 및 결착제를 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone: 이하 "NMP"라 한다) 용매 중에 교반하여 슬러리를 제조한다. 이렇게 제조된 슬러리를 알루미늄박에 도포 및 건조하여 양극(1) 전극이 제조된다.More specifically, the positive electrode 1 is composed of a mixture layer composed of a positive electrode active material, a conductive material and a binder, and a positive electrode current collector to which the mixture layer is attached. Manganese dioxide (MnO 2 ) is used as the positive electrode active material, carbon black is used as the conductive material to increase the electronic conductivity of the electrode, and poly vinylidene fluoride (hereinafter referred to as "PVDF") as a binder. And a cathode active material, a conductive material and a binder are stirred in a solvent of N-methyl-2-pyrrolidone (hereinafter referred to as "NMP") to prepare a slurry. The slurry thus prepared is coated on an aluminum foil and dried to prepare an anode (1) electrode.

음극(2)을 구성하는 활물질로 리튬박(Li) 또는 리튬합금박(Li-Al)이 사용되며 이를 단독 또는 니켈 메쉬(Ni mesh)에 압착하여 제조된다.Lithium foil (Li) or lithium alloy foil (Li-Al) is used as an active material constituting the negative electrode 2 and is manufactured by pressing it alone or on a nickel mesh.

격리막(3)은 리튬이온을 투과하면서 양극(1)과 음극(2)을 전기적으로 격리할 수 있는 임의의 재료가 사용될 수 있다. 구체적으로는, 폴리에틸렌(PE)이나 폴리프로필렌(Polypropylene: 이하 "PP"라 한다) 등을 주 재료로 한 고분자 화합물이나 그 유도체에 의해 형성된 필름을 사용하는 것이 가능하다. As the separator 3, any material capable of electrically isolating the positive electrode 1 and the negative electrode 2 while transmitting lithium ions may be used. Specifically, it is possible to use a film formed of a high molecular compound or a derivative thereof mainly composed of polyethylene (PE), polypropylene (hereinafter referred to as "PP"), or the like.

겔폴리머전해질(4)은 리튬염과 유기용매 및 고분자 매트릭스로 구성된다. 리튬염으로는 리튬퍼클로레이트(LiClO4), 리튬테트라프루오르보레이트(LiBF4), 리튬트 리플루오르메탄설페이트(LiCF3SO3), 리튬헥사플루오르포스페이트(LiPF6)등이 있다.Gel polymer electrolyte 4 is composed of a lithium salt, an organic solvent and a polymer matrix. Lithium salts include lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), and the like.

유기용매로는 에틸렌카보네이트(Ethylene Carbonate: 이하 "EC"라 한다), 프로필렌카보네이트(Propylene Carbonate: 이하 "PC"라 한다) 등의 환상카보네이트, 감마-뷰티로락톤(γ-Butyrolactone: 이하 "GBL"이라 한다) 등의 환상에스테르, 디메틸카보네이트(Dimethyl Carbonate: 이하 "DMC"라 한다), 에틸메틸카보네이트(Ethylmethyl Carbonate 이하 "EMC"라 한다), 디에틸렌카보네이트(Diethylene Carbonate: 이하 "DEC"라 한다) 등의 쇄상카보네이트가 사용되며, 이들 유기용매를 단독 또는 2종 이상의 유기용매를 혼합하여 사용한다. 또한, 고분자 매트릭스로는 예를 들어 PVDF-HFP 공중합체, 폴리에틸렌옥사이드(Polyethylene Oxide: 이하 "PEO"라 한다), 폴리프로필렌 등의 폴리에테르(Polyester)류, 폴리테트라플루오르에틸렌(Polytetrafluoroethylene: 이하 "PTFE"라 한다) 등의 할로겐 원소 함유 고분자 화합물이나 이들의 유도체, 공중합체, 또는 혼합물이 사용될 수 있다. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate (hereinafter referred to as "EC") and propylene carbonate (hereinafter referred to as "PC"), and gamma-butyrolactone (γ-Butyrolactone: referred to as "GBL"). Cyclic esters such as dimethyl carbonate (hereinafter referred to as "DMC"), ethyl methyl carbonate (hereinafter referred to as "EMC"), and diethylene carbonate (hereinafter referred to as "DEC"). Chain carbonates, such as these, are used, These organic solvents are used individually or in mixture of 2 or more types of organic solvents. As the polymer matrix, for example, PVDF-HFP copolymer, polyethylene oxide (hereinafter referred to as "PEO"), polyethers such as polypropylene, and polytetrafluoroethylene (hereinafter referred to as "PTFE"). Halogen element-containing polymer compounds such as "," and derivatives, copolymers, or mixtures thereof may be used.

외장재로는 성형성이 있는 폴리프로필렌, 알루미늄, 나일론 순서로 적층된 3층 이상의 구조의 알루미늄 라미네이트 필름을 사용한다. As the exterior material, an aluminum laminate film having three or more layers laminated in order of moldable polypropylene, aluminum, and nylon is used.

도 2는 상술한 본 발명의 박막형 Li/MnO2 전지 내부에 있는 양극(1), 음극(2) 및 격리막(3)이 PVDF-HFP 공중합체에 의하여 사슬같이 연결되어 일체형 구조를 나타내고 있음을 알 수 있다.FIG. 2 shows that the positive electrode 1, the negative electrode 2 and the separator 3 in the above-described thin film Li / MnO 2 battery of the present invention are connected in a chain by PVDF-HFP copolymer to show an integrated structure. Can be.

[실시예]EXAMPLE

이하 아래와 같은 실시예를 기초로 하여 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail based on the following examples.

1. 양극제조1. Anode Manufacturing

양극은 90중량%의 이산화망간(MnO2, Tosoh, HC-9)로 이루어진 양극활물질, 5중량%의 카본블랙(Super-P, MMM Carbon)로 이루어진 도전재, 5중량%의 PVDF (Solef6020, Solvay)로 이루어진 결착제로 구성되며, 이들 양극활물질, 도전재, 및 결착제의 각 성분을 NMP 용매 중에 분산시켜 양극 슬러리를 제조한다. 제조된 양극 슬러리를 두께 12∼20㎛인 알루미늄 포일 상에 단면 도포한다. 그 후, 양극 슬러리가 도포된 알루미늄 포일을 건조로 내로 통과시키면서 NMP 용액을 증발시켜 건조시킨다. 건조된 양극 전극을 롤프레스로 압착하여 양극시트를 소정의 크기로 절단하고, 양극 슬러리가 미도포된 부분에 실런트 필름이 부착된 알루미늄 단자(폭 2mm, 두께 80㎛)를 용접하여 양극 전극을 제조하였다. The positive electrode is a positive electrode active material consisting of 90% by weight of manganese dioxide (MnO 2 , Tosoh, HC-9), a conductive material consisting of 5% by weight of carbon black (Super-P, MMM Carbon), 5% by weight of PVDF (Solef6020, Solvay A positive electrode slurry is prepared by dispersing the positive electrode active material, the conductive material, and the components of the binder in an NMP solvent. The prepared positive electrode slurry is cross-sectional coated on an aluminum foil having a thickness of 12 to 20 μm. The NMP solution is then evaporated to dryness while passing the aluminum foil coated with the positive electrode slurry into the drying furnace. The positive electrode sheet was cut into a predetermined size by pressing the dried positive electrode with a roll press, and a positive electrode was manufactured by welding an aluminum terminal (2 mm in width and 80 μm in thickness) with a sealant film on a portion where the positive electrode slurry was not coated. It was.

2. 음극 제조2. Cathode Manufacturing

음극은 실런트 필름이 부착된 니켈 단자(폭 2mm, 두께 0.076mm)를 니켈 메쉬에 용접하고, 이를 두께 약 100㎛의 리튬박에 압착하여 소정의 크기로 절단하여 음극을 제작하였다. The negative electrode was welded to a nickel mesh (2 mm wide, 0.076 mm thick) with a sealant film on a nickel mesh, and pressed to a lithium foil having a thickness of about 100 μm to cut a predetermined size to produce a negative electrode.

3. 3. 겔폴리머전해질의Gel polymer electrolyte 제조 Produce

겔폴리머전해질은 다음과 같이 제조하였다. 먼저, 겔폴리머전해질을 구성하는 가소제의 각 성분으로 10중량%의 리튬헥사플루오르포스페이트(LiPF6)로 이루어진 리튬염, 및 45중량%의 에틸렌카보네이트(EC) 및 45 중량%의 프로필렌카보네이트(PC)로 이루어진 유기용매를 취하고, 이들 리튬염 및 유기용매의 각 성분을 혼합하여 비수전해액을 제조한다. 그 후, 35 중량%의 비수전해액, 5중량%의 PVDF-HFP 공중합체로 이루어진 고분자 매트릭스 및 60중량%의 디메틸카보네이트(DMC)로 이루어진 희석용매를 혼합 및 용해하여 겔폴리머전해질을 제조한다. 여기서, 고분자 매트릭스로 사용되는 PVDF-HFP 공중합체는 PVDF-HFP 공중합체 A(HFP 7 중량%, 분자량 200,000) 및 PVDF-HFP 공중합체 B(HFP 7 중량%, 분자량 600,000)를 각 10 중량 % 및 90 중량 %의 조성비로 혼합한 것을 사용한다.Gel polymer electrolyte was prepared as follows. First, a lithium salt composed of 10% by weight of lithium hexafluorophosphate (LiPF 6 ), and 45% by weight of ethylene carbonate (EC) and 45% by weight of propylene carbonate (PC) as each component of the plasticizer constituting the gel polymer electrolyte. Take an organic solvent consisting of, and mix each of the lithium salt and each component of the organic solvent to prepare a non-aqueous electrolyte. Thereafter, a gel polymer electrolyte is prepared by mixing and dissolving a 35 wt% non-aqueous electrolyte, a polymer matrix composed of 5 wt% PVDF-HFP copolymer, and a diluting solvent composed of 60 wt% dimethyl carbonate (DMC). Here, the PVDF-HFP copolymer used as the polymer matrix comprises PVDF-HFP copolymer A (7 wt% HFP, molecular weight 200,000) and PVDF-HFP copolymer B (7 wt% HFP, molecular weight 600,000) each 10 wt% and Mix with a composition ratio of 90% by weight is used.

4. 전지 조립4. Battery Assembly

박막형 리튬일차전지의 조립은 다음과 같이 진행하였다. 먼저, 닥터블레이드(doctor blade)를 사용하여 겔폴리머전해질을 양극 전극 표면 상에 도포하고 열풍순환식 오븐에 넣어 고온에서 디메틸카보네이트(DMC)를 기화시켜 제거한다. 이렇게 하여 양극 전극 표면 상에 겔폴리머전해질층이 형성된다. 그 후, 겔 상태의 전해질층이 형성된 양극에 폴리에틸렌 격리막(Celgard 2400), 음극을 차례로 적층한다. 이것을 알루미늄 라미네이트 필름(Showa, 두께 0.080mm)에 넣고, 단자가 있는 알루미늄 라미네이트의 상단부를 열융착한다. 이어서 진공감압에 의해 전극층 내부에 존재하는 기포를 제거한 후, 알루미늄 라미네이트 필름의 측면(사이드) 부분을 열융착하여 완전 밀봉한다. 이렇게 제조된 전지를 고온에서 열압착하면 양극, 격리막 내부로 겔폴리머전해질이 침투되면서, 양극, 음극 및 격리막이 완전히 일체화된다. 그 후, 예비방전(Predischarge)을 실시하여 두께 1mm 이하의 박막형 Li/MnO2 전지가 얻어진다. 이때 예비방전의 목적은 다음과 같다. MnO2 원재료 제조 공정시 열처리(200∼350℃)를 거쳐 수분을 제거한다. 열처리를 통해 MnO2에 존재하는 수분이 100% 제거된다 할 지라도 MnO2가 수분을 잘 흡착하므로 양극 제조 과정에서 재흡착하게 된다. 수분의 존재하에 MnO2의 촉매 작용으로 인하여 PC등의 극성 용매를 분해시킨다. 이는 전지 성능 열화 및 내압이 증가하여 누액 가능성이 커지고 분극을 증가시킨다. 이는 전지 성능 열화 및 내압이 증가하여 누액 가능성이 커지고, 분극을 증가시킨다. 따라서 전지 조립 후 가능한 빨리 예비방전(전지 용량의 2∼3% 수준)을 실시하여 수분을 제거해야 한다. 이 공정을 거치면서 전지의 전압은 불안정한 상태(3.6V 이상의 전압)에서 약 3.3V 이하로 안정화 된다. Assembly of the thin film lithium primary battery was carried out as follows. First, a gel polymer electrolyte is applied onto the surface of the anode electrode using a doctor blade and placed in a hot air circulating oven to remove dimethyl carbonate (DMC) by vaporizing at high temperature. In this way, a gel polymer electrolyte layer is formed on the surface of the anode electrode. Thereafter, a polyethylene separator (Celgard 2400) and a cathode are sequentially stacked on the anode in which the electrolyte layer in the gel state is formed. This was put into an aluminum laminate film (Showa, thickness 0.080 mm) and heat-sealed the upper end of the aluminum laminate with a terminal. Subsequently, bubbles are removed from the inside of the electrode layer by vacuum pressure, and then the side (side) portions of the aluminum laminate film are heat-sealed and completely sealed. When the battery thus manufactured is thermocompressed at high temperature, the gel polymer electrolyte penetrates into the positive electrode and the separator, and the positive electrode, the negative electrode, and the separator are completely integrated. Thereafter, predischarge is performed to obtain a thin film Li / MnO 2 battery having a thickness of 1 mm or less. The purpose of the preliminary discharge is as follows. During the MnO 2 raw material manufacturing process, water is removed through heat treatment (200 to 350 ° C.). Although 100% of the moisture present in the MnO 2 is removed through the heat treatment, MnO 2 absorbs the moisture well and thus resorbed during the production of the cathode. Due to the catalysis of MnO 2 in the presence of water, polar solvents such as PC are decomposed. This deteriorates battery performance and increases internal pressure, which increases the possibility of leakage and increases polarization. This results in deterioration of battery performance and increased internal pressure, which increases the possibility of leakage and increases polarization. Therefore, pre-discharge (2 to 3% of battery capacity) should be performed to remove moisture as soon as possible after battery assembly. Through this process, the voltage of the battery stabilizes to about 3.3V or less in an unstable state (voltage over 3.6V).

5. 전지 평가5. Battery evaluation

겔폴리머전해질에서 유기용매인 PC:EC의 함량을 달리하여 제작된 3종류의 박막형 Li/MnO2 전지를 제작하였으며, 이를 정전류 1/10C 전류로 방전하한전압인 2.0V 까지 방전을 실시하였다. 이의 결과를 도 3에 나타내었다. 도 3에서 알 수 있듯이 Li/MnO2 전지의 방전전압은 약 2.75V를 유지하다가 2.5V 이하에서 방전 전압이 급격히 떨어지는 것을 알 수 있었다. Three types of thin film Li / MnO 2 batteries fabricated by varying the content of the organic solvent PC: EC in the gel polymer electrolyte were fabricated and discharged to a constant lower limit voltage of 2.0V with a constant current of 1 / 10C. The results are shown in FIG. 3. As can be seen in FIG. 3, the discharge voltage of the Li / MnO 2 battery was maintained at about 2.75V, but the discharge voltage rapidly decreased below 2.5V.

도 1은 본 발명의 일 실시예에 의한 박막형 Li/MnO2 전지의 내부 단면 사시도이다. 1 is an internal cross-sectional perspective view of a thin film Li / MnO 2 battery according to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 의한 박막형 Li/MnO2 전지의 내부 구조를 도시한 도면이다.2 is a diagram illustrating an internal structure of a thin film Li / MnO 2 battery according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 의한 박막형 Li/MnO2 전지의 방전 용량을 나타낸 곡선이다.3 is a thin film Li / MnO 2 according to an embodiment of the present invention A curve showing the discharge capacity of the battery.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

1: 양극(Cathode) 2: 음극(Anode) 1: Cathode 2: Anode

3: 격리막(Separator) 4: 겔폴리머전해질3: Separator 4: Gel polymer electrolyte

5: 알루미늄 파우치 6: 니켈탭(Ni Tab) 5: aluminum pouch 6: Ni-tab

7: 알루미늄탭(Al Tab)7: Al Tab

Claims (6)

(1) 90중량%의 이산화망간(MnO2)으로 이루어진 양극활물질, 5중량%의 카본블랙로 이루어진 도전재, 5중량%의 폴리불화비닐리덴플루오라이드(PVDF)로 이루어진 결착제로 구성된 용질을 N-메틸-2-피롤리돈(NMP) 용매 중에 분산시켜 양극 슬러리를 제조하는 단계;(1) A solute consisting of 90% by weight of a cathode active material consisting of manganese dioxide (MnO 2 ), a conductive material consisting of 5% by weight carbon black, and a binder consisting of 5% by weight polyvinylidene fluoride (PVDF); Dispersing in methyl-2-pyrrolidone (NMP) solvent to prepare a positive electrode slurry; (2) 상기 양극 슬러리를 두께 12∼20㎛인 알루미늄 포일 상에 단면 도포하는 단계;(2) cross-sectioning the positive electrode slurry onto an aluminum foil having a thickness of 12 to 20 μm; (3) 상기 양극 슬러리가 도포된 알루미늄 포일을 건조로 내로 통과시키면서 상기 N-메틸-2-피롤리돈 용액을 증발시켜 건조하는 단계;(3) evaporating and drying the N-methyl-2-pyrrolidone solution while passing the aluminum foil coated with the positive electrode slurry into a drying furnace; (4) 건조된 알루미늄 포일을 롤프레스로 압착하고, 소정의 크기로 절단하고, 상기 양극 슬러리가 미도포된 부분에 실런트 필름이 부착된 알루미늄 단자를 용접하여 양극 전극을 제조하는 단계;(4) pressing the dried aluminum foil with a roll press, cutting to a predetermined size, and manufacturing an anode electrode by welding an aluminum terminal having a sealant film attached to a portion where the cathode slurry is not coated; (5) 상기 실런트 필름이 부착된 니켈 단자를 니켈 메쉬에 용접하고, 100㎛의 리튬박에 압착하여 소정의 크기로 절단하여 음극을 제조하는 단계;(5) manufacturing a negative electrode by welding the nickel terminal with the sealant film to a nickel mesh, pressing the 100 mm lithium foil, and cutting the nickel terminal into a predetermined size; (6) 닥터블레이드(doctor blade)를 사용하여 겔폴리머전해질을 상기 양극 전극 표면 상에 도포하고 열풍순환식 오븐에 넣어 고온에서 디메틸카보네이트(DMC)를 기화시켜 제거하여, 상기 양극 전극 표면 상에 겔폴리머전해질층을 형성하는 단계;(6) A gel polymer electrolyte is applied onto the surface of the positive electrode using a doctor blade and placed in a hot air circulating oven to vaporize and remove dimethyl carbonate (DMC) at a high temperature, thereby removing the gel on the surface of the positive electrode. Forming a polymer electrolyte layer; (7) 상기 겔폴리머전해질층이 형성된 양극에 폴리에틸렌 격리막 및 음극을 차례로 적층하고, 알루미늄 라미네이트 필름에 넣고, 상기 알루미늄 라미네이트 필름의 상단부를 열융착하는 단계;(7) sequentially laminating a polyethylene separator and a negative electrode on the positive electrode on which the gel polymer electrolyte layer is formed, placing the negative electrode in an aluminum laminate film, and heat-sealing the upper end of the aluminum laminate film; (8) 전극층 내부에 존재하는 기포를 제거한 후, 상기 알루미늄 라미네이트 필름의 측면 부분을 열융착하여 완전 밀봉하여 전지를 제조하는 단계;(8) removing the air bubbles present in the electrode layer, and then heat sealing the side portions of the aluminum laminate film to completely seal them to manufacture a battery; (9) 상기 제조된 전지를 열압착하고 상기 양극 및 상기 격리막 내부로 겔폴리머전해질이 침투되면서, 상기 양극, 상기 음극 및 상기 격리막을 완전히 일체화시키는 단계; 및(9) thermally compressing the prepared battery and completely integrating the positive electrode, the negative electrode and the separator while the gel polymer electrolyte penetrates into the positive electrode and the separator; And (10) 상기 제조된 전지에 예비 방전을 실시하여 박막형 Li/MnO2 전지를 획득하는 단계;를 포함하는 것이며,(10) performing a preliminary discharge on the manufactured battery to obtain a thin film Li / MnO 2 battery; 상기 겔폴리머전해질은 10중량%의 리튬헥사플루오르포스페이트(LiPF6)로 이루어진 리튬염, 및 45중량%의 에틸렌카보네이트(EC) 및 45 중량%의 프로필렌카보네이트(PC)로 이루어진 유기용매를 취하고, 상기 리튬염 및 상기 유기용매의 각 성분을 혼합하여 비수전해액을 제조한 다음, 35 중량%의 비수전해액, 5중량%의 PVDF-HFP 공중합체로 이루어진 고분자 매트릭스 및 60중량%의 디메틸카보네이트(DMC)로 이루어진 희석용매를 혼합 및 용해하여 제조되는 것인 것이며, 상기 고분자 매트릭스로 사용되는 PVDF-HFP 공중합체는 PVDF-HFP 공중합체 A(HFP 7 중량%, 분자량 200,000) 및 PVDF-HFP 공중합체 B(HFP 7 중량%, 분자량 600,000)를 각각 10 중량 % 및 90 중량 %의 조성비로 혼합한 것인 것을 특징으로 하는 박막형 리튬/산화망간 전지의 제조방법.The gel polymer electrolyte takes a lithium salt consisting of 10% by weight of lithium hexafluorophosphate (LiPF 6 ), and an organic solvent consisting of 45% by weight of ethylene carbonate (EC) and 45% by weight of propylene carbonate (PC). A nonaqueous electrolyte was prepared by mixing lithium salt and each component of the organic solvent, followed by a polymer matrix consisting of 35% by weight of nonaqueous electrolyte, 5% by weight of PVDF-HFP copolymer, and 60% by weight of dimethyl carbonate (DMC). It is prepared by mixing and dissolving the dilution solvent, PVDF-HFP copolymer used as the polymer matrix is PVDF-HFP copolymer A (HFP 7% by weight, molecular weight 200,000) and PVDF-HFP copolymer B (HFP 7 wt%, molecular weight 600,000) is a method of manufacturing a thin film lithium / manganese oxide battery, characterized in that the mixture of 10 wt% and 90 wt%, respectively. 제 1 항에 있어서, The method of claim 1, 상기 예비 방전은 전지 용량의 2∼3% 수준에서 실시하는 것인 것을 특징으로 하는 박막형 리튬/산화망간 전지의 제조방법.The preliminary discharge is a method of manufacturing a thin film lithium / manganese oxide battery, characterized in that performed at a level of 2 to 3% of the battery capacity. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090068484A 2009-07-27 2009-07-27 Li/mno2 cell manufacturing method KR100965125B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090068484A KR100965125B1 (en) 2009-07-27 2009-07-27 Li/mno2 cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090068484A KR100965125B1 (en) 2009-07-27 2009-07-27 Li/mno2 cell manufacturing method

Publications (1)

Publication Number Publication Date
KR100965125B1 true KR100965125B1 (en) 2010-06-23

Family

ID=42370295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090068484A KR100965125B1 (en) 2009-07-27 2009-07-27 Li/mno2 cell manufacturing method

Country Status (1)

Country Link
KR (1) KR100965125B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219589B1 (en) * 2010-08-23 2013-01-11 주식회사 비츠로셀 Lithium Manganese Reserve battery
CN110444817A (en) * 2019-07-02 2019-11-12 萨姆蒂萨(天津)数据信息技术有限公司 A kind of lithium battery
CN113937362A (en) * 2021-09-24 2022-01-14 中化学南方建设投资有限公司 Safe and efficient polymer electrolyte lithium battery and preparation method thereof
FR3116950A1 (en) * 2020-12-01 2022-06-03 Arkema France ELECTRODE FOR QUASI SOLID LI-ION BATTERY
RU2779506C1 (en) * 2021-04-23 2022-09-08 Акционерное общество "Энергия" (АО "Энергия") Current source of a manganese dioxide - lithium system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740548B1 (en) * 2005-12-27 2007-07-18 주식회사 나래나노텍 Gel polymer electrolyte composition for lithium polymer battery and lithium polymer battery using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740548B1 (en) * 2005-12-27 2007-07-18 주식회사 나래나노텍 Gel polymer electrolyte composition for lithium polymer battery and lithium polymer battery using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219589B1 (en) * 2010-08-23 2013-01-11 주식회사 비츠로셀 Lithium Manganese Reserve battery
CN110444817A (en) * 2019-07-02 2019-11-12 萨姆蒂萨(天津)数据信息技术有限公司 A kind of lithium battery
CN110444817B (en) * 2019-07-02 2024-04-26 萨姆蒂萨集成设备设计(邢台)有限公司 Lithium battery
FR3116950A1 (en) * 2020-12-01 2022-06-03 Arkema France ELECTRODE FOR QUASI SOLID LI-ION BATTERY
WO2022117953A1 (en) * 2020-12-01 2022-06-09 Arkema France Electrode for quasi-solid li-ion battery
RU2779506C1 (en) * 2021-04-23 2022-09-08 Акционерное общество "Энергия" (АО "Энергия") Current source of a manganese dioxide - lithium system
CN113937362A (en) * 2021-09-24 2022-01-14 中化学南方建设投资有限公司 Safe and efficient polymer electrolyte lithium battery and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102140122B1 (en) Anode comprising multi passivation layers and lithium secondary battery comprising the same
US7651820B2 (en) Gel electrolyte and gel electrolyte battery
KR100587438B1 (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
EP2238643B1 (en) Pouch-type lithium secondary battery
JP4517440B2 (en) Lithium ion solid electrolyte secondary battery
KR100587437B1 (en) Nonaqueous Secondary Battery
JP5168850B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP4601752B2 (en) Gel electrolyte and gel electrolyte battery
KR20180061064A (en) A laser-induced graphene layered separator and a Li-S battery comprising the same
US6767668B2 (en) Solid electrolyte battery and production method thereof
KR100965125B1 (en) Li/mno2 cell manufacturing method
KR101598650B1 (en) Negative-electrode and lithium secondary battery with high capacity comprising the same
KR100619653B1 (en) Nonaqueous Electrolyte Cell
JP2003331916A (en) Secondary cell, and manufacturing method of the same
JP4310981B2 (en) Non-aqueous electrolyte battery
KR100740548B1 (en) Gel polymer electrolyte composition for lithium polymer battery and lithium polymer battery using the same
US10193184B2 (en) Lithium ion secondary battery and method for manufacturing same
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
JP2006164883A (en) Winding electrode and its manufacturing method, and method of manufacturing battery
JP3778805B2 (en) Secondary battery
US20020172859A1 (en) Polymer electrolyte precursor having improved impedence
JP2016181457A (en) Flat plate type laminate battery and battery pack thereof
JP2010021043A (en) Separator, manufacturing method of separator and battery
KR19980073911A (en) Lithium polymer secondary battery with short-circuit insulation layer
JP4018881B2 (en) Electrochemical devices

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130516

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140417

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170705

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee