KR100892483B1 - Dual bed catalytic system for the reduction of NOx - Google Patents

Dual bed catalytic system for the reduction of NOx Download PDF

Info

Publication number
KR100892483B1
KR100892483B1 KR1020060076274A KR20060076274A KR100892483B1 KR 100892483 B1 KR100892483 B1 KR 100892483B1 KR 1020060076274 A KR1020060076274 A KR 1020060076274A KR 20060076274 A KR20060076274 A KR 20060076274A KR 100892483 B1 KR100892483 B1 KR 100892483B1
Authority
KR
South Korea
Prior art keywords
zsm
catalyst
activity
zeolite
catalyst system
Prior art date
Application number
KR1020060076274A
Other languages
Korean (ko)
Other versions
KR20080014486A (en
Inventor
길정기
남인식
박주형
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020060076274A priority Critical patent/KR100892483B1/en
Priority to US11/891,011 priority patent/US20080038160A1/en
Priority to DE102007037347A priority patent/DE102007037347A1/en
Priority to JP2007210357A priority patent/JP2008043947A/en
Publication of KR20080014486A publication Critical patent/KR20080014486A/en
Application granted granted Critical
Publication of KR100892483B1 publication Critical patent/KR100892483B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명은 질소산화물 제거용 이중 층 촉매 시스템(dual bed catalytic system)에 관한 것으로서, 더욱 상세하게는 은(Ag)담지 알루미나(Al2O3)와 제올라이트(ZSM―5)를 포함하므로 기존의 은(Ag)담지 알루미나(Al2O3) 촉매 또는 제올라이트(ZSM―5)를 단독으로 사용할 경우보다 질소산화물 제거효율이 월등히 향상된 결과를 얻을 수 있으며, 특히 은(Ag)담지 알루미나(Al2O3) 촉매 만으로는 질소산화물 제거 활성이 거의 나타나지 않는 저온 (300 ℃) 의 조건에서도 높은 질소산화물 제거 활성을 나타내는 이중 층 촉매 시스템에 관한 것이다.The present invention relates to a dual bed catalytic system for removing nitrogen oxides, and more particularly, includes silver (Ag) -supported alumina (Al 2 O 3 ) and zeolite (ZSM-5). When the (Ag) supported alumina (Al 2 O 3 ) catalyst or zeolite (ZSM-5) alone is used, the nitrogen oxide removal efficiency is significantly improved, and in particular, silver (Ag) supported alumina (Al 2 O 3 ) is obtained. The present invention relates to a double-layer catalyst system exhibiting high NOx removal activity even at low temperature (300 DEG C) conditions in which NOx removal activity is hardly exhibited by the catalyst alone.

질소산화물, 이중 층, 촉매, 알루미나, 제올라이트 NOx, double layer, catalyst, alumina, zeolite

Description

질소산화물 제거용 이중 층 촉매 시스템{Dual bed catalytic system for the reduction of NOx}Dual bed catalytic system for the reduction of NOx

도 1 은 Ag/γ―Al2O3 과 Cu/ZSM―5, Cu/Y, Fe/ZSM―5, 또는 H/ZSM―5 촉매를 2 대 1의 비율로 패킹(packing)한 이중 층 촉매 시스템의 deNOx 활성을 나타낸 그래프이고, 여기에서 F는 전단촉매, R는 후단촉매, Ag(2.00)는 2 중량% Ag/γ―Al2O3, Cu(4.66) 는 4.66 중량% Cu/ZSM―5, CuY(8.17)은 8.17 중량% Cu/Y, 및 Fe(1.96)은 1.96 중량% Fe/ZSM―5 를 의미한다.1 is a two-layered catalyst packing Ag / γ-Al 2 O 3 and Cu / ZSM-5, Cu / Y, Fe / ZSM-5, or H / ZSM-5 catalysts in a ratio of 2 to 1 DeNOx activity of the system, where F is shear catalyst, R is postcatalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 , Cu (4.66) is 4.66 wt% Cu / ZSM-- 5, CuY (8.17) means 8.17 wt% Cu / Y, and Fe (1.96) means 1.96 wt% Fe / ZSM-5.

도 2는 3.37 중량% Cu/ZSM―5와 2 중량% Ag/γ―Al2O3의 이중 층 촉매 시스템의 패킹(packing) 순서에 따른 deNOx 활성을 나타낸 그래프이고, 여기에서 F는 전단촉매, R는 후단촉매, Ag(2.00)는 2 중량% Ag/γ―Al2O3, 및 Cu(3.37)는 3.37 중량% Cu/ZSM―5 를 의미한다.FIG. 2 is a graph showing deNOx activity according to the packing order of a double layer catalyst system of 3.37 wt% Cu / ZSM-5 and 2 wt% Ag / γ-Al 2 O 3 , where F is a shear catalyst, R stands for postcatalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 , and Cu (3.37) is 3.37 wt% Cu / ZSM-5.

도 3은 2 중량% Ag/γ―Al2O3(전단)와 3.37 중량% Cu/ZSM―5(후단) 이중 층 촉매 시스템의 패킹 비율에 따른 deNOx 활성을 나타낸 그래프이고, 여기에서 F는 전단촉매, R는 후단촉매, Ag(2.00)는 2 중량% Ag/γ―Al2O3 및 Cu(3.37)는 3.37 중 량% Cu/ZSM―5 을 의미한다.3 is a graph showing deNOx activity versus packing ratio of 2 wt% Ag / γ-Al 2 O 3 (front) and 3.37 wt% Cu / ZSM-5 (back) double bed catalyst systems, where F is the shear Catalyst, R is the post-catalyst, Ag (2.00) means 2% by weight Ag / γ-Al 2 O 3 and Cu (3.37) means 3.37% by weight Cu / ZSM-5.

도 4는 2 중량% Ag/γ―Al2O3(전단)와 4.66 중량% Cu/ZSM―5(후단) 이중 층 촉매 시스템의 패킹비율에 따른 deNOx 활성을 나타낸 그래프이고, 여기에서 F는 전단촉매, R는 후단촉매, Ag(2.00)는 2 중량% Ag/γ―Al2O3 및 Cu(4.66)는 4.66 중량% Cu/ZSM―5를 의미한다.4 is a graph showing deNOx activity according to packing ratio of 2 wt% Ag / γ-Al 2 O 3 (front) and 4.66 wt% Cu / ZSM-5 (back) double bed catalyst systems, where F is shear Catalyst, R is the post-catalyst, Ag (2.00) means 2 wt% Ag / γ-Al 2 O 3 and Cu (4.66) means 4.66 wt% Cu / ZSM-5.

도 5는 2중량% Ag/γ―Al2O3(전단)와 x 중량% Cu/ZSM―5(후단) 이중 층 촉매의 구리(Cu) 담지량에 따른 deNOx 활성을 나타낸 그래프이고, 여기에서 F는 전단촉매, R는 후단촉매, Ag(2.00)는 2 중량% Ag/γ―Al2O3 및 Cu(x)는 x 중량% Cu/ZSM―5 를 의미한다.FIG. 5 is a graph showing deNOx activity according to copper (Cu) loading of 2 wt% Ag / γ-Al 2 O 3 (shear) and x wt% Cu / ZSM-5 (stage) double layer catalysts, wherein F Is a shear catalyst, R is a post-catalyst, Ag (2.00) is 2 wt% Ag / γ-Al 2 O 3 and Cu (x) is x wt% Cu / ZSM-5.

도 6는 x 중량% Ag/γ―Al2O3(전단)와4.66 중량% Cu/ZSM―5(후단) 이중 층 촉매 시스템의 은(Ag) 담지량에 따른 deNOx 활성을 나타낸 그래프이고, 여기에서 F는 전단촉매, R는 후단촉매, Ag(x)는 x 중량% Ag/γ―Al2O3 및Cu(4.66)는 4.66 중량% Cu/ZSM를 의미한다.6 is a graph showing deNOx activity according to silver (Ag) loading of x wt% Ag / γ-Al 2 O 3 (front) and 4.66 wt% Cu / ZSM-5 (back) double layer catalyst systems F means shear catalyst, R means postcatalyst, Ag (x) means x wt% Ag / γ-Al 2 O 3 and Cu (4.66) means 4.66 wt% Cu / ZSM.

본 발명은 은(Ag)담지 알루미나(Al2O3)와 제올라이트(ZSM―5)를 포함하는 질 소산화물 제거용 이중 층 촉매 시스템에 관한 것이다.The present invention relates to a double layer catalyst system for nitrous oxide removal comprising silver (Ag) supported alumina (Al 2 O 3 ) and zeolite (ZSM-5).

경유 자동차의 특성상 배기가스 중 CO와 탄화수소의 문제는 비교적 적으나 입자상 물질(PM)과 질소산화물(NOx)은 다양한 환경문제와 질병을 야기하고 있어 유럽을 비롯하여 선진국들은 강력한 규제를 마련하고 있다. Due to the characteristics of diesel vehicles, CO and hydrocarbons in the exhaust gas are relatively small, but particulate matter (PM) and nitrogen oxides (NOx) cause various environmental problems and diseases, and developed countries such as Europe have strong regulations.

유럽은 EURO―Ⅳ 와 Ⅴ, 그리고 미국은 SUVLE 와 ZEV로 대별되는 환경규제를 채택하고 있으며 이러한 규제는 엔진의 개량만으로는 만족시킬 수 없게 되었다. 이에 엔진의 개량과 더불어 배기가스의 후처리 기술을 발전시킬 필요가 있다. Europe has adopted environmental regulations that are roughly divided into EURO-IV and V, and the United States, SUVLE and ZEV. These regulations cannot be satisfied by engine modification alone. Accordingly, it is necessary to develop an exhaust gas aftertreatment technology along with an improvement of the engine.

현재 PM을 제거하는 기술은 Johnson Matthey, Engelhard, Umicore 등에서 개발한 DPF(Diesel Particulate Filter)를 중심으로 발전되고 있다. NOx를 제거하는 기술로는, 최근에 도요타 자동차에서 개발한 DPNR(Diesel Particulate NOx Reduction)은 PM과 NOx를 동시에 저감할 수 있는 장치로서 간헐적으로 과부하 조건에서 운전이 되어야 하는 제한점과 연료 속에 포함된 황에 취약한 면을 보이고 있다. Currently, PM elimination technology is being developed based on Diesel Particulate Filter (DPF) developed by Johnson Matthey, Engelhard, Umicore. Recently, the Toyota Particulate NOx Reduction (DPNR), developed by Toyota Motor Co., is a device that can reduce PM and NOx at the same time. It is vulnerable to.

유럽에서는 실용화 측면에서 가장 부각되고 있는 요소(urea)(또는 암모니아) SCR기술이 가장 유망한 기술로 대두되고 있으나 요소 운송, 주입, 분사 장치를 자동차에 직접 설치해 주어야 하며, 주유소처럼 요소를 공급할 수 있는 인프라 구조(infrastructure)도 구축해야 하는 문제점을 가지고 있다. Urea (or ammonia) SCR technology is emerging as the most promising technology in Europe, but it is necessary to install urea transportation, injection and injection devices directly in automobiles, and supply infrastructure like gas stations. The infrastructure also has to be built.

이러한 난점을 극복하는 기술로 경유 자동차의 디젤 연료를 환원제로 사용하는 HC―SCR 기술이 주목을 받게 되었다. Cleaire의 Longview와 Lonestar는 [http://www.fleetguard.com/] 기존 차량을 용이하게 갱신(retrofit)할 수 있는 HC ―SCR 촉매 기술을 개발하였으나 낮은 활성과 연료에 대한 제한점이 있는 것으로 알려져 있다. As a technology for overcoming such difficulties, the HC-SCR technology using diesel fuel of diesel vehicles as a reducing agent has attracted attention. Cleaire's Longview and Lonestar [http://www.fleetguard.com/] developed HC-SCR catalyst technology that can easily retrofit existing vehicles, but are known to have low activity and fuel limitations. .

최근에 알려진 HC―SCR 촉매는 Ag/Al2O3이 있으며 Burch 등 [S. Satokawa, J. Shibata, K.―I. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42 (2003) 179., R. Burch, J. P. Breen, C. J. Hill, B. Krutzsch, B. Konrad, E. Jobson, L. Cider, K. Eranen, F. Klingstedt, L―E. Lindfors, Capoc6 meeting (2003)]에 의하면 Ag/Al2O3촉매는 n―옥탄(n―octane)과 같은 장쇄(long chain) 탄화수소를 환원제로 사용한 시스템에서 350 ℃ 이상의 조건에서 좋은 활성을 얻을 수 있음을 확인 하였고, Niwa [T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, M. Niwa, Appl. Catal. B, 17 (1998) 333] 는 Ag/Al2O3를 촉매로 이용하여 2차연료 주입(secondary fuel injection)을 가진 디젤(diesel) 엔진에서 NOx 제거연구를 하여 가솔린의 린번(lean burn)엔진이나 디젤 엔진에 적용할 수 있음을 확인하였다. Recently known HC-SCR catalysts include Ag / Al 2 O 3 and Burch et al. [S. Satokawa, J. Shibata, K.-I. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42 (2003) 179., R. Burch, JP Breen, CJ Hill, B. Krutzsch, B. Konrad, E. Jobson, L. Cider, K. Eranen, F. Klingstedt, L-E. Lindfors, Capoc6 meeting (2003)] shows that Ag / Al 2 O 3 catalysts can achieve good activity at temperatures above 350 ° C in systems using long chain hydrocarbons such as n-octane as reducing agents. Niwa [T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, M. Niwa, Appl. Catal. B, 17 (1998) 333] reported the removal of NOx from diesel engines with secondary fuel injection using Ag / Al 2 O 3 as a catalyst. It was confirmed that it can be applied to diesel engines.

그러나 아직도 NOx를 N2로 환원시키는 활성의 측면에서는 여전히 문제가 있다고 알려져 있다. However, there is still a known problem in terms of the activity of reducing NO x to N 2 .

이에 본 발명자들은 위와 같은 종래 Ag/Al2O3 촉매의 문제인 300 ℃ 이하에서는 NOx를 N2로 환원시키는 실 deNOx 활성을 거의 보이지 않는 것과 350 ℃ 이상에 서도 활성 측면에서 여전히 개선해야 한다는 점을 고려하여 집중 연구 노력한 결과, 종래 Ag/Al2O3 촉매만을 이용한 단일 층 촉매 시스템(single bed catalytic system)을 ZSM―5 와 Ag/Al2O3 를 이용한 이중 층 촉매 시스템(dual bed catalytic system)으로 만들면 300 ℃에서도 우수한 활성을 나타내고, 350 ℃ 이상에서도 Ag/Al2O3 촉매 만을 사용하는 경우보다 NO의 N2로의 활성을 20% 이상 증진 시킬 수 있는 사실을 알게 되어 본 발명을 완성하였다.Therefore, the present inventors consider that the actual deNOx activity of reducing NOx to N 2 is less than 300 ° C., which is a problem of the conventional Ag / Al 2 O 3 catalyst as described above, and it is still considered to be improved in terms of activity even at 350 ° C. or higher. As a result of intensive research, the conventional single bed catalytic system using only Ag / Al 2 O 3 catalyst was converted into dual bed catalytic system using ZSM-5 and Ag / Al 2 O 3 . When it was made, it showed excellent activity even at 300 ℃, and even at 350 ℃ or higher than when using only the Ag / Al 2 O 3 catalyst was found that the activity can be improved by more than 20% N 2 completed the present invention.

따라서, 본 발명은 우수한 NOx 제거를 위한 Ag/Al2O3 와 ZSM―5제올라이트 촉매로 이루어진 이중 층 촉매 시스템을 개발하는데 그 목적이 있다.Accordingly, an object of the present invention is to develop a double layer catalyst system composed of Ag / Al 2 O 3 and ZSM-5 zeolite catalyst for excellent NOx removal.

본 발명은 은(Ag)담지 알루미나(Al2O3)와 제올라이트(ZSM―5)를 포함하는 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템을 그 특징으로 한다.The present invention is characterized by a dual layer catalyst system for removing nitrogen oxides, comprising silver (Ag) supported alumina (Al 2 O 3 ) and zeolite (ZSM-5).

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 질소산화물 제거용 이중 층 촉매 시스템(dual bed catalytic system)에 관한 것으로서, 더욱 상세하게는 은(Ag)담지 알루미나(Al2O3)와 제올라이트(ZSM―5)를 포함하므로 기존의 은(Ag)담지 알루미나(Al2O3) 촉매 또는 제올라이트(ZSM―5)를 단독으로 사용할 경우보다 질소산화물 제거효율이 월등히 향상된 결과를 얻을 수 있으며, 특히 은(Ag)담지 알루미나(Al2O3) 촉매 만으로는 질소산화물 제거 활성이 거의 나타나지 않는 저온 (300 ℃) 의 조건에서도 높은 질소산화물 제거 활성을 나타내는 이중 층 촉매 시스템에 관한 것이다.The present invention relates to a dual bed catalytic system for removing nitrogen oxides, and more particularly, includes silver (Ag) -supported alumina (Al 2 O 3 ) and zeolite (ZSM-5). When the (Ag) supported alumina (Al 2 O 3 ) catalyst or zeolite (ZSM-5) alone is used, the nitrogen oxide removal efficiency is significantly improved, and in particular, silver (Ag) supported alumina (Al 2 O 3 ) is obtained. The present invention relates to a double-layer catalyst system exhibiting high NOx removal activity even at low temperature (300 DEG C) conditions in which NOx removal activity is hardly exhibited by the catalyst alone.

본 발명의 이중 층 촉매 시스템은 상기 은(Ag) 담지 알루미나(Al2O3)[이하, Ag/Al2O3]와 제올라이트(ZSM―5)가 적층된 구조를 이룬다.The double layer catalyst system of the present invention has a structure in which the silver (Ag) supported alumina (Al 2 O 3 ) [hereinafter, Ag / Al 2 O 3 ] and zeolite (ZSM-5) are stacked.

본 발명의 적층형 이중 층 촉매 시스템은 이를 구성하는 촉매가 패킹(packing)되는 순서, 패킹비, Ag/Al2O3 촉매의 Ag 함량, ZSM―5 제올라이트 촉매의 담지되는 금속이온의 종류 및 이의 함량에 따라 다른 활성결과를 나타내며 이로써 각각의 적용처에 적합하게 촉매를 배합할 수 있는 진보적인 기술구성을 가진 발명이다.In the stacked double layer catalyst system of the present invention, the order in which the catalyst constituting the packing is packed, the packing ratio, the Ag content of the Ag / Al 2 O 3 catalyst, the type of the metal ions supported by the ZSM-5 zeolite catalyst, and the content thereof According to the present invention, it is an invention having an advanced technical configuration that can combine the catalyst to suit each application.

상기 Ag/Al2O3 촉매 중 Ag 함량에 따라 질소산화물 제거활성[deNOx 활성 (NOx를 N2로 환원)]이 달라지는데, 이때 Ag 함량은 1 ∼ 5 중량%, 바람직하기로는 2 ∼ 3 중량% 범위인 것이 좋다. 이때, Ag 함량이 1 중량% 미만이면 질소산화물 제거활성이 약하고, 5 중량%를 초과하면 질소산화물 제거활성의 향상 정도가 뚜렷하게 증가하지 않는 경향을 보이는데, 촉매의 적용처에 따라 Ag 함량을 달리 조성할 수 있다. Ag/Al2O3 촉매 중 알루미나(Al2O3)의 함량은 95 ∼ 99 중량% 범위로 조절됨은 자명하다.Nitrogen oxide removal activity [deNOx activity (reducing NOx to N 2 )] varies depending on the Ag content in the Ag / Al 2 O 3 catalyst, wherein the Ag content is 1 to 5% by weight, preferably 2 to 3% by weight. It is good to be a range. At this time, when the Ag content is less than 1% by weight, the nitrogen oxide removal activity is weak, and when the Ag content is more than 5% by weight, the degree of improvement of the nitrogen oxide removal activity is not significantly increased. Can be. It is apparent that the content of alumina (Al 2 O 3 ) in the Ag / Al 2 O 3 catalyst is controlled in the range of 95 to 99% by weight.

본 발명의 적층형 이중 층 촉매 시스템에서 ZSM―5제올라이트 촉매는 담지되는 금속의 종류에 따라 그 활성이 달라지며, 또한 담지된 금속의 함량에 따라 활성 이 달라진다.In the stacked double layer catalyst system of the present invention, the ZSM-5 zeolite catalyst has different activities depending on the type of the supported metal, and also depends on the content of the supported metal.

본 발명의 적층형 이중 층 촉매 시스템에서 ZSM―5제올라이트 촉매는 구리(Cu)를 담지하는 것이 좋으며, 이때 구리(Cu)의 담지량은 바람직하기로는 1.91 ∼ 5 중량%, 가장 바람직하기로는 약 4.66 중량%인 경우 질소산화물 제거활성[deNOx 활성 (NOx를 N2로 환원)]이 좋다. 이때 구리(Cu)의 담지량이 5 중량%를 초과하면 질소산화물 제거활성의 향상에 실익이 크지 않은 경향을 보인다. 상기 제올라이트(ZSM―5)의 함량은 구리(Cu) 함량에 따라 95 ∼ 98.09 중량%를 포함되는 것은 자명하다.In the stacked double layer catalyst system of the present invention, the ZSM-5 zeolite catalyst is preferably supported on copper (Cu), wherein the amount of copper (Cu) is preferably 1.91 to 5% by weight, and most preferably about 4.66% by weight. In the case of nitrous oxide removal activity [deNOx activity (reduce NOx to N 2 )] is good. At this time, when the supported amount of copper (Cu) is more than 5% by weight, there is a tendency that the profit is not large in improving the nitrogen oxide removal activity. It is apparent that the content of the zeolite (ZSM-5) is 95 to 98.09 wt% according to the copper (Cu) content.

본 발명의 질소산화물 제거용 이중 층 촉매 시스템은 상기 은(Ag) 담지 알루미나(Al2O3)와 제올라이트(ZSM―5)의 비율에 따라 질소산화물 제거활성이 달라지는데, 상기 은(Ag) 담지 알루미나(Al2O3)와 제올라이트(ZSM―5)가 4 : 1 ∼ 1 : 4 중량비 범위, 바람직하기로는 2 : 1 중량비로 포함될 경우 좋다.In the double layer catalyst system for removing nitrogen oxides of the present invention, the nitrogen oxide removal activity varies depending on the ratio of the silver (Ag) -supported alumina (Al 2 O 3 ) and the zeolite (ZSM-5), and the silver (Ag) -supported alumina (Al 2 O 3 ) and zeolite (ZSM-5) may be included in a 4: 1 to 1: 4 weight ratio range, preferably in a 2: 1 weight ratio.

본 발명의 질소산화물 제거용 이중 층 촉매 시스템은 은(Ag) 담지 알루미나(Al2O3)와 제올라이트(ZSM―5)의 패킹 순서에 따라 질소산화물 제거활성이 달라지는데, 상기 은(Ag) 담지 알루미나(Al2O3)가 촉매기 전단부에 위치하고, 상기 제올라이트(ZSM―5)는 촉매기 후단부에 위치하는 것이 바람직하다.In the double layer catalyst system for removing nitrogen oxides of the present invention, the nitrogen oxide removal activity varies depending on the packing order of silver (Ag) -supported alumina (Al 2 O 3 ) and zeolite (ZSM-5), and the silver (Ag) -supported alumina It is preferable that (Al 2 O 3 ) be located at the front end of the catalyst, and the zeolite (ZSM-5) is located at the rear end of the catalyst.

또한, 본 발명의 질소산화물 제거용 이중 층 촉매 시스템은 탄화수소 화합물을 환원제로 포함하는 경우 더욱 바람직하게, 상기 탄화수소 화합물로는 탄소수 6 ∼ 16 범위의 장쇄(long chain) 탄화수소 화합물을 사용하는 것이 좋으며, 구체적으로 탄소수 10 ∼ 16 범위의 알칸을 사용할 수 있다. 이들은 혼합상태로 사용될 수 있으며, 흔히 디젤유가 환원제로 사용될 수 있다.In addition, the double layer catalyst system for removing nitrogen oxides of the present invention more preferably includes a hydrocarbon compound as a reducing agent. As the hydrocarbon compound, a long chain hydrocarbon compound having 6 to 16 carbon atoms may be used. Specifically, alkanes having 10 to 16 carbon atoms can be used. These can be used in mixed form, and often diesel oil can be used as reducing agent.

이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.

실시예 1Example 1

Ag/γ―Al2O3 와 Cu/ZSM―5 촉매로 이루어진 이중 층 촉매 시스템을 만들기 위해 다음 표 1에서 보는 것처럼 γ―Al2O3 (BET = 204 m2/g)에 AgNO3를 전구체로 이용하였으며 Ag의 함량을 1, 2, 3, 5 중량%로 함침하여 제조하였으며, Cu/ZSM―5는 습식 이온 교환(wet ion exchange) 방법으로 제조하였고, Cu의 함량은 이온교환 회수를 조절하여 Cu 담지량을 조절하여 3 종의 촉매를 제조하였다. 이들의 물리화학적 특성은 표 1에 나타내었다. As it is shown in the following Table 1 to create a dual-bed catalyst system consisting of a Ag / γ-Al 2 O 3 and Cu / ZSM-5 catalyst γ-Al 2 O 3 AgNO 3 was used as a precursor (BET = 204 m 2 / g) and was prepared by impregnating the Ag content at 1, 2, 3, 5 wt%, and Cu / ZSM-5 was wet ion exchange. It was prepared by the method, and the Cu content was adjusted by the ion exchange recovery to adjust the amount of Cu loading three catalysts were prepared. Their physical and chemical properties are shown in Table 1.

우선 전단에 2 중량% Ag/γ―Al2O3 과 후단에 4.66 중량% Cu/ZSM―5 촉매를 2 대 1로 장착하여 이중 층 촉매 시스템을 제조하였다. First, a double layer catalyst system was prepared by mounting 2 wt% Ag / γ-Al 2 O 3 at the front and 4.66 wt% Cu / ZSM-5 catalyst at the rear.

실험예Experimental Example 1 One

상기 실시예 1에서 제조된 이중 층 촉매 시스템의 질소산화물 제거효율을 측 정하기 위하여, 550 ℃ 에서 He balance, 10 % O2 가 있는 상태에서 1시간 동안 전처리하고, 1000 ppm NO, 10% O2, 5% H2O, 환원제로 디젤유의 모조물(stimulant)인 n―dodecane(n―C12H26)을 540 ppm 주입하여, 공간속도 30,000 h 1 로 200 ∼ 500 ℃ 에서 deNOx 반응을 실시하였으며, 질소산화물 제거 비율을 질소로 제거비율로 환산하여 나타내었으며, 반응온도에 따른 결과를 다음 도 1에 나타내었다. In order to measure the nitrogen oxide removal efficiency of the double-layer catalyst system prepared in Example 1, pretreatment for 1 hour in the presence of He balance, 10% O 2 at 550 ℃, 1000 ppm NO, 10% O 2 , 540 ppm of n-dodecane (n-C 12 H 26 ), a stimulant of diesel oil, was injected with 5% H 2 O and a reducing agent, and deNOx reaction was carried out at a space velocity of 30,000 h - 1 at 200-500 ° C. , The nitrogen oxide removal rate was expressed in terms of nitrogen removal rate, the results are shown in Figure 1 according to the reaction temperature.

반응 후 생성되는 N2 를 정량적으로 분석하기 위해 on―line GC (HP 6890 series)에 packed column (molecular sieve 5A) 을 설치하여 분석하였다.In order to quantitatively analyze N 2 generated after the reaction, packed column (molecular sieve 5A) was installed in on-line GC (HP 6890 series) and analyzed.

실시예 2Example 2

본 실시예는 Ag/γ―Al2O3와 Cu/ZSM―5로 이루어진 이중 층 촉매 시스템의 패킹(packing) 순서에 따른 질소산화물 제거효율에 미치는 영향을 평가하기 위해 수행되었다.This example was carried out to evaluate the effect on the NOx removal efficiency according to the packing order of the dual layer catalyst system consisting of Ag / γ-Al 2 O 3 and Cu / ZSM-5.

첫째, 전단에 3.37 중량% Cu/ZSM―5와 후단에 2 중량% Ag/γ―Al2O3를 1 대 1로 장착하고, 둘째, 전단에2 중량% Ag/γ―Al2O3 와 후단에 3.37 중량% Cu/ZSM―5를 1 대 1로 장착하고, 마지막으로 상기 3.37 중량% Cu/ZSM―5촉매와 2 중량% Ag/γ―Al2O3촉매를 물리적으로 혼합하여 질소산화물 제거활성을 측정하였다. 활성측정 결과는 도 2에 나타내었으며, 측정방법은 상기 실험예 1과 동일하게 수행하였 다. First, 3.37% by weight Cu / ZSM-5 and 2% by weight Ag / γ-Al 2 O 3 in the front end were mounted one to one, and second, 2% by weight Ag / γ-Al 2 O 3 and 3.37 wt% Cu / ZSM-5 in a one-to-one at the rear end, and finally, 3.37 wt% Cu / ZSM-5 catalyst and 2 wt% Ag / γ-Al 2 O 3 catalyst were physically mixed to form a nitrogen oxide. Removal activity was measured. The activity measurement results are shown in FIG. 2, and the measurement method was performed in the same manner as in Experimental Example 1.

실시예Example 3 3

본 실시예는 Ag/γ―Al2O3과 Cu/ZSM―5로 이루어진 이중 층 촉매 시스템의 패킹(packing) 비율에 따른 질소산화물 제거효율에 미치는 영향을 평가하기 위해 수행되었다. This example was carried out to evaluate the effect on the nitrogen oxide removal efficiency according to the packing ratio of the dual layer catalyst system consisting of Ag / γ-Al 2 O 3 and Cu / ZSM-5.

즉, 전단에 2 중량% Ag/γ―Al2O3 와 후단에 3.37 중량% 또는4.66 중량%의 Cu/ZSM―5 를 1 대 2, 1 대 1, 그리고 2 대 1로 장착하여 적층형 이중 층 촉매 실험을 수행하였다. 실험 결과는 도 3과 도 4에 나타내었으며 측정방법은 상기 실험예 1과 동일하게 수행하였다. That is, a stacked double layer with 2% by weight Ag / γ-Al 2 O 3 at the front end and 3.37% or 4.66% by weight Cu / ZSM-5 at the back end 1 to 2, 1 to 1, and 2 to 1 Catalyst experiments were performed. Experimental results are shown in Figures 3 and 4 and the measurement method was performed in the same manner as in Experiment 1.

실시예 4Example 4

본 실시예는 Ag/γ―Al2O3과 ZSM―5로 이루어진 이중 층 촉매 시스템에서 최적 구리(Cu)을 확인하기 위해 구리(Cu)를 이온 교환하지 않은 HZSM―5 와 1.91 중량%, 3.37 중량%, 4.66 중량%의 구리(Cu)를 포함하는 Cu/ZSM―5 촉매 네 가지를 상기 이중 층 촉매 시스템에 적용 시켰다. This example shows 1.91 wt%, 3.37 wt% of HZSM-5 without ion exchange of copper (Cu) to identify optimum copper (Cu) in a dual layer catalyst system consisting of Ag / γ-Al 2 O 3 and ZSM-5 Four Cu / ZSM-5 catalysts containing, by weight, 4.66 wt.% Copper (Cu), were applied to the double bed catalyst system.

전단에 2 중량% Ag/γ―Al2O3를 고정하고, 후단에 상기 구리(Cu) 함량에 따른4 종의 ZSM―5 촉매를 2:1 비로 패킹시킨 후 질소산화물 제거활성을 측정하였다.2 wt% Ag / γ-Al 2 O 3 was fixed at the front end, and after packing four ZSM-5 catalysts according to the copper (Cu) content in a 2: 1 ratio, nitrogen oxide removal activity was measured.

측정 결과는 다음 도 5에 나타내었으며, 측정방법은 상기 실험예 1과 동일하 게 수행하였다.The measurement results are shown in FIG. 5, and the measurement method was performed in the same manner as in Experimental Example 1.

실시예 5Example 5

본 실시예는 Ag/γ―Al2O3 과 Cu/ZSM―5로 이루어진 이중 층 촉매 시스템에서의 최적 은(Ag) 함량을 확인하기 위해 은(Ag) 1, 2, 3, 그리고 5 중량%를 담지한 Ag/γ―Al2O3 촉매 4종을 상기 이중 층 촉매 시스템에 적용시켰다. Example is Ag / γ-Al 2 O 3 Ag / γ-Al 2 O 3 catalyst with silver (Ag) 1, 2, 3, and 5% by weight to determine the optimal silver (Ag) content in a dual-layer catalyst system consisting of and Cu / ZSM-5 Four were applied to the double bed catalyst system.

상기 4 종의 Ag/γ―Al2O3 촉매를 전단에 고정시키고, 후단에는 Cu/ZSM―5 촉매를 고정시키며, 상기 Ag/γ―Al2O3과 Cu/ZSM―5의 함량을 2:1 중량비로 패킹(packing)시킨 후 활성을 측정하였다. 측정 결과는 다음 도 6에 나타내었으며, 측정방법은 상기 실험예 1과 동일하게 수행하였다.The four Ag / γ-Al 2 O 3 catalysts are fixed at the front end, and the Cu / ZSM-5 catalyst is fixed at the rear end, and the content of the Ag / γ-Al 2 O 3 and Cu / ZSM-5 is 2 Activity was measured after packing at a weight ratio of 1: 1. The measurement results are shown in FIG. 6, and the measurement method was performed in the same manner as in Experimental Example 1.

비교예 1 ∼ 5Comparative Examples 1 to 5

Ag/γ―Al2O3 과 Cu/ZSM―5로 이루어진 이중 층 촉매 시스템에 포함된 각각의 촉매중 2 중량% Ag/γ―Al2O3 과 3.37 중량% Cu/ZSM―5 촉매를 기준물질로 고려하여 상기 실시예 1과 동일한 방법으로 합성하고, 이들의 질소산화물의 제거효율을 확인하기 위해 상기 실험예 1 과 동일한 방법으로 활성을 측정하였으며, 그 결과는 도 1 ∼ 6에 도시하였다. Relative to the Ag / γ-Al 2 O 3 and Cu / ZSM-5 double layer catalyst system, each of the catalyst of 2 wt% Ag / γ-Al 2 O 3 and 3.37 wt% Cu / ZSM-5 catalyst contained in consisting of In consideration of the material was synthesized in the same manner as in Example 1, and the activity was measured in the same manner as in Experimental Example 1 to confirm the removal efficiency of these nitrogen oxides, the results are shown in Figs.

또한 Ag/γ―Al2O3 과 Cu/ZSM―5로 이루어진 이중 층 촉매 시스템의 우수성 을 확인하기 위해 3종류의 다른 이중 층 촉매 시스템을 합성하였다.In addition, three different double layer catalyst systems were synthesized to confirm the superiority of the double layer catalyst system consisting of Ag / γ-Al 2 O 3 and Cu / ZSM-5.

첫째, Ag/γ―Al2O3 과 Cu/Y 촉매를 2 대 1로 장착한 경우, 둘째, Ag/γ―Al2O3 과 Fe/ZSM―5 촉매를 2 대 1로 장착한 경우, 마지막으로 Ag/γ―Al2O3과 H/ZSM―5 촉매를 2 대 1로 장착하여 반응기를 구성하였다. First, when the Ag / γ-Al 2 O 3 and Cu / Y catalyst 2 to 1, the second, the Ag / γ-Al 2 O 3 and Fe / ZSM-5 catalyst 2 to 1, Finally, Ag / γ-Al 2 O 3 and H / ZSM-5 catalysts were equipped 2 to 1 to construct a reactor.

Cu/Y는 습식 이온교환(wet ion exchange) 방법으로 제조하였고, Fe/ZSM―5는 FeCl3를 수분이 없는 조건에서 고상 이온교환(solid state ion exchange)법으로 제조하였다. 이들의 물리화학적 특성은 다음 표 1에 나타내었다.Cu / Y was prepared by wet ion exchange, and Fe / ZSM-5 was prepared by solid state ion exchange of FeCl 3 in the absence of moisture. Their physical and chemical properties are shown in Table 1 below.

상기 세 형태의 이중 층 촉매 시스템에서 질소산화물 제거 효율을 도 1에 나타내었으며 측정방법은 상기 실험예 1과 동일하게 실시하였다. Nitrogen oxide removal efficiency in the three types of two-layer catalyst system is shown in FIG.

Figure 112006057634735-pat00001
Figure 112006057634735-pat00001

본 발명에서 이중 층 촉매 시스템을 이용한 질소산화물을 질소로 제거하는 방법의 유용성을 확인하기 위하여 실시예와 비교예의 결과를 비교하였다.In the present invention, in order to confirm the usefulness of the method for removing nitrogen oxide with nitrogen using a double bed catalyst system, the results of Examples and Comparative Examples were compared.

즉, 도 1에서 보는 것 같이 Cu/ZSM―5, Fe/ZSM―5, H/ZSM―5 그리고 Cu/Y 촉매를 2 중량% Ag/γ―Al2O3 후단에 장착하는 이중 층 촉매 시스템을 구성하여 실 DeNOx 활성을 평가해 보았다. 2 중량% Ag/γ―Al2O3 과 4.66 중량% Cu/ZSM―5의 조합에 비하여 다른 이중 층 촉매 시스템은 모두 낮은 활성을 보이고 있음을 알 수 있다.That is, as shown in FIG. 1, a dual-layer catalyst system equipped with Cu / ZSM-5, Fe / ZSM-5, H / ZSM-5, and Cu / Y catalyst at the rear end of 2 wt% Ag / γ-Al 2 O 3 The actual DeNOx activity was evaluated by constructing. It can be seen that all of the other double bed catalyst systems exhibited low activity compared to the combination of 2 wt% Ag / γ-Al 2 O 3 and 4.66 wt% Cu / ZSM-5.

H/ZSM―5 촉매의 경우 300 ℃에서 단일층 촉매인 2 중량% Ag/γ―Al2O3 에 비해 개선된 촉매 활성을 확인할 수 있었다. CuY 촉매는 350 ℃ 이하에서는 2중량% Ag/γ―Al2O3의 단일층 촉매보다 활성 면에서 우수하지만 350 ℃ 이상에서는 상당히 활성이 저하되는 것으로 관찰하였다. In the case of the H / ZSM-5 catalyst, improved catalytic activity was observed at 300 ° C. compared to 2 wt% Ag / γ-Al 2 O 3 , which is a single layer catalyst. It was observed that CuY catalysts were better in activity than single layer catalysts of 2 % by weight Ag / γ-Al 2 O 3 at 350 ° C or lower, but significantly lowered at 350 ° C or higher.

도 2에서 보는 것과 같이 패킹(packing) 순서에 따른 질소산화물 제거효율에 미치는 영향을 평가한 결과, 패킹순서에 상관없이 300 ℃에서는 Ag/γ―Al2O3 촉매에서 보이지 않는 활성이 나타났으며, 전단에 Ag/γ―Al2O3 후단에 Cu/ZSM―5촉매를 장착한 경우는 다른 경우에 비해 350 ℃이상에서도 상당한 활성개선을 확인하였다. Fe/ZSM―5 촉매를 이용한 이중 층 촉매 시스템의 경우, 2 중량% Ag/γ―Al2O3 만 사용한 결과보다 모든 측정온도에서 우수한 실 DeNOx 활성을 보인다.As shown in FIG. 2, as a result of evaluating the effect on the nitrogen oxide removal efficiency according to the packing order, irrespective of the packing order, the activity was not observed in the Ag / γ-Al 2 O 3 catalyst at 300 ° C. In the case where the Cu / ZSM-5 catalyst was attached to the front end of the Ag / γ-Al 2 O 3 at the front end, significant activity improvement was observed even at 350 ° C or higher than in the other cases. The dual layer catalyst system using Fe / ZSM-5 catalyst shows better real DeNOx activity at all measurement temperatures than the result of using only 2 wt% Ag / γ-Al 2 O 3 .

도 3과 4에서 패킹비율에 따라 deNOx 활성이 많은 차이를 보임을 확인할 수 있었고, 특히 전단에 Ag/γ―Al2O3 와 후단에 Cu/ZSM―5 를 2 대 1로 넣고 실험하였을 때 300 ℃ 이상에서 모두 deNOx 활성이 증가함을 확인할 수 있었다. Cu 함량이 다른 경우에도 2대 1인 경우가 가장 우수한 활성을 보인다.In Figures 3 and 4 it can be seen that the deNOx activity showed a lot of difference according to the packing ratio, especially when the Ag / γ-Al 2 O 3 in the front and Cu / ZSM-5 in the back 2 to 1 experiments 300 It was confirmed that the deNOx activity increased at all above ℃. Even when the Cu content is different, 2 to 1 shows the best activity.

도 5에서 보는 바와 같이 Cu 함량에 따라 저온에서 활성이 다르게 측정되었으며 4.66 중량% Cu/ZSM―5를 가진 경우가 300℃에서 DeNOx 활성이 가장 우수하였으며, 350 ℃ 이상에서는 Cu 함량의 영향이 적은 것으로 관찰되었다. Cu를 이온 교환하지 않은 ZSM―5 촉매의 경우 300 ℃에서 단일 층 촉매인 2 중량% Ag/γ―Al2O3 에 비해 상당히 개선된 촉매 활성을 확인하였다. As shown in FIG. 5, the activity was measured differently at low temperature according to the Cu content, and the highest DeNOx activity was observed at 300 ° C. with 4.66 wt% Cu / ZSM-5, and the influence of Cu content was less than 350 ° C. Was observed. ZSM-5 catalyst without Cu ion exchange was found to have significantly improved catalytic activity at 300 ° C. compared to 2 wt% Ag / γ-Al 2 O 3 , a single layer catalyst.

도 6 에서 보듯이 300 ℃에서는 1 중량% Ag/γ―Al2O3 촉매를 전단에 두는 경우를 제외하고는 거의 비슷한 활성 경향을 나타내었으며 400 ℃ 이상에서 5 중량% Ag/γ―Al2O3 촉매는 활성이 상당히 저하됨을 확인하였다. 이로써 은(Ag)의 최적의 담지량이 2 ∼ 3 중량% 정도일 경우 보다 바람직한 효과를 나타냄을 확인할 수 있다. As shown in Figure 6 at 300 1% by weight Ag / γ-Al 2 O 3 Except when the catalyst is placed in the shear, the activity tended to be similar, and 5 wt% Ag / γ-Al 2 O 3 above 400 ° C. The catalyst was found to have significantly reduced activity. As a result, it can be confirmed that when the optimum loading amount of silver (Ag) is about 2 to 3% by weight, a more preferable effect is exhibited.

상술한 바와 같이 본 발명의 Ag/Al2O3 과 ZSM―5 를 포함한 이중 층 촉매 시스템에서 디젤류의 모조물로 도데칸(n―dodecane)을 환원제로 사용하는 경우 NOx를 N2로 환원 시키는 실 DeNOx 활성이 단일 층 Ag/Al2O3 촉매에 비해 우수함을 확인하였으며, 특히 종래 Ag/Al2O3 만 사용한 경우 거의 활성이 확인 되지 않는 300℃에서도 40% 이상의 활성 증진을 보일 뿐만 아니라 350℃ 이상에서도 단일 층 Ag/Al2O3 촉매에 비해 상당한 활성증가를 확인할 수 있었다. As described above, NOx is reduced to N 2 when dodecane (n-dodecane) is used as a reducing agent in diesel double model catalyst system including Ag / Al 2 O 3 and ZSM-5 of the present invention. It was confirmed that the actual DeNOx activity was superior to the single layer Ag / Al 2 O 3 catalyst. Especially, when only Ag / Al 2 O 3 was used in the past, the activity was increased by more than 40% even at 300 ° C. where the activity was hardly confirmed. Significant increase in activity was found even above ℃ single layer Ag / Al 2 O 3 catalyst.

이에 Ag/Al2O3 와 ZSM―5 를 포함한 이중 층 촉매 시스템은 300℃ 이상에서 여러 종류의 고정원 및 이동원에서 배출되는 질소산화물을 저감시키는 산업용 촉매로서 보다 폭넓게 사용될 수 있다. Therefore, the dual-layer catalyst system including Ag / Al 2 O 3 and ZSM-5 can be used more widely as an industrial catalyst for reducing nitrogen oxides emitted from various fixed sources and mobile sources at 300 ° C or higher.

Claims (8)

은(Ag) 담지 알루미나(Al2O3)와 구리(Cu) 담지 제올라이트(ZSM―5)를 포함하는 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템.A double layer catalyst system for removing nitrogen oxides comprising silver (Ag) supported alumina (Al 2 O 3 ) and copper (Cu) supported zeolite (ZSM-5). 제 1 항에 있어서, 상기 은 담지 알루미나와 구리 담지 제올라이트가 적층된 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템.The double layer catalyst system for removing nitrogen oxides of claim 1, wherein the silver-supported alumina and the copper-supported zeolite are laminated. 제 1 항에 있어서, 상기 은 담지 알루미나는 은 1 ∼ 5 중량%와 알루미나 95 ∼ 99 중량%를 포함하는 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템.The dual layer catalyst system for removing nitrogen oxides of claim 1, wherein the silver-supported alumina comprises 1 to 5 wt% of silver and 95 to 99 wt% of alumina. 삭제delete 제 1 항에 있어서, 상기 구리 담지 제올라이트는 구리 1.91 ∼ 5 중량%와 제올라이트 95 ∼ 98.09 중량%를 포함하는 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템.The dual layer catalyst system of claim 1, wherein the copper-supported zeolite comprises 1.91-5 wt% copper and 95-98.09 wt% zeolite. 제 1 항에 있어서, 상기 은 담지 알루미나와 구리 담지 제올라이트는 4 : 1 ∼ 1 : 4 부피비 범위로 포함되는 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템.The dual layer catalyst system for removing nitrogen oxides of claim 1, wherein the silver-supported alumina and the copper-supported zeolite are included in a volume ratio of 4: 1 to 1: 4. 제 1 항에 있어서, 상기 은 담지 알루미나가 촉매기 전단부에 위치하고, 상기 구리 담지 제올라이트는 촉매기 후단부에 위치하는 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템.The dual layer catalyst system of claim 1, wherein the silver-supported alumina is located at the front end of the catalyst and the copper-supported zeolite is located at the rear end of the catalyst. 제 1 항 내지 제 3 항 및 제 5 항 내지 제 7항 중 어느 하나의 항에 있어서, 탄소수 10 ∼ 16 범위의 알칸인 탄화수소 화합물을 환원제로 포함하는 것을 특징으로 하는 질소산화물 제거용 이중 층 촉매 시스템.The double layer catalyst system for removing nitrogen oxides according to any one of claims 1 to 3 and 5 to 7, comprising a hydrocarbon compound which is an alkan having a carbon number of 10 to 16 as a reducing agent. .
KR1020060076274A 2006-08-11 2006-08-11 Dual bed catalytic system for the reduction of NOx KR100892483B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020060076274A KR100892483B1 (en) 2006-08-11 2006-08-11 Dual bed catalytic system for the reduction of NOx
US11/891,011 US20080038160A1 (en) 2006-08-11 2007-08-08 Dual bed catalytic system for the reduction of NOx
DE102007037347A DE102007037347A1 (en) 2006-08-11 2007-08-08 Double bed catalytic system for NOx reduction
JP2007210357A JP2008043947A (en) 2006-08-11 2007-08-10 Dual bed catalytic system for nitrogen oxide removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060076274A KR100892483B1 (en) 2006-08-11 2006-08-11 Dual bed catalytic system for the reduction of NOx

Publications (2)

Publication Number Publication Date
KR20080014486A KR20080014486A (en) 2008-02-14
KR100892483B1 true KR100892483B1 (en) 2009-04-10

Family

ID=39047090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060076274A KR100892483B1 (en) 2006-08-11 2006-08-11 Dual bed catalytic system for the reduction of NOx

Country Status (4)

Country Link
US (1) US20080038160A1 (en)
JP (1) JP2008043947A (en)
KR (1) KR100892483B1 (en)
DE (1) DE102007037347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969104B1 (en) * 2008-09-03 2010-07-09 현대자동차주식회사 Diesel oxidation catalyst and Method for manufacturing the same
US8945495B2 (en) * 2008-10-21 2015-02-03 GM Global Technology Operations LLC Method and architecture for reducing NOX and particulate matter emissions in exhaust gas from hydrocarbon fuel source with a fuel lean combustion mixture
EP2301650B1 (en) * 2009-09-24 2016-11-02 Haldor Topsøe A/S Process and catalyst system for scr of nox
KR101110637B1 (en) * 2009-12-07 2012-02-17 제네랄 모터즈 코포레이션 Dual-layered catalyst system for removing nitrogen oxide
GB2485530A (en) * 2010-11-11 2012-05-23 Johnson Matthey Plc Catalyst system
KR101646108B1 (en) * 2012-12-10 2016-08-08 현대자동차 주식회사 Supported catalyst for removing nitrogen oxides, method of preparing the same, and removing method of nitrogen oxides using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103649A (en) * 1995-10-09 1997-04-22 Shin A C Ii:Kk Method and apparatus for purifying automobile exhaust gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022871B2 (en) * 1999-12-27 2006-04-04 Huntsman International Llc Process for the synthesis of polycarbamates
US7803338B2 (en) * 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103649A (en) * 1995-10-09 1997-04-22 Shin A C Ii:Kk Method and apparatus for purifying automobile exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Also Published As

Publication number Publication date
DE102007037347A1 (en) 2008-03-13
US20080038160A1 (en) 2008-02-14
KR20080014486A (en) 2008-02-14
JP2008043947A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
EP1309775B1 (en) Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines
KR100892483B1 (en) Dual bed catalytic system for the reduction of NOx
JP5875586B2 (en) Catalyst for removing nitrogen oxides from diesel engine exhaust
KR102211490B1 (en) Selective catalytic reduction catalyst systems
WO2008067038A1 (en) Multi-bed selective catalytic reduction system and method for reducing nitrogen oxides emissions
JP2013081878A (en) Oxidation catalyst for internal combustion engine exhaust gas treatment
CN101802357A (en) On board diagnostic system
EP2102462B1 (en) Reduction of nitrogen oxides using multiple split streams
EP2292316A1 (en) Apparatus for after-treatment of exhaust from diesel engine
Narula et al. Materials issues related to catalysts for treatment of diesel exhaust
Braun et al. Potential technical approaches for improving low‐temperature NOx conversion of exhaust aftertreatment systems
González‐Velasco et al. NOx Storage and Reduction Coupled with Selective Catalytic Reduction for NOx Removal in Light‐Duty Vehicles
Maunula Intensification of catalytic aftertreatments systems for mobile applications
KR101416356B1 (en) Method of reducing nitrogen oxide using amine compound as reductant
Yashnik Catalytic diesel exhaust systems: modern problems and technological solutions for modernization of the oxidation catalyst
KR101157127B1 (en) Selective catalytic reduction catalyst using LPG as a reductant for removing NOx
Vignesh et al. Selective catalytic reduction for NOx reduction
Maunula et al. NO x reduction by urea in the presence of NO₂ on metal substrated SCR catalysts for heavy-duty vehicles
KR101177684B1 (en) Selective catalytic reduction catalyst using LPG as a reductant for removing NOx
Schmieg et al. Catalysts for lean-burn engine exhaust aftertreatment using hydrocarbon selective catalytic reduction
Sandhu et al. Catalytic NOx Aftertreatment—Towards Ultra-Low NOx Mobility
KR101110637B1 (en) Dual-layered catalyst system for removing nitrogen oxide
Nova et al. Nitrates and fast SCR reaction in NOx removal from diesel engine exhausts
Kim et al. Hydrogen Effect on the DeNO X Efficiency Enhancement of Fresh and Aged Ag/Al 2 O 3 HC-SCR in a Diesel Engine Exhaust
Karamitros et al. Exhaust gas aftertreatment technologies and model based optimization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20180917

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 11