KR100883332B1 - Chemical pre-treatment of substrate for growing high quality thin films, and formation of thermoelectric thin films using the same - Google Patents

Chemical pre-treatment of substrate for growing high quality thin films, and formation of thermoelectric thin films using the same Download PDF

Info

Publication number
KR100883332B1
KR100883332B1 KR1020070050002A KR20070050002A KR100883332B1 KR 100883332 B1 KR100883332 B1 KR 100883332B1 KR 1020070050002 A KR1020070050002 A KR 1020070050002A KR 20070050002 A KR20070050002 A KR 20070050002A KR 100883332 B1 KR100883332 B1 KR 100883332B1
Authority
KR
South Korea
Prior art keywords
thin film
substrate
thermoelectric material
potassium hydroxide
thermoelectric
Prior art date
Application number
KR1020070050002A
Other languages
Korean (ko)
Other versions
KR20080103126A (en
Inventor
김진상
윤석진
정대용
김현재
김정훈
권성도
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020070050002A priority Critical patent/KR100883332B1/en
Publication of KR20080103126A publication Critical patent/KR20080103126A/en
Application granted granted Critical
Publication of KR100883332B1 publication Critical patent/KR100883332B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2011Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline insulating material, e.g. sapphire
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemically Coating (AREA)
  • Weting (AREA)

Abstract

본 발명은 고품질 박막 증착을 위한 화학적 기판처리 방법 및 이를 이용한 박막형 열전소재의 형성 방법에 관한 것으로, 기판을 수산화칼륨(KOH) 용액에 함침시키고 표면 처리하는 본 발명의 기판 전처리 방법에 따르면, 절연성 기판 또는 전극용 금속막이 증착된 기판상에 물성이 우수한 고품위 박막을 성장시킬 수 있어 박막형 열전모듈을 비롯한, 금속막 위에 양질의 반도체 박막 형성을 필요로 하는 전자 소자 부품 등을 제조하는 데 유리하게 이용될 수 있다. The present invention relates to a chemical substrate processing method for high quality thin film deposition and a method of forming a thin film type thermoelectric material using the same, and according to the substrate pretreatment method of the present invention in which a substrate is impregnated with a potassium hydroxide (KOH) solution and surface treated, an insulating substrate Alternatively, a high quality thin film having excellent physical properties can be grown on a substrate on which an electrode metal film is deposited, which can be advantageously used to manufacture electronic device components including a thin film thermoelectric module and a high quality semiconductor thin film formed on a metal film. Can be.

수산화칼륨, 열전소재, 열전반도체, 금속 전극, 기판처리, 박막 Potassium Hydroxide, Thermoelectric Material, Thermoelectric Semiconductor, Metal Electrode, Substrate Treatment, Thin Film

Description

고품질 박막 증착을 위한 화학적 기판처리 방법 및 이를 이용한 박막형 열전소재의 제조 방법{CHEMICAL PRE-TREATMENT OF SUBSTRATE FOR GROWING HIGH QUALITY THIN FILMS, AND FORMATION OF THERMOELECTRIC THIN FILMS USING THE SAME} TECHNICAL PRE-TREATMENT OF SUBSTRATE FOR GROWING HIGH QUALITY THIN FILMS, AND FORMATION OF THERMOELECTRIC THIN FILMS USING THE SAME}

도 1은 실시예 1에 따라 수산화칼륨 수용액으로 표면 처리한 사파이어 기판상에 형성된 열전소재 박막 표면의 AFM(atomic force microscope) 사진.1 is an atomic force microscope (AFM) photograph of the surface of a thermoelectric material thin film formed on a sapphire substrate surface-treated with an aqueous solution of potassium hydroxide according to Example 1. FIG.

도 2는 비교예 1에 따라 수산화칼륨 수용액으로 표면 미처리된 사파이어 기판상에 형성된 열전소재 박막 표면의 AFM 사진.FIG. 2 is an AFM photograph of a surface of a thermoelectric material thin film formed on a sapphire substrate surface-treated with an aqueous potassium hydroxide solution according to Comparative Example 1. FIG.

도 3은 실시예 2에 따라 수산화칼륨 수용액으로 표면 처리한 사파이어 기판상에 형성된 열전소재 박막 표면의 광학현미경 사진.Figure 3 is an optical micrograph of the surface of the thermoelectric material thin film formed on the sapphire substrate surface-treated with aqueous potassium hydroxide solution according to Example 2.

도 4는 비교예 2에 따라 수산화칼륨 수용액으로 표면 미처리된 사파이어 기판상에 형성된 열전소재 박막 표면의 광학현미경 사진.Figure 4 is an optical micrograph of the surface of the thermoelectric material thin film formed on the sapphire substrate surface untreated with aqueous potassium hydroxide solution according to Comparative Example 2.

본 발명은 고품질의 박막 증착을 위한 기판의 화학적 전처리 방법 및 이를 이용한 박막형 열전소재의 제조 방법에 관한 것으로, 구체적으로는 절연성 기판 내지는 금속막이 증착된 기판 위에 열전소재를 비롯한 이종 박막의 형성시 기판의 화 학적 전처리를 통하여 양질의 박막을 증착시킬 수 있는 방법에 관한 것이다.The present invention relates to a method of chemical pretreatment of a substrate for high quality thin film deposition and a method of manufacturing a thin film type thermoelectric material using the same, and specifically, to forming a heterogeneous thin film including a thermoelectric material on an insulating substrate or a substrate on which a metal film is deposited. The present invention relates to a method for depositing a high quality thin film through chemical pretreatment.

비스무스-텔루라이드(Bi-Te)계 화합물 반도체 박막은 박막형 열전소자 제작에 널리 이용되고 있는데, 고품질 박막을 증착하기 위해서는 증착될 박막과 격자의 배열 및 상수 등이 유사하고 표면 결함이 없는 기판이 절대적으로 필요하다.Bismuth- telluride (Bi-Te) compound semiconductor thin film is widely used in the manufacture of thin-film thermoelectric element. In order to deposit high-quality thin film, a substrate without surface defects is similar to the thin film to be deposited and the arrangement and constant of lattice As needed.

박막형 열전소재는 초격자 등의 나노 구조체 형성 등을 통하여 덩어리 형태의 열전소재에 비해 그 성능을 획기적으로 높일 수 있을 뿐만 아니라 열전 소자 제작시 냉각밀도가 높아 국부적인 냉각을 필요로 하는 곳이나 첨단 전자소자의 온도 제어 등에 널리 이용될 수 있다.Thin-film thermoelectric materials can dramatically increase their performance compared to lump-type thermoelectric materials by forming nanostructures such as superlattices, and have high cooling density when manufacturing thermoelectric devices. It can be widely used for temperature control of the device.

특히, 상온 근방에서 우수한 열전 특성을 보이는 물질로는 Bi2Te3 등과 같은 비스무스 텔루라이드계 합금을 예로 들 수 있는데, 현재 상용화되고 있는 대부분의 열전모듈은 Bi2Te3 합금에 안티몬(Sb)을 첨가하여 p-형 열전반도체를 제조하고 셀레늄(Se)을 첨가하여 n-형 열전반도체를 제조한 후 p-n 접합 어레이 형태로 만들어 제조하고 있다. 구체적으로는, 미국특허 제 5,318,743 호에 개시된 바와 같이, 분말야금 등의 방법을 이용하여 덩어리 형태의 p-형 및 n-형 소재를 제조한 후 이들을 잘게 썰어 p-n 접합 어레이를 형성하여 열전모듈을 제작하고 있다.Particularly, examples of materials exhibiting excellent thermoelectric properties at room temperature include bismuth telluride-based alloys such as Bi 2 Te 3. Most of the thermoelectric modules currently commercialized include antimony (Sb) in Bi 2 Te 3 alloys. P-type thermoconductors are prepared by adding and selenium (Se) is added to prepare n-type thermoconductors, and then pn junction arrays are manufactured. Specifically, as disclosed in U.S. Patent No. 5,318,743, p-type and n-type materials in the form of agglomerates are manufactured by using powder metallurgy, etc., and then, finely sliced to form a pn junction array to fabricate a thermoelectric module. Doing.

박막형 열전소재로부터 소자를 제작하기 위해서는, 절연성 기판 위에 전극용 금속 박막을 먼저 증착하고 이를 패터닝한 후 형성된 금속전극 위에 열전소재 박막을 증착하는 공정을 수행하여야 한다. 그러나, 금속물질과 열전소재 물질간의 격자 부정합, 화학적 비친화성 등으로 인해 성장되는 박막의 전기적 특성 및 열전 특 성 등이 크게 저하될 뿐만 아니라 전극용 금속층과의 접착력 및 박막의 표면형상 등이 크게 떨어지는 문제가 발생한다.In order to fabricate a device from a thin film thermoelectric material, a process of depositing a metal thin film for an electrode on an insulating substrate and patterning the first thin film is followed by depositing a thermoelectric thin film on the formed metal electrode. However, due to lattice mismatch between the metal material and the thermoelectric material, chemical incompatibility, etc., the electrical and thermoelectric properties of the grown thin film are greatly reduced, and the adhesion to the metal layer for the electrode and the surface shape of the thin film are greatly reduced. A problem arises.

상기 문제를 해결하기 위해, 예를 들면 전극용 금속 박막 위에 열증착 등의 방법으로 열전소재 박막을 증착시킬 경우, 열전소재 박막 증착 후 열처리 공정을 수행하여 그 특성을 개선시키고 있다. In order to solve the above problem, for example, when depositing a thermoelectric material thin film on the metal thin film for electrodes by a method such as thermal evaporation, the heat treatment process after the thermoelectric material thin film is deposited to improve its characteristics.

그러나, 박막 증착 후 열처리하는 상기 방법은 공정상 번거로울 뿐만 아니라 장시간 소요되고 수율이 낮은 등의 문제점이 있다. However, the method of heat treatment after thin film deposition has a problem such as not only cumbersome in process but also takes a long time and yield is low.

따라서, 본 발명의 목적은 기판 위에 이종 박막 증착 전 기판의 간단한 화학적 전처리를 통하여 양질의 박막을 증착시킬 수 있는 방법 및 이를 이용한 열전소재 박막 및 소자 형성 방법을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a method for depositing a high quality thin film through a simple chemical pretreatment of a substrate prior to deposition of a heterogeneous thin film on a substrate, and a method of forming a thermoelectric material thin film and a device using the same.

상기 목적을 달성하기 위하여 본 발명에서는, 기판을 수산화칼륨 용액에 함침시키는 것을 포함하는, 기판의 표면처리 방법을 제공한다. In order to achieve the above object, the present invention provides a method for surface treatment of a substrate comprising impregnating the substrate with a potassium hydroxide solution.

본 발명에서는 또한, 상기 기판의 표면처리 방법을 이용한 박막형 열전소재의 제조 방법을 제공한다. The present invention also provides a method of manufacturing a thin film thermoelectric material using the surface treatment method of the substrate.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 기판 전처리 방법은, 기판상에 이종 박막을 증착시키기 전, 기판을 수산화칼륨 용액에 함침시키고 그 표면을 화학 처리함으로써 이후 기판상에 형성되는 이종 박막층의 결정 성장을 용이하게 한다.The substrate pretreatment method of the present invention facilitates crystal growth of a heterogeneous thin film layer subsequently formed on the substrate by impregnating the substrate with a potassium hydroxide solution and then chemically treating the surface before depositing the heterogeneous thin film on the substrate.

본 발명에 따르면, 사파이어, 실리콘, 갈륨비소, 석영, 유리 등과 같은 절연성 기판 내지는 절연성 기판상에 전극용 금속막이 증착된 기판 위에 균일한 표면 및 우수한 열전성능 등을 갖는 양질의 이종 박막을 증착시킬 수 있다.According to the present invention, a high-quality heterogeneous thin film having a uniform surface and excellent thermoelectric performance can be deposited on an insulating substrate such as sapphire, silicon, gallium arsenide, quartz, glass, or the like on a substrate on which an electrode metal film is deposited. have.

본 발명에 따른 기판의 화학적 전처리 공정은, 기판을 수산화칼륨 용액에 함침시키는 간단한 공정에 의해 수행할 수 있다.The chemical pretreatment process of the substrate according to the invention can be carried out by a simple process of impregnating the substrate with a potassium hydroxide solution.

본 발명에서 기판의 화학적 처리에 사용되는 수산화칼륨(KOH) 용액의 농도는 0.01 내지 20 중량% 범위인 것이 바람직한데, 이는 수산화칼륨 용액의 농도가 상기 범위를 초과하면 사용하는 기판과의 급격한 반응을 유발할 수 있으며, 상기 범위 미만이면 기판을 수산화칼륨 용액에 1시간 이상 장시간 동안 함침시켜야 하기 때문이다. 또한, 수산화칼륨 용액 제조시 사용되는 용매로는 특별한 제한이 없고 수산화칼륨이 용해될 수 있는 용매라면 어느 것도 사용 가능한데, 예를 들면 증류수 등의 물, 에탄올, 메탄올 등의 알코올을 사용할 수 있다. In the present invention, the concentration of the potassium hydroxide (KOH) solution used for the chemical treatment of the substrate is preferably in the range of 0.01 to 20% by weight, which is a sudden reaction with the substrate to be used if the concentration of the potassium hydroxide solution exceeds the above range. This is because the substrate must be immersed in the potassium hydroxide solution for a long time more than 1 hour. The solvent used in the preparation of the potassium hydroxide solution is not particularly limited, and any solvent may be used as long as it can dissolve potassium hydroxide. For example, water such as distilled water, alcohol such as ethanol and methanol may be used.

본 발명에서 사용 가능한 기판으로는 사파이어, 실리콘, 갈륨비소, 석영, 유리 등과 같은 절연성 기판, 또는 소자 제작을 위해 절연성 기판상에 전극용 금속 박막을 증착시킨 형태의 기판 등을 사용할 수 있다. 여기서, 절연성 기판의 재료로는 상기 재료에 제한되지 않고 이와 유사한 성질을 갖는 기타 재료로 대체할 수도 있다.As a substrate usable in the present invention, an insulating substrate such as sapphire, silicon, gallium arsenide, quartz, glass, or the like, or a substrate in which a metal thin film for electrode is deposited on the insulating substrate for device fabrication may be used. Here, the material of the insulating substrate is not limited to the above material, but may be replaced with other materials having similar properties.

본 발명에 따른 기판의 화학적 전처리 공정은, 박막 증착 전 통상적으로 수행되는 아세톤, 메탄올, 증류수 등을 이용한 기판 표면 세척 과정, 및 황산, 인산 등을 이용한 기판 표면 식각 과정 등을 거친 후 수행하는 것이 바람직하다. Chemical pretreatment of the substrate according to the present invention is preferably performed after the substrate surface cleaning process using acetone, methanol, distilled water and the like, and the substrate surface etching process using sulfuric acid, phosphoric acid, etc., which are usually performed before thin film deposition. Do.

본 발명의 기판 전처리 방법에 따라 화학적으로 표면 처리된 기판 상에 이종 물질을 성장시키면 표면 형상 및 두께가 균일하고 우수한 열전특성을 갖는 고품질 박막을 증착시킬 수 있어, 예를 들면 열전 모듈의 제작을 위해 절연성 기판 내지는 절연성 기판상에 전극용 금속 박막을 증착하고 그 위에 열전소재 박막을 증착시키고자 할 경우 유리하게 이용할 수 있다.By growing heterogeneous materials on a chemically surface-treated substrate according to the substrate pretreatment method of the present invention, it is possible to deposit a high quality thin film having a uniform surface shape and thickness and excellent thermoelectric properties, for example, to manufacture a thermoelectric module. In order to deposit a thin metal film for an electrode on an insulating substrate or an insulating substrate and to deposit a thermoelectric material thin film thereon, it can be advantageously used.

본 발명에 따른 박막형 열전소재의 제조 방법은, a) 기판을 수산화칼륨 용액에 함침시켜 표면 처리하는 단계, 및 b) 단계 a)에서 표면 처리된 기판 상에 Bi2Te3, Sb2Te3 등과 같은 열전소재 박막을 증착시키는 단계를 포함한다.Method for producing a thin-film thermoelectric material according to the present invention, a) a step of surface treatment by impregnating a substrate with potassium hydroxide solution, and b) Bi 2 Te 3 , Sb 2 Te 3 and the like on the surface treated substrate in step a) And depositing a thin film of the same thermoelectric material.

본 발명에 있어서, 열전소재 박막은 사파이어, 실리콘, 갈륨비소, 석영, 유리 등과 같은 절연성 기판 위에 증착시키거나, 또는 소자의 제작을 위해, 절연성 기판상에 전극용 금속 박막을 증착시킨 후 증착된 금속 박막 위에 증착시킬 수도 있다.In the present invention, the thermoelectric material thin film is deposited on an insulating substrate such as sapphire, silicon, gallium arsenide, quartz, glass, or the like, or for fabricating a device, a metal deposited after depositing a metal thin film for electrodes on the insulating substrate. It may be deposited on a thin film.

본 발명에서 사용 가능한 열전소재로는 하기 화학식 1 또는 화학식 2로 표시되는 Bi-Te계 화합물, Sb-Te계 화합물, Bi-Sb-Te계 화합물, Bi-Te-Se계 화합물 등을 예로 들 수 있다:Examples of the thermoelectric material usable in the present invention include Bi-Te-based compounds, Sb-Te-based compounds, Bi-Sb-Te-based compounds, Bi-Te-Se-based compounds, and the like represented by the following general formula (1) or (2). have:

(Bi1 - xSbx)2Te3 (Bi 1 - x Sb x ) 2 Te 3

상기 식에서, 0≤x≤1이다.Where 0 ≦ x ≦ 1.

Bi2(Te1 - ySey)3 Bi 2 (Te 1 - y Se y ) 3

상기 식에서, 0≤y≤1이다.In the above formula, 0 ≦ y ≦ 1.

본 발명에 있어서, 전극용 금속 박막, 열전소재 박막 등과 같은 박막 증착 공정은 열증착, 분자선 에피텍시(molecular beam epitaxy), 유기금속 화학기상 증착법(MOCVD), 스퍼터링(sputtering) 등과 같은 박막 증착법을 이용하여 수행하는 것이 바람직하다.In the present invention, a thin film deposition process such as a metal thin film for electrodes, a thermoelectric material thin film and the like is a thin film deposition method such as thermal deposition, molecular beam epitaxy, organometallic chemical vapor deposition (MOCVD), sputtering, etc. It is preferable to carry out by using.

또한, 상기 전극용 금속 박막의 재질로는 알루미늄(Al), 니켈(Ni), 티타늄(Ti), 크롬(Cr) 등을 사용할 수 있으며, 그 두께 또한 다양하게 선택되어질 수 있다. 다만, 전극용 금속 박막의 최상층이 알루미늄일 경우 이후 수행되는 수산화칼륨 용액을 이용한 화학적 표면 처리과정에서 다소 빨리 식각되는 문제가 있으므로 전극용 금속층의 최상층으로는 알루미늄을 제외한 티타늄(Ti), 니켈(Ni), 크롬(Cr) 등을 사용하는 것이 바람직하다. In addition, as the material of the metal thin film for electrodes, aluminum (Al), nickel (Ni), titanium (Ti), chromium (Cr), or the like may be used, and the thickness thereof may also be variously selected. However, when the uppermost layer of the electrode metal thin film is aluminum, there is a problem that the etching is performed a little faster during the chemical surface treatment process using the potassium hydroxide solution. Therefore, the uppermost layer of the electrode metal layer is titanium (Ti) and nickel (Ni) except for aluminum. ), Chromium (Cr) and the like are preferably used.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1:Example 1:

사파이어 기판을 아세톤, 메탄올 및 증류수를 이용하여 기판 표면에 잔류하는 유기물을 제거한 후 기판을 3:1(부피비)의 황산(H2SO4)과 인산(H3PO4)의 혼합용액 에 넣고 160 ℃에서 10분 동안 가열하여 사파이어 기판 표면을 식각하였다. 상기 과정을 통하여 준비된 사파이어 기판을 0.1%(중량기준) 농도의 수산화칼륨 수용액에 20분간 함침시켜 화학 처리하였다. 얻어진 사파이어 기판 상에 열전소재인 비스무스-텔루라이드(Bi2Te3) 박막을 금속유기 화학 증착법을 이용하여 석영관으로 제작된 반응관에서 상압 하에서 10초간 성장시켰다. 이 때, 비스무스 및 텔루륨의 전구체 물질로는 각각 트리메틸비스무스{(CH3)3Bi)} 및 다이이소프로필텔루라이드{(C3H5)2Te}를 사용하고, 기판의 온도는 300 ℃로 하였다. The sapphire substrate was removed using acetone, methanol, and distilled water to remove organic substances remaining on the surface of the substrate. The substrate was then placed in a mixed solution of sulfuric acid (H 2 SO 4 ) and phosphoric acid (H 3 PO 4 ) in a 3: 1 (volume ratio) 160. The sapphire substrate surface was etched by heating at < RTI ID = 0.0 > The sapphire substrate prepared through the above process was chemically treated by impregnating the aqueous solution of potassium hydroxide at a concentration of 0.1% (by weight) for 20 minutes. On the obtained sapphire substrate, a bismuth-telluride (Bi 2 Te 3 ) thin film, which is a thermoelectric material, was grown under normal pressure in a reaction tube made of a quartz tube using a metal organic chemical vapor deposition method for 10 seconds. At this time, trimethylbismuth {(CH 3 ) 3 Bi)} and diisopropyl telluride {(C 3 H 5 ) 2 Te} are used as precursor materials of bismuth and tellurium, respectively, and the temperature of the substrate is 300 ° C. It was set as.

이어서, 성장된 박막의 표면을 ATM(atomic force microscope)을 이용하여 관찰하고, 5×5 ㎛ 영역의 주사(scan)를 통해 얻어진 박막의 표면 형상을 도 1에 나타내었다.Next, the surface of the grown thin film was observed using an ATM (atomic force microscope), and the surface shape of the thin film obtained through a scan of a 5 × 5 μm region is shown in FIG. 1.

비교예 1:Comparative Example 1:

사파이어 기판의 표면 세척 및 식각 공정 수행 후, 수산화칼륨 수용액으로 상기 기판을 화학 처리하지 않는 것을 제외하고는, 실시예 1과 동일한 공정을 수행하여 사파이어 기판상에 Bi2Te3 박막을 성장시켰다. After performing the surface cleaning and etching process of the sapphire substrate, the same process as in Example 1 was performed except that the substrate was not chemically treated with an aqueous potassium hydroxide solution, thereby performing Bi 2 Te 3 on the sapphire substrate. The thin film was grown.

이어서, 성장된 박막의 표면을 ATM을 이용하여 관찰하고, 5×5 ㎛ 영역의 주사를 통해 얻어진 박막의 표면 형상을 도 2에 나타내었다.Subsequently, the surface of the grown thin film was observed using ATM, and the surface shape of the thin film obtained through the scanning of the 5 × 5 μm region is shown in FIG. 2.

수산화칼륨 용액을 이용한 기판의 화학적 전처리 공정을 수행하지 않고 통상적인 기판 표면 세척 과정 및 식각 과정만을 수행한 후 열전소재 박막을 증착시킬 경우(비교예 1), 도 2에 나타난 바와 같이, 3차원적인 삼각형 형태의 박막이 불균 일한 분포를 나타내는 반면, 수산화칼륨 수용액으로 표면 처리한 기판 위에 성장된 박막의 경우(실시예 1), 도 1에 나타난 바와 같이, 초기 둥근 형태의 박막이 높은 밀도로 분포하고 있음을 알 수 있다. 상기 결과로부터, 기판의 표면 처리에 사용된 수산화칼륨 용액의 칼륨 성분이 기판 위에 존재하여 이후 형성되는 박막의 핵생성이 매우 용이하게 일어남을 알 수 있다.When the thermoelectric material thin film is deposited without performing a chemical pretreatment process using a potassium hydroxide solution and performing only a conventional substrate surface cleaning process and an etching process (Comparative Example 1), as shown in FIG. In the case of a thin film grown on a substrate treated with an aqueous potassium hydroxide solution (Example 1), while the triangular thin film exhibits an uneven distribution, as shown in FIG. It can be seen that. From the above results, it can be seen that the potassium component of the potassium hydroxide solution used for the surface treatment of the substrate is present on the substrate, whereby nucleation of the subsequently formed thin film occurs very easily.

실시예 2:Example 2:

사파이어 기판 상에 비스무스-텔루라이드 박막을 금속유기 화학 증착법을 이용하여 10초간 성장시키는 대신 3 ㎛ 두께로 성장시키는 것을 제외하고는, 실시예 1과 동일한 공정을 수행하여 사파이어 기판 상에 비스무스-텔루라이드 박막을 증착시켰다.The same process as in Example 1 was carried out on the sapphire substrate, except that the bismuth-telluride thin film was grown to a thickness of 3 μm instead of 10 seconds using a metal organic chemical vapor deposition method on the sapphire substrate. A thin film was deposited.

이어서, 성장된 박막의 표면을 광학현미경을 이용하여 관찰하고, 100×150 ㎛ 영역의 박막 표면 형상을 도 3에 나타내었다.Subsequently, the surface of the grown thin film was observed using an optical microscope, and the thin film surface shape in the region of 100 × 150 μm was shown in FIG. 3.

비교예 2:Comparative Example 2:

사파이어 기판 상에 비스무스-텔루라이드 박막을 금속유기 화학 증착법을 이용하여 10초간 성장시키는 대신 3 ㎛ 두께로 성장시키는 것을 제외하고는, 비교예 1과 동일한 공정을 수행하여 사파이어 기판 상에 비스무스-텔루라이드 박막을 증착시켰다.The same process as in Comparative Example 1 was carried out on the sapphire substrate, except that the bismuth-telluride thin film was grown on the sapphire substrate using a metal organic chemical vapor deposition method for 3 seconds instead of 10 seconds. A thin film was deposited.

이어서, 성장된 박막의 표면을 광학현미경을 이용하여 관찰하고, 100×150 ㎛ 영역의 박막 표면 형상을 도 4에 나타내었다. Subsequently, the surface of the grown thin film was observed using an optical microscope, and the thin film surface shape in the region of 100 × 150 μm was shown in FIG. 4.

상기 결과에 따르면, 기판을 수산화칼륨 수용액으로 화학 처리하지 않고 박 막을 성장시킬 경우(비교예 2), 도 4에 나타난 바와 같이, 박막의 두께가 균일하지 않고 박막 성장이 국부적으로 일어나는 반면, 본 발명의 기판 전처리 방법에 따라 기판을 수산화칼륨 수용액으로 화학 처리한 후 박막을 성장시킬 경우(실시예 2), 도 3에 나타난 바와 같이, 전체적으로 균일한 두께의 박막을 얻을 수 있다. According to the above results, when the thin film is grown without chemically treating the substrate with aqueous potassium hydroxide solution (Comparative Example 2), as shown in FIG. 4, the thickness of the thin film is not uniform and the thin film growth occurs locally, but the present invention When the thin film is grown after chemically treating the substrate with an aqueous solution of potassium hydroxide according to the substrate pretreatment method (Example 2), as shown in FIG. 3, a thin film having an overall uniform thickness can be obtained.

박막 증착 전 기판을 수산화칼륨 용액에 함침시키고 화학적으로 표면 처리하는 본 발명의 기판 전처리 방법에 따르면, 기판 상에 이종 박막 성장시 결정성장이 용이하게 일어나도록 하여 양질의 박막을 증착시킬 수 있어 열전소재 및 기타 광전자 박막 제조시 널리 활용할 수 있을 뿐만 아니라 특히, 소자 제작을 위해 전극용 금속물질 위에 열전소재 등을 비롯한 박막을 성장시켜야 하는 경우 양질의 박막을 형성시킬 수 있어 향후 많은 활용이 기대된다.According to the substrate pretreatment method of the present invention in which the substrate is impregnated with potassium hydroxide solution and chemically surface-treated before thin film deposition, a high-quality thin film can be deposited by allowing crystal growth to occur easily upon heterogeneous thin film growth on the substrate. And not only can be widely used in the manufacture of other optoelectronic thin film, especially in the case of growing a thin film including a thermoelectric material on the electrode metal material for the device fabrication can form a high quality thin film is expected to be utilized in the future.

Claims (16)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete a) 기판을 수산화칼륨 용액에 함침시켜 표면 처리하는 단계, 및 a) surface treatment by impregnation of the substrate with potassium hydroxide solution, and b) 단계 a)에서 표면 처리된 기판 위에 열전소재 박막을 증착시키는 단계b) depositing a thermoelectric thin film on the surface treated substrate in step a) 를 포함하는, 박막형 열전소재의 제조 방법.A method of manufacturing a thin film thermoelectric material comprising a. 제8항에 있어서, 기판이 절연성 기판인 것을 특징으로 하는, 박막형 열전소재의 제조 방법. The method of manufacturing a thin film type thermoelectric material according to claim 8, wherein the substrate is an insulating substrate. 제8항에 있어서, 기판이 절연성 기판상에 전극용 금속 박막을 증착시킨 형태의 기판인 것을 특징으로 하는, 박막형 열전소재의 제조 방법. The method of manufacturing a thin film type thermoelectric material according to claim 8, wherein the substrate is a substrate in which a metal thin film for electrodes is deposited on an insulating substrate. 제9항 또는 제10항에 있어서, 절연성 기판이 사파이어 기판, 실리콘 기판, 갈륨비소 기판, 석영 기판 및 유리 기판으로 이루어진 군 중에서 선택되는 것을 특징으로 하는, 박막형 열전소재의 제조 방법.The method of manufacturing a thin film thermoelectric material according to claim 9 or 10, wherein the insulating substrate is selected from the group consisting of sapphire substrate, silicon substrate, gallium arsenide substrate, quartz substrate and glass substrate. 제10항에 있어서, 전극용 금속 박막의 최상층의 재질이 니켈(Ni), 티타 늄(Ti) 및 크롬(Cr)으로 이루어진 군 중에서 선택된 것임을 특징으로 하는, 박막형 열전소재의 제조 방법.The method of claim 10, wherein the material of the uppermost layer of the metal thin film for electrodes is selected from the group consisting of nickel (Ni), titanium (Ti), and chromium (Cr). 제8항에 있어서, 열전소재가 하기 화학식 1 또는 화학식 2로 표시되는 화합물인 것을 특징으로 하는, 박막형 열전소재의 제조 방법:The method according to claim 8, wherein the thermoelectric material is a compound represented by the following Chemical Formula 1 or Chemical Formula 2: 화학식 1Formula 1 (Bi1 - xSbx)2Te3 (Bi 1 - x Sb x ) 2 Te 3 상기 식에서, 0≤x≤1이다.Where 0 ≦ x ≦ 1. 화학식 2Formula 2 Bi2(Te1 - ySey)3 Bi 2 (Te 1 - y Se y ) 3 상기 식에서, 0≤y≤1이다.In the above formula, 0 ≦ y ≦ 1. 제8항에 있어서, 수산화칼륨 용액의 농도가 0.01 내지 20 중량%인 것을 특징으로 하는, 박막형 열전소재의 제조 방법.The method of claim 8, wherein the concentration of the potassium hydroxide solution is 0.01 to 20% by weight. 제8항에 있어서, 수산화칼륨 용액의 용매가 물 및 알코올 중에서 선택된 것임을 특징으로 하는, 박막형 열전소재의 제조 방법.The method of manufacturing a thin film thermoelectric material according to claim 8, wherein the solvent of the potassium hydroxide solution is selected from water and alcohol. 제8항에 있어서, 박막 증착 공정을 분자선 에피텍시(molecular beam epitaxy), 유기금속 화학기상 증착법(MOCVD) 및 스퍼터링(sputtering) 중에서 선택된 증착 방법에 의해 수행하는 것을 특징으로 하는, 박막형 열전소재의 제조 방법. The thin film thermoelectric material of claim 8, wherein the thin film deposition process is performed by a deposition method selected from among molecular beam epitaxy, organometallic chemical vapor deposition (MOCVD), and sputtering. Manufacturing method.
KR1020070050002A 2007-05-23 2007-05-23 Chemical pre-treatment of substrate for growing high quality thin films, and formation of thermoelectric thin films using the same KR100883332B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070050002A KR100883332B1 (en) 2007-05-23 2007-05-23 Chemical pre-treatment of substrate for growing high quality thin films, and formation of thermoelectric thin films using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070050002A KR100883332B1 (en) 2007-05-23 2007-05-23 Chemical pre-treatment of substrate for growing high quality thin films, and formation of thermoelectric thin films using the same

Publications (2)

Publication Number Publication Date
KR20080103126A KR20080103126A (en) 2008-11-27
KR100883332B1 true KR100883332B1 (en) 2009-02-11

Family

ID=40288573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050002A KR100883332B1 (en) 2007-05-23 2007-05-23 Chemical pre-treatment of substrate for growing high quality thin films, and formation of thermoelectric thin films using the same

Country Status (1)

Country Link
KR (1) KR100883332B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678514B1 (en) 2015-08-31 2016-12-06 전북대학교산학협력단 Cellulose thin film electrode comprising silver nanodendrites and fabrication method for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068957B1 (en) * 2010-01-22 2011-09-29 한국기계연구원 Thermoelectric material cleaning device and thermoelectric material cleaning method using the same
PL2506600T3 (en) * 2011-04-01 2016-12-30 Power supply for a hearing aid or hearing assistance system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057663A (en) * 1999-12-23 2001-07-05 윤종용 manufacturing method of a thin film transistor array panel for a liquid crystal display
KR20020030823A (en) * 1999-09-15 2002-04-25 추후제출 A surface treatment process used in growing a carbon film
KR20060119807A (en) * 2005-05-17 2006-11-24 스미토모덴키고교가부시키가이샤 Nitride based compound semiconductor, cleaning method and manufacturing method of the same, and substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020030823A (en) * 1999-09-15 2002-04-25 추후제출 A surface treatment process used in growing a carbon film
KR20010057663A (en) * 1999-12-23 2001-07-05 윤종용 manufacturing method of a thin film transistor array panel for a liquid crystal display
KR20060119807A (en) * 2005-05-17 2006-11-24 스미토모덴키고교가부시키가이샤 Nitride based compound semiconductor, cleaning method and manufacturing method of the same, and substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678514B1 (en) 2015-08-31 2016-12-06 전북대학교산학협력단 Cellulose thin film electrode comprising silver nanodendrites and fabrication method for the same

Also Published As

Publication number Publication date
KR20080103126A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
KR101500944B1 (en) Method for growing 2d layer of chacogenide compound, method for preparing cmos type structure, layer of chacogenide compound, electronic device including layer of chacogenide compound and cmos type structure
US8900915B2 (en) Epitaxial structures and methods of forming the same
TW200913018A (en) Nitride semi-conductor component layer structure on a group iv substrate surface
US20080023336A1 (en) Technique for doping compound layers used in solar cell fabrication
KR101465211B1 (en) Preparing method of doped metal-chalcogenide thin film
JP2022105014A (en) System and method for growing iiia group nitride
US20200152477A1 (en) Doped metal-chalcogenide thin film and method of manufacturing the same
Wen et al. Epitaxial CdTe thin films on mica by vapor transport deposition for flexible solar cells
Le et al. Epitaxial growth of bandgap tunable ZnSnN2 films on (0001) Al2O3 substrates by using a ZnO buffer
FR2548219A1 (en) METHOD FOR FORMING A LAYER OF MATERIAL WITH MULTIPLE CONSTITUENTS
He et al. Structure and optical properties of InN and InAlN films grown by rf magnetron sputtering
KR100883332B1 (en) Chemical pre-treatment of substrate for growing high quality thin films, and formation of thermoelectric thin films using the same
KR101304286B1 (en) A method for producing polycrystalline layers
JP2010530474A (en) Method for producing I-III-VI2 compound thin film by a single metalorganic chemical vapor deposition process
KR101610623B1 (en) Fabrication and method of deposition p-type Tin oxide thin film and Method of fabricating transistor
US10727050B1 (en) Wafer-scale catalytic deposition of black phosphorus
TW201251086A (en) A method of forming a germanium layer on a silicon substrate and a photovoltaic device including a germanium layer
US20070269965A1 (en) Indium Nitride Layer production
KR20150035298A (en) Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom
US20140213044A1 (en) Method for producing periodic crystalline silicon nanostructures
KR102301846B1 (en) Method of mamufacturing transition metal dichalcogenide thin film and method of mamufacturing electronic device using the same
JP2017045974A (en) Production method for germanium layer, germanium layer, substrate with germanium layer, germanium nanodot, substrate with germanium nanowire, laminate, thin film transistor and semiconductor element
US8647394B2 (en) Method of fabricating CIS or CIGS thin film
US20120196131A1 (en) Assembly for fabricating a structure having a crystalline film, method of making the assembly, crystalline film structure produced by the assembly and crystalline films
Spalatu et al. ZnSe films prepared by the close-spaced sublimation and their influence on ZnSe/CdTe solar cell performance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130205

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee