KR100882701B1 - 연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를채용한 연료전지 스택 - Google Patents

연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를채용한 연료전지 스택 Download PDF

Info

Publication number
KR100882701B1
KR100882701B1 KR1020070059974A KR20070059974A KR100882701B1 KR 100882701 B1 KR100882701 B1 KR 100882701B1 KR 1020070059974 A KR1020070059974 A KR 1020070059974A KR 20070059974 A KR20070059974 A KR 20070059974A KR 100882701 B1 KR100882701 B1 KR 100882701B1
Authority
KR
South Korea
Prior art keywords
flow path
separator
fuel cell
fluid
fuel
Prior art date
Application number
KR1020070059974A
Other languages
English (en)
Other versions
KR20080111695A (ko
Inventor
이재욱
이근용
박찬희
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020070059974A priority Critical patent/KR100882701B1/ko
Priority to US12/103,819 priority patent/US20080318114A1/en
Publication of KR20080111695A publication Critical patent/KR20080111695A/ko
Application granted granted Critical
Publication of KR100882701B1 publication Critical patent/KR100882701B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 단일 플레이트로 프레스 가공되며 양면 유로를 이용하는 연료전지용 세퍼레이터 및 그 제조방법과, 이 세퍼레이터를 이용하는 연료전지 스택에 관한 것이다.
본 발명의 연료전지용 세퍼레이터는 단일 플레이트로 이루어지며, 전술한 단일 플레이트가 구불구불한 형상의 음각부에 의한 제1 유로가 설치되는 일면; 제1 유로의 일단에 연결되며 유체 유입을 위한 제1 유입공; 제1 유로의 타단에 연결되며 유체 유출을 위한 제1 유출공; 전술한 구불구불한 형상의 또 다른 음각부에 의한 제2 유로가 설치되며 전술한 일면에 배향하여 위치하는 타면; 제2 유로의 일단에 연결되며 유체 유입을 위한 제2 유입공; 및 제2 유로의 타단에 연결되며 유체 유출을 위한 제2 유출공을 구비하는 것을 특징으로 한다.
연료전지, 세퍼레이터, 바이폴라플레이트, 금속, 프레스 성형

Description

연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를 채용한 연료전지 스택{Separator for fuel cell and its manufacturing method and fuel cell stack using the separator}
도 1a는 기존의 프레스 성형 방법을 이용하여 제작할 수 있는 애노드 금속 세퍼레이터의 평면도.
도 1b는 기존의 프레스 성형 방법을 이용하여 제작할 수 있는 캐소드 금속 세퍼레이터의 평면도.
도 1c는 도 1a의 애노드 금속 세퍼레이터의 저면도.
도 2a 및 도 2b는 도 1a 및 도 1b의 금속 세퍼레이터들을 이용한 연료전지 스택의 경우를 설명하기 위한 개략도.
도 3a는 본 발명의 일 실시예에 따른 연료전지용 세퍼레이터의 평면도.
도 3b는 도 3a의 세퍼레이터의 저면도.
도 4는 도 3a의 세퍼레이터의 I-I'선에 의한 단면도.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 연료전지용 세퍼레이터의 제작방법을 설명하기 위한 개략도.
도 6은 본 발명의 일 실시예에 따른 연료전지용 세퍼레이터를 이용하는 연료전지 스택을 설명하기 위한 개략도.
* 도면의 주요 부분에 대한 부호의 설명 *
10 : 애노드 세퍼레이터 12 : 연료 유로
20 : 캐소드 세퍼레이터 22 : 산화제 유로
30 : 막전극집합체 100 : 세퍼레이터
100a, 100d : 양각부 100b, 100e: 음각부
100c : 브릿지부 110 : 제1 유로
110a, 110b : 연료 매니폴드 120 : 제2 유로
120a, 120b : 산화제 매니폴드 130a, 130b : 유로차단부재
140 : 엔드 플레이트 150 : 실링부재
160 : 체결수단 170 : 외부 회로
200a, 200b : 금형 300 : 연료전지 스택
본 발명은 단일 플레이트로 프레스 가공되며 양면 유로를 이용하는 연료전지용 세퍼레이터 및 그 제조방법과, 이 세퍼레이터를 이용하는 연료전지 스택에 관한 것이다.
연료전지는 무공해 전력 공급장치로서 차세대 청정 에너지 발전 시스템 중의 하나로 각광받고 있다. 연료전지를 이용한 발전 시스템은 대형 건물의 자가발전기, 전기자동차 전원, 이동 전원(portable power supply) 등으로 이용될 수 있고, 천연 가스, 도시 가스, 나프타, 메탄올, 폐기물 가스 등 다양한 연료를 사용할 수 있는 장점이 있다. 연료전지는 근본적으로 같은 원리에 의해 작동되며, 사용되는 전해질(electrolyte)에 따라 용융탄산염 연료전지(MCFC), 고체산화물 연료전지(SOFC), 고분자 전해질 연료전지(PEFC), 인산형 연료전지(PAFC), 알칼리 연료전지(AFC) 등으로 구분된다.
전술한 연료전지들 가운데 고분자 전해질형 연료전지는 사용되는 연료에 따라 고분자 전해질형 연료전지(polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell, PEMFC)와 직접 메탄올형 연료전지(direct methanol fuel cell, DMFC)로 구분된다. 고분자 전해질막 연료전지는 고체 고분자를 전해질로 사용하기 때문에 전해질에 의한 부식이나 증발의 위험이 없으며 단위면적당 높은 전류밀도를 얻을 수 있고, 게다가 다른 종류의 연료전지에 비해 출력 특성이 월등히 높고 작동 온도가 낮기 때문에 자동차 등에 전력을 공급하기 위한 이동용 전원, 주택이나 공공건물 등에 전력을 공급하기 위한 분산용 전원, 및 전자기기 등에 전력을 공급하기 위한 소형 전원으로서 그것의 연구가 활발히 추진되고 있다. 그리고 직접 메탄올형 연료전지는 연료 개질기를 사용하지 않고 메탄올과 같은 액상연료를 직접 이용하며 100℃ 미만의 작동온도에서 운전되므로 휴대용이나 소형 전원으로 적합하다는 장점이 있다.
전술한 고분자 전해질형 연료전지는 애노드 전극과 캐소드 전극 및 이 전극들 사이에 위치하는 고분자 전해질막으로 이루어지는 막전극집합체(membrane electorde assembly, MEA) 복수개를 세퍼레이터(separator)를 게재하여 적층한 스 택(stack) 구조로 제작될 수 있다. 이 경우, 애노드 전극 측에 결합하는 세퍼레이터는 애노드 전극으로 연료를 공급하기 위한 유로를 구비하며 애노드 전극에서 생성되는 전자를 외부 회로로 전달하는 기능을 하며, 캐소드 전극 측에 결합하는 세퍼레이터는 캐소드 전극으로 산화제를 공급하기 위한 유로를 구비하며 외부 회로를 통해 애노드 전극으로부터 이동된 전자를 캐소드 전극에 전달하는 기능을 한다.
세퍼레이터는 전기전도성과 밀폐성, 내부식성 및 기계적 강도가 우수하고 가공성이 좋아야 한다. 현재 범용적으로 가장 많이 사용되는 있는 세퍼레이터 재질은 고밀도 그라파이트(graphite)이다. 고밀도 그라파이트는 전기 전도성이 뛰어나며 내부식성이 우수하고 내부에 기공이 많으므로 밀도가 낮아 경량의 스택 제작에 유리하지만, 반응가스의 혼합을 막기 위해 일정한 두께가 요구되어 결과적으로 스택 부피를 커지게 하는 단점이 있다. 또한 고밀도 그라파이트는 성형시 기계가공을 거쳐야하므로 제조가격이 비싸 고분자 전해질형 연료전지 제작비용의 60% 이상을 차지하며 대량생산이 어려운 단점이 있다.
전술한 고밀도 그라파이트 세퍼레이터의 단점을 보완하기 위한 또 다른 세퍼레이터로는 고분자/탄소 복합체를 이용한 복합 세퍼레이터나 전기 저항이 작고 내식성이 좋은 금속을 이용하는 금속 세퍼레이터가 있다. 금속 세퍼레이터는 금속 자체가 갖는 우수한 전기 전도성과 우수한 기계적 물성을 이용할 수 있는 장점이 있다.
이에 본 발명자들은 양면 사용이 가능한 금속성 세퍼레이터를 연구하여 본 발명에 이르게 되었는데, 이를 아래에서 구체적으로 설명한다.
도 1a는 기존의 프레스 성형 방법을 이용하여 제작할 수 있는 애노드 금속 세퍼레이터의 평면도이고, 도 1b는 기존의 프레스 성형 방법을 이용하여 제작할 수 있는 캐소드 금속 세퍼레이터의 평면도이며, 도 1c는 도 1a의 애노드 금속 세퍼레이터의 저면도이다.
애노드 금속 세퍼레이터(10)는 도 1a에 도시한 바와 같이 일면에 설치되는 연료 공급용 유로(12), 이 유로(12)의 양단에 결합하는 한 쌍의 연료 매니폴드(14a, 14b) 및 상기 유로(12)와 분리되어 설치되는 산화제 유동용 산화제 매니폴드(16a, 16b)를 구비한다. 캐소드 금속 세퍼레이터(20)는 도 1b에 도시한 바와 같이 일면에 설치되는 산화제 공급용 유로(22), 이 유로(22)의 양단에 결합하는 한 쌍의 산화제 매니폴드(26a, 26b) 및 상기 유로(22)와 분리되어 설치되는 연료 유동용 연료 매니폴드(24a, 24b)를 구비한다. 도 1a 및 도 1b에서 음영으로 표시된 부분은 양각부(10a; 20a)이며, 그 나머지 비음영 부분은 음각부(10b; 20b)이다. 양각부(10a; 20a)는 지면 상으로 돌출되는 부분으로 볼 수 있고, 음각부(10b; 20b)는 지면에 거의 맞닿은 면으로 볼 수 있다.
한편 애노드 금속 세퍼레이터(10)의 타면은 도 1c에 도시한 바와 같이 음영으로 표시된 양각부(10c)와 음영으로 표시되지 않은 음각부(10d)를 구비하며, 상기 애노드 금속 세퍼레이터(10)의 타면에서 유로로 사용가능한 음각부(10d)는 산화제 매니폴드(16a, 16b)와 단절되어 있어 산화제 공급용 유로로 사용할 수 없다. 이와 유사하게, 전술한 캐소드 금속 세퍼레이터(20)의 타면 구조에 있어서도 그 음각부 는 연료 매니폴드(24a, 24b)와 단절되어 있어 연료 공급용 유로로 사용할 수 없다.
따라서, 전술한 프레스 성형에 의해 제작된 금속성 세퍼레이터를 이용하는 연료전지 스택은, 도 2a 및 도 2b에 도시한 바와 같이, 막전극집합체(30)의 일면에 애노드 금속 세퍼레이터(10)를, 그 타면에 캐소드 금속 세퍼레이터(20)를 각각 배치한 구조의 단위전지(C1, C2)를 복수개 적층하여 구성될 수 있다. 다시 말하면, 전술한 금속 세퍼레이터를 이용하는 연료전지 스택에 있어서, 하나의 애노드 금속 세퍼레이터(10)와 하나의 캐소드 금속 세퍼레이터(20)는 그 타면들이 서로 맞닿은 상태에서 어느 막전극집합체(30)와 이에 인접한 다른 막전극집합체(30)와의 사이에 위치하도록 설치된다. 그러므로 전술한 금속 세퍼레이터를 이용하는 연료전지 스택은 막전극집합체들(30) 사이에 두 장의 금속성 세퍼레이터(10, 20)를 삽입하여 구성되기 때문에 스택의 소형화가 제약되는 문제점이 있다.
본 발명은 전술한 금속 세퍼레이터에 대한 기술적 문제점을 해결하기 위해 도출된 것으로서, 그 목적은 양면 사용이 가능한 연료전지용 금속성 세퍼레이터 및 그 제조방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 양면 사용이 가능한 연료전지용 세퍼레이터를 이용함으로써 소형화에 유리하고 제작이 용이한 경제적인 연료전지 스택을 제공하는 데 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 측면에 의하면, 단일 플레이트로 이루어지며, 상기 단일 플레이트가, 구불구불한 형상의 음각부에 의한 제 1 유로가 설치되는 일면; 제1 유로의 일단에 연결되며 유체 유입을 위한 제1 유입공; 제1 유로의 타단에 연결되며 유체 유출을 위한 제1 유출공; 구불구불한 형상의 또 다른 음각부에 의한 제2 유로가 설치되는 타면; 제2 유로의 일단에 연결되며 유체 유입을 위한 제2 유입공; 및 제2 유로의 타단에 연결되며 유체 유출을 위한 제2 유출공을 구비하는 것을 특징으로 하는 연료전지용 세퍼레이터가 제공된다.
바람직하게, 제1 유로는 제2 유로와의 교차부에서 제1 유로의 나머지 부분보다 깊이가 얕은 브릿지부를 구비한다.
본 발명의 다른 측면에 의하면, 일정 두께를 가진 원판을 준비하는 단계; 구불구불한 양면 유로 형성을 위하여 음각부와 양각부를 갖는 제1 요철 패턴 및 연료 유동용 매니폴드와 산화제 유동용 매니폴드 형성을 위한 제1 타공 패턴을 구비하며, 상기 양면 유로들의 교차부로 형성될 양각부의 일부분에 다른 부분에 비해 높이가 낮은 브릿지부가 설치되는 제1 금형을 준비하는 단계; 상기 제1 요철 패턴 및 제1 타공 패턴에 대응하는 제2 요철 패턴 및 제2 타공 패턴을 구비한 제2 금형을 준비하는 단계; 상기 제1 공구와 상기 제2 공구와의 사이에 상기 원판을 놓는 단계; 및 상기 제1 공구와 상기 제2 공구를 일정 압력으로 눌러 상기 원판을 프레스 성형하는 단계를 포함하는 연료전지용 세퍼레이터 제작방법이 제공된다.
바람직하게, 원판은 전기전도도가 높고 내부식성이 우수한 하나 이상의 금속을 포함하여 이루어진다.
본 발명의 또 다른 측면에 의하면, 애노드 전극, 캐소드 전극, 및 상기 애노드 전극과 상기 캐소드 전극 사이에 위치하는 전해질을 구비한 막전극집합체; 및 막전극집합체의 양면에 위치하는 애노드 및 캐소드 세퍼레이터를 포함하되, 애노드 및 캐소드 세퍼레이터 중 어느 하나 또는 둘 모두는 본 발명의 일 측면에 따른 연료전지용 세퍼레이터인 연료전지 스택이 제공된다.
이하, 본 발명의 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다. 이하의 설명에 있어서, 금속성은 단일 금속 재료, 합금 재료, 또는 금속을 전도성 물질로 채용한 복합 재료를 포함하는 것으로 한다.
도 3a는 본 발명의 일 실시예에 따른 연료전지용 세퍼레이터의 평면도이다.
도 3a를 참조하면, 본 발명의 연료전지용 세퍼레이터(100)는 프레스 성형에 의해 일면 상에 돌출되는 양각부(100a), 상기 양각부(100a)로 형성되지 않은 음각부(100b), 및 상기 프레스 성형에 의해 형성되는 복수의 타공부를 구비한 단일 플레이트로 이루어진다.
특히 본 발명의 연료전지용 세퍼레이터(100)는 양면에 각각 설치되는 두 유로의 교차부에서 음각부(100b)의 특정 부분을 양각부(100a)가 돌출된 방향으로 눌려지는 브릿지부(100c)로 구현함으로써, 단일 플레이트에서 양면 유로를 이용하도록 이루어지는 것을 주된 특징으로 한다. 따라서 상기 일면에서 볼 때, 브릿지부(100c)는 음각부(100b)의 다른 부분보다 깊이가 얕은 부분이 된다.
본 실시예에서 연료전지용 세퍼레이터(100)를 구성하는 단일 플레이트의 일면에는 음각부(100b)의 일부 영역에 의해 형성된 제1 유로(110)가 구비된다. 제1 유로(110)의 일단에는 유체 유입을 위한 제1 유입공(110a)이 설치되고, 제1 유로(110)의 타단에는 유체 유출을 위한 제1 유출공(110b)이 설치된다. 제1 유입공(110a)은 애노드 전극으로 연료를 공급하기 위한 애노드 인렛측 연료 매니폴드로 언급될 수 있고, 제1 유출공(110b)은 제1 유로(110)에서 나오는 미반응 연료와 부산물을 운반하는 애노드 아웃렛측 연료 매니폴드로 언급될 수 있다. 전술한 제1 유로(110)는 3개의 유로가 평행하게 구불구불한 형상(meandering shape)으로 설치되어 있다. 그리고 전술한 타공부는 연료 매니폴드(110a, 110b), 산화제 매니폴드(120a, 120b), 및 스택 체결을 위한 체결 수단이 관통하는 체결공(미도시)을 포함할 수 있다.
도 3b는 도 3a의 연료전지용 세퍼레이터의 저면도이다.
도 3b를 참조하면, 연료전지용 세퍼레이터(100)는 프레스 성형에 의해 그 타면 상에 돌출되는 양각부(100d), 상기 양각부(100d)로 형성되지 않은 음각부(100e), 상기 음각부(100e)의 특정 영역에 설치되는 브릿지부(100c'), 및 상기 프레스 성형에 의해 형성되는 복수의 타공부를 구비한 단일 플레이트로 이루어진다. 전술한 타면의 양각부(100d)는 상기 일면의 음각부(100b)에 대응하고, 전술한 타면의 음각부(100e)는 상기 일면의 양각부(100a)에 대응한다. 또한 전술한 타면의 브릿지부(100c')는 상기 일면의 브릿지부(100c)에 대응한다.
전술한 연료전지용 세퍼레이터(100)를 구성하는 단일 플레이트의 타면에는 음각부(100e)에 의해 형성된 구불구불한 형상의 제2 유로(120)가 구비된다. 제2 유로(120)의 일단에는 유체 유입을 위한 제2 유입공(120a)이 연결되고, 제2 유 로(120)의 타단에는 유체 유출을 위한 제2 유출공(120b)이 연결된다. 제2 유입공(120a)은 캐소드 전극으로 산화제를 공급하기 위한 캐소드 인렛측 산화제 매니폴드에 대응하며, 제2 유출공(120b)은 제2 유로(120)에서 나오는 미반응 산화제와 부산물을 운반하는 캐소드 아웃렛측 연료 매니폴드에 대응된다.
상기 타면에서 볼 때, 브릿지부(100c')는 양각부(100d)의 다른 부분보다 높이가 낮은 부분이 된다. 브릿지부(100c')는 단일 플레이트의 일면에 형성되는 제1 유로(110)와 그 타면에 형성되는 제2 유로(120)가 서로 교차하는 부분에 설치된다. 브릿지부(100c')를 이용하면, 단일 플레이트의 양면에 각각 설치된 제1 유로(110)와 제2 유로(120)를 함께 사용할 수 있다.
도 4는 도 3a의 연료전지용 세퍼레이터의 I-I'선에 의한 단면도이다.
도 4를 참조하면, 연료전지용 세퍼레이터(100)의 브릿지부(100c)의 깊이 또는 높이(h')는 제1 유로(110)를 통해 연료가 원활히 이동하고 제2 유로(120)를 통해 산화제가 원활히 이동할 수 있는 범위에서 설정되는데, 상기 일면에서 볼 때 음각부(100b)의 깊이(d)의 대략 3% 내지 97% 범위에서 선택가능하고, 상기 타면에서 볼 때 양각부(100d)의 높이(h)의 대략 97% 내지 3% 범위에서 선택가능하다.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 연료전지용 세퍼레이터의 제작방법을 설명하기 위한 개략도이다.
도 5a 및 도 5b를 참조하면, 연료전지용 세퍼레이터(100)는 일정 두께의 원판(101)을 제1 금형(200a)과 제2 금형(200b) 사이에 놓고 일정 압력(F)으로 눌러 프레스 성형함으로써 간단히 제작될 수 있다.
다만, 전술한 프레스 성형 공정에 있어서, 제1 금형(200a)은 구불구불한 양면 유로 형성을 위하여 음각부와 양각부를 갖는 제1 요철 패턴 및 연료 유동용 매니폴드와 산화제 유동용 매니폴드 형성을 위한 제1 타공 패턴을 구비하도록 준비된다. 또한 제1 금형(200a)은 양면 유로의 교차 부분에서 음각부에 다른 부분에 비해 깊이가 낮은 브릿지부를 구비하도록 준비된다. 그리고 제2 금형(200b)은 제1 금형(200a)의 제1 요철 패턴 및 제1 타공 패턴에 대응하는 제2 요철 패턴 및 제2 타공 패턴을 구비하도록 준비된다.
전술한 원판(101)의 모재(original material)로는 탄탈륨(tantalum), 니오븀(niobium), 티타늄(titanium), 마그네슘(magnesium), 구리(copper), 알루미늄(aluminum), 스테인리스강(stainless steel), 두랄루민(duralumin) 등의 금속 재질이 이용될 수 있다. 다른 한편으로, 전술한 모재로는 철, 니켈, 크롬, 질소를 함유하는 합금이나 금속 파우더가 이용될 수 있다.
한편, 고분자 전해질형 연료전지에서는 수소이온 교환막 내에 존재하는 작용기, 예컨대 술폰기(sulfonic acid)에 의해 금속성 세퍼레이터의 부식이 촉진되고 그 표면에 생성된 금속산화물이 전기절연체로 작용하여 전기전도성을 낮추며, 이때 해리되어 나오는 금속 양이온이 촉매층 및 고분자 전해질을 오염시켜 연료전지의 성능을 감소시키는 문제가 발생할 수 있는데, 본 발명에서는 이러한 문제를 해결하기 위하여 모재의 표면에 코팅층을 형성하여 구현될 수 있다.
예를 들면, 연료전지용 세퍼레이터(100)는 금속성 모재의 표면에 금(gold), 티타늄 질화물(titanium nitride), 납 산화물(lead oxide), 탄소(carbon), 도전성 폴리머(conductive polymer)를 코팅하여 제작될 수 있다. 이 경우, 코팅 물질은 전도성이 우수해야 할 뿐 아니라 모재와의 접착력이 높고, 모재와 열 팽창 계수(thermal expansion coefficient)의 차이가 작은 재료를 선택하는 것이 바람직하다. 물론 전술한 코팅 물질은 내식성 및 접착력 향상을 위하여 이층 이상의 다층 구조로 구현될 수 있다.
전술한 코팅 물질을 모재의 표면에 코팅하기 위한 방법으로는 gold topcoating layering, stainless steel layering, graphite topcoating layering, titanium nitride layering, indium doped tin oxide layering, lead oxide layering, silicon carbide layering, titanium aluminum nitride layering 등이 이용될 수 있다.
전술한 스레인리스강으로 대표되는 내식성이 우수한 금속/합금은 그 표면에 부동태 피박이라 불리는 얇은 산화막을 형성하고 이 산화막이 부식에 대한 보호막으로 작용하기 때문에 내식성이 우수하지만, 상기 산화막이 전기 저항을 높다, 그러므로, 본 발명에 따른 연료전지용 세퍼레이터(100)에 스레인리스강으로 대표되는 내식성이 우수한 금속/합금을 적용할 때에는 이용가능한 적절한 재료가 선택되는 것이 바람직하며, 그 일례로써 316L [10], 349 [7], 310 [6] 등이 이용가능하다.
전술한 구성에 의하면, 전도성 및 내식성이 우수하며 양면 사용이 가능한 연료전지용 금속성 세퍼레이터(100)의 제작이 가능하다.
도 6은 본 발명의 일 실시예에 따른 연료전지용 세퍼레이터를 이용하는 연료전지 스택을 설명하기 위한 개략도이다.
도 6을 참조하면, 연료전지 스택(300)은 막전극집합체(30), 세퍼레이터(100), 한 쌍의 엔드 플레이트(140), 실링부재(sealing member, 150), 및 체결수단(160)을 포함한다. 세퍼레이터(100)의 단면은 도 3a의 II-II' 선에 의한 단면에 대응된다.
본 실시예에서 연료전지 스택(300)은 단일 플레이트의 양면 유로를 이용하는 세퍼레이터(100)를 채용함으로써 스택 두께를 감소시키고 스택을 경량화하며 제작 공정을 간소화하는 이점이 있다.
전술한 연료전지 스택(300)에 본 발명의 세퍼레이터(100)를 설치하는 경우, 도 3b에 도시한 바와 같이, 세퍼레이터(100)의 타면의 음각부(100e)의 일부 영역에 유로차단부재(130a, 130b)를 설치한다. 유로차단부재(130a, 130b)는 상기 타면의 제2 유입공(120a)에서 나온 유체(연료 또는 산화제)가 제2 유로(120)를 통과하여 제2 유출공(120b) 측으로만 이동하도록 작용한다. 유로차단부재(130a, 130b)는 음각부(100e)의 일부 영역에 꽉 끼워지도록 어느 정도의 탄성을 가지고 스택(300) 내의 유체와 쉽게 반응하거나 유체에 의해 부식하지 않는 우수한 내부식성을 갖는 재료가 사용된다. 유로차단부재(130a, 130b)에 사용가능한 물질로는 고무나 고분자를 이용한 재료 예컨대, 에틸렌프로필렌 고무(EPDM), 실리콘, 실리콘계 고무, 아크릴계 고무, TPE(thermoplastic elastomer) 등이 있다.
막전극집합체(30)는 전해질막, 상기 전해질막의 일면에 위치하는 캐소드 전극, 및 상기 전해질막의 타면에 위치하는 애노드 전극을 구비하여 이루어진다.
전해질막은 애노드 전극의 촉매층에서 생성된 수소 이온을 캐소드 전극의 촉 매층으로 이동시키는 이온 교환의 기능을 가진다. 전해질막은 두께가 50~200 ㎛인 고체 고분자 특히 수소이온 전도성 고분자로 제작가능하며, 수소이온 전도성 고분자로는 불소계 고분자, 케톤계 고분자, 벤즈이미다졸계 고분자, 에스테르계 고분자, 아미드계 고분자, 이미드계 고분자, 설폰계 고분자, 스티렌계 고분자, 탄화수소 고분자 등이 있다.
애노드 전극과 캐소드 전극은 촉매층(catalyst layer)과 확산층(diffusion layer)으로 구현될 수 있으며, 확산층은 지지층(backing layer)과 상기 지지층 상에 코팅되는 미세다공층(microporous layer)으로 구현될 수 있다. 촉매층은 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 등의 재료로 구현될 수 있다. 지지층은 촉매층을 지지하는 역할을 하면서 연료, 물, 공기 등의 분산 작용과, 생성된 전기의 집전 작용, 및 각 촉매층 물질의 소실 방지 작용을 하며, 탄소천(carbon cloth), 탄소종이(carbon paper)와 같은 탄소 기재로 구현될 수 있다. 미세기공층은 촉매층으로 연료 또는 산화제가 골고루 분산 공급되도록 작용하면서 촉매층에서 생성된 부산물을 원활하게 배출하도록 작용하며, 흑연, 탄소나노튜브(CNT), 플러렌(C60), 활성탄소, 벌칸, 케첸블랙, 카본블랙 및 탄소나노혼(carbon nano horn)으로 이루어진 군으로부터 선택되는 1종 이상의 탄소물질을 이용하여 구현될 수 있다.
한 쌍의 엔드 플레이트(140)는 세퍼레이터(100)의 연료 매니폴드 및 산화제 매니폴드에 연결되는 복수의 포트(미도시)를 구비한다. 전술한 엔드 플레이트(140)에 사용가능한 재료로는 알루미늄 등의 금속, 스테인리스 강 등의 합금, 플라스틱 등의 고분자복합재료, 세라믹복합재료, 섬유강화 고분자복합재료 등이 있다. 엔드 플레이트(140)가 도전성을 갖는 경우, 연료전지 스택(300)은 적어도 일면에 절연층이 코팅된 엔드 플레이트(140)를 구비하거나, 엔드 플레이트(140)와 세퍼레이터(100) 사이에 위치하는 절연체(미도시)를 추가로 구비할 수 있다.
실링부재(150)는 막전극집합체(30)와 세퍼레이터(100) 사이 또는 세퍼레이터들(100) 사이에 위치하며 막전극집합체(30)의 애노드 전극에 공급되는 연료의 누설과 외부 공기 등의 유입을 차단하며, 연료전지 스택(300) 내부의 유체 혼합을 방지한다. 전술한 실링부재(150)는 탄성이 우수하고 열 사이클에 대한 응력의 유지력이 우수한 재료로 이루어지며, 소정 패턴을 갖는 반경화 개스킷 패드로 설치되거나 슬러리 재료를 도포한 후 경화하여 설치되거나 또는 앞서 언급한 두 방식의 조합으로 설치될 수 있다. 실링부재(150)로 사용가능한 재료로는 고무나 고분자를 이용한 재료 예컨대, 에틸렌프로필렌 고무(EPDM), 실리콘, 실리콘계 고무, 아크릴계 고무, TPE(thermoplastic elastomer) 등이 있다.
체결수단(160)은 한 쌍의 엔드 플레이트(140)를 관통하는 볼트, 및 이 볼트의 말단부에 결합하는 너트로 구현될 수 있다. 물론 체결수단(160)은 볼트 및 너트 구조 이외에 기존에 알려진 다른 체결 수단을 이용할 수도 있다.
전술한 연료전지 스택(300)의 작동원리를 설명하면 다음과 같다.
연료공급장치(미도시)로부터 공급되는 수소함유연료(hydrogen containing fuel)는 막전극집합체(30)의 애노드 전극에서 전기화학적 반응에 의해 수소이온(H+) 과 전자(e-)로 이온화되면서 산화된다. 생성된 수소이온은 전해질막을 통과하여 캐소드 전극으로 이동하게 되고, 전자는 애노드 전극으로부터 외부 회로(170)를 통해 캐소드 전극으로 이동하게 된다. 캐소드 전극에 도달한 수소이온은 산화제공급장치(미도시)로부터 캐소드 전극에 공급되는 산화제 예컨대 산소와 전기화학적 환원반응을 일으키면서 반응열과 물을 발생시킨다. 이때, 상기 환원반응에 필요한 전자가 애노드 전극으로부터 캐소드 전극으로 이동하면서 전기에너지를 발생시킨다.
상기 연료로는 메탄올, 에탄올, 부탄 가스 등의 탄화수소계 연료, 소듐 보로하이드라이드(NaBH4), 순수 수소 등이 이용될 수 있다. 연료로써 메탄올을 사용하는 경우, 연료전지 스택의 전기화학 반응은 아래의 반응식 1과 같이 나타낼 수 있다.
애노드 : CH3OH + H2O → CO2 + 6H+ + 6e-
캐소드 : 3/2O2 + 6H+ + 6e- → 3H2O
전 체 : CH3OH + 3/2O2 → CO2 + 2H2O
다른 한편으로, 연료로써 순수 수소 또는 수소가 풍부한 개질가스를 연료로 사용하는 경우, 연료전지 스택의 전기화학 반응은 아래의 반응식 2와 같이 개략적으로 나타낼 수 있다.
애노드 : H2(g) → 2H+ + 2e-
캐소드 : 1/2O2 + 2H+ + 2e- → H2O
전 체 : H2 + 1/2O2 → H2O
본 발명은 양면 유로를 사용할 수 있는 금속성 세퍼레이터를 이용함으로써 소형 및 경량 연료전지 스택을 용이하게 대량 생산할 수 있는 장점을 가진다.
한편 전술한 실시예에 있어서 브릿지부는 제1 유로와 제2 유로가 교차하는 부분 이외에 유로를 통과하는 유체의 흐름을 원활하게 하기 위하여 추가로 설치될 수 있다.
상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그것들은 발명의 범위를 한정하는 것이라기보다 바람직한 실시예의 예시로서 해석되어야 한다. 본 발명의 범위는 설명된 실시예에 의하여 정해지는 것이 아니고 특허청구범위에 기재된 기술적 사상에 의해 정해져야 한다.
이상에서 설명한 바와 같이, 본 발명에 의하면 연료전지 스택의 소형화와 제작공정의 단순화를 도모할 수 있다. 아울러, 현재 연료전지 스택의 제작비의 60% 이상을 차지하는 세퍼레이터의 제작비를 감소시켜 연료전지의 가격을 낮추는 데 상당히 기여할 수 있다.

Claims (18)

  1. 단일 플레이트로 이루어지며, 상기 단일 플레이트는,
    구불구불한 형상의 음각부에 의한 제1 유로가 설치되는 일면;
    상기 제1 유로의 일단에 연결되며 유체 유입을 위한 제1 유입공;
    상기 제1 유로의 타단에 연결되며 유체 유출을 위한 제1 유출공;
    상기 구불구불한 형상의 또 다른 음각부에 의한 제2 유로가 설치되며 상기 일면에 배향하여 위치하는 타면;
    상기 제2 유로의 일단에 연결되며 유체 유입을 위한 제2 유입공; 및
    상기 제2 유로의 타단에 연결되며 유체 유출을 위한 제2 유출공을 구비하며,
    상기 제1 유로와 상기 제2 유로는 복수의 채널로 각각 이루어지고,
    상기 제1 유로는 상기 제2 유로와의 교차부에서 상기 제1 유로의 다른 부분의 깊이보다 그 깊이가 얕은 브릿지부를 구비하는 것을 특징으로 하는 연료전지용 세퍼레이터.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 브릿지부의 깊이는 상기 일면에서 볼 때 상기 제1 유로 깊이의 97% 내지 3%의 범위에서 선택되는 연료전지용 세퍼레이터.
  4. 제 1 항에 있어서,
    상기 타면에서 볼 때, 상기 제1 유로와 상기 제2 유로의 교차부에서 상기 구불구불한 형상에 의해 돌출된 양각부의 다른 부분의 높이보다 그 높이가 낮은 브릿지부를 더 구비하는 연료전지용 세퍼레이터.
  5. 제 4 항에 있어서,
    상기 브릿지부의 높이는 상기 타면에서 볼 때 상기 다른 부분의 양각부의 높이의 97% 내지 3%의 범위에서 선택되는 연료전지용 세퍼레이터.
  6. 삭제
  7. 제 1 항에 있어서,
    상기 단일 플레이트는 표면에 금(gold), 티타늄 질화물(titanium nitride), 납 산화물(lead oxide), 탄소(carbon), 도전성 폴리머(conductive polymer)가 코팅된 금속 또는 합금으로 이루어지는 연료전지용 세퍼레이터.
  8. 일정 두께를 가진 원판을 준비하는 단계;
    구불구불한 복수 채널의 양면 유로 형성을 위한 음각부와 양각부를 갖는 제1 요철 패턴 및 연료 유동용 매니폴드와 산화제 유동용 매니폴드 형성을 위한 제1 타공 패턴을 구비하며, 상기 양면 유로들의 교차부로 형성될 상기 양각부의 일부분에 나머지 부분보다 높이가 낮은 브릿지부가 설치되는 제1 금형을 준비하는 단계;
    상기 제1 요철 패턴 및 제1 타공 패턴에 대응하는 제2 요철 패턴 및 제2 타공 패턴을 구비한 제2 금형을 준비하는 단계;
    상기 제1 공구와 상기 제2 공구와의 사이에 상기 원판을 놓는 단계; 및
    상기 제1 공구와 상기 제2 공구를 일정 압력으로 눌러 상기 원판을 프레스 성형하는 단계를 포함하는 연료전지용 세퍼레이터 제작방법.
  9. 제 8 항에 있어서,
    상기 프레스 성형된 원판의 일면에서 상기 음각부의 일부 영역에 유로차단부재를 설치하는 단계를 더 포함하고,
    상기 유로차단부재는 상기 연료 유동용 매니폴드에서 나온 연료가 상기 음각부의 일부 영역을 통과하는 것을 차단하는 연료전지용 세퍼레이터 제작방법.
  10. 제 9 항에 있어서,
    상기 원판의 모재는 탄탈륨, 니오븀, 티타늄, 마그네슘, 구리, 알루미늄, 철, 니켈, 크롬, 질소로 이루어질 그룹에서 선택되는 적어도 하나의 원소를 함유하는 금속 또는 합금으로 이루어지는 연료전지용 세퍼레이터 제작방법.
  11. 애노드 전극, 캐소드 전극, 및 상기 애노드 전극과 상기 캐소드 전극 사이에 위치하는 전해질을 구비한 막전극집합체; 및
    상기 막전극집합체의 어느 일면에 접하는 세퍼레이터를 포함하되,
    상기 세퍼레이터는 단일 플레이트로 이루어지며, 상기 단일 플레이트가,
    구불구불한 형상의 음각부에 의한 제1 유로가 설치되는 일면;
    상기 제1 유로의 일단에 연결되며 유체 유입을 위한 제1 유입공;
    상기 제1 유로의 타단에 연결되며 유체 유출을 위한 제1 유출공;
    상기 구불구불한 형상의 또 다른 음각부에 의한 제2 유로가 설치되며 상기 일면에 배향하여 위치하는 타면;
    상기 제2 유로의 일단에 연결되며 유체 유입을 위한 제2 유입공; 및
    상기 제2 유로의 타단에 연결되며 유체 유출을 위한 제2 유출공을 구비하며,
    상기 제1 유로와 상기 제2 유로는 복수의 채널로 각각 이루어지고,
    상기 제1 유로는 상기 제2 유로와의 교차부에서 상기 제1 유로의 다른 부분의 깊이보다 그 깊이가 얕은 브릿지부를 구비하는 것을 특징으로 하는 연료전지 스택.
  12. 삭제
  13. 제 11 항에 있어서,
    상기 브릿지부의 깊이는 상기 일면에서 볼 때 상기 제1 유로 깊이의 97% 내지 3%의 범위에서 선택되는 연료전지 스택.
  14. 제 11 항에 있어서,
    상기 타면에서 볼 때, 상기 제1 유로와 상기 제2 유로의 교차부에서 상기 구불구불한 형상에 의해 돌출된 양각부의 다른 부분의 높이보다 그 높이가 낮은 브릿지부를 더 구비하는 연료전지 스택.
  15. 제 14 항에 있어서,
    상기 브릿지부의 높이는 상기 타면에서 볼 때 상기 다른 부분의 양각부의 높이의 97% 내지 3%의 범위에서 선택되는 연료전지 스택.
  16. 제 14 항에 있어서,
    상기 일면의 음각부의 일부 영역에 설치되는 유로차단부재를 더 구비하며,
    상기 유로차단부재는 상기 제1 유입공에서 나온 유체가 상기 음각부의 일부 영역을 통과하여 상기 제1 유출공으로 유동하는 것을 차단하는 연료전지 스택.
  17. 삭제
  18. 제 11 항에 있어서,
    상기 단일 플레이트는 금속 또는 합금으로 이루어지는 연료전지 스택.
KR1020070059974A 2007-06-19 2007-06-19 연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를채용한 연료전지 스택 KR100882701B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070059974A KR100882701B1 (ko) 2007-06-19 2007-06-19 연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를채용한 연료전지 스택
US12/103,819 US20080318114A1 (en) 2007-06-19 2008-04-16 Separator for fuel cell and its manufacturing method and fuel cell stack using the separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070059974A KR100882701B1 (ko) 2007-06-19 2007-06-19 연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를채용한 연료전지 스택

Publications (2)

Publication Number Publication Date
KR20080111695A KR20080111695A (ko) 2008-12-24
KR100882701B1 true KR100882701B1 (ko) 2009-02-06

Family

ID=40136835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070059974A KR100882701B1 (ko) 2007-06-19 2007-06-19 연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를채용한 연료전지 스택

Country Status (2)

Country Link
US (1) US20080318114A1 (ko)
KR (1) KR100882701B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229706B1 (ko) 2009-03-30 2013-02-05 쇼와 덴코 가부시키가이샤 시트 프레스 성형 방법 및 연료 전지용 세퍼레이터의 제조 방법
KR101230807B1 (ko) * 2009-03-30 2013-02-06 쇼와 덴코 가부시키가이샤 시트 프레스 성형 방법 및 연료 전지용 세퍼레이터의 제조 방법
US10665834B2 (en) 2017-05-16 2020-05-26 Lg Chem, Ltd. Battery module

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347505B (zh) * 2010-07-26 2014-05-07 本田技研工业株式会社 具备紧固部件的燃料电池堆
US9202042B2 (en) * 2011-06-14 2015-12-01 Lantiq Beteiligungs-GmbH & Co.KG Automatic device pairing
US9550227B2 (en) * 2013-12-11 2017-01-24 Toyota Boshoku Kabushiki Kaisha Press molding machine
FR3043846B1 (fr) * 2015-11-17 2018-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Plaques bipolaires pour limiter le contournement des canaux d’ecoulement par les reactifs
WO2018088701A1 (ko) * 2016-11-14 2018-05-17 주식회사 엘지화학 연료전지용 분리판 및 이를 이용한 연료전지
KR102140126B1 (ko) 2016-11-14 2020-07-31 주식회사 엘지화학 연료전지용 분리판 및 이를 이용한 연료전지
KR102400434B1 (ko) * 2019-08-26 2022-05-20 유원대 집열기 및 그 제조 방법
EP4024701A4 (en) * 2019-08-26 2023-10-04 Won Dae Ryu THERMAL COLLECTOR AND PRODUCTION METHOD THEREOF

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068964A (ko) * 2001-02-22 2002-08-28 가와사끼 세이데쓰 가부시키가이샤 연료 전지용 세퍼레이터와 그 제조방법 및 고체 고분자형연료 전지
US20040038102A1 (en) * 2000-09-23 2004-02-26 Jorg Beckmann Fuel cell stack
KR20060130958A (ko) * 2005-06-14 2006-12-20 현대모비스 주식회사 연료전지 차량의 재 순환 경로를 갖는 연료전지 스택
KR20070017987A (ko) * 2004-02-02 2007-02-13 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169917A (en) * 1978-07-10 1979-10-02 Energy Research Corporation Electrochemical cell and separator plate thereof
CN1416604B (zh) * 2000-03-07 2010-09-01 松下电器产业株式会社 高分子电解质型燃料电池及其制造方法
EP1246282B1 (en) * 2000-08-17 2009-04-29 Panasonic Corporation Polymer electrolyte type fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038102A1 (en) * 2000-09-23 2004-02-26 Jorg Beckmann Fuel cell stack
KR20020068964A (ko) * 2001-02-22 2002-08-28 가와사끼 세이데쓰 가부시키가이샤 연료 전지용 세퍼레이터와 그 제조방법 및 고체 고분자형연료 전지
KR20070017987A (ko) * 2004-02-02 2007-02-13 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지
KR20060130958A (ko) * 2005-06-14 2006-12-20 현대모비스 주식회사 연료전지 차량의 재 순환 경로를 갖는 연료전지 스택

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229706B1 (ko) 2009-03-30 2013-02-05 쇼와 덴코 가부시키가이샤 시트 프레스 성형 방법 및 연료 전지용 세퍼레이터의 제조 방법
KR101230807B1 (ko) * 2009-03-30 2013-02-06 쇼와 덴코 가부시키가이샤 시트 프레스 성형 방법 및 연료 전지용 세퍼레이터의 제조 방법
US9789634B2 (en) 2009-03-30 2017-10-17 Showa Denko K.K. Sheet press molding method and method of manufacturing fuel cell separator
US10665834B2 (en) 2017-05-16 2020-05-26 Lg Chem, Ltd. Battery module

Also Published As

Publication number Publication date
KR20080111695A (ko) 2008-12-24
US20080318114A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
KR100882701B1 (ko) 연료전지용 세퍼레이터 및 그 제조방법과 그 세퍼레이터를채용한 연료전지 스택
US7807310B2 (en) End plate for fuel cell stack and air breathing fuel cell stack using the same
KR100821039B1 (ko) 연료전지 스택 및 그 제조방법
US7951506B2 (en) Bipolar plate and direct liquid feed fuel cell stack
KR100805527B1 (ko) 소형 이동전원용 연료 전지 및 이 연료전지에 사용되는막-전극 어셈블리
KR100821033B1 (ko) 연료전지 스택 및 그 제조방법
US20060115705A1 (en) Bipolar plate and direct liquid feed fuel cell stack
US20050255371A1 (en) Fuel cell
US8530108B2 (en) Composite membrane, fuel cell and method of making composite membrane
Kim et al. Development of a miniaturized polymer electrolyte membrane fuel cell with silicon separators
JP5353608B2 (ja) 燃料電池用セパレータの製造方法
KR20090042000A (ko) 탄성구조를 갖는 전류집전체를 구비한 연료전지 스택
JP2006236740A (ja) 燃料電池
JP2006107898A (ja) 平面型の高分子電解質型燃料電池用のセパレータ
JP2007513473A (ja) 被覆流れ分布ネットワークを備えたpem燃料電池スタック
KR20070014621A (ko) 직접 산화형 연료 전지용 막-전극 어셈블리 및 이를포함하는 직접 산화형 연료 전지 시스템
JP4660151B2 (ja) 燃料電池
JP5499587B2 (ja) 燃料電池用セパレータの製造方法
JP2006066339A (ja) 燃料電池セル
US20060051653A1 (en) Fuel cell system and stack
JP2006310220A (ja) 燃料電池
JP2009277465A (ja) 高分子電解質形燃料電池スタック
JP2011076738A (ja) 燃料電池用セパレータおよびその製造方法
KR101093708B1 (ko) 연료전지용 전극 및 이를 포함하는 연료전지
KR100599711B1 (ko) 연료 전지용 바이폴라 플레이트, 이의 제조 방법 및 이를포함하는 연료 전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee