KR100873635B1 - Electronic device using sulfur containing compound absorbed carbon nano tube - Google Patents

Electronic device using sulfur containing compound absorbed carbon nano tube Download PDF

Info

Publication number
KR100873635B1
KR100873635B1 KR1020020011181A KR20020011181A KR100873635B1 KR 100873635 B1 KR100873635 B1 KR 100873635B1 KR 1020020011181 A KR1020020011181 A KR 1020020011181A KR 20020011181 A KR20020011181 A KR 20020011181A KR 100873635 B1 KR100873635 B1 KR 100873635B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
electronic device
adsorbed
thiol
current
Prior art date
Application number
KR1020020011181A
Other languages
Korean (ko)
Other versions
KR20030071921A (en
Inventor
이창수
이휘건
정태원
이정희
허정나
유세기
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020020011181A priority Critical patent/KR100873635B1/en
Publication of KR20030071921A publication Critical patent/KR20030071921A/en
Application granted granted Critical
Publication of KR100873635B1 publication Critical patent/KR100873635B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

탄소나노튜브를 가지는 전자소자가 개시된다. 개시된 전자소자는, 금속전극 및 금속전극과 연결되는 탄소나노튜브를 구비하는 전자소자에 있어서, 탄소나노튜브는 싸이올기를 가지는 유기물이 흡착된다. 유기물이 표면처리된 탄소나노튜브를 가지는 전자소자는 도전성이 향상되며 전자소자의 특성에 맞게 전류를 용이하게 흐르게 할 수 있다.An electronic device having carbon nanotubes is disclosed. The disclosed electronic device is an electronic device including a metal electrode and carbon nanotubes connected to the metal electrode, wherein the organic material having a thiol group is adsorbed. Electronic devices having carbon nanotubes on which organic materials are surface treated have improved conductivity and can easily flow currents according to the characteristics of electronic devices.

탄소나노튜브, 전자소자, 유기물, 황화물Carbon nanotubes, electronic devices, organic materials, sulfides

Description

황화물이 흡착되는 탄소나노튜브를 이용하는 전자소자{Electronic device using sulfur containing compound absorbed carbon nano tube} Electronic device using sulfur containing compound absorbed carbon nano tube

도 1은 종래의 탄소나노튜브 전자소자를 나타낸 도면,1 is a view showing a conventional carbon nanotube electronic device,

도 2는 종래의 탄소나노튜브 FET의 전류전압특성을 나타낸 그래프, 2 is a graph showing current voltage characteristics of a conventional carbon nanotube FET;

도 3은 본 발명의 실시예에 따른 전자소자에 이용되는 탄소나노튜브를 간략히 나타낸 그래프,3 is a graph briefly showing carbon nanotubes used in an electronic device according to an embodiment of the present invention;

도 4a 내지 도 4c는 본 발명의 실시예에 따른 전자소자의 제조방법을 나타내는 SEM 사진,4A to 4C are SEM photographs showing a method of manufacturing an electronic device according to an embodiment of the present invention;

도 5는 본 발명의 실시예에 따른 전자소자에 황화물 흡착을 위한 장치를 나타낸 도면,5 is a view showing an apparatus for sulfide adsorption on an electronic device according to an embodiment of the present invention;

도 6a는 본 발명의 실시예에 따른 전자소자에 사용되는 도드캔싸이올이 흡착된 탄소나노튜브를 나타낸 사진, Figure 6a is a photograph showing a carbon nanotube adsorbed dodcan thiol used in the electronic device according to an embodiment of the present invention,

도 6b는 상기 도드캔싸이올이 흡착된 탄소나노튜브를 구비하는 본 발명의 실시예에 따른 전자소자의 전류전압특성을 나타낸 그래프,6b is a graph showing the current-voltage characteristics of an electronic device according to an embodiment of the present invention having carbon nanotubes to which the dod can thiol is adsorbed;

도 7a는 본 발명의 실시예에 따른 전자소자에 사용되는 벤젠싸이올이 흡착된 탄소나노튜브를 나타낸 사진,Figure 7a is a photograph showing a carbon nanotube adsorbed benzene thiol used in the electronic device according to an embodiment of the present invention,

도 7b는 상기 도드캔싸이올이 흡착된 탄소나노튜브를 구비하는 본 발명의 실 시예에 따른 전자소자의 전류전압특성을 나타낸 그래프.Figure 7b is a graph showing the current voltage characteristics of the electronic device according to an embodiment of the present invention having the carbon nanotubes adsorbed dod can thiol.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

1, 19, 39 : 탄소나노튜브 3 : 유기물       1, 19, 39: carbon nanotube 3: organic matter

11 : 실리콘 게이트 13, 33 ; 실리콘 절연층       11: silicon gate 13, 33; Silicon insulation layer

15 ; 소스 전극 17 ; 드레인 전극       15; Source electrode 17; Drain electrode

21 ; 진공챔버 23 ; 황화물       21; Vacuum chamber 23; sulfide

31 ; 실리콘 기판 35 ; 금속 전극       31; Silicon substrate 35; Metal electrode

본 발명은 전자소자에 관한 것으로서, 더욱 상세하게는 탄소나노튜브를 이용하는 전자소자에 관한 것이다.The present invention relates to an electronic device, and more particularly, to an electronic device using carbon nanotubes.

탄소나노튜브는 탄소의 동소체로서 각 탄소원자가 다른 탄소원자와 결합하여 형성된 육각형의 벌집형태로 흑연면(graphite sheet)을 이루며 나노크기의 직경으로 둥글게 말린 형태를 가진다. 탄소나노튜브의 흑연면이 말리는 각도 및 구조에 따라 금속 또는 반도체의 특성을 가지고, 이러한 탄소나노튜브의 특성을 이용한 연구가 첨단산업분야 특히 나노기술산업분야에서 활발히 이루어지고 있다.Carbon nanotubes are allotropees of carbon, each of which forms a graphite sheet in the form of hexagonal honeycomb formed by combining carbon atoms with other carbon atoms, and has a round shape that is rounded to a diameter of nano size. According to the angle and structure of the graphite surface of the carbon nanotubes to have the characteristics of the metal or semiconductor, research using the characteristics of the carbon nanotubes are actively conducted in the high-tech industry, especially nanotechnology industry.

도 1은 네덜란드의 델프트(Delft) 대학의 데커(Dekker)가 SWNT(Single Walled Nano Tube)를 이용하여 제조한 단분자 규모의 나노소자를 나타낸 도면이다.FIG. 1 is a diagram illustrating a single molecule nano device manufactured by Deker, University of Delft, Netherlands, using a single walled nano tube (SWNT).

도 1을 참조하면, 종래의 나노전자소자에는, 실리콘 게이트(11)와, 상기 실 리콘 게이트(11)상에 적층된 실리콘 절연층(13)과, 상기 실리콘 절연층(13)상에 띠형태로 형성되어진 소스전극(15) 및 드레인 전극(17)과, 상기 소스전극(15) 및 드레인 전극(17)을 연결하는 탄소나노튜브(19)가 위치하고 있다.Referring to FIG. 1, a conventional nanoelectronic device includes a silicon gate 11, a silicon insulating layer 13 stacked on the silicon gate 11, and a band shape on the silicon insulating layer 13. The source electrode 15 and the drain electrode 17 formed with the carbon nanotubes 19 connecting the source electrode 15 and the drain electrode 17 are positioned.

데커는 이 나노전기소자의 전류전압(I-V)특성이 게이트 전압에 따라 다른 특성을 보이는 서로 다른 두 종류의 탄소나노튜브가 있음을 확인하였다. 즉, 게이트 전압에 무관하고 전류전압특성이 선형관계를 보이는 금속성 탄소와, 게이트 전압에 크게 영향을 받으며 전류전압특성이 비선형 관계를 보이는 반도체 특성의 탄소나노튜브의 두 종류로 나뉜다.Decker confirmed that there are two different types of carbon nanotubes whose current-voltage (I-V) characteristics are different depending on the gate voltage. That is, it is divided into two types: metallic carbon having a linear relationship with the current voltage characteristic regardless of the gate voltage, and carbon nanotubes with semiconductor characteristics which are greatly influenced by the gate voltage and have a nonlinear relationship with the current voltage characteristic.

도 2는 반도체 특성을 보이는 탄소나노튜브를 이용하는 전자소자의 전류전압 특성 곡선을 보이고 있다. 도시된 전류전압 특성을 가지는 탄소나노튜브를 이용하여 FET(Feild Effect Transistor)또는 전자 메모리소자등을 제조할 수 있다. 2 shows a current voltage characteristic curve of an electronic device using carbon nanotubes showing semiconductor characteristics. Carbon nanotubes having the illustrated current voltage characteristics may be used to manufacture a FET (Feild Effect Transistor) or an electronic memory device.

탄소나노튜브는 상술한 바와 같은 차세대 나노전자소자의 가장 효과적인 소재로서 주목되고 있는데, 탄소나노튜브를 전자소자로 이용하기 위해서는 전류의 흐름을 용이하게 제어할 수 있어야 한다.Carbon nanotubes are attracting attention as the most effective material of the next-generation nanoelectronic devices as described above. In order to use carbon nanotubes as electronic devices, the flow of electric current must be easily controlled.

따라서, 본 발명이 이루고자하는 기술적 과제는 상술한 종래 기술의 문제점을 개선하기 위한 것으로서, 탄소나노튜브에 흐르는 전류를 용이하게 조절할 수 있는 전자소자 및 그 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to improve the above-described problems of the prior art, and to provide an electronic device and a method of manufacturing the same, which can easily control the current flowing through the carbon nanotubes.

상기 기술적 과제를 달성하기 위하여 본 발명은, 금속전극 및 상기 금속전극 과 연결되는 탄소나노튜브를 구비하는 전자소자에 있어서, 상기 탄소나노튜브는 싸이올기를 가지는 유기물이 흡착되는 것을 특징으로 하는 전자소자를 제공한다.In order to achieve the above technical problem, the present invention, in the electronic device having a metal electrode and carbon nanotubes connected to the metal electrode, the carbon nanotubes are characterized in that the organic material having a thiol group is adsorbed To provide.

상기 유기물은 황화물인 것이 바람직하며, 특히 도드캔싸이올 및 벤젠싸이올 중 어느 하나인 것이 바람직하다.It is preferable that the said organic substance is a sulfide, and it is especially preferable that it is any one of a docan thiol and a benzene thiol.

본 발명은 탄소나노튜브에 황화물과 같은 싸이올기를 가지는 유기물을 흡착시킴으로써 탄소나노튜브의 전도성을 선택적으로 조절하여 탄소나노튜브를 이용하는 전자소자의 성능을 향상시킬 수 있다. The present invention can improve the performance of electronic devices using carbon nanotubes by selectively controlling the conductivity of carbon nanotubes by adsorbing organic materials having a thiol group such as sulfides on the carbon nanotubes.

이하 본 발명에 따른 탄소나노튜브를 이용하는 전자소자의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, an embodiment of an electronic device using carbon nanotubes according to the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 실시예에 따른 전자소자에 이용되는 싸이올기를 가지는 유기물(3)이 흡착된 탄소나노튜브(1)를 간단히 나타낸 도면이다. 도면에서는 유기물(3)이 탄소나노튜브(1)의 표면에 막으로 형성되는 것처럼 도시되어 있으나 이는 설명을 위한 편의적인 표시일 뿐이며 실제로는 탄소나노튜브(1)의 원자간에 연결되어 이러한 막을 형성하지 않을 수도 있다.FIG. 3 is a view schematically showing a carbon nanotube 1 to which an organic material 3 having a thiol group used in an electronic device according to an embodiment of the present invention is adsorbed. In the drawing, the organic material 3 is shown as being formed as a film on the surface of the carbon nanotubes 1, but this is only a convenient display for explanation and it is not actually connected between atoms of the carbon nanotubes 1 to form such a film. It may not.

유기물(3)로는 도드캔싸이올(dodecanethiol, CH3(CH2)SH) 또는 벤젠싸이올(benzenethiol, C6H3SH)과 같은 싸이올기를 가지는 황화물이 적당하다. 이런 유기물(3)은 탄소나노튜브(1)에 잘 흡착될 수 있는 작용기를 가지며 전자소자의 용도에 따라 특정 기체에 선택적 반응도가 우수한 유기물(3)이 취사선택될 수도 있다. As the organic substance 3, sulfides having a thiol group such as dodecanethiol (CH 3 (CH 2 ) SH) or benzenethiol (C 6 H 3 SH) are suitable. The organic material 3 has a functional group that can be adsorbed well on the carbon nanotubes 1, and the organic material 3 having excellent selective reactivity to a specific gas may be selected according to the use of the electronic device.

도 4의 (a)는 탄소나노튜브(5)가 Au로 이루어진 소스 전극 및 드레인 전극의 네 단자를 연결하고 있는 전자소자의 상부면을 보이는 SEM(Scanning Electron Microscopy) 사진이며, 도 4의 (b)는 도 4a의 원 A를 확대하여 나타낸 SEM 사진이며, 도 4의 (c)는 열화학기상증착법(Termal CVD)을 이용하여 원 B 내부에 위치하는 탄소나노튜브에 황화물을 흡착시키는 과정을 보인 SEM 사진이다.Figure 4 (a) is a SEM (Scanning Electron Microscopy) photograph showing the upper surface of the electronic device that the carbon nanotubes (5) connecting the four terminals of the source electrode and the drain electrode made of Au, Figure 4 (b ) Is an SEM image showing an enlarged circle A of FIG. 4A, and FIG. 4C is a SEM showing a process of adsorbing sulfides on carbon nanotubes located inside the circle B by using a thermal CVD method. It is a photograph.

도 5는 본 발명의 실시예에 따른 탄소나노튜브 전자소자에 유기물이 흡착되는 제조장치를 나타낸 도면이다.5 is a view showing a manufacturing apparatus for adsorbing organic material on a carbon nanotube electronic device according to an embodiment of the present invention.

도면을 참조하면, 진공챔버(21)내부에 위치하는 실리콘 기판(31)과, 상기 실리콘 기판(31)의 상부에 적층되는 실리콘 절연층(33)과, 상기 실리콘 절연층(33) 상부에 띠형태로 형성되어 있는 금속전극(39)과 상기 금속전극(39)을 연결하는 탄소나노튜브(35)가 위치하고 있다. 상기 진공챔버(21)에는 황화물(23)을 담고 있는 용기(22)가 연결되어 밸브(24)의 개폐를 통해 황화물(23)을 공급하며, 금속전극(39)에는 전원(V)과 전류계(A)를 구비하는 제어기(27)가 연결되어 전력을 공급한다. Referring to the drawings, a silicon substrate 31 positioned in the vacuum chamber 21, a silicon insulating layer 33 stacked on the silicon substrate 31, and a band on the silicon insulating layer 33 are provided. The carbon nanotube 35 connecting the metal electrode 39 and the metal electrode 39 formed in a shape is positioned. The chamber 22 containing the sulfide 23 is connected to the vacuum chamber 21 to supply the sulfide 23 through the opening and closing of the valve 24, and to the metal electrode 39, a power source V and an ammeter ( The controller 27 having A) is connected to supply power.

황화물(23)의 흡착공정을 위해 탄소나노튜브(35)를 전극에 접합시킨 다음, 황화물 입자(25)를 진공챔버(21) 내부로 송출시킨다. 상기 탄소나노튜브(39)가 위치하고 있는 Au 금속 전극(39)에 전류를 흘려 상기 탄소나노튜브(35)를 대전시킨 다음 여기에 상기 황화물 입자들(25)을 흡착시킨다. The carbon nanotubes 35 are bonded to the electrodes for the adsorption process of the sulfides 23, and then the sulfide particles 25 are sent into the vacuum chamber 21. An electric current flows through the Au metal electrode 39 in which the carbon nanotubes 39 are located to charge the carbon nanotubes 35, and then the sulfide particles 25 are adsorbed thereto.

이렇게 제조된 탄소나노튜브(35)를 가지는 전자소자의 전도성을 알아보기 위해, 알맞은 길이로 성장시킨 탄소나노튜브(35) 또는 알맞은 길이로 절단된 탄소나 노튜브(35)를 용매에 분산시키고 도전체를 측정하는 홀더에 탄소나노튜브(39)를 고정시킨다. 그런 다음 진공상에서 밸브를 제어하면서 황화물 분자가 흡착됨에 따라 변화하는 전류의 양을 측정한다. 도 6b 및 도 7b는 이와 같은 실험을 한 결과를 보이고 있다.In order to determine the conductivity of the electronic device having the carbon nanotubes 35 manufactured as described above, the carbon nanotubes 35 grown to a suitable length or the carbon nanotubes 35 cut to a suitable length are dispersed in a solvent and the conductor Fix the carbon nanotubes (39) to the holder to measure the. The valve is then controlled in vacuum to measure the amount of current that changes as the sulfide molecules are adsorbed. 6b and 7b show the results of such an experiment.

도 6a는 열화학기상증착법을 이용하여 제조된 도드캔싸이올이 흡착된 다중벽 탄소나노튜브를 나타내며, 도 6b는 도드캔싸이올이 탄소나노튜브에 흡착되는 과정에서 압력의 변화에 따라 달라지는 전류 및 전압관계의 변화를 보이고 있다. FIG. 6A illustrates a multi-walled carbon nanotube adsorbed with a docan thiol prepared using a thermochemical vapor deposition method, and FIG. 6B illustrates a current varying with pressure in the process of adsorbing the docan thiol to carbon nanotubes. The voltage relationship is changing.

도 6b에 도시된 그래프에서, f1은 3×10-7mbar의 진공상태에서 탄소나노튜브에 전압을 인가하는 경우를 나타낸다. f2는 2mbar의 압력에서, f3는 3.2mbar의 압력에서 도드캔싸이올을 흡착시킨 다음 탄소나노튜브에 전원을 연결하고 전압을 변화시킴에 따라 변하는 전류를 보이고 있다. f4는 도드캔싸이올을 펌핑하여 다시 3.2×10-7mbar의 진공상태로 변화시킨 경우, 탄소나노튜브에 전압을 인가함에 따라 변하는 전류를 나타내고 있다. In the graph shown in FIG. 6B, f1 represents a case where voltage is applied to the carbon nanotubes in a vacuum state of 3 × 10 −7 mbar. f2 shows a current that changes as a result of adsorbing docancanol at a pressure of 2 mbar and a pressure of 3.2 mbar and then connecting power to the carbon nanotubes and changing the voltage. f4 represents a current that changes as a voltage is applied to the carbon nanotubes when the docan can thiol is pumped and changed to a vacuum state of 3.2 × 10 −7 mbar.

압력이 증가함에 따라 도드캔싸이올이 더 많이 흡착되는데, 도시된 바와 같이 동일 전압에서 도드캔싸이올이 더 많이 흡착된 탄소나노튜브에 전류가 더 많이 흐르는 것을 알 수 있다. 이것은 도드캔싸이올이 탄소나노튜브에 흡착되어 도전성을 향상시킨 것을 의미한다. 소정 전압에서 f1의 전류값에 비해 f3 및 f4의 전류값이 거의 3배정도 증가하는 것을 알 수 있다.As the pressure increases, more dodcan thiol is adsorbed, and as shown, more current flows through the carbon nanotubes with more dodcan thiol adsorbed at the same voltage. This means that docan thiol was adsorbed onto the carbon nanotubes to improve conductivity. It can be seen that at a predetermined voltage, the current values of f3 and f4 increase by almost three times compared to the current value of f1.

도 7a는 열화학기상증착법을 이용하여 제조된 벤젠싸이올이 흡착된 다중벽 탄소나노튜브를 나타내며, 도 6b는 벤젠싸이올이 탄소나노튜브에 흡착되는 경우 압력의 변화에 따른 전류 및 전압관계의 변화를 보이고 있다. Figure 7a shows a multi-walled carbon nanotubes adsorbed benzene thiol prepared using the thermochemical vapor deposition method, Figure 6b is a change in the current and voltage relationship according to the change in pressure when the benzene thiol is adsorbed on the carbon nanotubes Is showing.

도 7b는 벤젠싸이올이 탄소나노튜브에 흡착되는 경우 압력의 변화에 따른 전류 및 전압관계의 변화를 보이고 있다. 도 7b를 참조하면, g1은 8×10-6mbar의 진공상태에서 전압을 인가하는 경우 탄소나노튜브에 흐르는 전류를 나타내며, g2는 2.2mbar의 압력에서, g3는 1.6×10-5mbar의 압력에서, g4는 5.4×10-6mbar의 압력에서 각각 벤젠싸이올을 탄소나노튜브에 흡착시킨 경우에 전압에 따른 전류변화를 나타내고 있다. Figure 7b shows a change in the current and voltage relationship according to the change in pressure when the benzene thiol is adsorbed on the carbon nanotubes. Referring to Figure 7b, g1 represents the current flowing through the carbon nanotubes when a voltage is applied in a vacuum of 8 × 10 -6 mbar, g2 is at a pressure of 2.2 mbar, g3 is 1.6 × 10 -5 mbar pressure G4 represents the current change according to the voltage when benzenethiol is adsorbed onto the carbon nanotubes at a pressure of 5.4 × 10 −6 mbar, respectively.

도 6과 도시된 그래프의 특성과 유사하게, 벤젠싸이올이 더 많이 흡착될수록 탄소나노튜브의 도전성은 증가하는 것을 알 수 있다. g1과 g4를 비교하면, 동일 전압에서 전류가 6배정도 증가한 것을 알 수 있다.Similar to the characteristics of the graph shown in Figure 6, it can be seen that the more the benzenethiol is adsorbed, the conductivity of the carbon nanotubes increases. Comparing g1 and g4 shows that the current increased by about six times at the same voltage.

본 발명의 실시예에 따른 탄소나노튜브를 가지는 전자소자는, 탄소나노튜브에 황화물과 같은 유기물을 처리함으로써 탄소나노튜브의 도전성을 향상시킬 수 있으며 원하는 전자소자의 특성에 따라 적절히 도전성을 조절할 수 있다.Electronic devices having carbon nanotubes according to an embodiment of the present invention can improve the conductivity of the carbon nanotubes by treating organic matters such as sulfides on the carbon nanotubes, and can appropriately control the conductivity according to the characteristics of the desired electronic device. .

상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 바람직한 실시예의 예시로서 해석되어야 한다. While many details are set forth in the foregoing description, they should be construed as illustrative of preferred embodiments, rather than to limit the scope of the invention.

예를 들어 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상에 의해 탄소나노튜브가 아닌 다른 나노물질의 제조에도 본 발명의 전자소자 제조방법을 적용할 수 있을 것이다. 때문에 본 발명의 범위는 설명 된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다. For example, those skilled in the art to which the present invention pertains may apply the method of manufacturing the electronic device of the present invention to the production of nanomaterials other than carbon nanotubes by the technical idea of the present invention. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the technical spirit described in the claims.

상술한 바와 같이, 본 발명에 따른 전자소자의 제조방법의 장점은, 싸이올기를 가지는 유기물을 탄소나노튜브에 흡착시킴으로써 원하는 전자소자의 특성에 맞는 도전성을 가지도록 조절할 수 있으며, 전류를 원활히 흐르게 하여 전자소자의 전체적인 성능을 향상시킬 수 있다는 것이다. As described above, the advantage of the manufacturing method of the electronic device according to the present invention, by adsorbing the organic material having a thiol group on the carbon nanotubes can be adjusted to have a conductivity suitable for the characteristics of the desired electronic device, by flowing a current smoothly The overall performance of the electronic device can be improved.

Claims (3)

드레인 전극 및 소스 전극을 구비하며, 상기 드레인 전극 및 소스 전극 사이에 연결되는 탄소나노튜브를 구비하는 전자소자에 있어서,An electronic device having a drain electrode and a source electrode, and having carbon nanotubes connected between the drain electrode and the source electrode. 상기 탄소나노튜브는 싸이올기를 가지는 유기물이 흡착되는 것을 특징으로 하는 전자소자.The carbon nanotube is an electronic device, characterized in that the organic material having a thiol group is adsorbed. 제 1 항에 있어서,The method of claim 1, 상기 유기물은 황화물인 것을 특징으로 하는 전자소자.The organic material is an electronic device, characterized in that the sulfide. 제 2 항에 있어서, The method of claim 2, 상기 황화물은 도드캔싸이올 및 벤젠싸이올 중 어느 하나인 것을 특징으로 하는 전자소자.The sulfide is an electronic device, characterized in that any one of the docan thiol and benzene thiol.
KR1020020011181A 2002-03-02 2002-03-02 Electronic device using sulfur containing compound absorbed carbon nano tube KR100873635B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020011181A KR100873635B1 (en) 2002-03-02 2002-03-02 Electronic device using sulfur containing compound absorbed carbon nano tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020011181A KR100873635B1 (en) 2002-03-02 2002-03-02 Electronic device using sulfur containing compound absorbed carbon nano tube

Publications (2)

Publication Number Publication Date
KR20030071921A KR20030071921A (en) 2003-09-13
KR100873635B1 true KR100873635B1 (en) 2008-12-12

Family

ID=32223215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020011181A KR100873635B1 (en) 2002-03-02 2002-03-02 Electronic device using sulfur containing compound absorbed carbon nano tube

Country Status (1)

Country Link
KR (1) KR100873635B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596372B1 (en) 2008-02-15 2016-03-08 삼성디스플레이 주식회사 Transparent electrode for display device display device and method for manufacturing display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
KR20010102598A (en) * 2000-05-01 2001-11-16 김성근 Carbon nanotubes having thiol groups and method for preparing the same
KR20010107272A (en) * 2000-05-26 2001-12-07 김순택 Method for fabricating a carbon nanotubes field emission arrays using a surface treatment
KR20020054883A (en) * 2000-12-28 2002-07-08 한형수 Field Emission Material
KR20030032726A (en) * 2001-10-19 2003-04-26 엘지전자 주식회사 Field Effect Device using Carbonnanotube and Method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
KR20010102598A (en) * 2000-05-01 2001-11-16 김성근 Carbon nanotubes having thiol groups and method for preparing the same
KR20010107272A (en) * 2000-05-26 2001-12-07 김순택 Method for fabricating a carbon nanotubes field emission arrays using a surface treatment
KR20020054883A (en) * 2000-12-28 2002-07-08 한형수 Field Emission Material
KR20030032726A (en) * 2001-10-19 2003-04-26 엘지전자 주식회사 Field Effect Device using Carbonnanotube and Method for the same

Also Published As

Publication number Publication date
KR20030071921A (en) 2003-09-13

Similar Documents

Publication Publication Date Title
Rouhi et al. Fundamental limits on the mobility of nanotube-based semiconducting inks
US7718995B2 (en) Nanowire, method for fabricating the same, and device having nanowires
Jang et al. A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes
Asadi et al. Single-layer pentacene field-effect transistors using electrodes modified with self-assembled monolayers
US6486489B2 (en) Transistor
US20080173864A1 (en) Carbon nanotube transistor having low fringe capacitance and low channel resistance
US20080181838A1 (en) Semiconductor carbon nanotubes fabricated by hydrogen functionalization and method for fabricating the same
US20070155064A1 (en) Method for manufacturing carbon nano-tube FET
WO2009144902A1 (en) Field effect transistor and method for manufacturing the same
Valentini et al. Interaction of methane with carbon nanotube thin films: role of defects and oxygen adsorption
KR100873635B1 (en) Electronic device using sulfur containing compound absorbed carbon nano tube
Min et al. Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes
Koohsorkhi et al. Fabrication of self-defined gated field emission devices on silicon substrates using PECVD-grown carbon nano-tubes
Aïssa et al. The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors
Kim et al. Enhancement of minority carrier injection in ambipolar carbon nanotube transistors using double-gate structures
JP2008091566A (en) Manufacturing method of carbon nanotube structure covered by insulating film and field-effect transistor device consisting of the structure
Zhang et al. Carbon nanotubes: from growth, placement and assembly control to 60mV/decade and sub-60 mV/decade tunnel transistors
CN1269195C (en) Method for producing nano-transistor with high performance
Kim et al. Noise characteristics of single-walled carbon nanotube network transistors
US8604458B2 (en) Two-terminal resistance switching device and semiconductor device
Kamimura et al. Electrical heating process for p-type to n-type conversion of carbon nanotube field effect transistors
Kim Large-scale integrated carbon nanotube gas sensors
KR20200073130A (en) P-Type Semiconductor Layer, P-Type Multilevel Element and the Manufacturing Method of the Emement
Shailendra et al. AC Gain analysis of Multi-stage Common Source Amplifier Using GAA-CNTFET
KR20050006634A (en) Manufacturing Method of anoelectronic Device with Cylindrical Gate And Nanoelectronic Device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee