KR100849114B1 - 재충전 가능한 배터리의 남은 사용 시간뿐만 아니라 충전상태를 예측하는 방법 - Google Patents

재충전 가능한 배터리의 남은 사용 시간뿐만 아니라 충전상태를 예측하는 방법 Download PDF

Info

Publication number
KR100849114B1
KR100849114B1 KR1020027009553A KR20027009553A KR100849114B1 KR 100849114 B1 KR100849114 B1 KR 100849114B1 KR 1020027009553 A KR1020027009553 A KR 1020027009553A KR 20027009553 A KR20027009553 A KR 20027009553A KR 100849114 B1 KR100849114 B1 KR 100849114B1
Authority
KR
South Korea
Prior art keywords
state
battery
charge
equilibrium
voltage
Prior art date
Application number
KR1020027009553A
Other languages
English (en)
Other versions
KR20020070516A (ko
Inventor
한스 페일
헨드리크 예이. 베르그벨드
요한 에르. 헤. 세. 엠. 반빅
Original Assignee
코닌클리케 필립스 일렉트로닉스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닌클리케 필립스 일렉트로닉스 엔.브이. filed Critical 코닌클리케 필립스 일렉트로닉스 엔.브이.
Publication of KR20020070516A publication Critical patent/KR20020070516A/ko
Application granted granted Critical
Publication of KR100849114B1 publication Critical patent/KR100849114B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

재충전 가능한 리튬 배터리의 충전 상태를 추정하는 방법이 개시된다. 상기 방법의 제 1 단계는 배터리가 평형 상태인지 비-평형 상태인지를 결정하는 것이다. 만약 배터리가 평형 상태인 것으로 결정된다면, 배터리 양단의 전압이 측정되어 평형 충전 상태값으로 변환된다. 만약 배터리가 비-평형 상태라면, 배터리로부터 회수되거나 배터리에 공급된 충전값은 전류 적분에 의해 계산되며, 이 충전값은 앞서 계산된 충전 상태값에서 빼지거나 여기에 더해진다. 미리 결정된 조건 하에서 애플리케이션이 사용될 수 있는 시간을 추정하는 방법이 또한 개시된다.

Description

재충전 가능한 배터리의 남은 사용 시간뿐만 아니라 충전 상태를 예측하는 방법{A METHOD OF PREDICTING THE STATE OF CHARGE AS WELL AS THE USE TIME LEFT OF A RECHARGEABLE BATTERY}
본 발명은, 재충전 가능한 배터리, 특히 재충전 가능한 리튬 배터리의 충전 상태를 예측하는 방법에 관한 것이다. 게다가, 본 발명은 미리 한정된 조건 하에서 애플리케이션이 사용될 수 있는 시간을 계산하고 지시하는 남은 사용 시간 시스템에 관한 것이다.
미국 특허(제 5,631,540 호)는 방전중인 배터리의 남은 용량 및 예비 시간을 예측하는 방법 및 장치에 관한 것이다. 상기 특허에 따라, 남은 배터리 용량은, 배터리의 내부 레지스턴스로 인한 전압 손실에서 배터리 온도로 나누어진 방전중인 배터리 전압을 뺀 전압과 배터리 최대(full) 충전 개방 회로 전압 사이의 차이로부터 결정되며, 이러한 배터리 온도로 나누어진 배터리 전압은 온도-정정된 배터리 과전압이다. 배터리의 남은 예비 용량은 앞서 계산된 남은 예비 용량과 이론적인 최대 용량의 비에 의해 지수 함수로서 후속적으로 결정된다.
위의 방법의 중요한 단점은, 계산된 남은 배터리 용량이 특히 측정의 부정확성으로 인해 결국 실제값에서 멀어진다는 점이다. 이점은, 결국 배터리의 남은 용 량과 예비 시간의 부정확한 예측을 야기한다.
본 발명의 목적은, 배터리의 남은 용량에 대한 정확한 측정을 제공하는, 재충전 가능한 배터리의 충전 상태를 예측하는 방법을 제공하는 것이다.
이 때문에, 본 발명은 재충전 가능한 배터리, 특히 리튬 배터리의 충전 상태를 예측하는 방법을 제공하며, 이 방법은,
배터리가 평형 상태인지 비-평형 상태인지를 결정하는 단계와;
만약 배터리가 평형 상태라면, 배터리 양단의 전압을 측정하여, 이 측정된 전압을 평형 충전 상태값으로 변환하는 단계와;
만약 배터리가 비-평형 상태라면, 전류 적분을 통해 배터리로부터 회수되거나 배터리에 공급된 충전값을 계산하여, 앞서 계산된 충전 상태값에서 이 충전값을 빼거나 계산된 충전값에 이 충전값을 더하는 단계를 포함한다.
만약 매우 작은 양의 전류만이 배터리로부터 유도되거나 배터리에 공급된다면, 배터리는 평형상태에 있다고 한다. 상기 전류의 절대값은 한정된 작은 전류(Ilim)보다 더 낮다. 이러한 상태는, 예컨대 이동 전화가 대기 모드일 때 발생한다. 이러한 경우, 배터리로부터 유도된 전류는 겨우 몇 mA이다.
비-평형 상태는 충전 상태, 방전 상태 및 과도 상태를 포함한다. 충전 상태에서, 한정된 Ilim보다 더 큰 양 전류가 배터리로 흘러 들어간다. 방전 상태에서, 한정된 Ilim보다 그 절대값이 큰 음 전류가 배터리로부터 흘러나온다. 과도 상태는 충 전 상태 또는 방전 상태중 어느 한 상태가 평형 상태로 변화하고 있는 상태이다.
충전 상태의 좀더 정확한 측정은, 배터리의 평형 상태와 비-평형 상태에서의 충전 상태 계산 사이의 차이가 결정됨으로써 달성된다.
평형 상태에서 배터리 양단의 측정된 전압은, 특히 저장된 특성 전압 대 충전 상태의 곡선, 바람직하게는 EMF(electromotive force : 기전력) 곡선을 사용하여 평형 충전 상태값으로 변환된다.
평형 상태에서 작은 양의 전류만이 배터리로부터 흘러나옴에 따라, 측정된 전압은 배터리의 EMF에 접근한다. 이러한 EMF는 배터리 전극의 평형 전위의 합과 같다. 본 발명에 따른 방법은, 평형 상태에 측정된 전압값을 최대 용량 비율로 표현된 충전 상태값으로 변환하기 위해 저장된 EMF 대 충전 상태의 곡선을 사용하는 알고리즘에 기초하고 있다.
EMF 대 충전 상태 곡선은 심지어 배터리가 노후하더라도(ages) 동일하게 유지된다. 게다가, 이러한 곡선의 온도 의존성은 상대적으로 낮다. 따라서, 배터리의 사용연수 및 온도에 상관없이 동일한 충전 상태가 특정한 측정된 EMF 값에 대해서 발견되기 때문에, EMF 곡선은 충전 상태 시스템의 교정(calibration)에 사용하기에 적합하다. 비-평형 상태에서 계산된 충전 상태가 결국, 예컨대 전류 측정의 부정확성 및 상기 부정확성의 시간적인 누적(integration in time)으로 인해 실제 값에서 멀어질 것이기 때문에, 이러한 교정은 중요하다.
충전 상태를 추정하는 방법은 평형 상태에서 교정하는 단계를 포함하므로, 상기 상태에서, 전압이 배터리의 EMF에 실제로 접근한다는 점이 중요하다. 그러므로, 알고리즘은, 배터리 전압이 거의 EMF에 근접하거나 대체로 이와 같게 되는 정상 상태 상황에 도달되었을 때 단지 평형 상태에 들어가게 된다.
비-평형 상태에서, 배터리로부터 회수되거나 배터리에 공급되는 충전값은 전류 적분에 의해 계산되며, 이러한 충전값은 앞서 계산된 충전 상태값에서 빼지거나 이 값에 더해진다. 이러한 방법은 또한 쿨롱 계산법(Coulomb counting)으로 불린다.
특히, 앞서 계산된 충전 상태값은 초기 충전 상태값 또는 이전의 평형 충전 상태값일 수 있다.
본 발명의 방법에 따른 알고리즘은 다섯 개의 상태로 동작하며, 이러한 상태는 초기 상태, 평형 상태, 충전 상태, 방전 상태 및 과도 상태이고, 마지막 세 개의 상태는 비-평형 상태이다. 이 알고리즘은 초기 상태에서 시작해서 충전의 초기 상태를 결정한다.
유리하게, 초기 충전 상태값은 초기 상태에서 배터리 양단의 전압을 측정하여, 이러한 측정된 전압을 초기 상태의 충전 상태값으로 변환함으로써 얻게 된다.
배터리가 충전되거나, 방전되거나 평형상태에 있는지에 따라, 이때 알고리즘은 적절한 상태로 이동하며, 전압 측정 또는 쿨롱 계산법에 의해 충전 상태를 결정한다.
본 발명은, 또한 미리 한정된 조건 하에서 애플리케이션이 사용될 수 있는 시간, 소위 남은 시간을 예측하는 방법에 관한 것이다. 상기 방법은,
위에서 개시된 본 발명의 방법에 따라 배터리의 충전 상태를 결정하는 단계 와;
평형 전압과 과전위의 합으로 배터리 전압을 계산하는 단계를 포함한다.
방전하는 동안의 배터리 전압은 평형 전압보다는 낮다. 이것은 과전위 때문이다. 특정한 조건 하에서 배터리의 이용 가능한 충전값과 배터리로부터 회수될 수 있는 충전값 사이의 차이가 결정되어야 한다. 특히, 낮은 온도와 낮은 충전 상태에서, 남은 충전값은 높은 과전위로 인해 배터리로부터 회수될 수 없으며, 이는 배터리 전압이 휴대용 디바이스에서 한정되는 소위 방전 종료 전압(Vmin) 이하로 강하할 것이기 때문이다.
전압이 특정한 레벨(Vmin) 이하로 강하할 때, 배터리는 비어있는 것으로 간주된다. 예컨대, 이동 전화 용어로, "남은 통화 시간"은 전화가 계속 통화 모드이면서 전압이 Vmin이하로 강하할 때까지 걸리는 시간을 지칭한다. "남은 대기 시간"은 전화가 계속 대기 모드이면서 전압이 Vmin이하로 강하할 때까지 걸리는 시간을 지칭한다.
유리하게, 과전위는 적어도 시간 의존 부분을 갖는 함수로부터 계산된다. 바람직하게, 과전위는 적어도 용량 의존 부분을 포함하는 함수로부터 계산된다.
배터리 전압을 예측하기 위해, 배터리의 충전 상태를 알고, 시간과 충전 상태의 함수인 과전위를 계산하는 것이 필요하다.
특히, 과전위는 적어도 온도 의존 부분을 갖는 함수로부터 계산된다.
이러한 온도 의존성은, 예컨대 섭씨 0도에서 남은 사용 시간뿐만 아니라 실 내온도에서 남은 사용 시간과 같은 서로 다른 온도 조건 하에서 남은 사용 시간을 결정하게 한다. 계산에서, 남은 대기 시간 및 남은 통화 시간이 또한 고려될 수 있어서, 결국 남은 대기 시간은, 예컨대 실내 온도 및 섭씨 0도에서와 같은 두 개의 서로 다른 온도에서 지시될 수 있으며, 남은 통화 시간도 두 개의 서로 다른 온도에서 지시될 수 있다.
비-평형 상태에서, 배터리의 충전 상태는 쿨롱 계산법에 의해 계산된다. 과전위는 이하에서 제시된 수학식 7 내지 수학식 12에서 나타낸 미분 형태로 계산된다. 과전위와 쿨롱 계산법 모두는 평형 상태에서 리셋된다.
특히, 과전위는 배터리의 남은 용량에 반비례하는 적어도 하나의 항을 갖는 함수로부터 계산된다.
결국, 본 발명은, 레지스터와 커패시터의 값이 배터리의 과전위의 시간 의존 부분에 관련되는 적어도 하나의 RC 회로와, 하나의 레지스터 값이 과전위에 대응하는 배터리의 남은 용량에 관련되는 적어도 두 개의 레지스터와, 평형 전압에 대응하는 배터리의 남은 용량에 관련되는 값을 갖는 전압 소스를 포함하는 재충전 가능한 배터리의 전자 네트워크 모델에 관한 것이다.
특히, 전자 네트워크의 소자중 하나 이상의 값은 온도 의존성을 갖는다.
최대의 정확성을 달성하기 위해, 전자 네트워크의 모든 소자 값은 배터리의 남은 용량에 의존한다.
특히, 레지스터중 하나의 값은 전류의 방향에 의존하다. 만약 이러한 특정한 프로세스의 시간 의존성을 시뮬레이트하기 위해 또한 이러한 레지스터가 커패시터 에 병렬로 연결된다면, 더 높은 정확성을 얻을 수 있을 것이다.
본 발명은 수반하는 도면에 의해 더 설명될 것이다.
도 1은 충전 상태 지시 시스템의 예를 도시한 블록도.
도 2는 각 상태 사이의 상대적인 전류 레벨을 지시하는 재충전 가능한 배터리를 위한 상태도.
도 1에서, 충전 상태(SoC) 시스템이 재충전 가능한 배터리(1)를 위해 개략적으로 예시되어 있다. 배터리(1)의 단자(2 및 3) 사이의 전압(V)이 배터리로 흘러 들어가거나 배터리로부터 흘러나오는 전류(I) 및 인접한 주위의 온도(T)와 함께 측정된다. 이들 측정 데이터(V, I, T)는 순차적으로 멀티플렉서(4)와 아날로그-디지털(A/D) 컨버터(5)에 의해 처리되어 마이크로프로세서(6)에 공급된다. 마이크로프로세서는 본 발명에 따른 적절한 알고리즘을 적용하며, 추정된 SoC 신호를 출력(7)에서 생성한다. 마이크로프로세서(6)는 또한 피드백 루프(8)에 의해 멀티플렉서(4)를 제어하며, 그에 따라 전압(V), 전류(I) 또는 온도(T)가 배터리의 결정된 상태 및 다른 인자에 따라 특정한 시간에서 샘플링되는지를 결정한다.
도 2는 재충전 가능한 배터리(1)의 상태를 평가하기 위한 도 1의 마이크로프로세서(6)에 의해 사용되는 충전 상태 알고리즘의 상태도이다. 가능한 상태가 박스(10 내지 14)로 표시된다:
10: 초기 상태 - 배터리가 처음 연결될 때.
11: 평형 상태 - 매우 작은 전류가 배터리로부터 유도되거나 배터리에 공급됨.
12: 충전 상태 - 큰 전류가 배터리로 흐름.
13: 방전 상태 - 큰 전류가 배터리로부터 흘러나옴.
14: 과도 상태 - 알고리즘이 충전 또는 방전에서 평형으로 변화하고 있을 때.
배터리가 처음에 SoC 시스템에 연결될 때, 알고리즘은 초기 상태에서 시작하여, 초기 SoC를 결정할 것이다. 알고리즘은 후속적으로 충전, 방전 또는 평형 상태로 적절하게 이동할 것이다. 이것은 전류(I)를 측정하여, 이것을 사전에 결정된 상대적으로 낮은 전류값(Ilim)과 비교함으로써 수행된다. 만약 I가 양 전류, 즉 배터리로 흘러 들어가고, Ilim보다 더 크다면, 배터리는 충전 상태인 것으로 결정되어, 알고리즘은 박스(12)로 이동한다. 만약 I가 음 전류, 즉 배터리로부터 흘러나오고, Ilim보다 더 크다면, 배터리는 방전 상태인 것으로 결정되며, 알고리즘은 박스(13)로 이동한다.
만약 I가 Ilim보다 더 작거나 같다면, 배터리는 평형 상태 또는 거의 평형 상태 인 것으로 생각된다. 그러나, 전류가 Ilim보다 더 작은 값으로 변화할 때 재충전 가능한 배터리에서 완화(relaxation) 프로세스가 발생하며, 이러한 완화 프로세스는 배터리 전압에 영향을 끼친다. 그리하여, 본 발명에 따라, 마이크로프로세서(6) 는 알고리즘을 평형 상태(11)로 옮기기 이전에 I가 Ilim보다 더 작을 때 정상 전압 상태를 추가적으로 기다린다.
평형 상태에서, SoC는 추정되어, 시스템을 교정(calibrating)하는데 사용된다, 즉 마이크로프로세서(6)에 대한 기준으로 사용된다. 교정은, 비-평형 상태에서 계산된 SoC가 전류 측정의 부정확성 및 이들 부정확성의 시간적인 누적으로 인해 실제 값으로부터 멀어지려고 하기 때문에 중요하다. 정확한 교정을 보장하기 위해, 본 발명에 있어서, 정상 상태 평형이 달성되어짐, 즉 완화 프로세스가 수행되어짐을 보장하는 것이 중요하며, 이는 이 경우에 측정된 전압이 배터리의 진정한 EMF에 훨씬 더 근접하기 때문이다. 마이크로프로세서 알고리즘은 전압이 거의 EMF에 근접하다고 가정하며, 디스플레이하기 위한 최대 용량의 비율로 표현된 SoC 값으로 측정된 전압을 변환하기 위해 저장된 EMF-대-SoC 데이터 표와 함께 이 전압을 사용한다.
이 시스템은, 비록 배터리가 노후하고 또한 대체로 온도에 의존적이지 않을지라도 EMF-대-SoC 관계가 대체로 동일하게 유지되는 장점을 갖는다.
만약 정상 상태 전압이 검출되지 않는다면, 알고리즘은 평형 상태에 들어가지 않으며, 정확한 교정이 보호된다.
알고리즘이 충전 상태(12) 또는 방전 상태(13)중 어느 한 상태로부터 평형 상태(11)로 움직이기 전에 정상 상태 전압은 또한 검사된다. 그에 따라, 알고리즘은 과도 상태(14)를 제공하며, 이 상태에서 전압은 안정성을 위해 모니터된다. 따 라서, 만약 충전 상태(12) 또는 방전 상태(13)에서의 전류가 0보다 더 작거나 0이 되도록 변한다면, 도 2에서 각각 라인(1214) 및 라인(1314)으로 표시된 바와 같이, 알고리즘은 과도 상태(14)로 움직일 것이며, 안정한 전압을 검사할 것이다. 전압이 안정할 때, 알고리즘은 라인(1411)에 의해 지시된 바와 같이 평형 상태(11)로 간다.
과도 상태(14)에서, 전류(I)는 또한 측정된다. 만약 I가 Ilim보다 더 크게 되도록 다시 변한다면, 알고리즘은 다시 충전 상태(12)로 이동한다. 만약 한편 I가 음이 되도록 그리고 그 절대값이 Ilim보다 더 크게 되도록 변한다면, 알고리즘은 방전 상태(13)로 이동한다. 이것이 각각 라인(1412 및 1413)으로 지시되어 있다.
유사하게, 평형 상태(11)에서, 전류(I)는 계속 모니터되며, 알고리즘은 그에 따라 라인(1112){충전 상태(12)로 돌아감} 및 라인(1113){방전 상태(13)로 돌아감}으로 도시된 바와 같이 적절한 상태로 이동하게 된다.
요약하면, SoC는 충전, 방전 및 과도 상태에서의 전류 측정에 의해 결정되며, 교정 SoC는 평형 상태에서의 정상 상태 전압 측정에 의해 결정된다. 충전, 방전 및 과도 상태에서의 전류 측정치는 시간에 걸쳐서 적분되며, 평형 상태(11)에서 계산된 교정 SoC에서 빼지거나 이 SoC에 더해지며 또는 초기 SoC에 더해진다.
추가적인 보상이 방전 상태(13)에서 적용되며, 이는 과전위 효과가 고려되어야 하기 때문이다: 배터리 전압은 방전하는 동안에 EMF보다 더 낮다. 과전위는 온도 의존적이며, 마이크로프로세서(6)는 그에 따라 적절할 때 멀티플렉서(4)를 통해 온도 판독값에 액세스할 것이다.
본 발명은 추가적으로 예컨대 특정한 조건 하에서 배터리에 남은 대화 시간 또는 대기 시간과 같은 사용자 시간의 정확한 추정 양을 얻는데 사용될 수 있다. 이를 수행하는 도 2에 제시된 방법은 수학식1 내지 수학식 12를 특히 참조하여 이하에서 설명될 것이다.
남은 사용 시간은 배터리 전압으로부터 추정되지만, 특정한 최소전압(Vmin) 이하에서, 배터리는 어쨌든지 비어있는 것으로 간주된다. 이 최소 전압은 전형적으로는 현재의 이동 전화의 경우 3V이다. 따라서, 사용 시간은, 전압이 Vmin으로 강하하는데 필요한 시간이다. 배터리 전압은 SoC로부터 추정되지만, 시간 및 SoC의 함수로 변화하는 과전위도 정확한 값이 계산되도록 고려되어야 하며, 이는 방전하는 동안 배터리 전압이 상기 과전위로 인해 평형 전압보다 더 낮게 되기 때문이다.
수학식 1은 EMF와 과전위의 합으로 배터리 전압을 제공한다.
Figure 112002023795912-pct00001
과전위는 저항성 레지스턴스(ohmic resistance), 전하 전달 및 이중 층 레지스턴스, 전해질 확산/이동 및 고체-상태 확산으로 인한 과전위의 합으로서 수학식 2에 의해 근사치가 구해질 수 있다. 이들 인자(contributions) 각각을 위한 수학식이 수학식 3, 4, 5 및 6으로 제공된다.
Figure 112002023795912-pct00002
Figure 112002023795912-pct00003
Figure 112002023795912-pct00004
Figure 112002023795912-pct00005
Figure 112002023795912-pct00006
수학식 7 내지 수학식 12에서, 과전위는 미분 형식으로 기재되며, 이러한 형식에서, 과전위는 배터리가 비-평형 상태일 때 계산될 수 있다.
η(q,T,I,t+dt) = η(q,T,I,t)+dη(q,T,I,t)
Figure 112002023795912-pct00007
Figure 112002023795912-pct00008
Figure 112002023795912-pct00009
Figure 112002023795912-pct00010
Figure 112002023795912-pct00011
일단 과전위가 발견되면, 사용 시간은 임의의 주어진 온도(T)와 전류(I) 조건에 대해 계산될 수 있다. 비-평형 상태에서, 배터리의 SoC는 쿨롱 계산법에 의해 계산된다. 과전위는 위에서 도시된 바와 같은 미분 형태로 계산된다. 과전위와 쿨롱 계산법은 모두 평형 상태에서 리셋된다.
상술한 바와 같이, 본 발명은, 배터리의 남은 용량에 대한 정확한 측정을 제공하는, 충전 가능한 배터리의 충전 상태를 예측하는 방법을 제공하는데 이용된다.

Claims (11)

  1. 삭제
  2. 삭제
  3. 재충전 가능한 리튬 배터리를 위한 충전 상태를 추정하는 방법으로서,
    상기 배터리가 평형 상태인지 비-평형 상태인지를 결정하는 단계와;
    만약 상기 배터리가 평형 상태라면, 상기 배터리 양단의 전압을 측정하여, 이 측정된 전압을 평형 충전 상태값으로 변환하는 단계와;
    만약 상기 배터리가 비-평형 상태라면, 전류 적분(current integration)에 의해 상기 배터리로부터 회수되거나 상기 배터리에 공급된 충전값(전하량 : charge)을 계산하여, 앞에서 계산된 충전 상태값에서 이 충전값을 빼거나 상기 계산된 충전값에 이 충전값을 더하는 단계
    를 포함하며,
    상기 평형 상태에서, 상기 배터리 양단의 상기 측정된 전압은 저장된 특성 전압 대 충전 상태 곡선을 사용하여 평형 충전 상태값으로 변환되며,
    상기 저장된 특성 전압 대 충전 상태 곡선은 EMF(electromotive force : 기전력) 곡선을 포함하는 것을 특징으로 하는, 충전 상태 추정 방법.
  4. 제 3 항에 있어서, 앞서 계산된 상기 충전 상태값은 초기 충전 상태값이거나 이전의 평형 충전 상태값일 수 있는 것을 특징으로 하는, 충전 상태 추정 방법.
  5. 제 4 항에 있어서, 상기 초기 충전 상태값은 상기 초기 상태에서 상기 배터리 양단의 전압을 측정하고 이 측정된 전압을 초기 상태 충전 상태값으로 변환함으로써 얻어지는 것을 특징으로 하는, 충전 상태 추정 방법.
  6. 미리 한정된 용량을 갖는 애플리케이션이 사용될 수 있는 시간을 추정하는 방법으로서,
    제 3 항 내지 제 5 항 중 어느 한 항에 기재된 배터리의 상기 충전 상태를 결정하는 단계와;
    상기 배터리 전압을 평형 상태에 있는 배터리의 전압과 과전위(overpotential)의 합으로 계산하는 단계
    를 포함하는, 시간 추정 방법.
  7. 제 6 항에 있어서, 상기 과전위는 시간에 따라 변화되는 것을 특징으로 하는, 시간 추정 방법.
  8. 제 6 항에 있어서, 상기 과전위는 온도에 따라 변화되는 것을 특징으로 하는, 시간 추정 방법.
  9. 제 6 항에 있어서, 상기 과전위는 용량에 따라 변화되는 것을 특징으로 하는, 시간 추정 방법.
  10. 제 6 항에 있어서, 상기 과전위는, 상기 배터리의 나머지 용량에 따라 변화되는 것을 특징으로 하는, 시간 추정 방법.
  11. 삭제
KR1020027009553A 2000-11-30 2001-11-20 재충전 가능한 배터리의 남은 사용 시간뿐만 아니라 충전상태를 예측하는 방법 KR100849114B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00204262 2000-11-30
EP00204262.0 2000-11-30

Publications (2)

Publication Number Publication Date
KR20020070516A KR20020070516A (ko) 2002-09-09
KR100849114B1 true KR100849114B1 (ko) 2008-07-30

Family

ID=8172359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020027009553A KR100849114B1 (ko) 2000-11-30 2001-11-20 재충전 가능한 배터리의 남은 사용 시간뿐만 아니라 충전상태를 예측하는 방법

Country Status (5)

Country Link
US (1) US6515453B2 (ko)
EP (1) EP1337865A1 (ko)
JP (1) JP2004515044A (ko)
KR (1) KR100849114B1 (ko)
WO (1) WO2002044743A1 (ko)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI114048B (fi) * 2001-12-03 2004-07-30 Teknillinen Korkeakoulu Menetelmä ja laitteisto akkujen kuvaamiseksi ohjelmallisilla mittareilla
JP4137496B2 (ja) * 2002-04-15 2008-08-20 富士通株式会社 残量予測方法
US8013611B2 (en) * 2006-07-14 2011-09-06 Reserve Power Cell, Llc Vehicle battery product and battery monitoring system
US7339347B2 (en) * 2003-08-11 2008-03-04 Reserve Power Cell, Llc Apparatus and method for reliably supplying electrical energy to an electrical system
JP2007526456A (ja) * 2004-02-25 2007-09-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 充電状態を評価する方法、充電式バッテリーの残使用時間を評価する方法およびそのような方法を実施する機器
KR100619902B1 (ko) * 2004-09-20 2006-09-12 엘지전자 주식회사 이동 통신 단말기의 전압 강하 보상 회로 및 그 방법
US7176806B2 (en) * 2005-02-23 2007-02-13 Eaglepicher Energy Products Corporation Physical key to facilitate an inactive mode for a state-of-charge indicator within a battery
WO2007006121A1 (en) * 2005-04-20 2007-01-18 Mountain Power Inc. Detecting the state-of-charge of a lithium ion battery in a hybrid electric vehicle
US8264203B2 (en) * 2006-03-31 2012-09-11 Valence Technology, Inc. Monitoring state of charge of a battery
JP4831824B2 (ja) * 2006-09-11 2011-12-07 三菱重工業株式会社 バッテリー制御装置及びこれを備えたハイブリッド式フォークリフト
CN101153894B (zh) * 2006-09-26 2010-09-29 鸿富锦精密工业(深圳)有限公司 电量检测方法、使用此方法的电量检测***及电子设备
US20100036627A1 (en) * 2006-10-30 2010-02-11 Koninklijke Philips Electronics N.V. Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
WO2008099298A1 (en) * 2007-02-13 2008-08-21 Koninklijke Philips Electronics N.V. Method and apparatus for determination of the state-of-charge (soc) of a rechargeable battery
US20080259551A1 (en) * 2007-04-20 2008-10-23 Gotive A.S. Modular computing device
KR100901156B1 (ko) * 2007-08-10 2009-06-04 이재민 연료전지용 전자로더
JP2009124795A (ja) * 2007-11-12 2009-06-04 Sony Corp 充電方法および装置
JP5314906B2 (ja) * 2008-02-29 2013-10-16 ニチユ三菱フォークリフト株式会社 作業用車両の制御方法および作業用車両
US8040106B2 (en) * 2008-05-29 2011-10-18 Honda Motor Co., Ltd. Method of controlling battery charging
DE112009000464A5 (de) * 2008-06-09 2010-11-25 Temic Automotive Electric Motors Gmbh Batterie mit Batteriezellen und Ladungsausgleichsvorrichtung und miteinander verschweissten Polanschlüssen
TWI394971B (zh) * 2008-09-23 2013-05-01 Ind Tech Res Inst 電池特性追蹤方法及電路
FR2942882A1 (fr) * 2009-03-09 2010-09-10 Peugeot Citroen Automobiles Sa Procede pour determiner l'etat de charge d'une source electrochimique pour la traction electrique de vehicules
JP2011169831A (ja) * 2010-02-19 2011-09-01 Mitsumi Electric Co Ltd 電池状態検知装置及び電池状態検知方法
US9142994B2 (en) 2012-09-25 2015-09-22 Qnovo, Inc. Method and circuitry to adaptively charge a battery/cell
US11397215B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using battery physical phenomena
US8970178B2 (en) 2010-06-24 2015-03-03 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US8791669B2 (en) 2010-06-24 2014-07-29 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US11397216B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using a battery model
US10389156B2 (en) 2010-05-21 2019-08-20 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US11791647B2 (en) 2010-05-21 2023-10-17 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
KR101802000B1 (ko) 2010-05-21 2017-11-27 큐노보 인코포레이티드 배터리/셀을 적응적으로 충전하는 방법 및 회로
US10067198B2 (en) 2010-05-21 2018-09-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using the state of health thereof
US9201121B2 (en) * 2010-12-06 2015-12-01 Texas Instruments Incorporated System and method for sensing battery capacity
JP5870590B2 (ja) * 2011-09-29 2016-03-01 ミツミ電機株式会社 電池状態計測方法及び電池状態計測装置
US9362774B2 (en) 2012-01-27 2016-06-07 Medtronic, Inc. Battery charging top-off
US9682243B2 (en) 2012-01-27 2017-06-20 Medtronic, Inc. Battery charging termination parameter based on previous charging session duration
FR2987703B1 (fr) 2012-03-02 2014-12-12 Accumulateurs Fixes Methode et systeme d'estimation de l'etat de charge d'un element electrochimique au lithium comprenant une electrode positive de type phosphate lithie
US9063018B1 (en) 2012-10-22 2015-06-23 Qnovo Inc. Method and circuitry to determine temperature and/or state of health of a battery/cell
FR2999721B1 (fr) * 2012-12-18 2019-06-14 Blue Solutions Procede et dispositif de caracterisation d'un module de stockage d'energie par effet capacitif.
CN103217647B (zh) * 2013-03-22 2015-12-23 奇瑞新能源汽车技术有限公司 一种电动汽车铅酸动力电池荷电状态估算方法
US9461492B1 (en) 2013-04-19 2016-10-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using a charge-time parameter
US20140350875A1 (en) * 2013-05-27 2014-11-27 Scott Allen Mullin Relaxation model in real-time estimation of state-of-charge in lithium polymer batteries
TWI572878B (zh) * 2013-12-27 2017-03-01 財團法人工業技術研究院 電池放電輸出的預測方法與預測裝置
US10574079B1 (en) 2014-06-20 2020-02-25 Qnovo Inc. Wireless charging techniques and circuitry for a battery
CN108621844B (zh) * 2018-05-10 2020-01-03 中南大学 一种暴雨道路无人驾驶车辆电量预测方法及预警***
US11079827B2 (en) 2018-08-02 2021-08-03 International Business Machines Corporation Cognitive battery state of charge recalibration
US11662387B1 (en) * 2022-01-31 2023-05-30 GM Global Technology Operations LLC Battery state estimation using an equivalent constant current model of overpotential
GB2615355B (en) * 2022-02-07 2024-05-08 Breathe Battery Tech Limited Intelligent battery management system and method
US12000901B2 (en) 2022-02-24 2024-06-04 GM Global Technology Operations LLC Battery state estimation based on multiple rates of hysteresis transit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150003A (ja) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd ハイブリッド車の充電量演算方法および充電量演算装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021718A (en) * 1975-08-21 1977-05-03 General Electric Company Battery monitoring apparatus
US5631540A (en) 1994-11-23 1997-05-20 Lucent Technologies Inc. Method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge
KR100395516B1 (ko) 1998-11-19 2003-12-18 금호석유화학 주식회사 비선형등가회로모형을이용한축전장치의특성인자수치화방법및장치
KR100695658B1 (ko) 1999-04-08 2007-03-19 코닌클리케 필립스 일렉트로닉스 엔.브이. 배터리의 충전 상태를 결정하는 방법 및 디바이스
US6388447B1 (en) * 2000-11-07 2002-05-14 Moltech Power Systems, Inc. Method and apparatus for battery fuel gauging

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150003A (ja) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd ハイブリッド車の充電量演算方法および充電量演算装置

Also Published As

Publication number Publication date
JP2004515044A (ja) 2004-05-20
WO2002044743A1 (en) 2002-06-06
US6515453B2 (en) 2003-02-04
KR20020070516A (ko) 2002-09-09
US20020117997A1 (en) 2002-08-29
EP1337865A1 (en) 2003-08-27

Similar Documents

Publication Publication Date Title
KR100849114B1 (ko) 재충전 가능한 배터리의 남은 사용 시간뿐만 아니라 충전상태를 예측하는 방법
KR101195515B1 (ko) 전원장치용 상태검지장치, 전원장치 및 전원장치에사용되는 초기 특성 추출장치
EP2089731B1 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
KR100956172B1 (ko) 2차 전지의 충방전 전기량 추정 방법 및 장치, 2차 전지의분극 전압 추정 방법 및 장치, 및 2차 전지의 잔존 용량추정 방법 및 장치
JP5058814B2 (ja) バッテリーの状態及びパラメーターの推定システム及び方法
JP3873623B2 (ja) 電池充電状態の推定手段及び電池劣化状態推定方法
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US6633165B2 (en) In-vehicle battery monitor
US8203305B1 (en) Enhanced voltage-based fuel gauges and methods
CN108291944B (zh) 电池管理装置
US8234087B2 (en) Apparatus and method for detecting a status of a secondary battery connected to a load
US20090248334A1 (en) Method for estimating the charge of a motor vehicle battery
EP2700964A2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
EP1555537A1 (en) Battery remaining capacity measuring apparatus
US9891285B2 (en) Battery fuel gauge
US20170370995A1 (en) Method and apparatus for detecting state of battery
KR20160113011A (ko) 전지 잔량 예측 장치 및 배터리 팩
US6191590B1 (en) Device and a process for monitoring the state of charge of a battery
KR20070107971A (ko) 배터리 관리 방법 및 장치
KR101398465B1 (ko) 배터리 상태 판단 장치 및 그 판단 방법
KR20110129529A (ko) 배터리 충전량 측정 시스템 및 이를 이용한 배터리의 충전량 측정 방법
JP3305403B2 (ja) 蓄電池容量試験装置
JPH03180784A (ja) 電池残量演算装置
JP3073041B2 (ja) バックアップ用電池の寿命検出方法およびその装置
JPH10132911A (ja) バッテリー残容量計

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee