KR100840281B1 - Method of manufacturing titanium oxide mixture powder for photocatalystic - Google Patents

Method of manufacturing titanium oxide mixture powder for photocatalystic Download PDF

Info

Publication number
KR100840281B1
KR100840281B1 KR1020050049953A KR20050049953A KR100840281B1 KR 100840281 B1 KR100840281 B1 KR 100840281B1 KR 1020050049953 A KR1020050049953 A KR 1020050049953A KR 20050049953 A KR20050049953 A KR 20050049953A KR 100840281 B1 KR100840281 B1 KR 100840281B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
dioxide composite
titanium
composite powder
aqueous solution
Prior art date
Application number
KR1020050049953A
Other languages
Korean (ko)
Other versions
KR20060128465A (en
Inventor
이수진
Original Assignee
이수진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이수진 filed Critical 이수진
Priority to KR1020050049953A priority Critical patent/KR100840281B1/en
Publication of KR20060128465A publication Critical patent/KR20060128465A/en
Application granted granted Critical
Publication of KR100840281B1 publication Critical patent/KR100840281B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Fertilizers (AREA)

Abstract

본 발명은 자외선 및 가시광선 영역에서 식물 생장을 촉진시킬 수 있는 금속이 도핑된 광촉매용 이산화티탄 복합체 분말의 제조 방법에 관한 것으로, 자외선 영역의 파장만을 이용하여 식물의 생장에 효과가 있다고 알려진 이산화티탄의 단점을 보완하기 위해 가시광선 영역을 포함한 태양광에서 효과적으로 식물의 생장을 촉진시킬 수 있는 이산화티탄 복합체 분말의 제조 방법에 관한 것이다.The present invention relates to a method for preparing a titanium dioxide composite powder for metals doped with a metal which can promote plant growth in the ultraviolet and visible region, and is known to be effective for plant growth using only the wavelength of the ultraviolet region. In order to supplement the disadvantages of the present invention relates to a method for producing a titanium dioxide composite powder that can effectively promote the growth of plants in sunlight including the visible region.

이산화티탄 복합체, 나노분말, 광촉매, 전이금속, 암모니아. Titanium dioxide composites, nanopowders, photocatalysts, transition metals, ammonia.

Description

광촉매용 이산화티탄 복합체 분말의 제조방법{Method of manufacturing titanium oxide mixture powder for photocatalystic}Method of manufacturing titanium oxide mixture powder for photocatalyst}

본 발명은 기존의 이산화티탄 광촉매의 성능을 향상시키기 위해 전이금속 및 안티몬(Sb), 주석(Sn), 규소(Si) 및 알루미늄(Al) 중 선택된 적어도 하나 이상의 금속을 첨가한 이산화티탄 복합체 분말을 간단히 제조하는 방법에 관한 것이다.The present invention provides a titanium dioxide composite powder containing a transition metal and at least one metal selected from transition metals and antimony (Sb), tin (Sn), silicon (Si), and aluminum (Al) in order to improve the performance of a conventional titanium dioxide photocatalyst. It simply relates to a method of manufacturing.

전이금속이 도핑된 이산화티탄 복합체 광촉매는 기존의 이산화티탄 광촉매 활성에 비해 2 - 4배 가량 향상된 활성을 보이는 것으로 여러 문헌에서 보고되어 있으며, 본원 특허 출원 10-2004-0105086 및 10-2005-0037071에도 잘 나타나 있다.Titanium dioxide composite photocatalysts doped with transition metals have been reported in several documents to show 2-4 fold improvement in activity over conventional titanium dioxide photocatalytic activities, and the present patent applications 10-2004-0105086 and 10-2005-0037071 It is well represented.

이산화티탄 광촉매를 식물 생장과 관련하여 이용한 예는 미국 특허 US 6,110,867 및 일본 특허 JP2002034333에서 찾아 볼 수 있으며, 사용한 이산화티탄의 입자 크기는 7㎚ ~ 3㎛ 수준까지 사용했으며, 식물의 생장 촉진효과를 확인했다. 본 발명에서는 이들이 사용한 이산화티탄보다 활성이 우수하도록, 전이금속 및 안티몬(Sb), 주석(Sn), 규소(Si) 및 알루미늄(Al) 중 선택된 적어도 하나 이상의 금속이 도핑된 이산화티탄 복합체 분말을 제조하여 식물생장 촉진 광촉매로 사용하고자 한다. Examples of using titanium dioxide photocatalysts in connection with plant growth can be found in US Pat. No. 6,110,867 and Japanese Patent JP2002034333. The particle size of the used titanium dioxide was used in the range of 7 nm to 3 μm, confirming the effect of promoting plant growth. did. In the present invention, a titanium dioxide composite powder doped with a transition metal and at least one metal selected from transition metals and antimony (Sb), tin (Sn), silicon (Si), and aluminum (Al) is prepared so as to have better activity than the titanium dioxide used. It is intended to be used as a photocatalyst to promote plant growth.

기존 광촉매용 이산화티탄은 380㎚ 이하의 자외선 영역에서만 광활성을 가지며, 태양광 중에는 자외선이 2%미만이므로 적용범위가 좁았다. 이에 본 발명에서는 전이금속 및 안티몬(Sb), 주석(Sn), 규소(Si) 및 알루미늄(Al) 중 선택된 적어도 하나 이상의 금속이 도핑된 이산화티탄 복합체 분말의 경우에는 770㎚미만의 가시광선에서도 광활성을 가지므로 좀 더 넓은 파장 영역의 빛을 활용하여 기존 광촉매보다 높은 활성을 가진 이산화티탄 복합체 광촉매 분말의 제조 방법을 제공할 수 있다.Conventional photocatalyst titanium dioxide has photoactivity only in the ultraviolet region of 380nm or less, and the application range is narrow because the ultraviolet ray is less than 2% in sunlight. Therefore, in the present invention, the titanium dioxide composite powder doped with a transition metal and at least one metal selected from antimony (Sb), tin (Sn), silicon (Si), and aluminum (Al) is photoactive even in visible light of less than 770 nm. Therefore, it is possible to provide a method for preparing a titanium dioxide composite photocatalyst powder having higher activity than conventional photocatalysts by utilizing light in a wider wavelength range.

상기 언급한 미국 및 일본 특허에서 사용한 이산화티탄 광촉매와 본 발명에서 제조한 금속을 포함한 이산화티탄 복합체는 분명히 다른 물질임을 밝혀둔다.It is apparent that the titanium dioxide photocatalyst used in the above-mentioned US and Japanese patents and the titanium dioxide composite including the metal prepared in the present invention are clearly different materials.

본 발명은 기존의 이산화티탄 광촉매가 자외선 영역에서만 광활성을 가지는 것을 보완하여 자외선뿐만 아니라 가시광선을 포함한 자연광에서 광활성을 가지는 금속이 도핑된 이산화티탄 복합체 나노 분말을 제조하는 방법과 이를 활용해 자연광에 노출되어 있는 식물의 성장을 촉진시키거나 작물의 수확량을 높이는 방법을 제공하고자 한다.The present invention supplements the conventional titanium dioxide photocatalyst having photoactivity only in the ultraviolet region, and a method of preparing a titanium dioxide composite nanopowder doped with a metal having photoactivity in natural light including not only ultraviolet light but also exposed to natural light It is intended to provide a way to promote the growth of crops or increase the yield of crops.

상기의 목적을 달성하기 위한 본 발명은, 하나 또는 그 이상의 전이금속이 포함된 수용액을 제조하는 단계; 제조된 수용액에 티타늄알콕사이드 또는 사염화티탄을 첨가해서 전이금속이 도핑된 이산화티탄 복합체를 제조하는 단계; 및 전이금속이 도핑된 이산화티탄 복합체를 400℃에서 최종 열처리하는 단계를 포함하는 광촉매용 이산화티탄 복합체 분말의 제조 방법을 제공한다.
상기 이산화티탄 복합체 분말은 입경이 2 ~ 70㎚인 것일 수 있다.
상기 티타늄알콕사이드 또는 사염화티탄은 티탄 이온 기준으로 전이금속이 포함된 수용액 대비 1 ~ 10㏖%로 투입되는 것일 수 있다.
상기 전이금속은 철(Fe), 크롬(Cr), 바나듐(V), 니오븀(Nb), 코발트(Co) 및 구리(Cu) 중 선택된 것이며, 수용액 중에는 전이금속의 알콕사이드(Alkoxide)류, 염화물류, 질화물류 및 수화물류 중 선택된 형태로 포함되는 것일 수 있다.
상기 수용액 중 전이금속의 농도는 0.01 ~ 10 ㏖%인 것일 수 있다.
또한 본 발명은, 안티몬(Sb), 주석(Sn), 규소(Si) 및 알루미늄(Al) 중 선택된 적어도 하나 이상의 금속이 포함된 수용액을 제조하는 단계; 제조된 수용액에 티타늄알콕사이드 또는 사염화티탄을 첨가해서 금속이 도핑된 이산화티탄 복합체를 제조하는 단계; 및 금속이 도핑된 이산화티탄 복합체를 400℃에서 최종 열처리하는 단계를 포함하는 광촉매용 이산화티탄 복합체 분말의 제조 방법을 제공한다.
The present invention for achieving the above object, the step of preparing an aqueous solution containing one or more transition metal; Preparing a titanium dioxide composite doped with transition metal by adding titanium alkoxide or titanium tetrachloride to the prepared aqueous solution; And it provides a method for producing a titanium dioxide composite powder for a photocatalyst comprising the final heat treatment of the transition metal-doped titanium dioxide composite at 400 ℃.
The titanium dioxide composite powder may have a particle diameter of 2 ~ 70nm.
The titanium alkoxide or titanium tetrachloride may be added in an amount of 1 to 10 mol% based on titanium ions relative to an aqueous solution containing a transition metal.
The transition metal is selected from iron (Fe), chromium (Cr), vanadium (V), niobium (Nb), cobalt (Co) and copper (Cu), and in the aqueous solution, alkoxides and chlorides of the transition metal. , Nitrides and hydrates may be included in the selected form.
The concentration of the transition metal in the aqueous solution may be 0.01 to 10 mol%.
In another aspect, the present invention, preparing an aqueous solution containing at least one metal selected from antimony (Sb), tin (Sn), silicon (Si) and aluminum (Al); Preparing a titanium dioxide composite doped with metal by adding titanium alkoxide or titanium tetrachloride to the prepared aqueous solution; And it provides a method of producing a titanium dioxide composite powder for a photocatalyst comprising the final heat treatment of the metal-doped titanium dioxide composite at 400 ℃.

본 발명의 전이금속 및 안티몬(Sb), 주석(Sn), 규소(Si) 및 알루미늄(Al) 중 선택된 적어도 하나 이상의 금속이 도핑된 이산화티탄 복합체 분말의 경우, 이산화티탄의 에너지 밴드갭(band gap) 내에 새로운 에너지 레벨을 만들어 밴드갭을 줄여주어 광활성을 용이하게 한다. 이렇게 생성된 새로운 에너지 레벨은 770㎚이하의 가시광선 영역에서도 광활성을 가지도록 해준다.In the case of the titanium dioxide composite powder doped with the transition metal of the present invention and at least one metal selected from antimony (Sb), tin (Sn), silicon (Si), and aluminum (Al), an energy band gap of titanium dioxide New energy levels are created within the band to reduce the bandgap to facilitate photoactivity. This new energy level allows photoactivity in the visible region below 770nm.

전이금속이라 함은 전형원소에 대응하는 것으로, 원자의 전자구조에 있어서 d오비탈에서 전자의 증가를 볼 수 있는 일련의 원소군을 가리키는 것이며, 그 범위는 학자에 따라 약간의 차이는 있으나, 보통 원자번호 21인 스칸듐(Sc)부터 원자번호 30인 아연(Zn)까지, 원자번호 39인 이트륨(Y)부터 원자번호 48인 카드뮴(Cd)까지, 원자번호 57인 란탄부터 원자번호 80인 수은(Hg)까지, 원자번호 89인 악티늄(Ac)부터 원자번호 112인 우눔븀(Uub)까지를 포함한다.
이러한 전이금속 중 특히 본 발명에 적용할 수 있는 전이금속은 철(Fe), 크롬(Cr), 바나듐(V), 니오븀(Nb), 코발트(Co) 및 구리(Cu)이며, 상기의 전이금속 이외에도 안티몬(Sb), 주석(Sn), 규소(Si) 및 알루미늄(Al) 중 선택된 적어도 하나 이상의 금속을 적용할 수 있다. 이들을 포함하는 수용액을 제조할 때, 금속의 알콕사이드(Alkoxide)류, 염화물류, 질화물류, 수화물류 등의 형태로 포함되며, 상기 금속은 이 이외에도 수용액으로 만들 수 있는 화합물이면 모두 사용 가능하다.
이들 금속(M)을 하나 또는 둘 이상을 포함하여 이산화티탄을 제조하게 되면 TiO2의 구조에서 Ti1-xM1 xO2 또는 Ti1-(x+y)M1 x M2 yM O2의 새로운 화학구조를 가지게 된다. 금속의 함량이 너무 적으면 TiO2구조 및 성질에 변화가 없으며, 너무 많으면 Ti1-xM1 xO2 또는 Ti1-(x+y)M1 xM2 yM O2의 구조가 아닌 첨가한 금속의 금속산화물이 다량 생성된다. 그러므로, 이산화티탄에 있어서 금속의 함유량은 티탄을 기준하여 0.01 ~ 10㏖%인 것이 바람직하다.
Transition metals correspond to typical elements and refer to a group of elements in which the electrons in the atom can see an increase in electrons in the d-orbital. From scandium (Sc) at number 21 to zinc (Zn) at atomic number 30, yttrium (Y) at atomic number 39 to cadmium (Cd) at atomic number 48, lanthanum at atomic number 57 to mercury (Hg at atomic number 80) ), From actinium (Ac) with atomic number 89 to numbium (Uub) with atomic number 112.
Among these transition metals, in particular, transition metals applicable to the present invention are iron (Fe), chromium (Cr), vanadium (V), niobium (Nb), cobalt (Co), and copper (Cu). In addition, at least one metal selected from antimony (Sb), tin (Sn), silicon (Si), and aluminum (Al) may be applied. When preparing an aqueous solution containing these, it is included in the form of alkoxides (alkoxides), chlorides, nitrides, hydrates and the like of the metal, the metal can be used as long as it is a compound that can be made in addition to the aqueous solution.
If by these metals include at least one or both of the (M) prepared titanium dioxide in the structure of TiO 2 Ti 1-x M 1 x O 2 , or Ti 1- (x + y) M 1 x M 2 y MO 2 It has a new chemical structure. If the metal content is too small, there is no change in the structure and properties of TiO 2, and if it is too large, the addition of Ti 1-x M 1 x O 2 or Ti 1- (x + y) M 1 x M 2 y MO 2 is not added. A large amount of metal oxide of one metal is produced. Therefore, it is preferable that content of a metal in titanium dioxide is 0.01-10 mol% with respect to titanium.

이산화티탄의 결정상은 루타일(Rutile), 아나타제(Anatase), 브루카이트(Brookite)상이 있으며, 본 발명에서 식물에 적용한 결과, 아나타제 구조가 식물의 생장 활성에 가장 적합하였다.The crystal phases of titanium dioxide include rutile, anatase, and brookite phases. As a result of application to plants in the present invention, the anatase structure was most suitable for plant growth activity.

이산화티탄 복합체 분말의 제조 방법은 출발 물질에 따라 조금씩 차이가 있으며, 티타늄알콕사이드(Titanium alkoxide)와 사염화티탄(TiCl4) 두 종류의 출발 물질로 성하는 화학적 합성방법으로 한정하여 제조하였다. 제조 방법은 이산화티탄 복합체를 콜로이드를 만드는 단계와 이를 열처리하여 아나타제 상으로 고정하는 단계로 이루어져 있다.The production method of the titanium dioxide composite powder is slightly different depending on the starting materials, and was prepared by limiting the chemical synthesis to the two types of starting materials, titanium alkoxide and titanium tetrachloride (TiCl 4 ). The production method consists of a step of making a colloidal titanium dioxide composite and heat-treating it to fix the anatase phase.

금속이 도핑된 아나타제형 이산화티탄 복합체 분말을 제조하기 위해 상기 언급한 금속 0.01 ~ 10㏖%와 황산이온(SO4 2-) 0.03 ~ 0.15㏖%가 포함된 수용액을 제조하고 티타늄알콕사이드나 사염화티탄을 티탄이온 기준으로 수용액 대비 1 ~ 10㏖%를 서서히 수용액에 투입하여 30 ~ 90℃ 범위의 온도에서 충분히 반응시켜 반응을 종결한 후, 암모니아수로 중화하여 침전 및 세정과정을 거치고 원심분리를 이용하여 금속이 도핑된 이산화티탄 복합 분말의 케이크를 얻고, 이를 다시 200℃이하의 온도에서 충분히 건조시킨다. XRD로 분석한 결과, 이렇게 생성된 이산화티탄 복합체 분말은 불완전한 아나타제 결정 구조를 가지는데 이를 산소분위기의 가열로에서 400℃로 90분 이상 열처리하게 되면 완전한 아나타제 결정 구조를 가지는, 금속이 도핑된 이산화티탄 복합체 분말을 얻을 수 있다. 다만 도핑된 금속의 함량과 종류에 따라 XRD 결정 피크의 미세한 피크이동(Peak-shift)이 확인되었다. In order to prepare anatase-type titanium dioxide composite powder doped with metal, an aqueous solution containing 0.01 to 10 mol% of the above-mentioned metal and 0.03 to 0.15 mol% of sulfate ion (SO 4 2- ) was prepared, and titanium alkoxide or titanium tetrachloride was prepared. Titanium ions, based on the titanium ion 1 ~ 10 mol% is gradually added to the aqueous solution to fully react at a temperature of 30 ~ 90 ℃ to terminate the reaction, and then neutralized with ammonia water to proceed the precipitation and washing process and centrifugal metal A cake of this doped titanium dioxide composite powder is obtained, which is then sufficiently dried at a temperature of 200 ° C or less. As a result of analysis by XRD, the titanium dioxide composite powder thus formed had an incomplete anatase crystal structure, and when it was heat-treated at 400 ° C. for 90 minutes in a heating furnace of an oxygen atmosphere, it had a complete anatase crystal structure. A composite powder can be obtained. However, the peak-shift of the XRD crystal peak was confirmed according to the content and type of the doped metal.

상기의 방법으로 제조된 이산화티탄 복합체 분말을 식물에 적용하기 위해 증류수에 1~500ppm 비율로 분산하거나, 다공성이며 표면적이 우수한 제올라이트, 알루미나, 실리카 등에 0.01~10 wt% 흡착시킨 분말을 제조하여 식물에 분무하였다. 또한 식물에 적용할 때 증류주 중 분산되는 분말이 응집되지 않도록 응집방지제로써 고급알코올계 혼합제 또는 알카올레핀계 혼합제를 이산화티탄 복합체 분말 대비 1~200중량%로 포함할 수도 있다.In order to apply the titanium dioxide composite powder prepared by the above method to plants, it is dispersed in distilled water at a ratio of 1 to 500 ppm, or a powder prepared by adsorbing 0.01 to 10 wt% to a zeolite, alumina, silica, etc., which is porous and has excellent surface area, is prepared on plants. Sprayed. In addition, when applied to the plant may contain a higher alcohol-based blend or alkaolefin-based blending agent as 1 to 200% by weight compared to the titanium dioxide composite powder as a flocculant to prevent the powder dispersed in the distilled spirits do not aggregate.

이산화티탄의 암모니아 생성에 관하여 발표된 논문(G.N. Schrauzer, T.D. Guth, J.A.Chem, Soc., 99,7189)과 전이금속이 도핑된 이산화티탄 복합체의 암모니아 생성에 관한 발표(A. Auguliaro et al, Hydrogen Energy Process , Proc. Of 3rd World Hydrogen Energy Conference, Tokyo, Japan, 1980)에 의하면 이산화티탄 및 복합체 광촉매를 이용하여 질소 조건 하에서 물을 분해하여 암모니아가 생성되는 것이 보고되어 있으며, 이를 근거로 하여, 상기에 사용된 이산화티탄 복합 분말의 식물에서 거동을 살펴보면 태양광에 의해 촉매에서 물이 쉽게 분해되어 주변에 수소분자를 가지게 되며, 이 수소분자가 다시 수소 라디칼(Radical) 또는 이온으로 분해가 이루어지고, 또한 공기중의 질소(N2)도 촉매효과에 의한 광반응으로 질소 라디칼 또는 이온으로 형성되어 이렇게 생성된 3개의 수소와 1개의 질소가 반응하여 암모니아(NH3)를 형성하게 되고, 생성된 암모니아는 암모니아 이온(NH4 +) 또는 아질산 이온(NO3 -) 또는 질산 이온(NO2 -)으로 식물에 흡수가 되므로 질소 비료 시비 효과가 나타나는 것으로 생각된다. 이와 함께 식물에 적용했을 경우 이산화티탄 광촉매의 고유 기능인 향균, 살균 및 방오 기능으로 식물에 미생물 또는 세균 증식을 억제하는 기능도 기대할 수 있다.A published paper on the ammonia production of titanium dioxide (GN Schrauzer, TD Guth, JAChem, Soc., 99,7189) and on the ammonia production of transition metal-doped titanium dioxide composites (A. Auguliaro et al, Hydrogen Energy Process, Proc. Of 3 rd World Hydrogen Energy Conference, Tokyo, Japan, 1980) reported that ammonia is produced by decomposition of water under nitrogen conditions using titanium dioxide and a composite photocatalyst. Looking at the behavior of the titanium dioxide composite powder used in plants, water is easily decomposed from the catalyst by sunlight and has hydrogen molecules in the surroundings, which are then decomposed into hydrogen radicals or ions, in addition, the nitrogen present in the air (N 2) is also formed with nitrogen radicals or ions in light response by the catalytic effect of the three hydrogen and 1 nitrogen generated so half By being formed with ammonia (NH 3), the resulting ammonia is ammonium ion (NH 4 +) or nitrous acid ions (NO 3 -) or nitrate ions (NO 2 -), so that absorption in the plant as a fertilizer fertilizing effect appears It is thought to be. In addition, when applied to plants, antimicrobial, bactericidal and antifouling functions, which are inherent to titanium dioxide photocatalysts, can also be expected to suppress microbial or bacterial growth in plants.

본 발명을 상세히 하기 위해 금속이 도핑된 이산화티탄 제조 방법에 대한 실시예와 함께 식물에 적용한 효과를 설명하고자 한다.For the purpose of detailing the present invention will be described the effect applied to the plant with an embodiment of a method for producing a metal doped titanium dioxide.

(실시예 1)(Example 1)

티타늄알콕사이드를 출발물질로 해서 전이금속이 도핑된 아나타제형 이산화티탄 복합체 분말을 제조하기 위해 질산철(Fe(NO3)3)을 Fe/Ti 비로 1㏖%와 황산암모늄((NH4)2SO4) 0.06 ㏖%가 포함된 수용액을 제조하고, 티타늄에톡사이드를 티탄이온 기준으로 수용액 대비 2 ㏖%를 서서히 수용액에 투입하여 75℃에서 24시간 반응시켜 반응을 종결한 후, 암모니아수로 중화하여 침전 시키고 원심분리를 이용하여 철 이온이 도핑된 이산화티탄 복합 분말의 케이크를 얻고, 이를 다시 200℃이하의 온도에서 충분히 건조시킨 후 산소분위기의 가열로에서 400℃로 2시간 열처리하여 아나타제 결정구조를 가진 Ti1-xFexO2 구조의 이산화티탄 복합체 분말을 얻을 수 있었다. 이때 얻어진 분말의 입경은 TEM 분석결과 20㎚이하 수준이며, 결정상은 XRD 분석결과 단일상의 아나타제 구조로 확인되었다.To prepare anatase-type titanium dioxide composite powder doped with a transition metal with titanium alkoxide as a starting material, 1 mol% of iron nitrate (Fe (NO 3 ) 3 ) in an Fe / Ti ratio and ammonium sulfate ((NH 4 ) 2 SO 4 ) Prepare an aqueous solution containing 0.06 mol%, and slowly add 2 mol% of titanium ethoxide to an aqueous solution based on titanium ions, and react at 75 ° C for 24 hours to terminate the reaction. Precipitate and obtain a cake of titanium dioxide composite powder doped with iron ions by centrifugation, and then dry it sufficiently at a temperature of 200 ° C. or lower, and heat-treat it at 400 ° C. for 2 hours in an oxygen atmosphere heating furnace to obtain an anatase crystal structure. Titanium dioxide composite powder having a Ti 1-x Fe x O 2 structure was obtained. The particle size of the powder obtained at this time was 20 nm or less as a result of TEM analysis, and the crystal phase was identified as anatase structure as a single phase by XRD analysis.

(실시예 2)(Example 2)

사염화티탄을 출발물질로 해서 두 가지의 전이금속이 도핑된 아나타제형 이산화티탄 복합체 분말을 제조하기 위해 염화니켈(NiCl2) 6수화물과 염화구리(CuCl2) 2수화물을 각각 Ni 및 Cu 함량 기준으로 0.5 ㏖%와 황산암모늄((NH4)2SO4) 0.09 ㏖%가 포함된 수용액을 제조하고, 제조된 수용액에 사염화티탄을 Ti함량 기준으로 수용액 대비 2 ㏖%를 서서히 수용액에 투입하여 75℃에서 3시간 반응시켜 반응을 종결한 후, 암모니아수로 중화하여 침전 시키고 원심분리를 이용하여 Ni와 Cu가 복합 도핑된 이산화티탄 복합 분말의 케이크를 얻고, 이를 다시 200℃이하의 온도에서 충분히 건조시킨 후 산소분위기의 가열로에서 400℃로 2시간 열처리하여 Ti1-(x+y)NixCuyO2 구조의 이산화티탄 복합체 분말을 얻을 수 있었다. 이때 얻어진 분말의 입경은 TEM 분석결과 8㎚이하 수준의 구형입자이며, 결정상은 XRD 분석결과 단일상의 아나타제 구조로 확인되었다. 입자의 크기는 반응 농도 및 온도를 설정하여 조절이 가능하다.To prepare anatase-type titanium dioxide composite powder doped with two transition metals using titanium tetrachloride as a starting material, nickel chloride (NiCl 2 ) hexahydrate and copper chloride (CuCl 2 ) dihydrate were prepared based on Ni and Cu contents, respectively. Prepare an aqueous solution containing 0.5 mol% and 0.09 mol% of ammonium sulfate ((NH 4 ) 2 SO 4 ), and gradually add 2 mol% of titanium tetrachloride to the aqueous solution based on the Ti content in an aqueous solution. After the reaction was terminated by 3 hours at neutralization with aqueous ammonia to precipitate and precipitated to obtain a cake of titanium dioxide composite powder doped with Ni and Cu complex by centrifugation, and dried sufficiently at a temperature below 200 ℃ again Titanium dioxide composite powder having a Ti 1- (x + y) Ni x Cu y O 2 structure was obtained by heat treatment at 400 ° C. for 2 hours in a heating furnace of an oxygen atmosphere. The particle size of the powder obtained was spherical particles of 8 nm or less as a result of TEM analysis, and the crystal phase was identified as anatase structure by XRD analysis. The particle size can be controlled by setting the reaction concentration and temperature.

(실시예 3)(Example 3)

실시예 2에서 만든 Ti1-(x+y)NixCuyO2 구조의 이산화티탄 복합 분말이 식물의 생장 및 수확량의 증감을 보기 위해 분말을 150ppm으로 물에 분산시켜 꽃이 맺히기 시작하는 참외밭에 직접 뿌려준 후 4주 후에 확인한 결과 처리구 쪽의 참외잎 크기가 분말을 뿌리지 않은 무처리구와 비교하여 육안으로도 생육이 좋아진 것을 확인할 수 있었으며, 참외잎의 넓이를 측정한 결과 1.5-2배 가량 큰 것을 확인할 수 있었다. Titanium dioxide composite powder of Ti 1- (x + y) Ni x Cu y O 2 structure made in Example 2 was dispersed in water at 150 ppm to see the increase of plant growth and yield. After 4 weeks of spraying directly on the field, the size of melon leaf on the treated side was better than the non-powdered on the powder, and the growth was improved even with the naked eye. As a result of measuring the area of the melon leaf, it was 1.5-2 times larger. I could confirm that.

(실시예 4)(Example 4)

실시예 1의 방법으로 제조한 Ti1-xFexO2 구조의 이산화티탄 복합 분말이 0.1wt% 담지된 다공성 실리카 5kg을 500리터의 물에 잘 분산시켜 콩을 파종한 지표면에 뿌려주고, 3주후 무처리구와 생장을 비교한 결과 분말이 담지된 다공성 실리카를 뿌려준 처리구 쪽의 싹들이 키가 크고 잎이 무성함을 확인할 수 있었다. 콩 줄기를 측정한 결과 무처리구와 비교하여 1.3배 이상 굵은 것을 확인할 수 있었다. The Ti 1-x Fe x O 2 structured titanium dioxide composite powder prepared by the method of Example 1 was dispersed in 500 liters of 5 kg of porous silica loaded with 0.1 wt% of water well and sown on the sown ground surface, 3 As a result of comparing the growth with the untreated group, it was confirmed that the shoots on the treated side of the powder-treated porous silica were tall and leafy. As a result of measuring the bean stalks, it was found that 1.3 times thicker than the non-treated group.

본 발명은 간단한 방법으로 기존의 이산화티탄 광촉매보다 높은 활성을 가질뿐만 아니라 770㎚이하의 가시광선 영역에서도 활성을 나타내는 금속이 도핑된 아나타제 결정상의 광촉매용 이산화티탄 복합체 분말을 쉽게 제조할 수 있는 방법을 제시하고 있으며 이와 함께, 제조된 복합체 광촉매를 식물에 적용했을 경우, 식물의 표면 또는 지표에 존재하며 공기중의 질소와 수분 중의 수소를 이용하여 질소 비료의 성분과 같은 질소 화합물이 생성되어 질소 비료 시비의 효과를 나타낸다. 본 발명에서 제조된 광촉매용 이산화티탄 복합체 분말은 토양 성분인 티탄, 철, 알루미늄, 실리카 등으로 이루어져 있으므로 화학비료 사용으로 인한 토양의 오염 또는 황폐화를 막을 수 있는 획기적인 방법이다.The present invention provides a method for easily preparing a titanium dioxide composite powder for photocatalysts in which anatase crystal phases doped with a metal having not only higher activity than conventional titanium dioxide photocatalysts but also active in the visible region of 770 nm or less by a simple method. In addition, when the prepared composite photocatalyst is applied to plants, nitrogen compounds such as nitrogen fertilizer components are generated by using nitrogen in the air and hydrogen in water when the composite photocatalyst is applied to plants. Indicates the effect. The titanium dioxide composite powder for photocatalyst prepared in the present invention is composed of titanium, iron, aluminum, silica, etc., which are soil components, and is a breakthrough method to prevent soil contamination or deterioration due to the use of chemical fertilizers.

Claims (8)

하나 또는 그 이상의 전이금속이 포함된 수용액을 제조하는 단계;Preparing an aqueous solution containing one or more transition metals; 제조된 수용액에 티타늄알콕사이드 또는 사염화티탄을 첨가해서 전이금속이 도핑된 이산화티탄 복합체를 제조하는 단계; 및 Preparing a titanium dioxide composite doped with transition metal by adding titanium alkoxide or titanium tetrachloride to the prepared aqueous solution; And 전이금속이 도핑된 이산화티탄 복합체를 400℃에서 최종 열처리하는 단계를 포함하는 광촉매용 이산화티탄 복합체 분말의 제조 방법.Method for producing a photocatalyst titanium dioxide composite powder comprising the final heat treatment of the transition metal-doped titanium dioxide composite at 400 ℃. 삭제delete 제 1 항에 있어서,The method of claim 1, 이산화티탄 복합체 분말은 입경이 2 ~ 70㎚인 것임을 특징으로 하는 광촉매용 이산화티탄 복합체 분말의 제조 방법.Titanium dioxide composite powder is a method for producing a titanium dioxide composite powder for photocatalyst, characterized in that the particle diameter is 2 ~ 70nm. 제 1 항에 있어서,The method of claim 1, 티타늄알콕사이드 또는 사염화티탄은 티탄 이온 기준으로 전이금속이 포함된 수용액 대비 1 ~ 10㏖%로 투입되는 것을 특징으로 하는 광촉매용 이산화티탄 복합체 분말의 제조 방법.Titanium alkoxide or titanium tetrachloride is a method for producing a titanium dioxide composite powder for a photocatalyst, characterized in that the titanium ion is added in 1 ~ 10mol% compared to the aqueous solution containing a transition metal. 제 1 항에 있어서,The method of claim 1, 전이금속은 철(Fe), 크롬(Cr), 바나듐(V), 니오븀(Nb), 코발트(Co) 및 구리(Cu) 중 선택된 것이며, 수용액 중에는 전이금속의 알콕사이드(Alkoxide)류, 염화물류, 질화물류 및 수화물류 중 선택된 형태로 포함되는 것임을 특징으로 하는 광촉매용 이산화티탄 복합체 분말의 제조 방법.The transition metal is selected from iron (Fe), chromium (Cr), vanadium (V), niobium (Nb), cobalt (Co) and copper (Cu), and in aqueous solution, alkoxides, chlorides, Method for producing a titanium dioxide composite powder for photocatalyst, characterized in that it is included in the form selected from nitrides and hydrates. 제 1 항에 있어서,The method of claim 1, 수용액 중 전이금속의 농도는 0.01 ~ 10 ㏖%인 것을 특징으로 하는 광촉매용 이산화티탄 복합체 분말의 제조 방법.Method for producing a titanium dioxide composite powder for a photocatalyst, characterized in that the concentration of the transition metal in the aqueous solution is 0.01 to 10 mol%. 안티몬(Sb), 주석(Sn), 규소(Si) 및 알루미늄(Al) 중 선택된 적어도 하나 이상의 금속이 포함된 수용액을 제조하는 단계;Preparing an aqueous solution containing at least one metal selected from antimony (Sb), tin (Sn), silicon (Si), and aluminum (Al); 제조된 수용액에 티타늄알콕사이드 또는 사염화티탄을 첨가해서 금속이 도핑된 이산화티탄 복합체를 제조하는 단계; 및 Preparing a titanium dioxide composite doped with metal by adding titanium alkoxide or titanium tetrachloride to the prepared aqueous solution; And 상기 금속이 도핑된 이산화티탄 복합체를 400℃에서 최종 열처리하는 단계를 포함하는 광촉매용 이산화티탄 복합체 분말의 제조 방법.Method for producing a photocatalyst titanium dioxide composite powder comprising the final heat treatment of the metal-doped titanium dioxide composite at 400 ℃. 삭제delete
KR1020050049953A 2005-06-10 2005-06-10 Method of manufacturing titanium oxide mixture powder for photocatalystic KR100840281B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050049953A KR100840281B1 (en) 2005-06-10 2005-06-10 Method of manufacturing titanium oxide mixture powder for photocatalystic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050049953A KR100840281B1 (en) 2005-06-10 2005-06-10 Method of manufacturing titanium oxide mixture powder for photocatalystic

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020070109213A Division KR100840750B1 (en) 2007-10-29 2007-10-29 Titanium oxide mixture powder solution for photocatalystic

Publications (2)

Publication Number Publication Date
KR20060128465A KR20060128465A (en) 2006-12-14
KR100840281B1 true KR100840281B1 (en) 2008-06-23

Family

ID=37731126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050049953A KR100840281B1 (en) 2005-06-10 2005-06-10 Method of manufacturing titanium oxide mixture powder for photocatalystic

Country Status (1)

Country Link
KR (1) KR100840281B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274087B1 (en) * 2011-02-28 2013-06-12 우신물산(주) manufacturing method of visible light-responsive photo catalyst, and photo catalyst thereof method
KR101292965B1 (en) 2011-03-15 2013-08-02 금오공과대학교 산학협력단 Transition metal doped TiO2 photocatalyst’s preparation method
KR20170005275A (en) 2015-07-02 2017-01-12 서울시립대학교 산학협력단 Method for preparing titanium dioxide photocatalyst dopped silver and photocatalyst prepared thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242576B1 (en) * 2010-06-28 2013-03-19 인하대학교 산학협력단 Photocatalyst having a tin oxide with metal ion and titanium dioxide composite structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158101A (en) 1996-11-29 1998-06-16 Takeda Chem Ind Ltd Plant freshness retaining agent and its production
JP2002034333A (en) 2000-07-28 2002-02-05 Kayoko Sora Nitrogen fixation at vegetated ground surface caused by titanium oxide photo catalyst and its utilization
KR20020048057A (en) * 2000-12-15 2002-06-22 서평원 The preparation method of flower preservatives of highly effective preservation of freshness and prolongation of life using titanium oxide photocatalyst
KR20030062215A (en) * 2002-01-15 2003-07-23 최광수 The liquid composition for promoting plant growth, which includes nano particle titanium dioxide
KR20040105086A (en) * 2003-06-04 2004-12-14 김선재 Synthesizing Process for Advanced Photocatalytic Titanium Dioxide Composited Nanopowders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158101A (en) 1996-11-29 1998-06-16 Takeda Chem Ind Ltd Plant freshness retaining agent and its production
JP2002034333A (en) 2000-07-28 2002-02-05 Kayoko Sora Nitrogen fixation at vegetated ground surface caused by titanium oxide photo catalyst and its utilization
KR20020048057A (en) * 2000-12-15 2002-06-22 서평원 The preparation method of flower preservatives of highly effective preservation of freshness and prolongation of life using titanium oxide photocatalyst
KR20030062215A (en) * 2002-01-15 2003-07-23 최광수 The liquid composition for promoting plant growth, which includes nano particle titanium dioxide
KR20040105086A (en) * 2003-06-04 2004-12-14 김선재 Synthesizing Process for Advanced Photocatalytic Titanium Dioxide Composited Nanopowders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274087B1 (en) * 2011-02-28 2013-06-12 우신물산(주) manufacturing method of visible light-responsive photo catalyst, and photo catalyst thereof method
KR101292965B1 (en) 2011-03-15 2013-08-02 금오공과대학교 산학협력단 Transition metal doped TiO2 photocatalyst’s preparation method
KR20170005275A (en) 2015-07-02 2017-01-12 서울시립대학교 산학협력단 Method for preparing titanium dioxide photocatalyst dopped silver and photocatalyst prepared thereby

Also Published As

Publication number Publication date
KR20060128465A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
Barakat et al. Effect of cobalt doping on the phase transformation of TiO2 nanoparticles
Zaleska Doped-TiO2: a review
Wetchakun et al. Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites
KR100840750B1 (en) Titanium oxide mixture powder solution for photocatalystic
Lin et al. Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO2 under visible-light irradiation
Zaleska et al. Thioacetamide and thiourea impact on visible light activity of TiO2
Badawi et al. Effect of Cu-doping on the structure, FT-IR and optical properties of Titania for environmental-friendly applications
WO2005014170A1 (en) Photocatalyst material being activated by visible light, raw material for the same and method for producing the same
Ghorai Photocatalytic degradation of 4-chlorophenol by CuMoO 4-doped TiO 2 nanoparticles synthesized by chemical route
US8357348B2 (en) Method for preparing uniform anatase-type titanium dioxide nanoparticles
Ohno et al. Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces
KR100840281B1 (en) Method of manufacturing titanium oxide mixture powder for photocatalystic
John et al. Greener approach towards the synthesis of titanium dioxide nanostructures with exposed {001} facets for enhanced visible light photodegradation of organic pollutants
ES2396302T3 (en) Method for the preparation of a photocatalyst containing titanium dioxide
Haruna et al. Visible light induced photodegradation of methylene blue in sodium doped bismuth barium ferrite nanoparticle synthesized by sol-gel method
JP2011063473A (en) Method for producing metal oxide-containing titanium oxide compound
KR20120095855A (en) Copper ion-modified titanium oxide and process for producing the same, and photocatalyst
Geetha et al. Rare earth (RE: La and Ce) elements doped ZnWO4 nanoparticles for enhanced photocatalytic removal of methylene blue dye from aquatic environment
John et al. Influence of solvent and pH on the synthesis of visible light active titanium dioxide nano particles
Eddy et al. Photocatalytic activity of gadolinium doped TiO2 particles for decreasing heavy metal chromium (VI) concentration
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
RU2435733C1 (en) Method of producing photocatalytic nanocomposite containing titanium dioxide
Ryu et al. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using basic additive and their photocatalytic activity on the decomposition of orange II
JP2008179528A (en) Manufacture method of titanium oxide
Kim et al. Nd3+-doped TiO2 nanoparticles prepared by sol-hydrothermal process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120612

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee