KR100838824B1 - Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Polymethyl methacrylate Composites - Google Patents

Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Polymethyl methacrylate Composites Download PDF

Info

Publication number
KR100838824B1
KR100838824B1 KR1020060035862A KR20060035862A KR100838824B1 KR 100838824 B1 KR100838824 B1 KR 100838824B1 KR 1020060035862 A KR1020060035862 A KR 1020060035862A KR 20060035862 A KR20060035862 A KR 20060035862A KR 100838824 B1 KR100838824 B1 KR 100838824B1
Authority
KR
South Korea
Prior art keywords
polymethyl methacrylate
carbon nanofibers
friction
thermal stability
nanocomposites
Prior art date
Application number
KR1020060035862A
Other languages
Korean (ko)
Other versions
KR20070103934A (en
Inventor
박수진
임세혁
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020060035862A priority Critical patent/KR100838824B1/en
Publication of KR20070103934A publication Critical patent/KR20070103934A/en
Application granted granted Critical
Publication of KR100838824B1 publication Critical patent/KR100838824B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

본 발명은 열안정성 및 마찰, 마모 특성이 향상된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법에 관한 것으로서, 더욱 상세하게는 폴리메틸메타크릴레이트 수지의 열적 및 마찰, 마모 특성의 향상을 위하여 충전재로 탄소나노섬유를 사용하여 기계적 혼합법에 의한 비교적 간단하게 제조할 수 있는 열안정성 및 마찰, 마모 특성이 향상된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법에 관한 것이다.The present invention relates to a method for producing carbon nanofibers / polymethyl methacrylate nanocomposites having improved thermal stability, friction, and wear characteristics, and more particularly, to improve thermal, friction, and wear characteristics of polymethyl methacrylate resins. The present invention relates to a method for producing carbon nanofibers / polymethyl methacrylate nanocomposites having improved thermal stability, friction, and abrasion properties, which can be produced relatively simply by mechanical mixing using carbon nanofibers as fillers.

열안정성, 마찰, 마모 특성, 탄소나노섬유, 폴리메틸메타크릴레이트 수지, 나노복합재 Thermal stability, friction, abrasion properties, carbon nanofibers, polymethyl methacrylate resins, nanocomposites

Description

열안정성 및 마찰, 마모 특성이 향상된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법{Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Poly(methyl methacrylate) Composites}Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber / Poly (methyl methacrylate) Composites}

도 1은 탄소나노섬유와 폴리메틸메탈크릴레이트 TGA 곡선을 나타낸 것이다. Figure 1 shows the carbon nanofibers and polymethyl methacrylate TGA curve.

도 2는 탄소나노섬유와 폴리메틸메탈크릴레이트 마찰계수 값을 나타낸 것이다. Figure 2 shows the carbon nanofibers and polymethyl methacrylate friction coefficient value.

도 3은 탄소나노섬유와 폴리메틸메탈크릴레이트 마찰면의 구조를 나타낸 것이다[(a): 0 중량부, (b): 0.1 중량부, (c): 5 중량부, (d): 10 중량부]Figure 3 shows the structure of the carbon nanofibers and the polymethyl methacrylate friction surface [(a): 0 parts by weight, (b): 0.1 parts by weight, (c): 5 parts by weight, (d): 10 parts by weight part]

본 발명은 열안정성 및 마찰, 마모 특성이 향상된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법에 관한 것으로서, 더욱 상세하게는 폴리메틸메타크릴레이트 수지의 열적 및 마찰, 마모 특성의 향상을 위하여 충전재로 탄소나노섬유를 사용하여 기계적 혼합법에 의한 비교적 간단하게 제조할 수 있는 열안정성 및 마찰, 마모 특성이 향상된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법에 관한 것이다.The present invention relates to a method for producing carbon nanofibers / polymethyl methacrylate nanocomposites having improved thermal stability, friction, and wear characteristics, and more particularly, to improve thermal, friction, and wear characteristics of polymethyl methacrylate resins. The present invention relates to a method for producing carbon nanofibers / polymethyl methacrylate nanocomposites having improved thermal stability, friction, and abrasion properties, which can be produced relatively simply by mechanical mixing using carbon nanofibers as fillers.

고분자 매트릭스에 나노 크기의 충전재를 분산시켜 개질한 고분자 나노복합재는 기존의 고분자 복합재료에 비하여 물성이 우수하여 봉합재, 코팅재, 전기전자, 자동차 및 우주항공 산업등 다양한 분야에서 적용이 고려되어지고 있다.Polymer nanocomposites modified by dispersing nano-sized fillers in a polymer matrix have superior physical properties compared to conventional polymer composites, and are being considered for various applications such as sealing materials, coating materials, electric electronics, automotive and aerospace industries. .

기존의 탄소섬유나 유리 섬유 비해 탄소나노섬유는 그 형상이 탄소가 육각모양의 평행한 구조 형태로 교차되어 있어 화학적으로 매우 안정하며, 또한 그 자체로도 뛰어난 기계적, 전기적 성질을 가지고 있어 비강성, 비강도, 내식성 등 다른 재료가 가지지 못하는 우수한 성질을 나타낸다. 그리고 탄소나노섬유는 열전도가 우수하며, 나노 크기 섬유가 갖는 높은 세장비로 인해 다양한 고분자, 금속 및 세라믹 재료의 보강재로서의 가치가 높다. 열가소성 수지인 폴리메틸메타크릴레이트는 표면 특징성과 투명도가 특히 우수한 무정형 고분자로서 내후성, 성형성, 높은 표면강도, 그리고 기계적 가공성이 뛰어나 창유리, 자동차 부품, 조명기구, 전자제품의 외형, 광고장식 등에 널리 사용되고 있다. 하지만 매트릭스 수지 폴리메틸메타크릴레이트는 낮은 용융온도로 열안정성이 낮으며 셀룰러폰, 컴퓨터 등 전자제품의 외형으로 쓰일 경우 잦은 마찰, 마모에 의해 외형의 변화, 제품의 오작동, 그리고 수명의 단축 등의 문제점이 발생하고 있다. 따라서, 충전재나 강화재의 첨가를 통한 복합재의 물성의 강화를 통하여 문제점을 해결할 수 있다. 탄소나노섬유를 첨가한 나노 복합재는 다양한 적용이 가능하여 산업적으로 많은 생산이 이루어지고 있다.Compared to the existing carbon fiber or glass fiber, carbon nanofibers are chemically very stable because carbon is cross-linked in a hexagonal parallel structure, and has excellent mechanical and electrical properties by itself. It shows excellent properties that other materials do not have, such as specific strength and corrosion resistance. In addition, carbon nanofibers have excellent thermal conductivity, and are highly valuable as reinforcing materials for various polymers, metals and ceramics due to the high fineness of nano-size fibers. Polymethyl methacrylate, a thermoplastic resin, is an amorphous polymer with excellent surface characteristics and transparency. It is widely used in window glass, automobile parts, lighting fixtures, electronic products' appearance, advertising decoration, etc. because it has excellent weather resistance, moldability, high surface strength, and mechanical processability. It is used. However, the matrix resin polymethyl methacrylate has low thermal stability due to low melting temperature.When used as the appearance of electronic products such as cellular phones and computers, the appearance changes due to frequent friction and wear, product malfunctions, and shortened lifespan. There is a problem. Therefore, the problem can be solved through the strengthening of physical properties of the composite material through the addition of filler or reinforcing material. Nanocomposites containing carbon nanofibers can be applied to various applications, and many industrial productions have been made.

이에, 본 발명자들은 폴리메틸메타크릴레이트 수지의 물성 및 마찰, 마모 저하의 문제점을 고려하여 복합재의 물성을 강화하기 위하여 연구 노력한 결과, 폴리메틸메타크릴레이트 수지에 충전재로 탄소나노섬유를 첨가하여 열적특성과 기계적 특성을 모두 향상시킨 나노복합재의 제조방법을 개발함으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors conducted research to strengthen the physical properties of the composite material in consideration of the problems of physical properties, friction, and wear reduction of the polymethyl methacrylate resin, thermally by adding carbon nanofibers as a filler to the polymethyl methacrylate resin The present invention has been completed by developing a method for manufacturing a nanocomposite having improved characteristics and mechanical properties.

따라서, 본 발명은 과량의 충전재의 사용에 따른 기계적 물성의 감소를 방지하고 소량의 탄소나노섬유를 사용하여 열안정성과 마찰, 마모특성을 향상시키는 나노복합재의 제조방법을 제공하고자 그 목적이 있는 것이다.Accordingly, an object of the present invention is to provide a method for manufacturing a nanocomposite which prevents the reduction of mechanical properties due to the use of excess filler and improves thermal stability, friction and wear characteristics by using a small amount of carbon nanofibers. .

본 발명은 폴리메틸메타크릴레이트 수지에 충전재로 탄소나노섬유를 이용하여 제조된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법을 그 특징으로 한다.The present invention is characterized by a method for producing carbon nanofibers / polymethyl methacrylate nanocomposites prepared using carbon nanofibers as fillers in polymethylmethacrylate resins.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 폴리메틸메타크릴레이트 수지의 열적 및 마찰, 마모 특성의 향상을 위하여 충전재로 탄소나노섬유를 사용하여 기계적 혼합법에 의한 비교적 간단하게 제조할 수 있는 열안정성 및 마찰, 마모 특성이 향상된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법에 관한 것이다.The present invention is carbon improved thermal stability, friction, and wear properties that can be produced relatively simply by mechanical mixing method using carbon nanofibers as a filler to improve the thermal, friction, and wear properties of polymethyl methacrylate resin A method for producing a nanofiber / polymethyl methacrylate nanocomposite.

이때, 탄소나노섬유는 평균 직경의 크기가 50 ~ 300 nm이고, 길이가 1 ~ 50 ㎛인 것을 사용하는 것이 바람직하다. 직경의 크기가 너무 작으면 가격적인 측 면에서 문제가 있고, 너무 크면 마찰, 마모특성의 향상 저하의 문제점이 있으며, 길이가 너무 짧으면 수지와 필러(filler) 사이의 물리적 향상 저하의 문제가 있으며, 너무 길면 경제적으로 가격이 향상되어 바람직하지 못하다.In this case, the carbon nanofibers preferably have an average diameter of 50 to 300 nm and a length of 1 to 50 μm. If the diameter is too small, there is a problem in terms of cost, and if the diameter is too large, there is a problem of deterioration in improvement of friction and abrasion properties. Too long is economically expensive and undesirable.

탄소나노섬유/폴리메틸메타크릴레이트의 시편 제조에 앞서 전처리 공정으로 폴리메틸메타크릴레이트는 특성상 흡습성이 높으므로 50 ~ 100 ℃에서 2 ~ 5 시간, 탄소나노섬유는 100 ~ 200 ℃에서 9 ~ 15 시간동안 진공오븐에서 건조시켰다. Prior to the preparation of carbon nanofibers / polymethyl methacrylate specimens, polymethyl methacrylate is highly hygroscopic in nature as a pretreatment process, so 2 to 5 hours at 50 to 100 ° C and 9 to 15 at 100 to 200 ° C. It was dried in a vacuum oven for a time.

강화재로 사용된 탄소나노섬유 함량은 폴리메틸메타크릴레이트 100 중량부에 대하여 0.1 ~ 10 중량부로 하며, 기계적 혼합기(brabender instruments plastic corder)를 이용하여 150 ~ 230 ℃에서 10 ~ 1000 rpm의 속도로 10 ~ 30분 동안 폴리메틸메타크릴레이트와 혼합한다. 이때, 탄소나노섬유 함량이 0.1 중량부 미만일 경우에는 폴리메틸메타크릴레이트에 세장비가 큰 탄소나노섬유가 강화재로 첨가됨에 따라 고분자 사슬의 정렬이 일어나며 또한 수지 내에서 기계적 얽힘(mechanical interlocking) 현상이 감소하는 문제가 있고, 10 중량부 미만일 경우에는 마찰ㆍ마모에 의해서 탄소나노섬유의 열전도도가 증가하면서 점탄성의 크기가 증가하여 마찰력이 증가하였기 때문에 바람직하지 못하다.The carbon nanofiber content used as the reinforcing material is 0.1 to 10 parts by weight based on 100 parts by weight of polymethyl methacrylate, and 10 at a speed of 10 to 1000 rpm at 150 to 230 ° C. using a mechanical mixer (brabender instruments plastic corder). Mix with polymethylmethacrylate for ˜ 30 minutes. At this time, when the carbon nanofiber content is less than 0.1 part by weight, the polymer chains are aligned as the finer carbon nanofibers are added to the polymethyl methacrylate as reinforcing material, and mechanical interlocking in the resin is reduced. In the case of less than 10 parts by weight, the thermal conductivity of carbon nanofibers increases due to friction and abrasion, which is not preferable because the viscoelasticity increases and the frictional force increases.

이렇게 혼합한 시료를 , 가로 × 세로 × 깊이 10 × 10 × 0.5 cm3 크기의 정방형 성형몰드와 직경 2.9 cm, 높이 0.5 cm 조건의 성형몰드에 주입하여 열간 가압 성형기를 이용하여 압착하고 150 ~ 230 ℃에서 60 ~ 120분동안 가압하여 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재를 제조한다. 한편, 성형시 발생하 는 기포는 다른 물성도 저하시키기 때문에 진공 백 몰딩(vacuum bag molding)을 만들어 공기흡입장치를 이용해 제거하였다The sample thus mixed is injected into a square molding mold having a width × length × depth 10 × 10 × 0.5 cm 3 and a molding mold having a diameter of 2.9 cm and a height of 0.5 cm. Pressurized for 60 to 120 minutes at to prepare a carbon nanofibers / polymethyl methacrylate nanocomposites. On the other hand, since bubbles generated during molding also lower other physical properties, vacuum bag molding was made and removed using an air suction device.

이렇제 제조된 나노복합재의 열안정성과 마찰, 마모 특성을 확인한 결과, 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 마찰계수는 0.03 ~ 0.18 μ이며, 열분해개시온도는 230 ~ 257 ℃을 나타내었다. 열안정성은 탄소나노섬유의 첨가에 의하여 증가하는 것을 나타내었으며, 또한 나노복합재료의 마찰, 마모 특성은 탄소나노섬유의 첨가량이 소량 증가할 때는 증가하는 경향을 보였으나 10 중량부 이상으로 증가함에 따라 감소하였다. The thermal stability, friction, and abrasion characteristics of the nanocomposites thus prepared were ascertained. The friction coefficients of the carbon nanofibers / polymethylmethacrylate nanocomposites ranged from 0.03 to 0.18 μ and the thermal decomposition initiation temperature was 230 to 257 ° C. . The thermal stability was increased by the addition of carbon nanofibers, and the friction and wear characteristics of the nanocomposites tended to increase when the amount of carbon nanofibers was added in small amounts. Decreased.

따라서, 본 발명에 따른 탄소나노섬유를 첨가한 나노복합재는 제조 공정도 비교적 간단하고, 소량의 충전재의 첨가로서 열안정성 및 마찰, 마모 특성이 향상되었다. 즉, 순수 폴리메틸메타크릴레이트 수지에 비하여 열적 및 기계적 물성 향상이 가능하여 탄소나노섬유/폴리메틸메타크릴레이트 복합재를 이용한 보강제, 전자기기, 전자파차폐재, 고마찰저항제 등의 전기전도성 소재 분야에 매우 효율적으로 사용될 수 있으리라 기대된다.Therefore, the nanocomposite to which carbon nanofibers are added according to the present invention has a relatively simple manufacturing process, and thermal stability, friction, and abrasion characteristics are improved by adding a small amount of filler. In other words, thermal and mechanical properties can be improved compared to pure polymethyl methacrylate resins. Therefore, the present invention can be used in the field of electrically conductive materials such as reinforcement, electronic devices, electromagnetic shielding materials, and high friction resistance agents using carbon nanofibers / polymethyl methacrylate composites. It is expected to be used very efficiently.

이하, 실시예를 들어 본 발명을 상세히 기술할 것이나 본 발명의 범위를 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited to these Examples.

실시예 1Example 1

충전재로 사용한 탄소나노섬유는 평균 직경의 크기가 50 ~ 300 nm이고, 길이 가 1 ~ 50 ㎛인 것으로 복합재 제조 전에 표면에 존재하는 불순물을 제거하기 위해 증류수를 이용하여 세척하고, 원심분리기로 증류수와 탄소섬유를 분리하였고, 이를 3회 반복하였다. 탄소나노섬유/폴리메틸메타크릴레이트의 시편제조에 앞서 전처리 공정으로 폴리메틸메타크릴레이트는 특성상 흡습성이 높으므로 70 ℃에서 4시간, 탄소나노섬유는 150 ℃에서 12시간 동안 진공오븐에서 건조시켰다. 완전히 건조된 탄소나노섬유는 폴리메틸메타크릴레이트 수지[LG 주식회사] 100 중량부에 대하여 0.1 중량부로 기계적 혼합기(brabender instruments plastic corder)를 이용하여 190 ℃에서 400 rpm의 속도로 20분 동안 용융 혼합하였다. 이렇게 혼합한 시료를 10 × 10 × 0.5 cm3 크기의 성형 몰드와 φ=2.9 cm, 높이 0.5 cm의 성형몰드에 주입하여 열간 가압 성형기(carver laboratory press model 2518)를 이용하여 압착시켜 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재를 제조하였다.The carbon nanofibers used as the filler have an average diameter of 50 to 300 nm and a length of 1 to 50 μm. The carbon nanofibers are washed with distilled water to remove impurities on the surface before the composite is manufactured. Carbon fibers were separated and repeated three times. Prior to the preparation of carbon nanofibers / polymethyl methacrylate specimens, polymethyl methacrylate was dried in a vacuum oven at 70 ° C. for 4 hours and carbon nanofibers at 150 ° C. for 12 hours. The completely dried carbon nanofibers were melt mixed at a speed of 400 rpm at 190 ° C. for 20 minutes using a mechanical mixer (brabender instruments plastic corder) at 0.1 parts by weight based on 100 parts by weight of polymethyl methacrylate resin [LG Co., Ltd.]. . The mixed sample was injected into a molding mold of 10 × 10 × 0.5 cm 3 size and a molding mold having a diameter of φ = 2.9 cm and a height of 0.5 cm and compressed using a carbon laboratory press model 2518. Polymethyl methacrylate nanocomposites were prepared.

실시예 2Example 2

탄소나노섬유의 함량을 5 중량부로 사용하되, 상기 실시예 1과 동일한 방법으로 나노복합재를 제조하였다.5 parts by weight of the carbon nanofibers were used, but nanocomposites were prepared in the same manner as in Example 1.

실시예 3Example 3

탄소나노섬유의 함량을 10 중량부로 사용하되, 상기 실시예 1과 동일한 방법으로 나노복합재를 제조하였다.10 parts by weight of the carbon nanofibers were used, but nanocomposites were prepared in the same manner as in Example 1.

비교예 1Comparative Example 1

탄소나노섬유를 첨가하지 않은 폴리메틸메타크릴레이트를 제조하였다.Polymethyl methacrylate without carbon nanofibers was prepared.

시험예 1: 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 열안정성 확인Test Example 1: Confirmation of thermal stability of carbon nanofibers / polymethylmethacrylate nanocomposites

제작된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 열안정성을 측정하기 위해, 열중량 분석기(thermogravimetric analysis, TGA du Pont TGA-2950)를 이용하여 온도 범위는 10 ℃/min의 승온 속도로 질소 분위기 하에서 25 ~ 800 ℃ 범위에서 측정하였다. In order to measure the thermal stability of the fabricated carbon nanofibers / polymethylmethacrylate nanocomposites, the thermogravimetric analysis (TGA du Pont TGA-2950) was used to measure the nitrogen temperature at a rate of 10 ° C./min. It measured in 25-800 degreeC under atmosphere.

제작된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 유리전이 온도를 측정하기 위하여 시차주사열량계(differential scanning calorimeter, DSC; du Pont DSC 910)를 사용하여 질소 하 30 ㎖/min 에서 10 ℃/min의 승온속도로 측정하였다. In order to measure the glass transition temperature of the fabricated carbon nanofibers / polymethyl methacrylate nanocomposites, a differential scanning calorimeter (DSC; du Pont DSC 910) was used at 10 ° C./min at 30 ml / min under nitrogen. It was measured at a temperature rising rate of.

탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 storage modulus (E')와 tan δ(loss tangent)를 측정하기 위해 동적기계분석기(dynamic mechanical analyzer, DMA; TA instrument DMA 2980)를 이용하여 질소 하에서 승온속도 5 ℃/min, 온도범위 30 ~ 180 ℃, 주파수(frequency) 1 Hz, 그리고 진폭(amplitude) 5로 고정하여 측정하였다. In order to measure the storage modulus (E ') and tan δ (loss tangent) of carbon nanofibers / polymethyl methacrylate nanocomposites, the temperature was raised under nitrogen using a dynamic mechanical analyzer (TA instrument DMA 2980). The measurement was fixed at a rate of 5 ° C./min, a temperature range of 30 to 180 ° C., a frequency of 1 Hz, and an amplitude of 5.

상기 실시예 1~3 및 비교예 1의 사용된 탄소나노섬유의 함량에 따라 제조된 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 열분석에 의한 열적 특성의 변 화를 표 1에 각각 나타내었다. The thermal properties of the carbon nanofibers / polymethyl methacrylate nanocomposites prepared according to the contents of the carbon nanofibers used in Examples 1 to 3 and Comparative Example 1 are shown in Table 1, respectively. .

구분division 열분해 개시 온도 (℃)Pyrolysis Initiation Temperature (℃) 최대 무게 감량 온도 (℃)Weight loss temperature (℃) 비교예Comparative example 231231 302302 실시예 1Example 1 239239 327327 실시예 2Example 2 240240 328328 실시예 3Example 3 257257 367367 *각각의 측정값은 비교예 및 실시예에 따른 평균값을 나타냄.* Each measured value represents the average value according to a comparative example and an Example.

시험예 2: 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 마찰, 마모 특성 확인Test Example 2: Confirmation of Friction and Wear Characteristics of Carbon Nanofibers / Polymethylmethacrylate Nanocomposites

탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 마찰, 마모 특성을 측정하기 위하여 마찰계수를 구하였고 시편은 φ=2.9 cm, 높이 0.5 cm 크기로 제조하였다. 제조된 시편은 R&B㈜에서 제작한 마찰, 마모시험기(Triboss PD-102 Wear Tester)를 사용하여 측정하였다. In order to measure the friction and abrasion characteristics of the carbon nanofibers / polymethyl methacrylate nanocomposites, the friction coefficients were obtained and the specimens were manufactured with a diameter of φ = 2.9 cm and a height of 0.5 cm. The prepared specimens were measured using a Triboss PD-102 Wear Tester manufactured by R & B.

도 2에 나타낸 바와 같이, 마찰계수는 0.08 ~ 0.17μ범위에 있다.As shown in Fig. 2, the coefficient of friction is in the range of 0.08 to 0.17 mu.

이상에서 상술한 바와 같이, 본 발명에 따른 제조방법으로 얻은 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재는 순수 폴리메틸메타크릴레이트 수지에 비하여 열적 및 기계적 물성 향상되어 보강제, 전자기기, 전자파차폐재, 고마찰저항제 등의 전기전도성 소재 분야에 매우 효율적으로 사용될 수 있으리라 기대된다.As described above, the carbon nanofibers / polymethylmethacrylate nanocomposites obtained by the manufacturing method according to the present invention have improved thermal and mechanical properties as compared to pure polymethylmethacrylate resins, such as reinforcing agents, electronic devices, electromagnetic shielding materials, It is expected to be used very efficiently in the field of electrically conductive materials such as high friction resistance.

Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 50 ~ 100 ℃에서 2 ~ 5 시간 동안 건조시킨 폴리메틸메타크릴레이트 100 중량부와, 100 ~ 200 ℃에서 9 ~ 15 시간 동안 건조시킨 탄소나노섬유 0.1 ~ 10 중량부를 150 ~ 230 ℃에서 10 ~ 100 rpm의 속도로 10 ~ 30 분 동안 용융 혼합 단계; 및100 parts by weight of polymethyl methacrylate dried at 50 to 100 ° C. for 2 to 5 hours, and 0.1 to 10 parts by weight of carbon nanofibers dried at 100 to 200 ° C. for 9 to 15 hours at 10 to 100 ° C. at 150 to 230 ° C. melt mixing for 10 to 30 minutes at a speed of rpm; And 용융 혼합물을 성형몰드에 주입하여 압착, 성형하는 단계Injecting the molten mixture into the molding mold, pressing, molding 를 포함하는 것을 특징으로 하는 탄소나노섬유/폴리메틸메타크릴레이트 나노복합재의 제조방법.Method for producing a carbon nanofibers / polymethyl methacrylate nanocomposite comprising a. 제 7 항에 있어서, 상기 탄소나노섬유는 평균 직경의 크기가 50 ~ 300 nm이고, 길이가 1 ~ 50 ㎛인 것을 특징으로 하는 나노복합재의 제조방법.The method of claim 7, wherein the carbon nanofibers have an average diameter of 50 to 300 nm and a length of 1 to 50 μm. 삭제delete 제 7 항에 있어서, 상기 성형 시 진공 백 몰딩(vacuum bag molding)으로 기포를 제거하는 것을 특징으로 하는 나노복합재의 제조방법.The method of manufacturing a nanocomposite according to claim 7, wherein bubbles are removed by vacuum bag molding during the molding.
KR1020060035862A 2006-04-20 2006-04-20 Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Polymethyl methacrylate Composites KR100838824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060035862A KR100838824B1 (en) 2006-04-20 2006-04-20 Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Polymethyl methacrylate Composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060035862A KR100838824B1 (en) 2006-04-20 2006-04-20 Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Polymethyl methacrylate Composites

Publications (2)

Publication Number Publication Date
KR20070103934A KR20070103934A (en) 2007-10-25
KR100838824B1 true KR100838824B1 (en) 2008-06-17

Family

ID=38818128

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060035862A KR100838824B1 (en) 2006-04-20 2006-04-20 Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Polymethyl methacrylate Composites

Country Status (1)

Country Link
KR (1) KR100838824B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060028679A (en) * 2003-05-22 2006-03-31 지벡스 코포레이션 Nanocomposites and methods thereto
KR20060052657A (en) * 2002-12-19 2006-05-19 란세스 도이치란트 게엠베하 Conductive thermoplastics containing carbon black and carbon nanofibres

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060052657A (en) * 2002-12-19 2006-05-19 란세스 도이치란트 게엠베하 Conductive thermoplastics containing carbon black and carbon nanofibres
KR20060028679A (en) * 2003-05-22 2006-03-31 지벡스 코포레이션 Nanocomposites and methods thereto

Also Published As

Publication number Publication date
KR20070103934A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
KR100981929B1 (en) Thermoplastic Resin Composition Having Excellent Electrical Conductivity, Mechanical Strength and Chemical Resistance, and Plastic Article
Che et al. Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT
KR100665130B1 (en) Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby
KR20120118384A (en) Biodegradable polymer composite
Visco et al. Cure rate and mechanical properties of a DGEBF epoxy resin modified with carbon nanotubes
CN100400598C (en) Polyphenyl thio-ether and polycarbonate nano composite material and preparation process thereof
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
Jones et al. Effect of polyhedral-oligomeric-sil-sesquioxanes on thermal and mechanical behavior of SC-15 epoxy
Kim et al. Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites
KR100838824B1 (en) Manufacturing method of Thermal stability, Frictional and Wear Behavior of Carbon Nanofiber /Polymethyl methacrylate Composites
KR101620668B1 (en) Resin composition comprising carbon-nanomaterial, and plastic molded products
CN108948639A (en) A kind of recycling ABS composite material and preparation method thereof
KR101439143B1 (en) Polyamide resin compositions for a wheel cover
CN109503971B (en) SAN/PMMA composite material for bathroom and preparation method thereof
CN102020826B (en) Chopped fiber reinforced ABS (acrylonitrile butadiene styrene) composite material and preparation method thereof
KR20050114459A (en) Polycarbonate/abs resin nanocomposites containing montmorillonite
CN111087779B (en) Functional resin composition and preparation method and application thereof
KR101269088B1 (en) Biodagradable polymer/carbon nano tube composite comprising bio-compatibilizer and the preparation thereof
JP2003327836A (en) High heat conductive material and molded product
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article
KR102482344B1 (en) Polycarbonate resin composition and article produced therefrom
Siyuang et al. Study on the Application Properties of WPU and OMMT in RTV Mold Rubber
Tanoue et al. Effect of screw rotation speed on the properties of polycarbonate/vapor-grown carbon fiber composites prepared by melt compounding
KR102021377B1 (en) Method for manufacturing electroconductive polycarbonate nanocomposite having cabon-based filler and electroconductive polycarbonate nanocomposite manufactured thereby
JPS60186535A (en) Thermoplastic synthetic resin composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130325

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 12