KR100782130B1 - Production method of biodiesel with improved oxidative stability and low temperature properties - Google Patents

Production method of biodiesel with improved oxidative stability and low temperature properties Download PDF

Info

Publication number
KR100782130B1
KR100782130B1 KR1020060052698A KR20060052698A KR100782130B1 KR 100782130 B1 KR100782130 B1 KR 100782130B1 KR 1020060052698 A KR1020060052698 A KR 1020060052698A KR 20060052698 A KR20060052698 A KR 20060052698A KR 100782130 B1 KR100782130 B1 KR 100782130B1
Authority
KR
South Korea
Prior art keywords
oil
biodiesel
biodiesel oil
palm
low temperature
Prior art date
Application number
KR1020060052698A
Other languages
Korean (ko)
Inventor
이진석
박지연
김덕근
이준표
박순철
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020060052698A priority Critical patent/KR100782130B1/en
Application granted granted Critical
Publication of KR100782130B1 publication Critical patent/KR100782130B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/081Anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fats And Perfumes (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

A biodiesel production method and a biodiesel with excellent physical properties produced through the method are provided to be highly economically efficient by producing a biodiesel with excellent physical properties through an economical and simple process and reducing or removing addition of an antioxidant. A production method of a biodiesel with improved oxidation stability and low temperature fluidity comprises mixing at least two biodiesel oils selected from the group consisting of a rape biodiesel oil, a soybean biodiesel oil, a sunflower biodiesel oil, a jatropha biodiesel oil, a coconut biodiesel oil, and a palm biodiesel oil. A production method of a biodiesel with improved oxidation stability and low temperature fluidity comprises mixing a palm biodiesel oil with at least one biodiesel oil selected from the group consisting of a rape biodiesel oil, a coconut biodiesel oil, a soybean biodiesel oil, a sunflower biodiesel oil, and a jatropha biodiesel oil. The palm biodiesel oil is mixed with the rape biodiesel oil at a mixing ratio of 20:80 to 80:20 based on 100 weight parts of the total biodiesel oil mixture.

Description

산화안정성과 저온유동성이 개선된 바이오디젤유의 제조방법{Production Method Of Biodiesel With Improved Oxidative Stability And Low Temperature Properties}Production Method Of Biodiesel With Improved Oxidative Stability And Low Temperature Properties

본 발명은 산화안정성과 저온유동성이 개선된 바이오디젤유의 제조방법에 관한 것으로서, 식물성 기름을 이용하여 내연기관의 연료인 바이오디젤유를 제조함에 있어 공정의 생산성 향상에 관한 것이다.The present invention relates to a method for producing biodiesel oil having improved oxidation stability and low temperature fluidity, and to improving productivity in manufacturing biodiesel oil, which is a fuel of an internal combustion engine, using vegetable oil.

특히, 상세하게는 산화안정성과 저온유동성이 상이한 바이오디젤유를 둘 이상 혼합하여 물성을 개선하거나, 물성이 상이한 식물성 기름을 둘 이상 혼합한 기름으로부터 바이오디젤유를 생산하는 방법에 관한 것이다.In particular, the present invention relates to a method of producing biodiesel oil from oils obtained by mixing two or more biodiesel oils having different oxidation stability and low temperature fluidity or by mixing two or more vegetable oils having different physical properties.

석유자원의 과다 사용에 의한 환경오염이 심각해지고 자원의 고갈 가능성이 제기됨에 따라 재생성을 갖는 동, 식물성 기름으로부터 생산 가능한 청정 대체 연료인 바이오디젤에 대한 관심이 높아지고 있는 실정이다.As the environmental pollution caused by the excessive use of petroleum resources is serious and the possibility of resource depletion is raised, there is a growing interest in biodiesel, a clean alternative fuel that can be produced from renewable copper and vegetable oils.

과거 동,식물성 기름은 보일러 연료로 사용된 적은 있으나, 높은 점도 때문에 차량연료로의 직접적인 사용은 불가능한 문제점이 있다. 이러한 식물성 기름의 높은 점도는 고분자 구조이기 때문인데, 그 분자량은 보통 800 내지 900 정도이다. In the past, animal and vegetable oils have been used as boiler fuels, but due to their high viscosity, direct use as vehicle fuels is not possible. This vegetable oil has a high viscosity because of its high molecular structure, and its molecular weight is usually about 800 to 900.

전이에스테르화는 기름의 높은 분자량과 점도를 상당히 줄일 수 있는 공정이어서 이를 이용하여 식물성 기름, 동물성 지방 및 폐식용유와 같은 재생가능한 유지를 산성 또는 염기성 촉매 하에서 알콜과 반응시켜 바이오디젤유를 생성할 수 있다. 즉, 하기의 식에서 알 수 있듯이, 전이에스테르화 공정에서는 저분자량의 알콜이 식물성 기름의 주성분인 Triglyceride와 반응하여 원 분자(Triglyceride)의 1/3에 해당하는 분자량을 갖는 지방산 모노에스터(바이오디젤)를 생산하게 된다.Transesterification is a process that can significantly reduce the high molecular weight and viscosity of oils, which can be used to produce biodiesel oils by reacting renewable fats such as vegetable oils, animal fats, and waste cooking oils with alcohols under acidic or basic catalysts. have. In other words, as shown in the following formula, in the transesterification process, a low molecular weight alcohol reacts with Triglyceride, the main component of vegetable oil, to have a fatty acid monoester (biodiesel) having a molecular weight corresponding to 1/3 of the triglyceride. Will produce.

Figure 112006041084850-pat00001
Figure 112006041084850-pat00001

원칙적으로 전이에스테르화에는 모든 종류의 알콜이 사용 가능하지만 비용상의 제약 때문에 가장 저가인 메탄올과 에탄올이 주로 사용된다.In principle, all kinds of alcohols can be used for the transesterification, but the least expensive methanol and ethanol are mainly used because of cost constraints.

전이에스테르화에 의해 생성된 바이오디젤유는 디젤엔진의 원료인 경유와 물성이 유사하여 경유와 혼합하여 사용하거나 경유를 대체하여 디젤엔진에 사용할 수 있다. 특히, 바이오디젤유는 일부 성질에 있어서 디젤유보다 더 우수한데, 인화점이 높아 보다 안정하고 독성이 낮으며 연료로 사용시 아황산 가스, 미세분진, 방향족 화합물과 같은 환경 오염물질의 배출이 월등히 낮다는 것이다.Biodiesel oil produced by the transition esterification has similar properties as diesel oil, which is a raw material of diesel engine, and can be mixed with diesel oil or used as a diesel engine. In particular, biodiesel oil is superior to diesel oil in some properties, with higher flash points, more stable and less toxic, and significantly lower emissions of environmental pollutants such as sulfurous acid gas, fine dust and aromatic compounds when used as fuel. .

최근 고유가와 지구온난화 방지를 위해 이산화탄소 배출을 규제하는 교토협 약이 발효됨에 따라 대체연료로서의 바이오디젤 보급을 활성화하려는 움직임이 국내외에서 활발하게 진행되고 있다.As the Kyoto Convention, which regulates carbon dioxide emissions, has entered into force in order to prevent high oil prices and global warming, there is an active movement both at home and abroad in order to activate biodiesel as an alternative fuel.

EU와 미국 등에서는 바이오디젤의 보급을 활성화하기 위해 정부차원에서 다양한 지원정책을 마련하여 시행중이며 국내에서도 바이오디젤의 보급방안을 마련하기 위해 2002년부터 수도권을 비롯한 일부 지역의 차량을 대상으로 바이오디젤 20% 혼합경유를 시범 판매 중에 있다. 정부는 그동안 시범 보급의 경험을 바탕으로 2006년 7월부터는 경유 중 바이오디젤 혼합율을 5%로 낮추고 혼합경유의 판매지역을 전국으로 확대할 예정이다.In the EU and the US, various support policies have been prepared and implemented at the government level in order to promote the distribution of biodiesel.In Korea, biodiesel has been applied to vehicles in some regions including the metropolitan area since 2002 in order to establish the distribution plan for biodiesel. A 20% blended diesel fuel is on sale. The government plans to reduce the biodiesel blending ratio of diesel to 5% and expand the sales of blended diesel nationwide from July 2006 based on the experience of pilot supply.

하지만 바이오디젤은 경유와 물성에 다소 차이가 있으며 이로 인해 경유 중 바이오디젤 혼합율이 높을 경우 차량에 대해 문제를 일으킬 수 있다. 이러한 우려때문에 산업자원부는 2006년 7월 바이오디젤의 보급을 전국으로 확대하면서 일반 차량에 대해서는 바이오디젤 혼합율을 20%에서 5%로 낮추도록 하였다.However, biodiesel has some differences between diesel and physical properties, which may cause problems for vehicles when the biodiesel mixing ratio is high. Because of these concerns, the Ministry of Commerce, Industry and Energy expanded the distribution of biodiesel across the country in July 2006, reducing the mix of biodiesel from 20% to 5% for regular vehicles.

바이오디젤의 물성과 관련된 주된 문제점은 경유에 비해 낮은 저온유동성과 산화안정성이다. The main problems associated with the properties of biodiesel are low cryogenicity and oxidative stability compared to diesel.

저온유동성이란 저온에서 연료의 원활한 유동성을 나타내는 척도로서, 저온유동성이 좋지 않을 경우 동절기에 외부온도가 조금만 낮아져도 연료의 응집에 의해 연료 필터가 막히게 되며 그 결과 차량의 시동 또는 운행이 불가능해진다.Low temperature fluidity is a measure of the smooth flow of fuel at low temperatures. When low temperature fluidity is poor, fuel filters are clogged due to coagulation of fuel even when the external temperature is slightly lower in winter. As a result, the vehicle cannot be started or operated.

산화안정성이란 연료가 산소와 화학반응을 하여 변질될 가능성을 표시하는 척도로서, 산화안정성이 나쁘면 산패로 인한 산이 생성되며 연료계 부품의 부식 문제를 야기한다. Oxidation stability is a measure of the possibility of fuel deterioration by chemical reaction with oxygen. Poor oxidation stability produces acid due to rancidity and causes corrosion problems of fuel components.

이러한 문제로 인해 국내외에서는 바이오디젤의 물성기준 중 저온유동성과 산화안정성에 대해 일정한 기준치를 제시하고 있다.Due to these problems, both domestic and international, certain standard values for low temperature fluidity and oxidative stability among biodiesel standards are proposed.

바이오디젤 생산 원료로 사용되는 식물성 기름은 주로 크게 다섯 가지 지방산으로 구성되며 모든 종류의 동물성 지방이나 폐식용유도 이용 가능하다. Vegetable oil, which is used as a raw material for biodiesel production, is mainly composed of five fatty acids, and all kinds of animal fat or waste cooking oil are available.

하기의 (표 1)에서 알 수 있듯이, 식물성 기름의 기본 구성 물질인 트리글리세라이드(Triglycerides)는 다양한 지방산의 중합체의 고분자이며, 유지별로 Triglyceride의 조성이 다르다. 즉, 유채유의 경우 다른 식물성 기름에 비해 올레산(Oleic acid)으로 만들어진 Triglyceride의 함량이 높으며, 동남아시아에서 많이 생산되는 팜유는 포화지방산인 팔미트산(Palmitic acid)으로 만들어진 Triglyceride의 함량이 가장 높다.As can be seen in Table 1 below, triglycerides, which are the basic constituents of vegetable oils, are polymers of polymers of various fatty acids, and the composition of triglyceride is different for each fat and oil. In other words, rapeseed oil has a higher content of triglyceride made of oleic acid than other vegetable oils, and palm oil produced in Southeast Asia has the highest content of triglyceride made of saturated fatty acid palmitic acid.

이와 같은 구성성분의 차이로 인해 각 식물성 기름으로부터 만들어진 바이오디젤은 각각 다른 물성을 갖는다. 즉, 포화지방산 함량이 높은 팜유로부터 제조된 팜 바이오디젤유는 공기에 대한 산화안정성이 우수한 반면 불포화지방산 함량이 상대적으로 높은 유채유나 해바라기유로부터 제조된 바이오디젤유는 공기 중에 장시간 노출될 경우 산화하여 산이 생성된다. Due to this difference in composition, biodiesel made from each vegetable oil has different physical properties. In other words, palm biodiesel oil prepared from palm oil with high saturated fatty acid content has excellent oxidation stability against air, while biodiesel oil prepared from rapeseed oil or sunflower oil with relatively high unsaturated fatty acid content is oxidized when exposed to air for a long time. Acid is produced.

그러나 팜 바이오디젤유에 많이 포함된 포화지방산은 비교적 높은 온도에서 고체화되는 경향이 있어 유채 또는 해바라기 바이오디젤유에 비해 높은 온도에서 굳는 경향이 있다. 이하에서는 이러한 원료유들로부터 생산한 바이오디젤의 물성을 (표 2)로 나타내었다.However, saturated fatty acids contained in palm biodiesel oil tend to solidify at relatively high temperatures, and thus tend to solidify at higher temperatures than rapeseed or sunflower biodiesel oil. Hereinafter, the physical properties of biodiesel produced from these crude oils are shown in Table 2.

(표 1) 주요 식물성 기름의 조성*, %Table 1 Composition of major vegetable oils * ,%

유지 구성성분           Oils and fats 유채유     Rapeseed oil 대두유     Soybean oil 해바라기유  Sunflower oil 팜유      palm oil Palmitic acid (C16:0)Palmitic acid (C16: 0) 3~5      3 ~ 5 11~12     11-12 6       6 40~48     40-48 Stearic acid (C18:0)Stearic acid (C18: 0) 1~2      1 ~ 2 3~5      3 ~ 5 3~5      3 ~ 5 4~5      4 ~ 5 Oleic acid (C18:1)Oleic acid (C18: 1) 55~65     55-65 23~25     23-25 17~22     17-22 37~46     37-46 Linoleic acid (C18:2)Linoleic acid (C18: 2) 20~26     20-26 52~56     52-56 67~74     67-74 9~11      9 ~ 11 Linolenic acid (C18:3)Linolenic acid (C18: 3) 8~10      8 ~ 10 6~8      6 ~ 8 0       0 0.3      0.3 기타     Etc 0       0 0       0 0       0 2        2

*: Mittelbach, M. abd Remschmidt, C., "Biodiesel - The comprehensive handbook", Boersedruck GmbH, Graz, Austria (2004).*: Mittelbach, M. abd Remschmidt, C., "Biodiesel-The comprehensive handbook", Boersedruck GmbH, Graz, Austria (2004).

(표 2) 주요 바이오디젤의 물성 비교* (Table 2) Comparison of physical properties of major biodiesel *

물성 바이오디젤               Physical Biodiesel 필터막힘점(Cold Flow Plug Point), ℃Cold Flow Plug Point, ℃ 산화안정성,시간   Oxidation Stability, Time 유채 바이오디젤유Rapeseed biodiesel oil -19 ~ -8            -19 to -8 9.1(증류 전) 3.1(증류 후)     9.1 (before distillation) 3.1 (after distillation) 대두 바이오디젤유Soybean Biodiesel Oil -2               -2 -          - 해바라기 바이오디젤유Sunflower Biodiesel Oil -3               -3 3.4(증류 전) 1.2(증류 후)     3.4 (before distillation) 1.2 (after distillation) 팜 바이오디젤유Palm Biodiesel Oil 9 ~ 11              9 to 11 28.4         28.4

*: Mittelbach, M. abd Remschmidt, C., "Biodiesel - The comprehensive handbook", Boersedruck GmbH, Graz, Austria (2004).*: Mittelbach, M. abd Remschmidt, C., "Biodiesel-The comprehensive handbook", Boersedruck GmbH, Graz, Austria (2004).

바이오디젤이 차량연료로 사용되는데 가장 문제가 되는 물성은 저온유동성과 관련된 필터 막힘점과 산화안정성이다. The most problematic physical properties of biodiesel as a vehicle fuel are the filter plugging point and oxidation stability related to low temperature fluidity.

따라서, 상기 언급한 여러 문제점으로 인해 바이오디젤을 차량연료로 실용적 으로 사용하기 위해서는 낮은 필터 막힘점 온도와 높은 산화안정성을 가지도록 바이오디젤의 물성을 조절하는 것이 필요하다. EU와 국내의 바이오디젤 품질 기준에 따르면 산화안정성은 표준분석 적용시 6시간 이상으로 규정하고 있다. 하지만 현재 생산되는 대부분의 바이오디젤은 이러한 산화안정성 기준을 충족하지 못하여 항산화제를 첨가하고 있다. 이러한 항산화제 첨가로 인한 바이오디젤 생산 원가의 추가 상승은 약 3%에 이르는 것으로 분석되고 있어 경제적인 실용화면에서도 난점이 있다.Therefore, in order to use biodiesel as a vehicle fuel due to the above-mentioned problems, it is necessary to control the properties of biodiesel to have low filter plugging point temperature and high oxidation stability. According to EU and domestic biodiesel quality standards, oxidative stability is defined as more than 6 hours when applying standard analysis. Most biodiesel produced today, however, does not meet these oxidative stability criteria and is added with antioxidants. The additional rise in biodiesel production cost due to the addition of antioxidants is estimated to reach about 3%, which is difficult in economical practical view.

본 발명의 목적은 상기와 같은 종래 바이오디젤유의 문제점을 해결하기 위하여 산화안정성과 저온유동성에 관련된 필터 막힘점 온도가 개선된 바이오디젤유를 제조하는 방법을 제공하는 데 있다.An object of the present invention is to provide a method for producing biodiesel oil with improved filter plugging point temperature related to oxidation stability and low temperature fluidity in order to solve the problems of the conventional biodiesel oil.

본 발명의 목적은 물성이 개선된 바이오디젤유를 비용의 면에서 경제적이고 간단한 공정을 통해 생산하고 항산화제의 첨가를 줄이거나 없앰으로써 보다 경제성이 높은 바이오디젤유의 제조방법과 그러한 방법을 통하여 물성이 우수한 바이오디젤유를 제공하는 데 있다.It is an object of the present invention to produce biodiesel oil with improved physical properties through a cost-effective and simple process, and to reduce or eliminate the addition of antioxidants, and to produce biodiesel oil having higher economical properties, and To provide excellent biodiesel oil.

상기 목적을 달성하기 위하여 본 발명의 산화안정성과 저온유동성이 개선된 바이오디젤유의 제조방법은 산화안정성과 저온유동성의 물성이 상이한 바이오디젤 유를 둘 이상 혼합하는 것을 포함한다.In order to achieve the above object, the method for preparing biodiesel oil having improved oxidation stability and low temperature fluidity includes mixing two or more biodiesel oils having different oxidation stability and low temperature fluidity properties.

본 발명에서, 상기 혼합하는 바이오디젤유는 유채 바이오디젤유, 대두 바이오디젤유, 해바라기 바이오디젤유, 야트로파(jatropha) 바이오디젤유, 코코넛 바이오디젤유, 및 팜 바이오디젤유 중에서 둘 이상을 선택하는 것을 포함한다.In the present invention, the mixed biodiesel oil may be two or more of rapeseed biodiesel oil, soybean biodiesel oil, sunflower biodiesel oil, jatropha biodiesel oil, coconut biodiesel oil, and palm biodiesel oil. It includes choosing.

본 발명에서, 상기 혼합하는 바이오디젤유는 바람직하게는 팜 바이오디젤유를 기본 바이오디젤유로 하고 유채 바이오디젤유, 코코넛 바이오디젤유, 대두 바이오디젤유, 해바라기 바이오디젤유, 야트로파(jatropha) 바이오디젤유 중에서 어느 하나 이상의 바이오디젤유를 혼합한 것을 포함한다.In the present invention, the mixed biodiesel oil is preferably palm biodiesel oil as a basic biodiesel oil, rapeseed biodiesel oil, coconut biodiesel oil, soybean biodiesel oil, sunflower biodiesel oil, yatropha Biodiesel oil may include a mixture of any one or more biodiesel oil.

본 발명에서, 상기 팜 바이오디젤유와 유채 바이오디젤유의 혼합비는 전체 혼합 바이오디젤유 100중량부 대비 20:80 ~ 80:20 중에서 어느 하나인 것을 포함한다.In the present invention, the mixing ratio of the palm biodiesel oil and rapeseed biodiesel oil includes any one of 20:80 to 80:20 compared to 100 parts by weight of the total mixed biodiesel oil.

본 발명에서, 상기 팜 바이오디젤유, 유채 바이오디젤유, 및 대두 바이오디젤유의 혼합비는 전체 혼합 바이오디젤유 100중량부 대비 20:20:60, 20:40:40, 20:60:20, 40:20:40, 40:40:20, 60:20:20 중에서 어느 하나인 것을 포함한다.In the present invention, the mixing ratio of the palm biodiesel oil, rapeseed biodiesel oil, and soybean biodiesel oil is 20:20:60, 20:40:40, 20:60:20, 40 And any one of: 20: 40, 40:40:20, and 60:20:20.

본 발명에서, 상기 바이오디젤유는 둘 이상의 혼합하는 바이오디젤유 이외에 항산화제를 더 포함하여 혼합하는 것을 포함한다.In the present invention, the biodiesel oil includes a mixture of two or more biodiesel oil further comprises an antioxidant.

본 발명에서, 산화안정성과 저온유동성이 상이한 식물성 기름을 둘 이상 혼합한 후 상기 혼합된 식물성 기름으로부터 바이오디젤유를 제조하는 것을 포함한다.In the present invention, after mixing two or more vegetable oils different in oxidative stability and low temperature fluidity comprises preparing biodiesel oil from the mixed vegetable oils.

본 발명에서, 바람직하게는 상기 혼합하는 식물성 기름은 유채유, 대두유, 해바라기유, 야트로파(jatropha)유, 팜유 중에서 둘 이상 선택하되, 팜유를 기본 식물성 기름으로 하고 유채유, 대두유, 해바라기유, 야트로파(jatropha)유, 및 코코넛유 중에서 하나 이상 선택하여 혼합하는 것을 포함한다.In the present invention, preferably, the vegetable oil to be mixed is selected from two or more among rapeseed oil, soybean oil, sunflower oil, jatropha oil, palm oil, palm oil as the basic vegetable oil and rapeseed oil, soybean oil, sunflower oil, It includes selecting and mixing one or more of the tropa (jatropha) oil, and coconut oil.

본 발명에서, 산화안정성과 저온유동성이 향상된 바이오디젤유는 상기의 방법으로 제조된 것을 포함하되, 바람직하게는 팜 바이오디젤유를 기본으로 하고 유채 바이오디젤유, 코코넛 바이오디젤유, 대두 바이오디젤유, 해바라기 바이오디젤유, 야트로파(jatropha) 바이오디젤유로 구성된 그룹에서 선택된 어느 하나 이상의 바이오디젤유를 혼합하는 것을 포함한다.In the present invention, the biodiesel oil with improved oxidation stability and low temperature fluidity includes those prepared by the above method, preferably based on palm biodiesel oil, rapeseed biodiesel oil, coconut biodiesel oil, soybean biodiesel oil. And mixing at least one biodiesel oil selected from the group consisting of sunflower biodiesel oil and jatropha biodiesel oil.

이하, 본 발명의 실시예를 포함하여 본 발명을 보다 상세하게 설명하기로 한다. 하기의 내용에서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지의 구성 및 기능에 대한 상세한 설명은 생략한다.Hereinafter, the present invention will be described in more detail including examples of the present invention. In the following description, detailed descriptions of well-known structures and functions determined to unnecessarily obscure the subject matter of the present invention will be omitted.

본 발명의 일 실시예는 식물성 기름으로부터 제조된 바이오디젤유 중에서 산화안정성과 저온유동성의 물성에서 차이가 있는 바이오디젤유를 둘 이상 혼합한다. In one embodiment of the present invention, biodiesel oil prepared from vegetable oil is mixed with two or more biodiesel oils having a difference in physical properties of oxidation stability and low temperature fluidity.

또한, 바이오디젤유의 혼합단계 이전에 식물성 기름의 물성이 현저하게 차이가 나는 것들을 둘 이상 혼합한 후 상기 혼합유로부터 바이오디젤유를 제조하는 방법을 포함한다.In addition, a method of preparing biodiesel oil from the mixed oil after mixing two or more of those in which the physical properties of the vegetable oil are significantly different before the mixing step of the biodiesel oil.

일반적으로, 바이오디젤유를 제조하기 위한 적정한 식물성 기름은 유채유, 대두유, 해바라기유, 야트로파(jatropha)유, 팜유, 코코넛유, 옥수수유, 아마인유, 평지유, 양귀비유, 호두유, 땅콩유, 면실유, 미강유, 동백유, 피마자유, 올리브유 등으로서 당해 발명분야의 당업자라면 누구나 알 수 있는 공지의 식물성 기름은 사용가능하다. 그러나 바이오디젤유는 반드시 식물성 기름으로부터 생산되는 것에 한정하지 아니하고 우지(牛脂), 돈지(豚脂), 양지(羊脂), 어유(魚油) 등 동물성 유지나 폐식용유로부터 만들어 사용할 수도 있다.In general, suitable vegetable oils for producing biodiesel oil include rapeseed oil, soybean oil, sunflower oil, jatropha oil, palm oil, coconut oil, corn oil, linseed oil, rapeseed oil, poppy oil, walnut oil, peanuts. Known vegetable oils known to those skilled in the art as oil, cottonseed oil, rice bran oil, camellia oil, castor oil, olive oil and the like can be used. However, biodiesel oil is not necessarily limited to those produced from vegetable oils, and may be made from animal fats and waste cooking oils such as tallow, lard, sunny, and fish oil.

유지로부터 바이오디젤유를 생산하는 제조방법은 대한민국 특허등록 제566106호의 기술 등으로 생산할 수 있다. The manufacturing method for producing biodiesel oil from fats and oils may be produced by the technique of the Republic of Korea Patent Registration No. 566106.

간략한 이들 공지된 바이오디젤유의 제조방법은 다음과 같다. 즉, 원료유를 알콜과 함께 촉매의 존재하에 에스테르화 반응시켜서 생성된 에스테르 물질을 유지중량에 대해 일정 부분을 환류시켜 반응물에 첨가하여 유지와 알콜을 하나의 액상으로 혼합시킨다. 유지와 알콜을 촉매와 에스테르물질 존재하에서 40~80℃에서 5~30분간 반응시키고 메틸에스테르, 에틸에스테르, 부틸에스테르, 프로필에스테르 등의 에스테르물질을 회수하는 한편, 글리세린과 촉매를 분리하고 잔존된 알콜류는 증류하여 휘발시켜서 바이오디젤유를 얻을 수 있다.Briefly, these known biodiesel production methods are as follows. That is, the raw material oil is esterified with an alcohol in the presence of a catalyst, and the resulting ester substance is added to the reactant by refluxing a portion of the fat to the fat weight to mix the fat and oil in one liquid phase. Fat and oil and alcohol are reacted for 5 to 30 minutes at 40 to 80 ° C. in the presence of a catalyst and an ester substance, recovering ester substances such as methyl ester, ethyl ester, butyl ester and propyl ester, while separating glycerin from the catalyst and remaining alcohols. May be distilled and volatilized to obtain biodiesel oil.

바이오디젤유의 생산공정에서 촉매는 주로 수산화나트륨(NaOH), 수산화칼륨(KOH), 나트륨메틸레이트(NaOCH3) 등을 사용하고, 알콜류는 어떠한 알콜이라도 가능하나 비용의 측면에서 주로 메탄올이나 에탄올을 사용한다.In the production process of biodiesel oil, the catalyst mainly uses sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium methylate (NaOCH 3 ), and alcohols can be any alcohol, but mainly methanol or ethanol in terms of cost. do.

또한, 바이오디젤유의 제조장치는 일반적으로 에스테르화 반응기를 이용하는 데, 온도센서, 가열장치, 온도조절 장치, 냉각기 등이 장착되어 있으며, 반응기 내부에는 중앙 상부의 코너 축에 교반기가 수직방향으로 장착되어 있다.In addition, the apparatus for producing biodiesel oil generally uses an esterification reactor, and is equipped with a temperature sensor, a heating device, a temperature control device, a cooler, and the like, and inside the reactor, a stirrer is mounted in a vertical direction on a corner axis of the center upper part. have.

에스테르화 반응이 종료되면 원심분리기를 사용하여 촉매를 회수하고 글리세린을 분리한다. 생산된 바이오디젤유는 증류과정을 거쳐 과량으로 첨가된 잔존의 메탄올 등의 알콜류를 휘발시켜서 순도를 높인다.At the end of the esterification reaction, the catalyst is recovered using a centrifuge and the glycerin is separated. The produced biodiesel oil is distilled to increase the purity by volatilizing the remaining alcohols such as methanol added in excess.

본 발명의 일 실시예는 상기의 제조과정을 거쳐 생산된 유채 바이오디젤유, 대두 바이오디젤유, 해바라기 바이오디젤유, 야트로파(jatropha) 바이오디젤유, 팜 바이오디젤유, 코코넛 바이오디젤유 등의 식물성 기름으로부터 유래된 바이오디젤유를 둘 이상 혼합하는 것을 포함한다.One embodiment of the present invention is the rapeseed biodiesel oil, soybean biodiesel oil, sunflower biodiesel oil, jatropha biodiesel oil, palm biodiesel oil, coconut biodiesel oil, etc. Mixing at least two biodiesel oils derived from vegetable oils.

특히, 바람직하게는 산화안정성을 개선하기 위하여 혼합되는 바이오디젤유는 불포화도가 낮은 식물성 기름으로부터 제조된 바이오디젤유를 사용하되, 식물성 기름 중에서는 코코넛 기름과 팜유 등이 불포화도가 낮아 산화안정성이 우수하므로 이들로부터 생산한 코코넛 바이오디젤유나 팜 바이오디젤유를 사용할 수 있다. In particular, biodiesel oil preferably mixed to improve oxidation stability uses biodiesel oil prepared from vegetable oil with low unsaturation. Among vegetable oils, coconut oil and palm oil have excellent unsaturation because of low unsaturation. Coconut biodiesel oil or palm biodiesel oil produced from these can be used.

또한, 저온유동성을 개선하기 위하여 혼합되는 바이오디젤유는 저온 필터 막힘점 온도(Cold-Flow Plug Point, CFPP)를 측정하여 주로 낮은 온도를 기록하는 식물성 기름으로부터 제조된 바이오디젤유를 사용한다. 보통 유채 바이오디젤유가 -19 내지 -8℃이므로 저온유동성이 우수하여 가장 많이 사용될 수 있고, -2 내지 -3℃인 대두 바이오디젤유, 해바라기 바이오디젤유도 혼합하여 사용하거나 각각 사용될 수 있다.In addition, biodiesel oil mixed in order to improve low temperature fluidity uses biodiesel oil prepared from vegetable oil that mainly records a low temperature by measuring a cold filter plug point temperature (Cold-Flow Plug Point, CFPP). Since rapeseed biodiesel oil is -19 to -8 ° C, it is excellent in low temperature fluidity and can be used most. Soybean biodiesel oil and sunflower biodiesel oil, which are -2 to -3 ° C, may also be mixed or used.

산화안정성이 우수한 바이오디젤유와 저온유동성이 우수한 바이오디젤유는 일정 비율로 혼합함으로써 물성의 상보적 보완과 외부환경 조건에 따라 조정이 가능한 바이오디젤유를 공급할 수 있게 된다.Biodiesel oil with excellent oxidative stability and biodiesel oil with excellent low temperature fluidity can be mixed at a certain ratio to supply biodiesel oil that can complement complementary properties and be adjusted according to external environmental conditions.

산화안정성이 우수한 바이오디젤유와 저온유동성이 우수한 바이오디젤유의 혼합비는 특별히 한정되지는 않으며, 예를 들어 혼합 바이오디젤유 100중량부 대비 20:80 ~ 80:20의 비가 바람직하며 반드시 이러한 비율에 한정되지는 않는다.The mixing ratio of the biodiesel oil having excellent oxidation stability and the biodiesel oil having excellent low temperature fluidity is not particularly limited. For example, a ratio of 20:80 to 80:20 to 100 parts by weight of mixed biodiesel oil is preferable and should be limited to this ratio. It doesn't work.

또한 세 가지의 바이오디젤유를 혼합할 경우 일 실시예로서 팜 바이오디젤유, 유채 바이오디젤유, 및 대두 바이오디젤유의 혼합비는 전체 혼합 바이오디젤유 100중량부 대비 20:20:60, 20:40:40, 20:60:20, 40:20:40, 40:40:20, 60:20:20 중에서 어느 하나의 혼합비가 바람직하다.In addition, when three biodiesel oils are mixed, the mixing ratio of palm biodiesel oil, rapeseed biodiesel oil, and soybean biodiesel oil is 20:20:60, 20:40 compared to 100 parts by weight of the total biodiesel oil. Mixing ratio of any one of: 40, 20:60:20, 40:20:40, 40:40:20, 60:20:20 is preferable.

산화안정성을 보완하기 위하여 혼합 바이오디젤유를 생산하고 난 후 항산화제를 추가적으로 첨가할 수 있으며, 저온유동성을 보완하는 첨가제의 사용도 가능하다. In order to supplement oxidative stability, after producing mixed biodiesel oil, antioxidants may be additionally added, and additives complementing low temperature fluidity may be used.

상기 목적을 달성하기 위한 본 발명의 일 실시예는 바이오디젤유를 제조하기에 앞서 산화안정성과 저온유동성 등의 물성이 다른 둘 이상의 식물성 기름을 우선적으로 혼합하고 난 후 혼합 기름으로부터 바이오디젤유를 제조하는 것을 포함한다.One embodiment of the present invention for achieving the above object is to prepare biodiesel oil from mixed oil after mixing two or more vegetable oils of different physical properties such as oxidation stability and low temperature fluidity prior to preparing biodiesel oil It involves doing.

상기 실시예에서 혼합 기름으로부터 바이오디젤유를 제조하고 난 후 항산화제나 저온유동성 보완첨가제 등의 첨가제를 사용할 수 있다. 항산화제나 저온 유동성 보완첨가제는 당해 발명의 당업자라면 누구든지 공지된 항산화제나 저온유동성 보완첨가제 중에서 선택하여 사용 가능하다.After preparing biodiesel oil from the mixed oil in the above embodiment, additives such as antioxidants or low temperature fluidity supplements may be used. Antioxidants or low temperature fluidity supplements can be used by those skilled in the art by selecting among known antioxidants or low temperature fluidity supplements.

구체적인 본 발명의 제조방법은 하기의 일 실시예를 들어 설명하고자 한다.Specific manufacturing method of the present invention will be described with reference to the following examples.

(실시예 1)(Example 1)

1) 30L 에스테르화반응기에 팜유 10L, 메탄올 2L, 수산화칼륨(KOH) 촉매 100g을 넣고 혼합하여 80℃에서 30분간 반응하여 팜 바이오디젤유를 제조하였다.1) 10 L of palm oil, 2 L of methanol, 100 g of potassium hydroxide (KOH) catalyst were added to a 30 L esterification reactor, and the mixture was reacted at 80 ° C. for 30 minutes to prepare palm biodiesel oil.

생산된 팜 바이오디젤유는 메탄올 제거를 위한 감압 증발과 수세 등의 정제과정을 거친 후 96.8% 순도의 바이오디젤을 얻어 산화안정성과 필터 막힘점을 측정하기 위한 시료로 사용하였다.The produced palm biodiesel oil was purified through vacuum evaporation and water washing to remove methanol, and obtained 96.8% pure biodiesel, which was used as a sample for measuring oxidation stability and filter clogging point.

2) 30L 에스테르화반응기에 유채유 10L, 메탄올 2L, 수산화칼륨(KOH) 촉매 100g을 넣고 혼합하여 80℃에서 30분간 반응하여 유채 바이오디젤유를 제조하였다.2) Rapeseed biodiesel oil was prepared by mixing 10L rapeseed oil, 2L methanol and 100g potassium hydroxide (KOH) catalyst in a 30L esterification reactor and reacting at 80 ° C for 30 minutes.

생산된 유채 바이오디젤유는 메탄올 제거를 위한 감압 증발과 수세 등의 정제과정을 거친 후 97.6% 순도의 바이오디젤을 얻어 산화안정성과 필터 막힘점을 측정하기 위한 시료로 사용하였다.The produced rapeseed biodiesel oil was purified through vacuum evaporation and water washing to remove methanol, to obtain biodiesel of 97.6% purity, and used as a sample for measuring oxidation stability and filter clogging point.

3) 30L 에스테르화반응기에 대두유 10L, 메탄올 2L, 수산화칼륨(KOH) 촉매 100g을 넣고 혼합하여 80℃에서 30분간 반응하여 대두 바이오디젤유를 제조하였다.3) Soybean oil 10L, methanol 2L, potassium hydroxide (KOH) catalyst 100g was added to the 30L esterification reactor and reacted for 30 minutes at 80 ℃ to prepare soybean biodiesel oil.

생산된 대두 바이오디젤유는 메탄올 제거를 위한 감압 증발과 수세 등의 정제과정을 거친 후 96.8% 순도의 바이오디젤을 얻어 산화안정성과 필터 막힘점을 측정하기 위한 시료로 사용하였다.The soybean biodiesel oil produced was purified by vacuum evaporation and water washing to remove methanol, to obtain 96.8% purity biodiesel, and used as a sample for measuring oxidation stability and filter clogging point.

4) 상기 1),2),3)단계에서 제조한 팜 바이오디젤유와 유채 바이오디젤유 및 대두 바이오디젤유를 다양한 혼합 비율로 섞어 혼합 바이오디젤을 제조하여 EU의 바이오디젤 규격(EN12414,2004)에서 규정한 산화안정성 측정 방법에 따라 산화안정성을 측정하였고, 저온유동성과 관련하여 저온 필터 막힘점(Cold-Flow Plug Point, CFPP)을 측정하였다. 팜 바이오디젤유와 유채 바이오디젤유 및 대두 바이오디젤유의 중량비를 달리하면서 혼합하였을 때의 바이오디젤의 산화안정성 및 저온유동성의 측정결과는 다음의 (표 3)과 같다.4) EU biodiesel standard (EN12414,2004) by preparing mixed biodiesel by mixing palm biodiesel oil, rapeseed biodiesel oil and soybean biodiesel oil prepared in the above steps 1), 2) and 3) at various mixing ratios. Oxidation stability was measured according to the oxidative stability measurement method defined in the above), and the cold filter plug point (CFPP) was measured in relation to low temperature fluidity. Measurement results of oxidation stability and low temperature fluidity of biodiesel when mixed with different weight ratios of palm biodiesel oil, rapeseed biodiesel oil, and soybean biodiesel oil are shown in Table 3 below.

(표 3) 혼합 바이오디젤유(이하, BD로 표기)의 물성비교Table 3 Comparison of physical properties of mixed biodiesel oil (hereinafter referred to as BD)

(표 3-1) 팜 BD와 유채 BD가 혼합된 경우(Table 3-1) Farm BD and Rapeseed BD are mixed

BD 시료(전체중량부 대비%) BD sample (% of total weight) 산화안정성(시간)     Oxidation Stability (Time) 저온 필터 막힘점(℃)   Cold filter plugging point (℃) 대조구(유채 BD 100)   Control zone (rapeseed BD 100) 6.94          6.94 -20.0         -20.0 팜 BD : 유채 BD = 20:80 Palm BD: Rape BD = 20:80 7.77          7.77 -5.0          -5.0 팜 BD : 유채 BD = 40:60 Palm BD: Rape BD = 40:60 9.25          9.25 -3.0          -3.0 팜 BD : 유채 BD = 60:40 Palm BD: Rape BD = 60:40 10.57         10.57 2.0           2.0 팜 BD : 유채 BD = 80:20 Palm BD: Rape BD = 80:20 11.00         11.00 7.0           7.0 대조구(팜 BD 100)   Control (Palm BD 100) 11.00         11.00 10.0          10.0

(표 3-2) 팜 BD와 대두 BD가 혼합된 경우(Table 3-2) Palm BD and Soy BD mixed

BD 시료(전체중량부 대비%) BD sample (% of total weight) 산화안정성(시간)     Oxidation Stability (Time) 저온 필터 막힘점(℃)   Cold filter plugging point (℃) 대조구(대두 BD 100)   Control (soybean BD 100) 3.87          3.87 -3.0          -3.0 팜 BD : 대두 BD = 20:80 Palm BD: Soybean BD = 20:80 4.20          4.20 -3.0          -3.0 팜 BD : 대두 BD = 40:60 Palm BD: Soybean BD = 40: 60 5.01          5.01 0.0           0.0 팜 BD : 대두 BD = 60:40 Palm BD: Soybean BD = 60: 40 6.21          6.21 5.0           5.0 팜 BD : 대두 BD = 80:20 Palm BD: Soybean BD = 80:20 7.38          7.38 8.0           8.0 대조구(팜 BD 100)   Control (Palm BD 100) 11.00         11.00 10.0          10.0

(표 3-3) 팜 BD, 유채 BD 및 대두 BD가 혼합된 경우(Table 3-3) Palm BD, Rape BD and Soy BD mixed

BD 시료(전체중량부 대비%) BD sample (% of total weight) 산화안정성(시간)     Oxidation Stability (Time) 저온 필터 막힘점(℃)   Cold filter plugging point (℃) 팜 BD : 유채 BD : 대두 BD = 20 : 20 : 60 Palm BD: Rapeseed BD: Soybean BD = 20: 20: 60 4.99          4.99 -4.0          -4.0 팜 BD : 유채 BD : 대두 BD = 20 : 40 : 40 Palm BD: Rape BD: Soybean BD = 20: 40: 40 5.74          5.74 -4.0          -4.0 팜 BD : 유채 BD : 대두 BD = 20 : 60 : 20 Palm BD: Rape BD: Soybean BD = 20: 60: 20 6.56          6.56 -6.0          -6.0 팜 BD : 유채 BD : 대두 BD = 40 : 20 : 40 Palm BD: Rape BD: Soybean BD = 40: 20: 40 6.25          6.25 -2.0          -2.0 팜 BD : 유채 BD : 대두 BD = 40 : 40 : 20 Palm BD: Rape BD: Soybean BD = 40: 40: 20 7.65          7.65 -3.0          -3.0 팜 BD : 유채 BD : 대두 BD = 60 : 20 : 20  Palm BD: Rapeseed BD: Soybean BD = 60: 20: 20 7.97          7.97 3.0           3.0

상기 (표 3-1)에 의하면, 팜 바이오디젤유의 혼합비율이 증가할수록 산화안정성이 증가되었으며, 유채 바이오디젤유의 혼합비율이 증가할수록 산화안정성은 낮아지지만 저온 필터 막힘점이 낮아져서 저온유동성이 개선됨을 알 수 있다.According to the above (Table 3-1), the oxidation stability increased as the mixing ratio of palm biodiesel oil increased, and the oxidation stability decreased as the mixing ratio of rapeseed biodiesel oil increased, but the low temperature filter clogging point was lowered to improve the low temperature fluidity. Can be.

상기 (표 3-2)에 의하면, 팜 바이오디젤의 혼합비율이 증가할수록 산화안정성이 현저하게 증가되었으며, 대두 바이오디젤유의 혼합비율이 증가할수록 산화안정성은 낮아지지만 저온 필터 막힘점이 낮아져서 저온유동성이 개선됨을 알 수 있다.According to the above (Table 3-2), as the mixing ratio of palm biodiesel is increased, the oxidation stability is remarkably increased, and as the mixing ratio of soybean biodiesel oil is increased, the oxidation stability is lowered, but the low temperature filter clogging point is lowered, thereby improving the low temperature fluidity. It can be seen.

상기 (표 3-3)에 의하면 팜 바이오디젤유, 유채 바이오디젤유 및 대두 바이오디젤유의 혼합 바이오디젤유는 산화안정성이 낮은 대두 바이오디젤유보다 산화안정성이 현저히 증가되었으며, 낮은 저온유동성을 가지는 팜 바이오디젤유보다 저온유동성이 현저하게 개선됨을 알 수 있다.According to the above (Table 3-3), the mixed biodiesel oil of the palm biodiesel oil, the rapeseed biodiesel oil, and the soybean biodiesel oil has a significantly increased oxidation stability than the soybean biodiesel oil with low oxidation stability, and has a low temperature fluidity. It can be seen that low-temperature fluidity is significantly improved than biodiesel oil.

5) 상기 혼합 바이오디젤유에 산화안정성 향상을 위한 항산화제를 추가로 더 첨가하는 경우 이에 대한 산화안정성의 변화는 (표 4)에 나타내었다.5) The addition of an antioxidant for improving oxidation stability to the mixed biodiesel oil is shown in Table 4 below.

(표 4) 항산화제 첨가로 인한 혼합 바이오디젤유의 산화안정성(Table 4) Oxidative Stability of Mixed Biodiesel Oils due to Addition of Antioxidants

(표 4-1) 팜 BD와 유채 BD가 혼합된 경우(Table 4-1) Farm BD and Rapeseed BD are mixed

항산화제의 양(ppm)     Amount of antioxidant (ppm) 산화안정성 (시간)                 Oxidation stability (time) 유채 BD 100       Rapeseed BD 100 팜 BD : 유채 BD = 20 : 80 Palm BD: Rapeseed BD = 20: 80 0           0 6.94          6.94 7.77          7.77 50          50 10.10         10.10 11.61         11.61 100         100 13.52         13.52 15.13         15.13 250         250 21.25         21.25 23.73         23.73

(표 4-2) 팜 BD와 대두 BD가 혼합된 경우(Table 4-2) Palm BD and Soy BD mixed

항산화제의 양(ppm)     Amount of antioxidant (ppm) 산화안정성 (시간)                 Oxidation stability (time) 대두 BD 100       Soybean BD 100 팜 BD : 대두 BD = 20 : 80 Palm BD: Soybean BD = 20: 80 0           0 3.87          3.87 4.20          4.20 50          50 4.45          4.45 5.20          5.20 100         100 5.46          5.46 6.55          6.55 250         250 9.08          9.08 10.75         10.75

(표 4-3) 팜 BD, 유채 BD 및 대두 BD가 혼합된 경우(Table 4-3) Palm BD, Rape BD and Soy BD mixed

항산화제의 양(ppm)     Amount of antioxidant (ppm) 산화안정성 (시간)                 Oxidation stability (time) 대두 BD 100       Soybean BD 100 팜 BD : 유채 BD : 대두 BD = 20 : 40 : 40 Palm BD: Rape BD: Soybean BD = 20: 40: 40 0           0 3.87          3.87 5.74          5.74 50          50 4.45          4.45 7.67          7.67 100         100 5.46          5.46 10.23         10.23 250         250 9.08          9.08 16.36         16.36

상기 (표 3)에 대비하여 (표 4)을 비교하면, 항산화제의 첨가로 인해 산화안정성이 전반적으로 향상되었으며 혼합 전의 시료에 비하여 동일한 산화안정성을 유지하기 위한 항산화제의 양이 현저하게 적게 요구됨을 알 수 있다. 즉, 본 발명에 따른 혼합 바이오디젤유는 항산화제의 필요량을 감소시키는 효과가 있어 향후 바이오디젤유 생산과 저변 확대에 있어 경제적인 비용창출 효과를 기대할 수 있다.Compared to (Table 4) compared to (Table 3), the oxidation stability was improved overall due to the addition of antioxidants, and the amount of antioxidants required to maintain the same oxidation stability as compared to the sample before mixing It can be seen. In other words, the mixed biodiesel oil according to the present invention has an effect of reducing the amount of antioxidants, and thus can be expected to generate economic costs in the future biodiesel oil production and base expansion.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 특허등록청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, the present invention has been described with reference to a preferred embodiment of the present invention, but those skilled in the art can vary the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. It will be appreciated that modifications and variations can be made.

상술한 바와 같이 본 발명에 의하면, 저온유동성이 우수하지만 산화안정성이 낮은 유채 바이오디젤유와 산화안정성은 우수하지만 저온유동성이 좋지 않은 팜 바이오디젤유를 적절한 비율로 혼합하는 간단한 공정을 통해 산화안정성과 저온유동성의 물성이 전반적으로 향상되는 효과가 있다.As described above, according to the present invention, oxidative stability and oxidative stability through a simple process of mixing rapeseed biodiesel oil having excellent low temperature fluidity but low oxidative stability and palm biodiesel oil having good oxidative stability but poor low temperature fluidity at an appropriate ratio. The physical properties of low temperature fluidity are generally improved.

또한, 본 발명에 의하면, 바이오디젤의 물성 향상을 위해 첨가해야 하는 항산화제 등 첨가제의 함량을 줄일 수 있어 비용이 절감되는 효과가 있다.In addition, according to the present invention, it is possible to reduce the content of additives such as antioxidants to be added to improve the physical properties of the biodiesel has the effect of reducing the cost.

결과적으로, 본 발명에 의하면 산화안정성과 저온유동성이 동시에 개선된 우수한 물성의 바이오디젤을 제공함으로써 친환경적인 바이오디젤의 전반적인 실용화를 앞당길 수 있으며 별다른 추가 공정을 요하지 않고 기존의 바이오디젤을 활용하는 방법을 제공함으로써 경제적 가치의 창출 효과가 있다.As a result, according to the present invention, it is possible to accelerate the overall practical use of environment-friendly biodiesel by providing biodiesel having excellent physical properties with improved oxidation stability and low temperature fluidity, and using existing biodiesel without requiring additional processing. By providing it, the economic value is created.

Claims (9)

삭제delete 유채 바이오디젤유, 대두 바이오디젤유, 해바라기 바이오디젤유, 야트로파(jatropha) 바이오디젤유, 코코넛 바이오디젤유, 및 팜 바이오디젤유로 구성된 그룹에서 선택된 둘 이상의 바이오디젤유를 혼합하여 산화안정성과 저온유동성이 향상된 바이오디젤유를 제조하는 방법.Oxidation stability and oxidative stability were determined by mixing two or more biodiesel oils selected from the group consisting of rapeseed biodiesel oil, soybean biodiesel oil, sunflower biodiesel oil, jatropha biodiesel oil, coconut biodiesel oil, and palm biodiesel oil. Method for producing biodiesel oil with improved low temperature fluidity. 팜 바이오디젤유와; Palm biodiesel oil; 유채 바이오디젤유, 코코넛 바이오디젤유, 대두 바이오디젤유, 해바라기 바이오디젤유, 야트로파(jatropha) 바이오디젤유로 구성된 그룹에서 선택된 어느 하나 이상의 바이오디젤유를 혼합하여 산화안정성과 저온유동성이 향상된 바이오디젤유를 제조하는 방법.Bio-diesel with improved oxidative stability and low temperature fluidity by mixing at least one biodiesel oil selected from the group consisting of rapeseed biodiesel oil, coconut biodiesel oil, soybean biodiesel oil, sunflower biodiesel oil, and jatropha biodiesel oil How to make diesel oil. 제 3항에 있어서, 상기 팜 바이오디젤유와 유채 바이오디젤유의 혼합비는 전체 혼합 바이오디젤유 100중량부 대비 20:80 ~ 80:20 중에서 어느 하나인 것을 특징으로 하는 산화안정성과 저온유동성이 향상된 바이오디젤유를 제조하는 방법.According to claim 3, wherein the mixing ratio of the palm biodiesel oil and rapeseed biodiesel oil is any one of 20:80 ~ 80:20 compared to 100 parts by weight of the total mixed biodiesel oil bio-enhanced oxidative stability and low temperature fluidity How to make diesel oil. 제 3항에 있어서, 상기 팜 바이오디젤유, 유채 바이오디젤유, 및 대두 바이오디젤유의 혼합비는 전체 혼합 바이오디젤유 100중량부 대비 20:20:60, 20:40:40, 20:60:20, 40:20:40, 40:40:20, 60:20:20 중에서 어느 하나인 것을 특징으로 하는 산화안정성과 저온유동성이 향상된 바이오디젤유를 제조하는 방법.The method of claim 3, wherein the mixing ratio of palm biodiesel oil, rapeseed biodiesel oil, and soybean biodiesel oil is 20:20:60, 20:40:40, 20:60:20 with respect to 100 parts by weight of the total biodiesel oil. , 40:20:40, 40:40:20, 60:20:20 The method for producing biodiesel oil with improved oxidation stability and low temperature fluidity, characterized in that any one. 제 2항 내지 제 5항 중 어느 한 항에 있어서, 상기 혼합하는 바이오디젤유 이외에 항산화제를 더 포함하여 혼합하는 것을 특징으로 하는 산화안정성과 저온유동성이 향상된 바이오디젤유를 제조하는 방법.The method of claim 2, wherein the biodiesel oil having improved oxidation stability and low temperature fluidity is mixed by further comprising an antioxidant in addition to the biodiesel oil to be mixed. 삭제delete 바이오디젤유를 제조하는 방법에 있어서,In the method for producing biodiesel oil, 유채유, 대두유, 해바라기유, 야트로파(jatropha)유, 팜유, 및 코코넛유로 구성된 그룹에서 선택된 둘 이상의 식물성 기름을 혼합한 후 상기 혼합된 식물성 기름으로부터 바이오디젤유를 제조하는 것을 특징으로 하는 산화안정성과 저온유동성이 향상된 바이오디젤유를 제조하는 방법.Oxidation stability, characterized in that biodiesel oil is prepared from the mixed vegetable oil after mixing two or more vegetable oils selected from the group consisting of rapeseed oil, soybean oil, sunflower oil, jatropha oil, palm oil, and coconut oil. Method for producing biodiesel oil with improved low temperature fluidity. 팜 바이오디젤유와; Palm biodiesel oil; 유채 바이오디젤유, 코코넛 바이오디젤유, 대두 바이오디젤유, 해바라기 바이오디젤유, 야트로파(jatropha) 바이오디젤유로 구성된 그룹에서 선택된 어느 하나 이상의 바이오디젤유를 혼합하는 것을 특징으로 하는 산화안정성과 저온유동성이 향상된 바이오디젤유.Oxidation stability and low temperature characterized by mixing at least one biodiesel oil selected from the group consisting of rapeseed biodiesel oil, coconut biodiesel oil, soybean biodiesel oil, sunflower biodiesel oil, and jatropha biodiesel oil Biodiesel oil with improved fluidity.
KR1020060052698A 2006-06-12 2006-06-12 Production method of biodiesel with improved oxidative stability and low temperature properties KR100782130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060052698A KR100782130B1 (en) 2006-06-12 2006-06-12 Production method of biodiesel with improved oxidative stability and low temperature properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060052698A KR100782130B1 (en) 2006-06-12 2006-06-12 Production method of biodiesel with improved oxidative stability and low temperature properties

Publications (1)

Publication Number Publication Date
KR100782130B1 true KR100782130B1 (en) 2007-12-05

Family

ID=39139609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060052698A KR100782130B1 (en) 2006-06-12 2006-06-12 Production method of biodiesel with improved oxidative stability and low temperature properties

Country Status (1)

Country Link
KR (1) KR100782130B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267086B2 (en) 2010-01-15 2016-02-23 Exxonmobil Research And Engineering Company Synergistic biofuel blends and related methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279962A (en) 1997-01-28 1998-10-20 Clariant Gmbh Environment friendly diesel fuel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279962A (en) 1997-01-28 1998-10-20 Clariant Gmbh Environment friendly diesel fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267086B2 (en) 2010-01-15 2016-02-23 Exxonmobil Research And Engineering Company Synergistic biofuel blends and related methods

Similar Documents

Publication Publication Date Title
Aransiola et al. Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines
Demirbas Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods
Ma et al. Biodiesel production: a review
Fereidooni et al. Trans-esterification of waste cooking oil with methanol by electrolysis process using KOH
KR101194982B1 (en) A biofuel composition, process of preparation and a method of fueling thereof
CN101541929B (en) Preparation of fatty acid esters of glycerol formal and use thereof as biofuel
Zaleckas et al. Possibilities of using Camelina sativa oil for producing biodiesel fuel
KR101327934B1 (en) Cetane improver for diesel fuels and diesel fuels containing it
Bello et al. Production and characterization of coconut (Cocos nucifera) oil and its methyl ester
WO2006081644A2 (en) Catalytic process for the esterification of fatty acids
KR101353895B1 (en) Method of making biodiesel with good low-temperature performance from palm oil
Abrar et al. An overview of current trends and future scope for vegetable oil–based sustainable alternative fuels for compression ignition engines
El Diwani et al. Modification of thermal and oxidative properties of biodiesel produced from vegetable oils
Krishnakumar et al. Physico-chemical properties of the biodiesel extracted from rubber seed oil using solid metal oxide catalysts
KR100782130B1 (en) Production method of biodiesel with improved oxidative stability and low temperature properties
Bello et al. Fatty acid compositions of six Nigeria's vegetable oils and their methyl esters
BRPI1015168B1 (en) "Biodiesel fuel, and diesel fuel manufacturing process"
KR20080017226A (en) Modifier for biodiesel fuel, fuel, methods relating to those
CA2571724A1 (en) A new biofuel composition
JP2005220227A (en) Biodiesel fuel and method for producing the same
KR20100037722A (en) Production method for biodiesel from tree seed by transesterification
CN101475825A (en) Method for preparing biodiesel by ester exchange
Nawi Biodiesel production from moringa oleifera seeds oil by using MgO as a catalyst
KR100959384B1 (en) Gasification Reactor and pre-treatment of bio-disel materials using the same
RU2616297C1 (en) Method for ecologically pure diesel fuel production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121126

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131113

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141126

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151130

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171107

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 13