KR100775077B1 - Positive polar materials and its manufacturing method of Li-secondary battery - Google Patents

Positive polar materials and its manufacturing method of Li-secondary battery Download PDF

Info

Publication number
KR100775077B1
KR100775077B1 KR1020050076235A KR20050076235A KR100775077B1 KR 100775077 B1 KR100775077 B1 KR 100775077B1 KR 1020050076235 A KR1020050076235 A KR 1020050076235A KR 20050076235 A KR20050076235 A KR 20050076235A KR 100775077 B1 KR100775077 B1 KR 100775077B1
Authority
KR
South Korea
Prior art keywords
nickel
lithium
oxide
nickel alloy
cathode material
Prior art date
Application number
KR1020050076235A
Other languages
Korean (ko)
Other versions
KR20070021686A (en
Inventor
김철진
정준기
안인섭
조권구
배승렬
김용국
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020050076235A priority Critical patent/KR100775077B1/en
Publication of KR20070021686A publication Critical patent/KR20070021686A/en
Application granted granted Critical
Publication of KR100775077B1 publication Critical patent/KR100775077B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차전지의 양극재 및 그 제조방법에 관한 것으로서, 리튬 이차전지의 양극재를 구성함에 있어서, 상기 양극재는 니켈 또는 니켈합금계의 후면에 절연 및 산화방지를 위한 안정화된 산화물층(7)을 형성하고 니켈 또는 니켈합금계의 전면 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈전이금속산화물(LiNi1 - xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)이 형성된 다층구조를 가지거나, 상기 양극재는 니켈 혹은 니켈합금의 전극형성을 위한 면적을 제외한 양쪽 면 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물 (LiNi1 - xMxO2: M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)이 형성된 다층구조를 가지는 것을 특징으로 하는 리튬 이차전지의 양극재 및, 다결정 또는 2축 배향성을 갖는 니켈 금속 박판 혹은 니켈합금 금속 박판을 준비하는 단계, 니켈 금속 박판 혹은 니켈합금 금속 박판의 산화방지를 위하여 박판 후면에 산화마그네슘, 이트륨 산화물, 안정화 지르코니아, 세리아 등에 물리적 진공 증착법으로 산화물층을 증착하는 단계, 니켈 금속 박판 혹은 니켈합금 금속 박판층에 산화물층을 형성시키는 단계, 니켈 산화물층 혹은 니켈합금 산화물층에 리튬을 증발법 혹은 물리적 증착법에 의해 증착하는 단계를 적어도 포함하는 것을 제조방법의 특징으로 한다.The present invention relates to a cathode material of a lithium secondary battery and a method of manufacturing the same. In forming a cathode material of a lithium secondary battery, the cathode material is a stabilized oxide layer for insulating and preventing oxidation on the back of a nickel or nickel alloy system ( 7) Lithium nickel oxide (LiNiO 2 ) or lithium nickel transition metal oxide (LiNi 1 - x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) has a multi-layer structure, or the cathode material is lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1 - on both sides except the area for forming the electrode of nickel or nickel alloy x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) positive electrode material and polycrystalline or biaxial of a lithium secondary battery characterized in that it has a multilayer structure formed Preparing a nickel metal thin plate or a nickel alloy metal thin plate having an orientation; In order to prevent oxidation of the nickel metal thin plate or the nickel alloy metal thin plate, the oxide layer is deposited on the back surface of the thin plate by physical vacuum deposition to magnesium oxide, yttrium oxide, stabilized zirconia, ceria, and the oxide layer on the nickel metal thin plate or nickel alloy metal thin layer And forming a lithium oxide on the nickel oxide layer or the nickel alloy oxide layer by evaporation or physical vapor deposition.

리튬 이차전지, 니켈 금속박판, 니켈 산화층, 산화물층 증착, 리튬 확산, 양극물질 Lithium secondary battery, nickel metal sheet, nickel oxide layer, oxide layer deposition, lithium diffusion, anode material

Description

리튬 이차전지의 양극재 및 그 제조방법{Positive polar materials and its manufacturing method of Li-secondary battery}Positive material of lithium secondary battery and its manufacturing method {Positive polar materials and its manufacturing method of Li-secondary battery}

도 1은 본 발명의 니켈 혹은 니켈합금의 전면만 리튬 이차전지의 양극재의 형성을 도시하는 단면도.1 is a cross-sectional view showing formation of a cathode material of a lithium secondary battery only on the front surface of a nickel or nickel alloy of the present invention.

도 2는 본 발명의 니켈 혹은 니켈합금의 전극형성을 위한 면적을 제외한 양쪽 면에 리튬 이차전지의 양극재의 형성을 도시하는 단면도.Figure 2 is a cross-sectional view showing the formation of the positive electrode material of the lithium secondary battery on both sides except the area for forming the electrode of the nickel or nickel alloy of the present invention.

도 3은 본 발명의 니켈 혹은 니켈합금의 한쪽 면만 리튬 이차전지의 양극재 를 형성할 경우, 그 제조방법에 따른 리튬-니켈 박판의 양극재의 구성을 도시하는 단면도.Figure 3 is a cross-sectional view showing the configuration of a cathode material of a lithium-nickel thin plate according to the manufacturing method when forming the cathode material of the lithium secondary battery only one side of the nickel or nickel alloy of the present invention.

도 4는 본 발명의 니켈 혹은 니켈합금의 니켈 혹은 니켈합금의 전극형성을 위한 면적을 제외한 양쪽 면에 리튬 이차전지의 양극재를 형성할 경우, 그 제조방법에 따른 리튬-니켈 박판의 양극재의 구성을 도시하는 단면도.4 is a positive electrode material of a lithium-nickel thin plate according to a method of manufacturing the positive electrode material of a lithium secondary battery when the positive electrode material of a lithium secondary battery is formed on both sides except for an electrode formation area of the nickel or nickel alloy of the nickel or nickel alloy of the present invention; Showing the cross section.

도 5는 본 발명의 리튬 이차전지의 양극재 및 그 제조방법에 따라 증착 성장한 리튬니켈산화물(LiNiO2)박막의 X-선 회절분석 데이타.5 is X-ray diffraction analysis data of a lithium nickel oxide (LiNiO 2 ) thin film deposited and grown according to a cathode material of the lithium secondary battery of the present invention and a method of manufacturing the same.

도 6은 본 발명의 리튬 이차전지의 양극재 및 그 제조방법에 따라 증착 성장한 리튬니켈산화물(LiNiO2) 박막 표면의 미세조직 관찰을 위한 주사전자현미경 사진 이다.6 is a scanning electron micrograph for observing the microstructure of the surface of a lithium nickel oxide (LiNiO 2 ) thin film deposited and deposited according to the cathode material of the lithium secondary battery of the present invention and a method of manufacturing the same.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

4: 산화물층4: oxide layer

5: 금속 기판5: metal substrate

6: 금속기판의 산화층6: oxide layer of metal substrate

7: 리튬 박막층7: lithium thin film layer

8: 리튬-니켈 또는 니켈 합금의 복합 산화물층(LiNi1 - xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)8: composite oxide layer of lithium-nickel or nickel alloy (LiNi 1 - x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)

본 발명은 니켈 계열 금속 합금 박판층, 또는 금속 합금 박판층 위에 니켈 산화물 층을 형성시킨 후, 리튬을 물리적 증착법에 의해 증착 시켜 리튬의 니켈 산화물 층으로의 확산 반응을 통하여 리튬니켈-전이금속산화물계(LiNi1 - xMxO2 : M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극재 및 그 양극재를 구성하는 물질구성의 제조방법에 관한 것이다.According to the present invention, after forming a nickel oxide layer on a nickel-based metal alloy thin layer or a metal alloy thin layer, lithium is deposited by a physical vapor deposition method, and lithium nickel-transition metal oxide based on the diffusion reaction of lithium to the nickel oxide layer. (LiNi 1 - x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) cathode material and a method for producing a material composition constituting the cathode material .

오늘 날 전기, 전자, 정보 통신의 눈부신 발전으로 휴대폰, 디지털 카메라, 캠코더, 모바일 컴퓨터, 노트북의 대중화가 이루어지고 있다.Today's remarkable advances in electricity, electronics, and telecommunications are driving the popularization of mobile phones, digital cameras, camcorders, mobile computers, and laptops.

이러한 제품들은 소형화, 경량화를 위해 경쟁적으로 연구 개발되고 있으며, 가장 중요한 소형화 및 경량화를 위한 열쇠는 이차전지에 있다.These products are competitively researched and developed for miniaturization and weight reduction, and the key to miniaturization and lightweighting is the secondary battery.

특히, 휴대폰에 있어 이차전지가 차지하는 비중은 가격, 무게의 30% 이상을 차지할 정도로 디지털 시대의 핵심 부품으로 자리 잡고 있으며, 모든 종류의 모바일 기기에 필수적인 이차전지의 시장은 거의 무한한 정도로 열려있는 상황이다.In particular, the proportion of secondary batteries in mobile phones is at the core of the digital era, accounting for more than 30% of the price and weight. .

종래로부터 이차전지에 널리 사용되고 있는, 리튬 이온 전지는 리튬 이온의 탈락 및 진입에 의하여 작동되는 전지로 충전 시에는 음극에 리튬이온이 진입되고, 방전 시에는 리튬이온이 양극으로 진입되는 원리로 작동된다.Lithium ion batteries, which are widely used in secondary batteries, are operated by dropping and entering lithium ions. Lithium ions enter a negative electrode during charging, and lithium ions enter a positive electrode during discharge. .

양극물질로는 리튬(전이금속)산화물( LiMO2 :M=전이금속원소 Mn, Co, Ni), 리튬망간산화물(LiMn2O4) 등의 산화물이 이용되고, 음극으로는 카본이 사용된다.The cathode material is lithium (transition metal) oxide (LiMO 2 Oxides such as M = transition metal elements Mn, Co and Ni and lithium manganese oxide (LiMn 2 O 4 ) are used, and carbon is used as the negative electrode.

양극물질로 이용되는 산화물들 중, 니켈망간산화물(LiMn2O4)은 합성이 용이하고 원자재의 가격이 저렴하나 용량이 작다는 단점이 있고,Among the oxides used as the anode material, nickel manganese oxide (LiMn 2 O 4 ) is easy to synthesize and has the disadvantage of low cost of raw materials but small capacity,

소니가 1992년 상용화한 리튬코발트산화물(LiCoO2)은 희토류 금속인 코발트(Co)의 가격이 비싸며, 과 충전시 유독가스가 발생하는 중요한 문제점이 있었다.The lithium cobalt oxide (LiCoO 2 ) commercialized by Sony in 1992 has a high cost of cobalt (Co), which is a rare earth metal, and has a significant problem of generating toxic gas when overcharged.

이에 비해 리튬니켈산화물(LiNiO2)은 가격이 저렴하고 높은 방전 용량의 전지 특성을 가지고 있으나 합성이 어려운 단점이 있다.In comparison, lithium nickel oxide (LiNiO 2 ) is inexpensive and has a high discharge capacity of battery characteristics, but it is difficult to synthesize.

리튬니켈산화물(LiNiO2)의 양극재의 제조는 수산화리튬(LiOH?H2O)과 수산화니켈(Ni(OH)2) 를 1:1 의 몰비로 칭량하여 혼합한 후, 소결하여 제조하는 고상반응법과, 출발 원료로 질산화리튬(LiNO3 ), 수산화니켈(Ni(NO3)2?H2O)를 이용하여 졸-겔 법으로 제조되어왔다.Lithium nickel oxide (LiNiO 2 ) cathode material is prepared by weighing and mixing lithium hydroxide (LiOH? H 2 O) and nickel hydroxide (Ni (OH) 2) in a molar ratio of 1: 1, and then sintering to prepare a solid phase reaction method, As starting materials, lithium nitrate (LiNO 3 ) and nickel hydroxide (Ni (NO 3 ) 2 ? H 2 O) have been prepared by the sol-gel method.

그러나, 기존의 소결에 의한 고상 반응법과 졸-겔법은 미세조직의 배향화와 나노크기의 입자 조절에 어려움이 있는 등의 실제적인 적용으로의 문제와 효율성의 문제점이 있었다. 고상 반응법에 의하여 제조한 양극재는 전극을 형성하기 위하여 양극재 원료를 슬러리 상태로 만든 다음 알루미늄 혹은 니켈 혹은 구리와 같은 박판위에 도포한 다음 소결하는 과정을 거치므로 입자의 크기가 크고 비표면적이 높지 않아 2차전지의 두께를 줄이거나 같은 두께일 경우 충방전 용량을 증대시키는데 한계가 있다. 졸-겔법은 고상반응법보다 작은 크기의 양극재 원료를 형성할 수 있으나 대량생산에 적합하지 않고 제조단가가 높다는 단점이 있다.However, the conventional solid phase reaction method and the sol-gel method by sintering have problems in practical application such as difficulty in orienting the microstructure and controlling the particle size of the nanoscale, and problems of efficiency. The cathode material manufactured by the solid-phase reaction method has a process of making the cathode material into a slurry state to form an electrode, applying it onto a thin plate such as aluminum, nickel, or copper, and then sintering, so that the particle size is large and the specific surface area is high. Therefore, if the thickness of the secondary battery is reduced or the same thickness, there is a limit to increase the charge and discharge capacity. The sol-gel method can form a cathode material having a smaller size than the solid phase reaction method, but has a disadvantage in that it is not suitable for mass production and the manufacturing cost is high.

본 발명은 상기와 같은 종래 기술을 개선하기 위하여 안출된 것으로, 니켈 혹은 니켈합금 금속 박판 위에 니켈 혹은 니켈합금의 산화물 층을 형성시킨 후, 리튬을 증발법 혹은 물리적 방법에 의해 증착 시킨 후,The present invention has been made in order to improve the prior art as described above, after forming an oxide layer of nickel or nickel alloy on a nickel or nickel alloy metal thin plate, after depositing lithium by evaporation or physical method,

리튬의 니켈 니켈합금의 산화물 층으로의 확산 열처리 반응을 통하여 리튬니켈산화물(LiNiO2) 혹은 리튬니켈전이금속산화물(LiNi1 - xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극 물질을 제조함으로써, 기존의 공정에서 탈피하여 저렴하고도 효율성 높은 리튬 이차전지의 양극물질을 제조하는 방법을 제공하기 위한 것이다.Lithium nickel oxide (LiNiO 2 ) or lithium nickel transition metal oxide (LiNi 1 - x M x O 2 : M = transition metal Co, Mn, Cr, Ti, By manufacturing a cathode material of Cu, Fe, Al, V, W), to provide a method for producing a cathode material of a lithium secondary battery inexpensive and high efficiency by breaking away from the existing process.

상기의 목적을 달성하기 위한 본 발명에 따른 리튬 이차전지의 양극재 및 그 제조방법은;A cathode material of a lithium secondary battery and a method of manufacturing the same according to the present invention for achieving the above object;

리튬 이차전지의 양극재를 구성함에 있어서, 상기 양극재는 니켈 또는 니켈합금계 박판층(6)의 후면은 절연 및 산화방지를 위한 안정화된 산화물층(7)을 형성하고 전면은 니켈 또는 니켈합금의 산화물층(5)을 형성한 후, 니켈 또는 니켈합금의 산화물층상에 리튬 증착층(4)을 연속적으로 형성한 후, 열처리를 행하여 니켈 또는 니켈합금의 산화물층(5)과 리튬 증착층(4)이 반응을 하여 리튬-니켈 혹은 니켈합금의 복합산화물층을 형성하거나, 혹은 니켈 또는 니켈합금계 박판층(6)의 전극형성을 위한 일부 면을 제외한 양쪽 면에 니켈 또는 니켈합금의 산화물층(5)을 형성한 후, 니켈 또는 니켈합금의 산화물층상에 리튬 증착층(4)을 연속적으로 형성한 후, 열처리를 행하여 니켈 또는 니켈합금의 산화물층(5)과 리튬 증착층(4)을 반응시켜 리튬-니켈 혹은 니켈합금의 복합산화물층으로 형성하여 리튬 이차전지의 양극재로 하고,In constructing a cathode material of a lithium secondary battery, the cathode material forms a stabilized oxide layer 7 for insulation and oxidation prevention on the rear surface of the nickel or nickel alloy thin plate layer 6 and the front surface of the nickel or nickel alloy. After the oxide layer 5 is formed, the lithium deposition layer 4 is continuously formed on the oxide layer of nickel or nickel alloy, and then subjected to heat treatment to form the oxide layer 5 of the nickel or nickel alloy 5 and the lithium deposition layer 4. ) Reacts to form a composite oxide layer of lithium-nickel or nickel alloy, or an oxide layer of nickel or nickel alloy on both sides of the nickel or nickel alloy thin plate layer 6 except for one side for forming electrodes. 5), the lithium deposition layer 4 is continuously formed on the oxide layer of nickel or nickel alloy, and then heat-treated to react the oxide layer 5 and the lithium deposition layer 4 of nickel or nickel alloy. Lithium-nickel or nickel To form the complex oxide layer, and a cathode material for lithium secondary battery,

다결정 또는 2축 배향성을 갖는 니켈 혹은 니켈합금금속 박판을 준비하는 단계, 금속 박판의 절연 및 산화방지를 위하여 박판 후면에 산화마그네슘, 이트륨 산화물, 안정화 지르코니아, 세리아 등을 물리적 진공 증착법으로 산화물층을 증착하는 단계, 니켈 또는 니켈합금 박판층에 산화물층을 형성시키는 물리적 혹은 화학적 혹은 열적 단계, 금속 박판층 또는 금속박판-복합산화물층에 리튬을 증발법 혹은 물리적 증착법에 의해 증착하는 단계, 니켈 또는 니켈합금의 산화물층(5)과 리튬 증착층(4)이 반응을 하여 리튬-니켈 혹은 니켈합금의 복합산화물층을 형성시키는 열처리 단계를 적어도 포함하는 것을 양극재의 제조방법의 특징으로 하고 있다.Preparing a nickel or nickel alloy metal sheet having a polycrystalline or biaxial orientation; depositing an oxide layer on the back of the sheet by physical vacuum evaporation in order to insulate and prevent oxidation of the metal sheet; Physical, chemical or thermal step of forming an oxide layer on the nickel or nickel alloy thin layer, depositing lithium on the metal thin layer or the metal thin-composite oxide layer by evaporation or physical vapor deposition, nickel or nickel alloy A method of producing a cathode material is characterized by comprising at least a heat treatment step in which the oxide layer 5 and the lithium deposition layer 4 react to form a composite oxide layer of lithium-nickel or nickel alloy.

이하의 부수된 도면과 함께 본 발명의 리튬 이차전지의 양극재 및 그 제조방법을 더욱 상세하게 설명한다.The cathode material of the lithium secondary battery of the present invention and a method of manufacturing the same will be described in more detail with the accompanying drawings below.

도 1은 본 발명의 니켈 혹은 니켈합금의 전면만 리튬 이차전지의 양극재의 형성을 도시하는 단면도, 도 2는 본 발명의 니켈 혹은 니켈합금의 전극형성을 위한 면적(5A)을 제외한 양쪽 면에 리튬 이차전지의 양극재의 형성을 도시하는 단면도, 도 3는 본 발명의 니켈 혹은 니켈합금의 한쪽 면만 리튬 이차전지의 양극재 를 형성할 경우, 그 제조방법에 따른 리튬-니켈 박판의 양극재의 구성을 도시하는 단면도, 도 4는 본 발명의 니켈 혹은 니켈합금의 니켈 혹은 니켈합금의 전극형성을 위한 면적을 제외한 양쪽 면에 리튬 이차전지의 양극재를 형성할 경우, 그 제조방법에 따른 리튬-니켈 박판의 양극재의 구성을 도시하는 단면도, 도 6는 증착 성장한 리튬니켈산화물(LiNiO2) 의 박막 표면의 미세조직 관찰을 위한 주사전자현미경 사진으로서 함께 설명한다.1 is a cross-sectional view showing the formation of the positive electrode material of the lithium secondary battery only the front surface of the nickel or nickel alloy of the present invention, Figure 2 is lithium on both sides except the area (5A) for electrode formation of the nickel or nickel alloy of the present invention 3 is a cross-sectional view showing the formation of a cathode material of a secondary battery, and FIG. 3 shows the configuration of a cathode material of a lithium-nickel thin plate according to the method of manufacturing the cathode material of a lithium secondary battery when only one surface of the nickel or nickel alloy of the present invention is formed. 4 is a cross-sectional view of a lithium-nickel thin plate according to a method of manufacturing the positive electrode material of a lithium secondary battery on both surfaces of the nickel or nickel alloy of the present invention except for the electrode formation area of the nickel or nickel alloy. 6 is a cross-sectional view showing the structure of the positive electrode material, and FIG. 6 will be described together as a scanning electron micrograph for observing the microstructure of the thin film surface of vapor-deposited lithium nickel oxide (LiNiO 2) .

도 1은 본 발명의 리튬 이차전지의 양극재를 예시적인 단면으로서 도시하는 것으로서, 니켈 또는 니켈합금계의 후면에 절연 및 산화방지를 위한 안정화된 산화물층(7)을 형성하고 니켈 또는 니켈합금계의 전면 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈전이금속산화물(LiNi1 - xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)이 형성된 다층구조를 가진다. 또 다른 구조로서 도 2는 본 발명의 니켈 혹은 니켈합금의 전극형성을 위한 면적을 제외한 양쪽 면 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈전이금속산화물(LiNi1 - xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)이 형성된 다층구조를 가진다.1 is a cross-sectional view showing a cathode material of a lithium secondary battery of the present invention as an exemplary cross-section, wherein a stabilized oxide layer 7 is formed on the back surface of a nickel or nickel alloy system to prevent insulation and oxidation. Lithium nickel oxide (LiNiO 2 ) or lithium nickel transition metal oxide (LiNi 1 - x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) formed on the front of the It has a multilayer structure. As another structure, FIG. 2 shows lithium nickel oxide (LiNiO 2 ) or lithium nickel transition metal oxide (LiNi 1 - x M x O 2 : M =) on both surfaces except for an area for forming an electrode of nickel or nickel alloy of the present invention. Transition metals Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) has a multilayer structure formed.

금속박판층(6)은 순수한 니켈 금속, 또는 다양한 도필 레벨에 따라 전이 금속인 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W 등이 함유된 금속 테이프이며, 압연과정을 통해 얻거나, 압연과정을 통해 얻은 금속 박판을 재결정화 열처리 과정을 통하여 2축 방향으로 배향된 집합구조를 가지게 된다.The thin metal layer 6 is a pure nickel metal or a metal tape containing Co, Mn, Cr, Ti, Cu, Fe, Al, V, W, etc., which are transition metals according to various levels of dope. Alternatively, the thin metal sheet obtained through the rolling process may have an aggregate structure oriented in the biaxial direction through a recrystallization heat treatment process.

본 발명의 리튬 이차전지의 양극재 및 그 제조방법에 따른 리튬니켈-산화전이금속(LiNi1-xMxO2 :M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극재의 제조방법은 다음과 같다.Lithium nickel-oxide transition metal according to the cathode material of the lithium secondary battery of the present invention and a method for manufacturing the same (LiNi 1-x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V , W) method of manufacturing the cathode material is as follows.

먼저, 니켈 혹은 니켈합금의 한쪽 면 위에만 양극재를 형성할 경우, 금속박판층(6)으로 사용되는 금속 박판 후면에 산화마그네슘, 이트륨 산화물, 안정화 지르코니아, 세리아 등을 물리적 진공 증착법으로 증착하여 산화물층(7)을 형성한다.First, when the cathode material is formed on only one surface of nickel or nickel alloy, oxides are deposited by physical vacuum evaporation of magnesium oxide, yttrium oxide, stabilized zirconia, ceria, etc. on the rear surface of the metal sheet used as the metal sheet layer 6. Form layer 7.

산화물층(7)이 증착된 금속박판층(6)의 반대 면에는 열처리 온도 500~1000℃ 범위에서 산소 가스를 흘리면서 니켈 또는 니켈합금계의 산화물층(5)을 형성시킨다.On the opposite side of the metal thin layer layer 6 on which the oxide layer 7 is deposited, an oxide layer 5 of nickel or nickel alloy system is formed while flowing oxygen gas at a heat treatment temperature of 500 to 1000 ° C.

이 때 재결정화 처리를 통해 제조된 금속박판층(6)은 2축 집합구조를 가져 니켈산화물 또는 니켈합금계의 산화물층(5)도 니켈 합금의 배향을 따라 헤테로-에피(hetero-epitaxy) 성장된다.At this time, the metal thin layer 6 prepared through the recrystallization process has a biaxial aggregate structure, so that the oxide layer 5 of the nickel oxide or nickel alloy system also grows hetero-epitaxy along the orientation of the nickel alloy. do.

이후 리튬을 증발법 혹은 물리적 증착법으로 니켈산화물 또는 니켈합금계의 산화물층(5) 위에 증착시킨 후, 열처리 과정 중에 반응성이 좋은 리튬의 확산 속도를 이용하여 니켈 또는 니켈합금의 복합산화물층(5)과 반응하여 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물(LiNi1 - xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극재 물질을 제조할 수 있게 되는 것이다.Thereafter, lithium is deposited on the nickel oxide or nickel alloy oxide layer 5 by evaporation or physical vapor deposition, and then a composite oxide layer 5 of nickel or nickel alloy is used using a diffusion rate of lithium which is reactive during heat treatment. Cathode material of lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1 - x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) It will be able to manufacture the material.

이러한 확산반응을 이용하여 리튬증착층(4)를 형성하는 방법에는,In the method of forming the lithium deposition layer 4 using such a diffusion reaction,

소위 인시튜(in-situ) 방법과, 엑스시튜(ex-situ) 방법으로 진행된다.The so-called in-situ and ex-situ methods are used.

단일의 패치공정 또는 동일한 제조환경 하에서의 연속적인 공정을 의미하는 먼저 인시튜(in-situ) 방법으로는 리튬을 물리적 증착법에 의해 위의 니켈 또는 니켈합금계의 산화물층(5)위에 증착 시에,In the first in-situ method, which means a single patch process or a continuous process under the same manufacturing environment, lithium is deposited on the nickel or nickel alloy oxide layer 5 by physical vapor deposition.

니켈 또는 니켈합금계의 복합산화물층(5)의 온도를 600~800℃ 온도 구간을 유지한 후 리튬이 증발됨과 동시에 니켈산화물 또는 니켈합금계의 산화물층(5)과 반응하여 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물(LiNi1 -xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극재 물질을 제조한다.After maintaining the temperature range of the nickel or nickel alloy composite oxide layer 5 at a temperature range of 600 to 800 ° C., lithium is evaporated and reacted with the nickel oxide or nickel alloy oxide layer 5 to form lithium nickel oxide (LiNiO). 2 ) or a cathode material of lithium nickel alloy oxide (LiNi 1- x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W).

불연속적인 패치공정 또는 제조환경이 상이한 환경 하에서의 공정을 의미하는 엑스시튜(ex-situ) 방법은 상온에서 니켈 또는 니켈합금계의 복합산화물층(5)에 리튬을 증발법 혹은 물리적 증착법으로 증착한 후, 이를 170~800℃ 온도 구간에서 열처리하여 리튬의 확산을 일으켜 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물(LiNi1-xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극재 물질을 제조한다.The ex-situ method, which refers to a discontinuous patch process or a process under a different environment, is obtained by depositing lithium on a nickel or nickel alloy composite oxide layer 5 by evaporation or physical vapor deposition at room temperature. Then, heat treatment at a temperature range of 170 ~ 800 ℃ to cause the diffusion of lithium lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1-x M x O 2 : M = transition metal Co, Mn, Cr, Ti (Cu, Fe, Al, V, W) to prepare a cathode material.

도 5는 증착 성장하여 구성된 복합산화물인 리튬니켈산화물(LiNiO2)박막의 엑스레이회절(XRD) θ-2θ 실험의 데이타, 도 6는 증착 성장한 리튬니켈산화물(LiNiO2)의 박막 표면의 미세조직 관찰을 위한 주사전자현미경 사진으로서 치밀하고 균일한 물성을 보여주고 있다.5 is observed microstructure of the thin film of compound oxide of lithium nickel oxide (LiNiO 2) of the X-ray diffraction (XRD) θ-2θ experiment of the thin film data, Fig. 6 is deposited grown lithium nickel oxide (LiNiO 2) is configured by deposition growth Scanning electron micrographs for show the precise and uniform physical properties.

이상과 같은 본 발명의 리튬 이차전지의 양극재 및 그 제조방법은,As described above, the cathode material of the lithium secondary battery of the present invention and a method of manufacturing the same,

코발트보다 저렴한 니켈 및 니켈합금을 사용함으로서 종래에 비하여 제조원가를 대폭 저감할 수 있고 , 양극재 분말의 슬러리를 도포하여 소결하는 공정을 대치하여 양극재 입자크기가 작아서 비표면적이 클 뿐 아니라 양극재의 두께를 감소시켜 2차전지의 크기를 줄이거나 같은 크기일 경우 충방전용량을 증대시키는 효과를 가져 올 수 있고, 니켈 및 니켈합금의 산화와 리튬의 증착 및 리튬의 확산 열처리 반응을 연속적으로 할 수 있으므로 제조환경에 따라서 적용성이 높고 리튬-니켈 이차전지의 높은 효율성은 그대로 유지하게 하는 유용성을 가진다.By using nickel and nickel alloys that are cheaper than cobalt, manufacturing costs can be significantly reduced compared to the conventional ones, and the anode particle size is small to replace the process of applying and sintering a slurry of cathode powder, so that the specific surface area is not only large, but also the thickness of cathode material. By reducing the size of the secondary battery or the same size can reduce the charge and discharge capacity, it can bring about the effect of the oxidation of nickel and nickel alloys, the deposition of lithium and the diffusion heat treatment of lithium continuously Applicability is high depending on the manufacturing environment and the high efficiency of the lithium-nickel secondary battery is maintained as it is.

Claims (5)

리튬 이차전지의 양극재를 구성함에 있어서,In constructing a cathode material of a lithium secondary battery, 상기 양극재는 니켈 또는 니켈합금계의 후면에 절연 및 산화방지를 위한 안정화된 산화물층(7)을 형성하고 니켈 또는 니켈합금계의 전면 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈전이금속산화물(LiNi1 - xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)이 형성된 다층구조를 가지는 것을 특징으로 하는 리튬 이차전지의 양극재.The cathode material forms a stabilized oxide layer 7 for insulation and oxidation prevention on the back surface of the nickel or nickel alloy system, and is lithium nickel oxide (LiNiO 2 ) or lithium nickel transition metal oxide (LiNi) on the front surface of the nickel or nickel alloy system. 1 - x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) cathode material of a lithium secondary battery characterized in that it has a multilayer structure formed. 리튬 이차전지의 양극재를 구성함에 있어서,In constructing a cathode material of a lithium secondary battery, 상기 양극재는 니켈 혹은 니켈합금의 전극형성을 위한 면적을 제외한 양쪽 면 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물 (LiNi1 - xMxO2: M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)이 형성된 다층구조를 가지는 것을 특징으로 하는 리튬 이차전지의 양극재.The cathode material is lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1 - x M x O 2 : M = transition metal Co, Mn, Cr, on both sides except the area for forming the electrode of nickel or nickel alloy Ti, Cu, Fe, Al, V, W) has a multilayer structure, characterized in that the cathode material of a lithium secondary battery. 리튬 이차전지의 양극재를 제조함에 있어서,In manufacturing a cathode material of a lithium secondary battery, 다결정 또는 2축 배향성을 갖는 니켈 금속 박판 혹은 니켈합금 금속 박판을 준비하는 단계, 니켈 금속 박판 혹은 니켈합금 금속 박판의 산화방지를 위하여 박판 후면에 산화마그네슘, 이트륨 산화물, 안정화 지르코니아, 세리아 등에 물리적 진공 증착법으로 산화물층을 증착하는 단계, 니켈 금속 박판 혹은 니켈합금 금속 박판층에 산화물층을 형성시키는 단계, 니켈 산화물층 혹은 니켈합금 산화물층에 리튬을 증발법 혹은 물리적 증착법에 의해 증착하는 단계를 적어도 포함하는 것을 특징으로 하는 리튬 이차전지의 양극재의 제조방법.Preparing a nickel metal thin plate or a nickel alloy metal thin plate having a polycrystalline or biaxial orientation, and performing physical vacuum vapor deposition on magnesium oxide, yttrium oxide, stabilized zirconia, ceria, etc. Depositing an oxide layer on the nickel metal thin film or the nickel alloy metal thin layer, and depositing lithium on the nickel oxide layer or the nickel alloy oxide layer by evaporation or physical vapor deposition. Method for producing a cathode material of a lithium secondary battery, characterized in that. 제 3 항에 있어서,The method of claim 3, wherein 상기 리튬의 니켈금속 박판층 또는 니켈합금 금속박판 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물 (LiNi1-xMxO2: M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 인시튜(in-situ) 방법으로 합성시,Lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1-x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe on the nickel metal thin layer or nickel alloy metal thin plate of lithium When synthesized by in-situ method of Al, V, W), 니켈금속 박판층 또는 니켈합금 금속박판을 500~1000℃ 온도 구간에서 선택되는 온도로 유지하고 산소를 주입해서 열처리분위기를 산화분위기로 형성하여 리튬이 증발됨과 동시에 산소 및 니켈금속 박판층 또는 니켈합금금속 박판층과 반응하여 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물(LiNi1-xMxO2 :M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극재 물질을 제조하는 것을 특징으로 하는 리튬 이차전지의 양극재의 제조방법. The nickel metal thin layer or the nickel alloy metal thin plate is maintained at a temperature selected at a temperature range of 500 to 1000 ° C., and oxygen is injected to form a heat treatment atmosphere as an oxidizing atmosphere so that lithium is evaporated and oxygen and nickel metal thin layers or nickel alloy metals. Reaction with a thin plate layer of lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1-x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) A method for producing a cathode material of a lithium secondary battery, characterized in that to produce a cathode material. 제 3 항에 있어서,The method of claim 3, wherein 상기 리튬의 니켈금속 박판층 또는 니켈합금 금속박판 위에 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물 (LiNi1-xMxO2: M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 엑스시튜(ex-situ) 방법으로 합성시,Lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1-x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe on the nickel metal thin layer or nickel alloy metal thin plate of lithium When synthesized by the ex-situ method of (Al, V, W), 엑스시튜(ex-situ) 방법으로 니켈 또는 니켈합금계의 산화물층(5)에 리튬을 증발법 혹은 물리적 증착법으로 증착한 후, 이를 170~1000℃ 온도 구간에서 선택되는 온도로 열처리하여 리튬의 확산을 일으켜 리튬니켈산화물(LiNiO2) 혹은 리튬니켈합금산화물 (LiNi1-xMxO2:M=전이금속 Co, Mn, Cr, Ti, Cu, Fe, Al, V, W)의 양극재 물질을 제조하는 것을 특징으로 하는 리튬 이차전지의 양극재의 제조방법.Lithium is deposited on the nickel or nickel alloy oxide layer 5 by an ex-situ method by evaporation or physical vapor deposition, and then heat-treated at a temperature selected from a temperature range of 170 to 1000 ° C. to obtain lithium. Diffusion causes lithium nickel oxide (LiNiO 2 ) or lithium nickel alloy oxide (LiNi 1-x M x O 2 : M = transition metal Co, Mn, Cr, Ti, Cu, Fe, Al, V, W) Method for producing a cathode material of a lithium secondary battery, characterized in that to produce a material.
KR1020050076235A 2005-08-19 2005-08-19 Positive polar materials and its manufacturing method of Li-secondary battery KR100775077B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050076235A KR100775077B1 (en) 2005-08-19 2005-08-19 Positive polar materials and its manufacturing method of Li-secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050076235A KR100775077B1 (en) 2005-08-19 2005-08-19 Positive polar materials and its manufacturing method of Li-secondary battery

Publications (2)

Publication Number Publication Date
KR20070021686A KR20070021686A (en) 2007-02-23
KR100775077B1 true KR100775077B1 (en) 2007-11-08

Family

ID=41636618

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050076235A KR100775077B1 (en) 2005-08-19 2005-08-19 Positive polar materials and its manufacturing method of Li-secondary battery

Country Status (1)

Country Link
KR (1) KR100775077B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999575B2 (en) 2010-07-20 2015-04-07 Samsung Sdi Co., Ltd. Positive electrode and lithium battery including the same
KR20160150464A (en) 2015-06-22 2016-12-30 한국전기연구원 Metal/two-dimensional nano material hybride conductive film and method of manufacturing the same
KR20170136729A (en) 2016-06-02 2017-12-12 한국전기연구원 Durability is improved metal/2-D nanomaterials/polymer hybrid conductive film and a manufacturing method thereof
US10421123B2 (en) 2015-06-22 2019-09-24 Korea Electrotechnology Research Institute Metal/two-dimensional nanomaterial hybrid conductive film and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239966B1 (en) * 2010-11-04 2013-03-06 삼성전자주식회사 Positive electrode for lithium air battery, method of preparing the same, and lithium air battery employing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071204A (en) 2001-03-05 2002-09-12 주식회사 엘지화학 Electrochemical device using multicomponent composite membrane film
KR20040007597A (en) 2001-05-23 2004-01-24 몰텍 코포레이션 Lithium anodes for electrochemical cells
KR20060088166A (en) 2005-02-01 2006-08-04 한국과학기술연구원 Ni-al alloy anode for molten carbonate fuel cell by in-situ sintering the ni-al alloy and method for preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071204A (en) 2001-03-05 2002-09-12 주식회사 엘지화학 Electrochemical device using multicomponent composite membrane film
KR20040007597A (en) 2001-05-23 2004-01-24 몰텍 코포레이션 Lithium anodes for electrochemical cells
KR20060088166A (en) 2005-02-01 2006-08-04 한국과학기술연구원 Ni-al alloy anode for molten carbonate fuel cell by in-situ sintering the ni-al alloy and method for preparing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999575B2 (en) 2010-07-20 2015-04-07 Samsung Sdi Co., Ltd. Positive electrode and lithium battery including the same
KR20160150464A (en) 2015-06-22 2016-12-30 한국전기연구원 Metal/two-dimensional nano material hybride conductive film and method of manufacturing the same
US10421123B2 (en) 2015-06-22 2019-09-24 Korea Electrotechnology Research Institute Metal/two-dimensional nanomaterial hybrid conductive film and method for manufacturing same
KR20170136729A (en) 2016-06-02 2017-12-12 한국전기연구원 Durability is improved metal/2-D nanomaterials/polymer hybrid conductive film and a manufacturing method thereof

Also Published As

Publication number Publication date
KR20070021686A (en) 2007-02-23

Similar Documents

Publication Publication Date Title
Zhou et al. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries
EP1875537B1 (en) Method for preparing layered core-shell cathode active materials for lithium secondary batteries
CN107968198B (en) Nickel-cobalt lithium manganate precursor with core-shell structure, preparation method thereof and application of precursor in lithium ion battery
JP5759545B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery produced thereby, and lithium secondary battery using the same
CN1327552C (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
JP3691279B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP7017079B2 (en) Electrode manufacturing method, electrodes, and electrode-electrolyte layer junction
US8142932B2 (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof
US7638239B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, manufacturing method therefor, and non-aqueous electrolyte secondary battery
KR100797099B1 (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
Zhang et al. Significant improvement on electrochemical performance of LiMn2O4 at elevated temperature by atomic layer deposition of TiO2 nanocoating
JP2018500720A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
CN107068995B (en) In-situ precipitated oxide coated lithium ion battery positive electrode material and preparation method and application thereof
WO2009120019A1 (en) Olivine-type cathode active material precursor for lithium battery, olivine-type cathode active material for lithium battery, method for preparing the same and lithium battery with the same
WO2010094394A1 (en) Non-homogeneous positive electrode materials combining high safety and high power in a li rechargeable battery
JP2009181807A (en) Solid electrolyte, solid electrolyte battery, manufacturing method of lithium ion conductor, manufacturing method of solid electrolyte, and manufacturing method of solid electrolyte battery
KR100834054B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
KR100775077B1 (en) Positive polar materials and its manufacturing method of Li-secondary battery
JP2002216746A (en) Negative electrode for lithium secondary battery and its manufacturing method
Jin et al. Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries
Li et al. Synthesis and characterization of lithium manganese oxides with core-shell Li4Mn5O12@ Li2MnO3 structure as lithium battery electrode materials
KR101405663B1 (en) Positive active material for rechargeable, method for preparing the same, and rechargeable lithium battery comprising the same
KR101762282B1 (en) High capacity cathode material improved thermal stability for lithium ion battery and a method of manufacturing the same
Park et al. Influence of sputtering gas pressure on the LiCoO 2 thin film cathode post-annealed at 400 C

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111031

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee