KR100773696B1 - Protecting tube for very high pressure cable - Google Patents

Protecting tube for very high pressure cable Download PDF

Info

Publication number
KR100773696B1
KR100773696B1 KR1020070010945A KR20070010945A KR100773696B1 KR 100773696 B1 KR100773696 B1 KR 100773696B1 KR 1020070010945 A KR1020070010945 A KR 1020070010945A KR 20070010945 A KR20070010945 A KR 20070010945A KR 100773696 B1 KR100773696 B1 KR 100773696B1
Authority
KR
South Korea
Prior art keywords
protective tube
sectional area
short
thickness
aluminum
Prior art date
Application number
KR1020070010945A
Other languages
Korean (ko)
Inventor
김성윤
김정년
심성익
안미경
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020070010945A priority Critical patent/KR100773696B1/en
Application granted granted Critical
Publication of KR100773696B1 publication Critical patent/KR100773696B1/en
Priority to PCT/KR2007/006155 priority patent/WO2008093926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/24Devices affording localised protection against mechanical force or pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0406Details thereof
    • H02G3/0412Heat or fire protective means

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Insulated Conductors (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

A protecting pipe for a very high voltage cable is provided to withstand predetermined internal pressure and external force by realizing the thickness which satisfies structure strength. A protecting pipe for a very high voltage cable includes a body unit, and an end unit. The end unit is formed at one end of the body unit, and has a minimum cross section which satisfies short current capacity and is calculated by a formula 2: Y=0.126X(when the protecting pipe is made of copper) and a formula 3: Y=0.856X(when the protecting pipe is made of aluminum). In the formula 3, Y is short current capacity and X is the cross section of the protecting pipe. The protecting pipe has thickness which satisfies the structure strength of a formula 4: ln(Y)=-1.24ln(X)+1.76, wherein Y is equivalent stress and X is the thickness of the protecting pipe.

Description

초고압케이블용 보호관{Protecting Tube for Very High Pressure Cable}Protecting Tube for Very High Pressure Cable

도 1은 종래의 일반적인 보호관의 구조를 나타낸 사시도,1 is a perspective view showing the structure of a conventional general protective tube,

도 2는 본 발명의 보호관을 설계하기 위해 각 재질에 따른 단면적에 대한 허용전류용량을 나타낸 그래프,Figure 2 is a graph showing the allowable current capacity for the cross-sectional area according to each material to design the protective tube of the present invention,

도 3은 내압기준을 만족하도록 보호관에 발생하는 응력과 두께간의 관계를 나타낸 그래프이다. 3 is a graph showing the relationship between the stress and the thickness generated in the protective tube to satisfy the pressure resistance criteria.

* 도면의 주요부분에 대한 부호설명 ** Explanation of Signs of Major Parts of Drawings *

10 : 보호관10: protective tube

11 : 본체부11: main body

12 : PVC층12: PVC layer

13 : 접지단자13: Ground terminal

14 : 엔드부14: end portion

본 발명은 초고압케이블용 보호관에 관한 것으로, 더욱 상세하게는 XLPE(Cross-Linked Polyethylene)케이블 접속함의 보호관의 최적의 설계조건을 제 공하여 단락전류에 의한 손상 및 내압과 외력에 충분히 견딜 수 있는 보호관에 관한 것이다.The present invention relates to a protective tube for ultra-high voltage cable, and more particularly, to provide an optimum design condition of the protective tube of an XLPE cable junction box, which can withstand damage caused by short-circuit current, and can withstand internal pressure and external force. It is about.

일반적으로, 초고압 XLPE 케이블 접속함의 보호관은 도 1에 도시된 바와 같은 구조를 가지는바, 보호관(10)은 기본적으로 알루미늄 또는 구리재와 같은 금속재의 본체부(11)로 이루어지고, 이 본체부(11)의 외피는 PVC층(12)으로 이루어져 있으며, 접지단자(13)가 형성되며, 일측단부에는 최소단면적을 가지는 엔드부(14)가 형성된 구조이다. In general, the protective tube of the ultra-high pressure XLPE cable junction box has a structure as shown in Figure 1, the protective tube 10 is basically composed of a body portion 11 of a metal material such as aluminum or copper, 11) the outer shell is made of a PVC layer 12, the ground terminal 13 is formed, the one end is a structure in which the end portion 14 having a minimum cross-sectional area is formed.

이러한 보호관(10)은 케이블의 단락전류에 의한 손상이 없어야 하고, 일정한 내압 및 외력에 견딜 수 있는 구조를 가져야 한다. The protective tube 10 should not be damaged by the short-circuit current of the cable, and should have a structure that can withstand a constant internal pressure and external force.

이를 위해서, 보호관 설계시 재질에 따른 단락허용전류만족여부와 구조강도에 대한 고려가 필수적이며, 적절한 보호관단면 설계가 이루어지지 않는 경우에는, 단락전류발생시 열에 의한 PVC층(12)의 손상이 발생할 수 있고, 이것은 전기적 성능저하 및 보호관 부식의 주 원인이 된다. To this end, consideration of short-circuit allowable current and structural strength is essential in designing the protection tube, and if the proper protection pipe section design is not made, damage to the PVC layer 12 may occur due to heat when a short-circuit current is generated. This is a major cause of electrical degradation and protective tube corrosion.

이러한 현상을 방지하기 위해 단락 발생시 열에 견딜 수 있는 충분한 단면적을 확보해야 하지만, 종래의 보호관은 정확한 설계기준치가 없어 보호관의 단면적이 너무 크거나 또는 작은 경우, 경제적, 기능적 손실이 발생할 수 밖에 없었다. 또한, 보호관(10)의 구조강도가 충분하지 못할 경우, 보호관의 내부에서는 외부에서 발생한 외력으로 인해 손상될 수 있는 문제점이 있었다. In order to prevent this phenomenon, it is necessary to secure a sufficient cross-sectional area to withstand heat in the event of a short circuit, but the conventional protective tube does not have an accurate design reference value, so if the cross-sectional area of the protective tube is too large or too small, economic and functional loss will inevitably occur. In addition, when the structural strength of the protective tube 10 is not sufficient, there is a problem that can be damaged by the external force generated from the inside of the protective tube.

이에 본 발명은 상기와 같은 종래의 보호관 설계의 문제점을 해결하기 위해 보다 적합한 기준치를 제공하여 여러가지 변수에 대하여 충분히 견딜 수 있는 보호관을 제공함에 발명의 목적이 있다. Accordingly, an object of the present invention is to provide a protective tube that can withstand various variables by providing a more suitable reference value to solve the problems of the conventional protective tube design as described above.

상기와 같은 목적을 달성하기 위한 본 발명은 초고압 케이블용 보호관에 있어서, 단락전류용량을 만족하기 위한 최소단면적은 하기 식에 의해 산출되는 것을 기술적 특징으로 한다.The present invention for achieving the above object is characterized in that in the ultra-high voltage cable protective tube, the minimum cross-sectional area for satisfying the short-circuit current capacity is calculated by the following formula.

Y=0.126X(보호관의 재질이 구리인 경우)Y = 0.126X (if the sheath is made of copper)

Y=0.856X(보호관의 재질이 알루미늄인 경우)Y = 0.856X (if the sheath is made of aluminum)

여기서, Y는 단락전류용량이고, X는 보호관의 단면적이다. Where Y is the short-circuit current capacity and X is the cross-sectional area of the protective tube.

상기 식에서 단락전류용량(Y)은 120kA로 선정하고, 이때, 구리재 보호관인 경우 최소단면적은 952mm2이고, 알루미늄재 보호관인 경우에는 1400mm2이다. Wherein the short-circuit current capacity (Y) is selected as 120kA and if, at this time, in the case of the copper material and the protective tube has a minimum cross-sectional area 952mm 2, the aluminum material of the protective tube is 1400mm 2.

또한, 본 발명은 다음식에 의해 구조강도를 만족하는 두께를 가지도록 구성된 것을 다른 기술적 특징으로 한다.In addition, the present invention is another technical feature that is configured to have a thickness satisfying the structural strength by the following equation.

ln(Y)=-1.24ln(X)+1.76 ln (Y) =-1.24 ln (X) +1.76

이러한 구조강도는 내압기준 3kgf/cm2을 만족하는 바람직한 두께를 가지도록 안전율 1.5를 고려하여 알루미늄인 경우 두께범위가 3mm~8mm이고, 구리재인 경우에는 2mm~6mm이다. The structural strength is 3mm to 8mm in the case of aluminum, and 2mm to 6mm in the case of aluminum, in consideration of the safety factor 1.5 so as to have a desirable thickness satisfying the 3kgf / cm 2 withstand pressure standard.

이하, 본 발명의 바람직한 실시예를 첨부된 예시도면에 의거 상세하게 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

상기 종래기술과 동일한 구성요소에 대해서는 동일한 부호를 부여하여 설명하고, 상세한 설명은 생략한다. The same components as those in the prior art will be described with the same reference numerals, and detailed description thereof will be omitted.

기본적으로 보호관(10)은 단락전류용량 및 구조강도를 만족하도록 하는 두께를 가져야 한다. 따라서, 우선 단락전류용량을 만족하기 위한 단면적을 각 재질에 따라 산출하면, 도 2에 도시된 그래프와 같이 나타낼 수 있다.Basically, the protective tube 10 should have a thickness to satisfy the short-circuit current capacity and the structural strength. Therefore, first, when the cross-sectional area for satisfying the short-circuit current capacity is calculated according to each material, it can be represented as shown in the graph shown in FIG.

이러한 그래프는 기본적으로 다음 수학식에 의해 산출된다. This graph is basically calculated by the following equation.

[수학식 1][Equation 1]

IAD 2t=K2S2ln[(θf+β)/(θi+β)]I AD 2 t = K 2 S 2 ln [(θ f + β) / (θ i + β)]

여기서, IAD는 단락전류(short-circuit current), t는 단락시간(duration of short-circuit), K는 재료상수(constant depending on the matreial), S는 단면적(geometrical cross-sectional area), θi는 초기온도(initial temperature), θf는 최종온도(final temperature), β는 역온도계수(reciprocal of temperature coefficient)이다. Where I AD is short-circuit current, t is duration of short-circuit, K is constant depending on the matreial, S is geometrical cross-sectional area, θ i is the initial temperature, θ f is the final temperature, β is the reciprocal of temperature coefficient.

먼저 보호관(10)의 최소 단면적을 결정하기 위해 사고시, 전류의 경로가 될 수 있는 부분중 최소단면적을 가지는 엔드부(14)에 대한 단락용량을 계산하고, 이때 발생하는 온도를 PVC층(12)이 손상받지 않는 200℃이하로 설계하여야 한다. 단락용량을 결정하는 상기 수학식 1에 따라 최종온도를 200℃로 고정하고, 이에 대한 단락용량과 단면적을 계산하여 보호관(10) 설계기준으로 사용하였다. 현재 초고압 시스템의 대부분은 60kA 이상의 계통이 없으나, 안전율을 2정도 고려하여 120kA를 설계기준으로 선정하였다. First, in order to determine the minimum cross-sectional area of the protective tube 10, in case of an accident, the short-circuit capacity for the end portion 14 having the minimum cross-sectional area of the path that can be a current path is calculated, and the temperature generated at this time is the PVC layer 12 It should be designed under 200 ℃ without damage. The final temperature was fixed at 200 ° C. according to Equation 1 for determining the short-circuit capacity, and the short-circuit capacity and cross-sectional area thereof were calculated and used as a design criterion for the protective tube 10. Currently, most of the ultra high pressure systems do not have a system of more than 60kA, but 120kA was selected as a design criterion in consideration of safety factor of about 2.

이러한 단락전류용량을 만족하기 위한 최소단면적을 가지는 보호관이 알루미늄재일경우와, 구리재일 경우에 따라 차이가 있는바, 각각의 재질의 단면적에 대한 허용전류용량을 계산하면 도 2에 도시된 그래프와 같이 나타낼 수 있다. If the protective tube having the minimum cross-sectional area to satisfy the short-circuit current capacity is different between the case of aluminum and copper, the allowable current capacity for the cross-sectional area of each material is calculated as shown in the graph shown in FIG. Can be represented.

여기서, 설계기준 단락전류용량을 120kA로 선정한 경우, 보호관(10)의 재질이 구리 및 알루미늄일 경우에 다음 수학식을 만족해야 한다..Here, when the design reference short-circuit current capacity is selected as 120kA, when the material of the protective tube 10 is copper and aluminum, the following equation must be satisfied.

[구리인 경우][For copper]

[수학식 2][Equation 2]

Y=0.126XY = 0.126X

[알루미늄인 경우][For aluminum]

[수학식 3][Equation 3]

Y=0.856XY = 0.856X

여기서, Y는 단락전류용량(kA)이고, X는 보호관의 단면적이다.(mm2)Where Y is the short-circuit current capacity (kA) and X is the cross-sectional area of the protective tube (mm 2 ).

상기 수학식 2와 수학식 3에 의거 단락전류용량을 120kA로 선정한 경우, 보호관(10)의 최소단면적을 구하면 구리재질의 보호관인 경우 952mm2, 알루미늄재질의 보호관인 경우에는 1400mm2이다.If the above equations (2) and when selected by the short circuit current capability based on the equation (3) to 120kA, ask if the minimum cross-sectional area of the protective tube (10) of the protective tube of a copper material 952mm 2, the protective tube made of aluminum has a 1400mm 2.

한편, 도 3은 내압기준 3kgf/cm2에서 구조해석(유한요소해석법)을 수행하여 보호관에 발생하는 응력을 나타낸 그래프이다. 실제 형상과 동일하게 모델링하여 두께를 가지는 3차원 쉘(shell)요소를 이용하여 요소망을 형성하고, 구리재 및 알루미늄재의 탄성계수 및 포아슨비를 고유물성치로 사용하였다. 작용하중은 내압 3kgf/mm2가 보호관 내부에 작용하는 것으로 하고, 각각의 두께에 대해 작용하는 응력을 계산하였다. 해석한 결과, 두께 3mm의 경우 최대응력은 1.52kgf/mm2가 작용함을 알 수 있었다. 이를 허용강도(알루미늄재인 경우 2.5kgf/mm2, 구리재인 경우 4kgf/mm2)와 비교할 경우, 충분한 강도를 만족함을 알 수 있고, 이를 도 3에 도시된 그래프와 같이 각각의 두께에 대해 발생응력을 계산하고 허용강도와 비교하여 나타낼 수 있으며, 이 그래프를 통해 다음 수학식 4로 나타낼 수 있다. On the other hand, Figure 3 is a graph showing the stress generated in the protective tube by performing a structural analysis (finite element analysis method) at the internal pressure standard 3kgf / cm 2 . A mesh was formed using a three-dimensional shell element having a thickness by modeling the same as the actual shape, and elastic modulus and Poisson's ratio of copper and aluminum were used as intrinsic properties. The working load assumes that the internal pressure 3kgf / mm 2 acts inside the protective tube, and the stress acting on each thickness was calculated. As a result of analysis, it can be seen that the maximum stress of 1.52kgf / mm 2 acts for the thickness of 3mm. This allows the intensity (in the case of aluminum, if the re-2.5kgf / mm 2, the copper re 4kgf / mm 2) when compared with, it can be seen satisfies a sufficient strength, the stress generated for each thickness as this, with the graph shown in Figure 3 It can be expressed by comparing with the allowable strength and can be expressed by the following equation (4).

[수학식 4][Equation 4]

ln(Y)=-1.24ln(X)+1.76 ln (Y) =-1.24 ln (X) +1.76

여기서, Y는 등가응력(kgf/mm2), X는 보호관의 두께(mm)이다.Here, Y is the equivalent stress (kgf / mm 2 ), X is the thickness of the protective tube (mm).

도 3의 그래프상의 응력은 알루미늄재와 구리재의 보호관인 경우, 각각의 재료에 대한 허용강도 이하라야하며, 알루미늄재인 경우 안전율 1.5를 고려할때, 최소 3mm두께 이상, 구리재의 보호관인 경우에는 최소 2mm이상의 두께를 가지도록 설계되어야 한다.The stress on the graph of FIG. 3 should be less than the allowable strength for each material in the case of a protective tube of aluminum and copper, and at least 3 mm thick, in the case of a protective tube of aluminum, at least 2 mm in the case of a protective tube of copper. It must be designed to have a thickness.

이때, 앞서 언급한 바와 같이, 구리 및 알루미늄의 허용강도는 각각 4.5kgf/mm2, 2.5kgf/mm2이다.In this case, as mentioned above, the allowable strengths of copper and aluminum are 4.5 kgf / mm 2 and 2.5 kgf / mm 2, respectively.

한편, 다음 표 1에 도시된 바와 같이, 알루미늄 및 구리재인 경우에 각각의 바람직한 보호관 두께범위는, 알루미늄재인 경우 3~8mm이고, 구리재인 경우에는 2~6mm정도임을 알 수 있다. On the other hand, as shown in the following Table 1, in the case of aluminum and copper, each of the preferred protective tube thickness range, it can be seen that in the case of aluminum 3 ~ 8mm, in the case of copper 2 ~ 6mm.

보호관타입Sheath type 두께(mm)Thickness (mm) 단락용량 만족여부Short circuit capacity satisfaction 구조강도 만족유무Satisfaction of Structural Strength 조립성 평가Assessability 비고Remarks 알루미늄     aluminum 1One XX XX OO 불량 Bad 22 XX XX OO 33 OO OO OO 양호   Good 44 OO OO OO 55 OO OO OO 66 OO OO OO 77 OO OO OO 88 OO OO OO 99 OO OO XX 불량 Bad 1010 OO OO XX 구리      Copper 1One XX XX OO 불량Bad 22 OO OO OO 양호   Good 33 OO OO OO 44 OO OO OO 55 OO OO OO 66 OO OO OO 77 OO OO XX 불량  Bad 88 OO OO XX 99 OO OO XX 1010 OO OO XX

이와 같이, 본 발명은 단락용량을 만족하는 최소단면적 및 구조강도를 만족하는 두께를 구현하므로써, 케이블 단락전류에 의한 손상을 방지하고, 일정한 내압 및 외력을 견딜 수 있는 구조를 가질 수 있는 효과가 있다. As described above, the present invention implements a thickness that satisfies the minimum cross-sectional area and structural strength that satisfies the short-circuit capacity, thereby preventing damage caused by the cable short-circuit current and having a structure capable of withstanding a constant breakdown voltage and external force. .

본 발명은 편의상 첨부된 예시도면에 의거 본 발명의 실시예를 설명하였지만, 이에 국한되지 않고 본 발명의 기술적 사상의 범주내에서 여러가지 변형 및 수정이 가능함은 자명한 사실이다. Although the present invention has been described for the embodiments of the present invention based on the accompanying drawings for convenience, it is obvious that various modifications and changes are possible within the scope of the technical idea of the present invention.

Claims (4)

본체부와, 이 본체부의 일단에 형성되면서 최소단면적을 가지는 엔드부로 이루어진 초고압 케이블용 보호관에 있어서, In the protective tube for ultra-high voltage cable formed of a main body and an end having a minimum cross-sectional area formed on one end of the main body, 단락전류용량을 만족하기 위한 상기 엔드부의 최소단면적은 하기 수학식2 또는 수학식3에 의해 산출되는 것을 특징으로 하는 초고압케이블용 보호관.The minimum cross-sectional area of the end portion to satisfy the short-circuit current capacity is calculated by the following equation (2) or (3). [수학식 2][Equation 2] Y=0.126X(보호관의 재질이 구리인 경우)Y = 0.126X (if the sheath is made of copper) 또는 or [수학식 3][Equation 3] Y=0.856X(보호관의 재질이 알루미늄인 경우)Y = 0.856X (if the sheath is made of aluminum) 여기서, Y는 단락전류용량이고, X는 보호관의 단면적이다. Where Y is the short-circuit current capacity and X is the cross-sectional area of the protective tube. 청구항 1에 있어서, The method according to claim 1, 상기 수학식(2)(3)에서 단락전류용량(Y)은 120kA로 선정하고, 구리재 보호관인 경우 최소단면적은 952mm2이고, 알루미늄재 보호관인 경우에는 1400mm2인 것을 특징으로 하는 초고압케이블용 보호관. The short-circuit current capacity (Y) in the equation (2) (3) is selected as 120kA, the minimum cross-sectional area is 952mm 2 in the case of copper protective tube, 1400mm 2 in the case of aluminum protective tube Sheriff. 본체부와, 이 본체부의 일단에 형성되면서 최소단면적을 가지는 엔드부로 이루어진 초고압 케이블용 보호관에 있어서, In the protective tube for ultra-high voltage cable formed of a main body and an end having a minimum cross-sectional area formed on one end of the main body, 다음 수학식4에 의해 구조강도를 만족하는 두께를 가지도록 구성된 것을 특징으로 하는 초고압케이블용 보호관.Protection tube for ultra-high voltage cable, characterized in that configured to have a thickness satisfying the structural strength by the following equation (4). [수학식 4][Equation 4] ln(Y)=-1.24ln(X)+1.76 ln (Y) =-1.24 ln (X) +1.76 여기서, Y는 등가응력, X는 보호관의 두께이다.Where Y is the equivalent stress and X is the thickness of the protective tube. 청구항 3에 있어서,The method according to claim 3, 구조강도를 만족하기 위해서 내압기준 3kgf/cm2을 만족하는 보호관의 두께가 안전율 1.5를 고려하여 알루미늄재인 경우 두께범위가 3mm~8mm이고, 구리재인 경우에는 2mm~6mm인 것을 특징으로 하는 초고압케이블용 보호관.In order to satisfy the structural strength, the thickness of the protective tube that satisfies the internal pressure standard 3kgf / cm 2 is 3mm to 8mm in the case of aluminum considering the safety factor 1.5, and 2mm to 6mm in the case of copper. Sheriff.
KR1020070010945A 2007-02-02 2007-02-02 Protecting tube for very high pressure cable KR100773696B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070010945A KR100773696B1 (en) 2007-02-02 2007-02-02 Protecting tube for very high pressure cable
PCT/KR2007/006155 WO2008093926A1 (en) 2007-02-02 2007-11-30 Protecting tube for very high pressure cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070010945A KR100773696B1 (en) 2007-02-02 2007-02-02 Protecting tube for very high pressure cable

Publications (1)

Publication Number Publication Date
KR100773696B1 true KR100773696B1 (en) 2007-11-05

Family

ID=39060957

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070010945A KR100773696B1 (en) 2007-02-02 2007-02-02 Protecting tube for very high pressure cable

Country Status (2)

Country Link
KR (1) KR100773696B1 (en)
WO (1) WO2008093926A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980011798U (en) * 1996-08-22 1998-05-25 이종훈 Protective case structure of electric cable
JP2002199531A (en) * 2000-04-19 2002-07-12 Kubota Corp Cable protection pipe
KR100399106B1 (en) * 2001-08-25 2003-09-26 변무원 Duct assenbly for electric wires

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318844B2 (en) * 2000-08-31 2009-08-26 東京瓦斯株式会社 Cable protector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980011798U (en) * 1996-08-22 1998-05-25 이종훈 Protective case structure of electric cable
JP2002199531A (en) * 2000-04-19 2002-07-12 Kubota Corp Cable protection pipe
KR100399106B1 (en) * 2001-08-25 2003-09-26 변무원 Duct assenbly for electric wires

Also Published As

Publication number Publication date
WO2008093926A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US8080927B2 (en) Device and module for protecting against lightning and overvoltages
US20120068806A1 (en) Surge protective device with thermal decoupler and arc suppression
KR200428581Y1 (en) Cable gland
US20140327303A1 (en) Ground connection structure
KR100773696B1 (en) Protecting tube for very high pressure cable
CN104766653A (en) Acid and alkali resisting and corrosion preventing industrial cable
US9592774B2 (en) Wire harness
US20070183112A1 (en) Spark gap arrestor
US6552273B2 (en) Bus bar module
EP2557636A1 (en) Corona shield for high voltage connectors
JP2013005500A (en) Terminal connection for dc cable
JPH08275355A (en) Bus duct
US20030076637A1 (en) Integrated telephony subscriber line protection and filter device
EP1297722B1 (en) Heating cable of multi-layer construction
KR100996103B1 (en) Busbar for Bus Duct Heat Enhancing Emission Efficiency and Strength
US20150077894A1 (en) Surge arrester
KR101373570B1 (en) Graphite composition coated aluminium busbar and switchgear having the same
KR20180037363A (en) Method of manufacturing bus-bar and the bus-bar
CN204464991U (en) A kind of self-resetting type communication line overvoltage protection box
CN217035283U (en) Environment-friendly high-performance heat-shrinkable sleeve
CN218118608U (en) Sealing ring, converter and power equipment
CN216980162U (en) Anticorrosive withstand voltage's industry pencil
DE102011002215A1 (en) Junction box for solar modules
CN212304718U (en) Novel overvoltage protector protection device
CN213547102U (en) Self-recovery overvoltage and undervoltage protector

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130911

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141030

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee