KR100763364B1 - phase change type optical disk - Google Patents

phase change type optical disk Download PDF

Info

Publication number
KR100763364B1
KR100763364B1 KR1020000006474A KR20000006474A KR100763364B1 KR 100763364 B1 KR100763364 B1 KR 100763364B1 KR 1020000006474 A KR1020000006474 A KR 1020000006474A KR 20000006474 A KR20000006474 A KR 20000006474A KR 100763364 B1 KR100763364 B1 KR 100763364B1
Authority
KR
South Korea
Prior art keywords
super
type optical
layer
change type
phase change
Prior art date
Application number
KR1020000006474A
Other languages
Korean (ko)
Other versions
KR20010081263A (en
Inventor
박정우
서훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020000006474A priority Critical patent/KR100763364B1/en
Publication of KR20010081263A publication Critical patent/KR20010081263A/en
Application granted granted Critical
Publication of KR100763364B1 publication Critical patent/KR100763364B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)

Abstract

본 발명은 초해상층을 이용한 고감도 고밀도의 상변화형 광디스크를 제공하기 위한 것으로서, 기판 위에 형성되는 안티몬 보다 낮은 녹는점을 갖는 물질의 초해상층과, 초해상층 상에 형성되는 기록막을 포함하여 형성된다. 여기서, 초해상층은 고상과 액상간에 가역적(reversible) 상전이가 가능하고, 고상과 액상간의 굴절율 차가 큰 물질로써 비스무쓰(Bi), 주석(Sn), 셀레늄(Se), 텔러륨(Te), 아연(Zn) 등을 사용한다. 이와 같이 녹는점이 낮은 물질의 초해상 박막층을 구성함으로써 기록밀도를 증가시킬수 있고, 감도를 증가시킬 수 있다.The present invention is to provide a high-sensitivity, high-density phase change type optical disk using a super resolution layer, and includes a super resolution layer of a material having a lower melting point than an antimony formed on a substrate, and a recording film formed on the super resolution layer. Here, the super-resolution layer is a material capable of reversible phase transition between the solid phase and the liquid phase, and has a large refractive index difference between the solid phase and the liquid phase, and is bismuth (Bi), tin (Sn), selenium (Se), tellurium (Te), and zinc. (Zn) or the like is used. By forming a super-resolution thin film layer of a material having a low melting point, recording density can be increased and sensitivity can be increased.

초해상층Super Resolution

Description

상변화형 광디스크{phase change type optical disk}Phase change type optical disk

도 1은 종래 기술에 따른 상변화형 광디스크의 구조 단면도1 is a cross-sectional view of a structure of a phase change type optical disk according to the prior art

도 2는 본 발명에 따른 상변화형 광디스크의 제 1 실시예를 나타낸 구조 단면도2 is a structural cross-sectional view showing a first embodiment of a phase change type optical disk according to the present invention;

도 3은 본 발명에 따른 상변화형 광디스크의 제 2 실시예를 나타낸 구조 단면도3 is a structural sectional view showing a second embodiment of a phase change type optical disk according to the present invention;

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

21 : 기판 22 : 제 1 보호막   21 substrate 22 first protective film

23 : 초해상층 24 : 제 2 보호막   23: super-resolution layer 24: second protective film

25 : 기록막 26 : 제 3 보호막   25: recording film 26: third protective film

27 : 자외선 경화수지층 보호막 28 : 반사막   27 ultraviolet curable resin layer protective film 28 reflection film

본 발명은 상변화형 광디스크에 관한 것으로, 특히 초해상(Super Resolutin) 방법을 이용한 상변화형 광디스크에 관한 것이다.The present invention relates to a phase change type optical disc, and more particularly, to a phase change type optical disc using a super resolution method.

CD-ROM에서 시작한 광디스크 기술은 현재 발전에 발전을 거듭하고 있다.Starting from CD-ROM, the optical disc technology is currently evolving.

그 결과 재생전용의 경우 4.7Gbyte의 용량을 가지는 DVD-ROM이 상품화되었고, 재기록 가능한 DVD-RAM의 경우 2.6Gbyte의 기록용량이 상품화되었으며4.7Gbyte의 기록용량을 가지게 될 차세대 버전도 곧 상품화 될 것이다.As a result, a DVD-ROM having a capacity of 4.7 Gbytes is commercialized for playback only, a 2.6 Gbyte recording capacity is commercialized for a rewritable DVD-RAM, and a next-generation version which will have a storage capacity of 4.7 Gbytes will be commercialized soon.

상변화형 광기록 매체는 정보를 두 개의 구분된 상태, 즉 비정질과 결정질로 존재할 수 있는 물질에 레이저, 전기적 에너지, 열에너지 등을 이용하여 정보를 기록하는 것이다.       In a phase change type optical recording medium, information is recorded using a laser, electrical energy, and thermal energy in a material which can exist in two separate states, that is, amorphous and crystalline.

현재 상변화형 광디스크의 연구 추세는 기록밀도를 증가시키고 데이터 전송율(transfer rate) 증가를 위한 고속기록 하는 것이 중심이 되고 있다. 디스크의 기록밀도가 증가한다. 결국 얼마나 작은 크기의 기록마크(mark)를 기록할 수 있느냐에 달려 있는데 이것은 다시 기록파장(wavelenth), 렌즈의 개구수(Numerical aperture)에 의존한다. 즉, 기록파장이 짧을수록, 개구수가 클수록 기록마크의 크기가 작아진다. 그러나 일반적으로, 기록마크의 크기는 기록파장과 개구수의 크기에 따른 회절한계 이상으로 집속(focusing)을 할 수 없다. 이 회절한계 때문에 사용되는 레이저 빔 스팟(spot)의 크기를 파장길이 이하로 줄일 수 없어서 고밀도화가 더뎌지고 있다. 그래서 단파장(short wavelength)의 레이저 광원을 발굴하는 연구가 진행되어 현재 청색대역의 레이저 개발이 거의 완료되었다. 고밀도 기록을 위해서 광디스크에 적용이 시도되고 있는 다른 기술로는 초해상(Super Resolution)을 이용한 기록이 있다. 여기서, 초해상이란 회절한계(diffracion limit)이상으로 빛을 집중(focusing)하는 것을 말한다. 회절한계 이상으로 빔의 크기를 줄이는 방법 중 한 가지로, 안티몬(Sb)을 이용하여 초해상을 구현하는 것이다.       Currently, the research trend of the phase change type optical disk is focused on high-speed recording for increasing the recording density and increasing the data transfer rate. The recording density of the disc increases. In the end, it depends on how small the recording mark can be recorded, which in turn depends on the recording wavelength and the numerical aperture of the lens. That is, the shorter the recording wavelength and the larger the numerical aperture, the smaller the size of the recording mark. In general, however, the size of the recording mark cannot be focused beyond the diffraction limit depending on the size of the recording wavelength and the numerical aperture. Due to this diffraction limit, the size of the laser beam spot used cannot be reduced to less than the wavelength length, resulting in slower density. Thus, research into excavating a short wavelength laser light source has been conducted, and the development of the laser in the blue band is almost completed. Another technique that is being applied to optical discs for high density recording is recording using super resolution. Here, super resolution refers to focusing light above a diffraction limit. One way to reduce the size of the beam beyond the diffraction limit is to implement super resolution using antimony (Sb).

도 1에 도시한 바와 같이, 종래의 안티몬을 이용한 초해상을 구현한 디스크는 기판상에 제 1 보호막, 안티몬 초해상 박막층, 제 2 보호막, 기록막, 제 3 보호막, 자외선 경화수지층 보호막이 차례로 구성된다.       As shown in FIG. 1, a disk having a conventional super resolution using antimony has a first protective film, an antimony super resolution thin film layer, a second protective film, a recording film, a third protective film, and an ultraviolet curable resin layer protective film on a substrate. It is composed.

이 때, 안티몬의 역할은 레이저광이 기판으로부터 조사되어 기록된 마크를 읽을 때 재생파워에 의해 안티몬이 녹은 부분만 광을 투과하여 소위 창(window)을 형성하여 회절한계 이상의 작은 크기의 마크도 차이(contrast)를 나타내게 하는 것이다. 이것이 가능한 것은 용융된 안티몬과 고상의 안티몬의 굴절율에 차이가 있어서 용융된 안티몬의 빛의 투과도를 크게 할 수 있기 때문이다.       At this time, the role of antimony is that the laser light is irradiated from the substrate to read the recorded mark, and only the part where antimony is melted by regeneration power transmits the light to form a so-called window, so that the difference in the mark of small size above the diffraction limit is different. (contrast). This is possible because there is a difference in the refractive indices of the molten antimony and the solid phase antimony, thereby increasing the light transmittance of the molten antimony.

그러나 이 방법은 안티몬의 녹는점이 약 903.8K로 높아서, 재생파워가 약 4∼5mW 정도가 필요할 정도로 감도(sensitivity)가 극히 낮다. 이것은 이 기술의 실용화를 저해하고 있다.       However, this method has a high antimony melting point of about 903.8K, so the sensitivity is extremely low, requiring about 4-5mW of regenerative power. This hinders the practical use of this technique.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 초해상 박막층을 안티몬 보다 녹는점이 낮은 물질을 사용함으로써 고감도, 고밀도의 상변화형 광디스크를 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a high-sensitivity, high-density phase change optical disk by using a material having a lower melting point than an antimony thin film layer.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 초해상 방법을 이용한 상변화형 광디스크는 기판 위에 형성되는 안티몬 보다 낮은 녹는점을 갖는 물질의 초해상층과, 초해상층 상에 형성되는 기록막을 포함하여 형성된다.A phase change type optical disc using the super resolution method according to the present invention for achieving the above object is formed comprising a super resolution layer of a material having a lower melting point than antimony formed on a substrate, and a recording film formed on the super resolution layer. do.

여기서, 초해상층은 고상과 액상간에 가역적(reversible) 상전이가 가능하고, 고상과 액상간의 굴절율 차가 큰 물질로써 비스무쓰(Bi), 주석(Sn), 셀레늄(Se), 텔러륨(Te), 아연(Zn) 등을 사용한다. 이와 같이 녹는점이 낮은 물질의 초해상 박막층을 구성함으로써 기록밀도를 증가시킬수 있고, 감도를 증가시킬 수 있다.Here, the super-resolution layer is a material capable of reversible phase transition between the solid phase and the liquid phase, and has a large refractive index difference between the solid phase and the liquid phase, and is bismuth (Bi), tin (Sn), selenium (Se), tellurium (Te), and zinc. (Zn) or the like is used. By forming a super-resolution thin film layer of a material having a low melting point, recording density can be increased and sensitivity can be increased.

이하, 첨부된 도면을 참고하여 본 발명에 의한 초해상 방법을 이용한 상변화형 광디스크 구조를 상세히 설명하면 다음과 같다.Hereinafter, a phase change type optical disc structure using the super resolution method according to the present invention will be described in detail with reference to the accompanying drawings.

도 2 내지 도 3은 본 발명에 따른 상변화형 광디스크의 실시예를 나타낸 것이다.2 to 3 show an embodiment of a phase change type optical disk according to the present invention.

본 발명에 따른 초해상 방법을 이용한 상변화형 광디스크는 폴리카보네이트(polycarbonate), PMMA(polymethyl methacrylate), 글래스(glass) 등의 광투과도가 큰 물질을 사용한 기판(21)위에 박막을 순차적으로 성막하여 디스크를 구성한다. 박막 성막방법으로는 스퍼터링(Sputtering), 기상반응성막(chemical vapor deposition), 전자빔 성막(e-beam deposition) 등 일반적인 박막 성막장치가 사용될 수 있다. 기판(21)상에 제 1 보호막(22)으로 유전체 보호막을 형성하는데, 유전체 보호막으로는 ZnS-SiO2, SiO2, 질화실리콘(Si3N4), Al2O3 등 사용 레이저 파장대에서 투명한 유전체 물질을 사용한다. 그리고, 제 1 보호막(22) 상에 안티몬 보다 녹는점이 낮은 물질의 초해상층(23)을 형성하는데, 초해상층(23)으로는 용융상태와 고상상태 사이를 가역적으로 변화할 수 있고, 용융상태와 고상상태일 때 굴절률의 크기에 차이가 있는 물질인 Se, Bi, Sn, Te, Zn 등 각각의 단원소 박막을 사용한다. 초해상층(23) 상에 제 2 보호막(24)으로 유전체 보호막을 형성 하는데, 제 1 보호막(22)에서 사용할 수 있는 물질들을 사용할 수 있다. 이어, 제 2 보호막(24) 상에 순차적으로 기록막(25) 제 3 보호막(26)을 형성한다. 여기서, 기록막(25)은 Ge2Sb2Te5, GeSb2Te7, GeSb2Te5, AgInSbTe 합금, GeTe 합금, SnTe 합금 등 비정질과 결정질의 굴절지수 차이가 큰 물질은 모두 사용 가능하다. 제 3 보호막(26)은 제 1, 제 2 보호막에서 사용할 수 있는 물질들은 사용 할 수 있다. 한편, 기록막(25) 상,하부에 형성되는 제 2 보호막(24)과 제 3 보호막(26)은 기록막(25)이 강한 레이저 조사를 받을 때 손상되는 것을 막아줌과 동시에 무반사(anti-reflection) 조건을 만들고 또한 기록막(25) 상, 하부에서 보온 단열층의 역할을 하여 기록막(25)의 온도가 충분히 올라갈 수 있도록 만들어 준다. 그리고, 제 3 보호막(26) 상에 반사막(28)을 형성할 수 있는데, 반사막(28)으로는 Al 합금, Au, Ag, Cu 등 열전도율이 좋고 반사도가 높은 금속 물질을 사용한다. 반사막(28)은 열배출구(heat sink)로서의 역할을 겸하여 용융된 기록막(25)이 급냉(quenching)되어 비정질이 될 수 있도록 한다. 마지막으로, 반사막(28)상에 자외선 경화 수지층(27)을 형성한다.The phase change type optical disk using the super resolution method according to the present invention is formed by sequentially depositing a thin film on the substrate 21 using a material having high light transmittance such as polycarbonate, polymethyl methacrylate (PMMA), glass, and glass. Configure the disk. As a thin film deposition method, a general thin film deposition apparatus such as sputtering, chemical vapor deposition, and e-beam deposition may be used. A dielectric passivation layer is formed on the substrate 21 using the first passivation layer 22. The dielectric passivation layer is transparent in the laser wavelength band used, such as ZnS-SiO 2, SiO 2, silicon nitride (Si 3 N 4 ), and Al 2 O 3 . Use dielectric material. Then, on the first passivation layer 22, a super-resolution layer 23 of a material having a lower melting point than antimony is formed. The super-resolution layer 23 can reversibly change between a molten state and a solid state. In the solid state, each sub-element thin film such as Se, Bi, Sn, Te, or Zn, which is a material having a difference in refractive index, is used. In order to form the dielectric protection film on the super-resolution layer 23 as the second protection film 24, materials usable in the first protection film 22 may be used. Subsequently, the recording film 25 and the third protection film 26 are sequentially formed on the second protection film 24. Here, the recording film 25 may be made of any material having a large difference in refractive index between amorphous and crystalline such as Ge 2 Sb 2 Te 5 , GeSb 2 Te 7 , GeSb 2 Te 5, AgInSbTe alloy, GeTe alloy, and SnTe alloy. The third passivation layer 26 may use materials that can be used in the first and second passivation layers. On the other hand, the second protective film 24 and the third protective film 26 formed above and below the recording film 25 prevent the recording film 25 from being damaged when subjected to strong laser irradiation, and at the same time anti-reflective (anti- reflection) condition and also serves as a thermal insulation layer on and under the recording film 25 so that the temperature of the recording film 25 can be sufficiently raised. The reflective film 28 can be formed on the third passivation film 26. As the reflective film 28, a metal material having high thermal conductivity and high reflectivity, such as Al alloy, Au, Ag, Cu, or the like, is used. The reflecting film 28 serves as a heat sink so that the molten recording film 25 can be quenched to become amorphous. Finally, the ultraviolet curable resin layer 27 is formed on the reflective film 28.

본 발명에 따른 초해상 방법을 이용한 상변화형 광디스크의 제 1 실시예는 도 2에 나타낸 것과 같다.A first embodiment of a phase change type optical disc using the super resolution method according to the present invention is as shown in FIG.

먼저, 랜드/그루브(land/groove)가 있는 폴리카보네이트 기판(21) 위에 제 1 보호막(22)으로 Zns-SiO2 유전체 박막을 RF 마그네트론 스퍼터링(radio frequency magnetron sputtering)으로 성막한다. 그 위에 초해상층(23)으로 Te 박막을 DC 매그네트론 스퍼터링(direct current magnetron sputtering)으로 성막한다. 초해상층(23) 상에 제 2 보호막(24)으로 Zns-SiO2 박막을 동일한 방법으로 형성한 후, Ge2Sb2Te5 기록막(25)을 DC 매그네트론 스퍼터링으로 형성한다. 그리고, 기록막(25) 상에 제 3 보호막(26)으로 Zns-SiO2 박막을 형성한 다음, 반사막(28)으로서 Al-Cr 박막을 형성한다. 마지막으로, 스핀 코팅(spin-coating)으로 자외선 경화수지층 보호막(27)을 입힌다.First, a Zns-SiO 2 dielectric thin film is formed by radio frequency magnetron sputtering on the polycarbonate substrate 21 having a land / groove with the first passivation layer 22. On the super-resolution layer 23, a Te thin film is formed by direct current magnetron sputtering. After the Zns-SiO 2 thin film is formed on the super-resolution layer 23 by the second protective film 24 in the same manner, the Ge 2 Sb 2 Te 5 recording film 25 is formed by DC magnetron sputtering. Then, a Zns-SiO 2 thin film is formed on the recording film 25 as the third protective film 26, and then an Al-Cr thin film is formed as the reflective film 28. Finally, an ultraviolet curable resin layer protective film 27 is coated by spin-coating.

본 발명에 따른 또 다른 실시 예는 도 3에 도시한 바와 같이, 도 2에서의 반사막 형성과정이 없는 경우로 상변화형 광디스크의 형성과정은 도 2와 동일하다.According to another embodiment of the present invention, as shown in FIG. 3, the process of forming the phase change type optical disc is the same as FIG.

도 2와 도 3에 있어서, 초해상층은 기존의 안티몬(Sb) 초해상 박막층의 녹는점이 903.8K로서 높아서 재생파워가 약 4∼5mW 정도나 필요하므로 실제 응용에 있어서 문제가 되기 때문에 고상과 액상간의 가역적 상전이가 가능하고, 고상과 액상간의 굴절율 차가 큰 동시에 스퍼터링에 의한 박막형성이 가능한 물질을 이용한다. 이 물질들은 녹는점 703.3K 인 비스무쓰(Bi), 녹는점 505.2K 인 주석(Sn), 녹는점 490.2K 인 셀레늄(Se), 녹는점 722.7K 인 텔러륨(Te), 녹는점 692.8K 인 아연(Zn) 등이다.2 and 3, the super-resolution layer has a high melting point of 903.8K of the antimony (Sb) super-resolution thin film layer, and requires about 4 to 5 mW of regeneration power, which is a problem in practical applications. A material capable of reversible phase transition and having a large refractive index difference between a solid phase and a liquid phase and capable of forming a thin film by sputtering is used. These materials are bismuth (Bi) with melting point 703.3K, tin (Sn) with melting point 505.2K, selenium (Se) with melting point 490.2K, tellerium (Te) with melting point 722.7K, melting point 692.8K with Zinc (Zn) and the like.

이상에서 설명한 바와 같은 본 발명에 따른 초해상 방법을 이용한 상변화형 광디스크는 기존의 안티몬(Sb) 초해상 박막층의 녹는점이 903.8K 로서 높아서 재생 파워가 약 4∼5mW 정도나 필요하므로 실제 응용에 있어서 문제가 되었지만, 이에 비해 비스무쓰(Bi), 주석(Sn), 셀레늄(Se), 텔러륨(Te), 아연(Zn)은 녹는점이 낮아서 감도(sensitivity)를 증가시킬 수 있고, 신호대 잡음비(SNR)가 큰 기록매체를 구현할 수 있다. 또한, Bi,Sn, Se, Te, Zn 등의 녹는점이 낮은 물질을 사용하여 초해상 박막층을 구성하여 회절한계 이상으로 해상도를 갖게 함으로써 기록밀도를 증가시킨다.As described above, the phase change type optical disc using the super resolution method according to the present invention has a high melting point of 903.8K of the antimony (Sb) super resolution thin film layer, and thus requires about 4 to 5 mW of reproduction power, and thus, in actual applications, However, bismuth (Bi), tin (Sn), selenium (Se), tellurium (Te), and zinc (Zn) have low melting points, which can increase sensitivity and increase the signal-to-noise ratio (SNR). A large recording medium can be implemented. In addition, by using a material having a low melting point such as Bi, Sn, Se, Te, or Zn, a super-resolution thin film layer is formed to have a resolution higher than the diffraction limit, thereby increasing the recording density.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 이탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit of the present invention.

따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.Therefore, the technical scope of the present invention should not be limited to the contents described in the embodiments, but should be defined by the claims.

Claims (4)

초해상 방법을 이용한 상변화형 광디스크에 있어서, In a phase change type optical disk using a super resolution method, 고상과 액상간에 가역적 상전이가 가능한 물질로 구성된 초해상층과;A super-resolution layer composed of a material capable of reversible phase transition between a solid phase and a liquid phase; 상기 초해상층 상에 형성된 기록층을 포함하여 형성되며;A recording layer formed on the super resolution layer; 상기 초해상층은 비쓰무쓰(Bi), 주석(Sn), 셀레늄(Se), 텔러륨(Te), 아연(Zn) 중에 하나로 형성함을 특징으로 하는 상변화형 광디스크.The super-resolution layer is a phase change type optical disk, characterized in that formed of one of bismuth (Bi), tin (Sn), selenium (Se), tellerium (Te), zinc (Zn). 삭제delete 삭제delete 제 1 항에 있어서,The method of claim 1, 상기 초해상층의 용융점은 500℃ 이하인 것을 특징으로 하는 상변화형 광디스크.Melting point of the super-resolution layer is a phase change type optical disk, characterized in that less than 500 ℃.
KR1020000006474A 2000-02-11 2000-02-11 phase change type optical disk KR100763364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000006474A KR100763364B1 (en) 2000-02-11 2000-02-11 phase change type optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000006474A KR100763364B1 (en) 2000-02-11 2000-02-11 phase change type optical disk

Publications (2)

Publication Number Publication Date
KR20010081263A KR20010081263A (en) 2001-08-29
KR100763364B1 true KR100763364B1 (en) 2007-10-04

Family

ID=19645672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000006474A KR100763364B1 (en) 2000-02-11 2000-02-11 phase change type optical disk

Country Status (1)

Country Link
KR (1) KR100763364B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694047B1 (en) 2004-05-17 2007-03-12 삼성전자주식회사 Information storage medium and information recording/reproducing apparatus
KR100601700B1 (en) * 2004-08-25 2006-07-14 삼성전자주식회사 Super resolution information storage medium, method and apparatus for recording and/or reproducing data on/from the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153033B1 (en) * 1993-06-18 1998-12-15 가나이 쯔또무 Information recording thin film and information recordng medium
KR100186545B1 (en) * 1996-05-14 1999-04-15 구자홍 Optical disc and its manufacturing method of phase changeable high density
JPH11273148A (en) * 1998-03-20 1999-10-08 Toshiba Corp Optical disk and its recording/reproducing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153033B1 (en) * 1993-06-18 1998-12-15 가나이 쯔또무 Information recording thin film and information recordng medium
KR100186545B1 (en) * 1996-05-14 1999-04-15 구자홍 Optical disc and its manufacturing method of phase changeable high density
JPH11273148A (en) * 1998-03-20 1999-10-08 Toshiba Corp Optical disk and its recording/reproducing method

Also Published As

Publication number Publication date
KR20010081263A (en) 2001-08-29

Similar Documents

Publication Publication Date Title
JP4037057B2 (en) Rewritable optical information medium
AU758976B2 (en) Optical recording medium
EP1505584B2 (en) Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
CA1244943A (en) Optical data storage device
JP3506491B2 (en) Optical information media
KR100260072B1 (en) Single-substrate multi-layer optical disk for read-only storage and phase change rewritable storage
CN1216376C (en) Optical information medium having separate recording layers
JP2512087B2 (en) Optical recording medium and optical recording method
JP4571238B2 (en) Optical recording medium having phase change recording layer
US6670013B2 (en) Optical recording medium and use of such optical recording medium
US20030228462A1 (en) Initiation-free super-resolution optical medium
JPH07320298A (en) Phase changing type optical disk
CA2298456C (en) Optical recording medium
CN1312686C (en) Multi-stack optical data storage medium and use of such medium
US5442619A (en) Erasable optical recording medium with a reversible light absorption layer
US6746746B2 (en) Laser beam optical recording medium featuring several read/write levels
US5453346A (en) Optical information recording medium having protection layers with different properties on both sides of an optical active layer
JPH0528538A (en) Optical information recording medium and optical information recording/reproducing method
KR20030024818A (en) Multi-stack optical data storage medium and use of such a medium
KR100763364B1 (en) phase change type optical disk
TWI233600B (en) Rewritable optical data storage medium and use of such a medium
JP2003016687A (en) Information recording medium and method of manufacturing the same and recording and reproducing method using the same
JP3602589B2 (en) Optical recording medium and optical recording method
RU2174715C1 (en) Information carrier of optical storage and process of recording of optical information on it
KR100617203B1 (en) optical recording medium

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
LAPS Lapse due to unpaid annual fee