KR100756403B1 - Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition - Google Patents

Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition Download PDF

Info

Publication number
KR100756403B1
KR100756403B1 KR1020060044872A KR20060044872A KR100756403B1 KR 100756403 B1 KR100756403 B1 KR 100756403B1 KR 1020060044872 A KR1020060044872 A KR 1020060044872A KR 20060044872 A KR20060044872 A KR 20060044872A KR 100756403 B1 KR100756403 B1 KR 100756403B1
Authority
KR
South Korea
Prior art keywords
compound
trimethylamine
aluminum
filtrate
formula
Prior art date
Application number
KR1020060044872A
Other languages
Korean (ko)
Inventor
김명운
김진동
나용환
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to KR1020060044872A priority Critical patent/KR100756403B1/en
Priority to PCT/KR2007/002389 priority patent/WO2007136186A1/en
Application granted granted Critical
Publication of KR100756403B1 publication Critical patent/KR100756403B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • C23C16/20Deposition of aluminium only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)

Abstract

A method for synthesis of an aluminum precursor compound for forming aluminum films on a substrate by chemical vapor deposition is provided to reduce flammability by increasing volatility, improve thermal stability, and enhance regulation of precursor transportation speed by reducing viscosity. A trimethylamine alane borane represented by the formula(1): H2AlBH4:N(CH3)3 as the aluminum precursor compound is prepared by reacting chloroalane compound represented by the formula(2): C1H2Al:N(CH3)3 which is prepared by reacting lithium aluminum hydride(LiAlH4), trichloroaluminum(AlCl3) and trimethylamine with lithium boron hydride(LiBH4) or sodium boron hydride(NaBH4) in benzene, diethylether or a mixed solvent of diethylether and hexane.

Description

알루미늄 박막의 화학증착용 전구체 화합물의 제조방법{Synthesis of Aluminum compound for forming aluminum films by chemical vapor deposition}Synthesis of Aluminum compound for forming aluminum films by chemical vapor deposition}

본 발명은 알루미늄 박막을 화학기상증착법에 의해 기판상에 증착시키는데 사용되는 전구체 화합물의 제조방법에 관한 것으로, 좀 더 상세하게는 실리콘과 같은 기판상에 형성되어 있는 접착막 또는 확산 방지막 위에 알루미나 박막층을 형성시켜 주기 위한 화합물의 제조방법을 제공하고자 하는 것이다.The present invention relates to a method for preparing a precursor compound used to deposit an aluminum thin film on a substrate by chemical vapor deposition, and more particularly, to form an alumina thin film layer on an adhesive film or an anti-diffusion film formed on a substrate such as silicon. It is to provide a method for preparing a compound for forming.

반도체 산업에서의 신기술 및 재료의 개발은 반도체 집적회로와 같은 소자의 미세화, 고 신뢰화, 고속화, 고 기능화, 고 집적화 등을 실현 가능하게 하여 왔으며, 이러한 반도체 소자의 고집적화에 따라, 각 소자 간에 전기적 신호를 전달하는 금속 배선이 미세화 되어야 했고, 이러한 미세화에 의한 단면적 감소로 배선저항 증가 및 배선간격 축소에 의한 기생 캐퍼시터 증가가 문제점으로 대두되었다. 이러한 저항 및 캐퍼시터 증가는 RC 지연시간을 유발시켜 향후의 로직(logic) 공정이 추구하는 고속 반도체소자를 제조하는데 장벽요인이 되고 있다. 고속 반도체 소자를 제조하기 위해서는, 금속 배선간 기생 캐퍼시터를 줄여야 한다. 이를 위해, 저 유전률 절연막이나 저 저항 금속 배선의 사용이 필수적인데 특히, 저 저항 금속 배선 공정 기술은 아직 공정 및 장비상의 개선의 여지가 많아 고집적 고속 반도체 제조기술 수립에 중요한 과제로서 많은 연구가 진행되고 있다.The development of new technologies and materials in the semiconductor industry has made it possible to realize miniaturization, high reliability, high speed, high functionality, and high integration of devices such as semiconductor integrated circuits. The metal wirings that transmit signals had to be miniaturized, and the increase in parasitic capacitors due to the reduction in the cross-sectional area and the wire spacing caused by the reduction in the cross-sectional area caused by such miniaturization. This increase in resistance and capacitor causes RC delay, which is a barrier to manufacturing high-speed semiconductor devices pursued by future logic processes. In order to manufacture high-speed semiconductor devices, parasitic capacitors between metal wirings must be reduced. To this end, the use of a low dielectric constant insulating film or a low resistance metal wiring is essential. In particular, the low resistance metal wiring process technology still has a lot of room for improvement in process and equipment. have.

현재 64M DRAM 제조에 사용되는 알루미늄(Al) 금속배선은 원하는 알루미늄 금속 타겟(target)을 사용하여 알루미늄 배선을 증착하는 스퍼터링 방식에 절대적으로 의존하고 있으나, 회로 선폭 0.25 ㎛이하가 되는 금속배선 증착은 컨택(contact)이나 비아(via)의 단차비(aspect ratio : depth/diameter)가 크기 때문에 스퍼터링 방식을 증착 공정으로 사용하는 것이 부적합할 것으로 예상되고 있다.Currently, aluminum (Al) metal wiring used in 64M DRAM manufacturing is absolutely dependent on the sputtering method of depositing aluminum wiring using a desired aluminum metal target, but the deposition of metal wiring having a circuit line width of 0.25 μm or less is a contact. Due to the large aspect ratio (depth / diameter) of contacts or vias, it is expected to be inappropriate to use sputtering as a deposition process.

이를 극복하기 위해 높은 계단 피복성(step coverage)의 장점을 보여줌으로서 높은 단차비를 갖는 컨택-비아홀(contact/via hole)의 메꿈공정에 유리한 화학증착(CVD; Chemical Vapor Deposition)방식을 사용한 알루미늄 배선 공정이 오랫동안 연구되어 왔다.In order to overcome this problem, aluminum wiring using the Chemical Vapor Deposition (CVD) method is advantageous for the process of filling contact / via holes with high step ratio by showing the advantages of high step coverage. The process has been studied for a long time.

이와 같은 연구의 결실로서 알루미늄배선 증착공정은 알루미늄(Al)-CVD방식에 의해 이루어질 수 있는 기반이 마련되었으며, CVD법의 사용이 절대적으로 고려되고 있다.As a result of this research, the aluminum wire deposition process has been prepared based on the aluminum (Al) -CVD method, and the use of the CVD method is absolutely considered.

화학 기상 증착법을 이용한 Al 박막의 증착은 전구체(Precursor)라 칭하는 알루미늄 화합물을 사용하며, 이러한 금속 화합물을 사용하여 금속 박막을 증착하는 공정에서는 전구체 화합물의 특성 및 선정은 화학기상증착(CVD) 공정의 성패를 좌우하는 매우 중요한 요소로 공정의 투입에 앞서 전구체의 개발 및 선정은 첫 번째로 고려되는 사항 중 하나이다. Deposition of Al thin film using chemical vapor deposition method uses an aluminum compound called a precursor (Precursor), and in the process of depositing a metal thin film using such a metal compound, the characteristics and selection of the precursor compound is a chemical vapor deposition (CVD) process The development and selection of precursors prior to the introduction of a process is one of the first considerations.

Al 금속 화학 기상 증착법에 관한 초기 연구는 상업적으로 널리 사용되는 알킬알루미늄 화합물을 사용하여 1980년대에 미국 및 일본에서 진행되었으며, 대표적인 알킬알루미늄 화합물로는 트리메틸알루미늄(trimethyl aluminum; Al(CH3)3)과 트리이소부틸알루미늄(triisobutylaluminum; Al((CH3)2CHCH2)3) 화합물이 주로 사용되었다.Initial research on Al metal chemical vapor deposition has been conducted in the United States and Japan in the 1980s using commercially widely used alkylaluminum compounds. Representative alkylaluminum compounds include trimethyl aluminum (Al (CH 3 ) 3 ). And triisobutylaluminum (Al ((CH 3 ) 2 CHCH 2 ) 3 ) compounds were mainly used.

이후 90년대 알루미늄 박막의 화학증착용 전구체 화합물로 [(CH3)2AlH]3 로 표기되는 디메틸알루미늄하이드라이드(Dimethyl Aluminum Hydride)와 H3Al:N(CH3)2C2H5 로 표기되는 디메틸에틸아민알랜(Dimethylethylaminealane)이 Al-CVD용 전구체 화합물을 대변되어 왔다.Later, as a precursor compound for chemical vapor deposition of aluminum thin films in the 90's, dimethyl aluminum hydride represented by [(CH 3 ) 2 AlH] 3 and H 3 Al: N (CH 3 ) 2 C 2 H 5 . Dimethylethylaminealane has been represented as a precursor compound for Al-CVD.

상기에서 소개된 알킬알루미늄 화합물은 상온에서 높은 증기압을 갖는 액체로 존재하는 등의 CVD 전구체로서 장점을 갖추고 있으나, 박막의 증착온도가 300℃ 내지 400℃ 범위의 고온에서 이루어지기 때문에 증착공정이 어려워지고, 상기의 고온 증착으로 인하여 알루미늄 박막 내 전기 저항도를 높이는 원치 않은 불순물인 탄소가 알루미늄 박막 내에 포함되는 치명적인 단점과 미세한 공기와의 접촉에 의한 폭발적인 인화성이 있어 취급하는데 매우 세심한 주의가 필요한 위험성을 보이고 있다.The alkylaluminum compound introduced above has advantages as a CVD precursor, such as being present as a liquid having a high vapor pressure at room temperature, but the deposition process becomes difficult because the deposition temperature of the thin film is made at a high temperature in the range of 300 ° C to 400 ° C. Due to the high temperature deposition, it is a fatal drawback that carbon, which is an unwanted impurity to increase the electrical resistance in the aluminum thin film, and explosive flammability due to contact with minute air, shows the danger of requiring very careful handling. have.

이와 같은 문제 해결을 위하여 디메틸알루미늄하이드라이드 화합물을 전구체로 사용하는 Al-CVD 공법에 대한 공정 및 기술 개발이 1980년대 초반에 시작되었으며, 상기 디메틸알루미늄하이드라이드는 높은 증기압(25℃에서 2 torr)을 가지고 있어 증착속도가 높고, 상온에서 무색 액체인 화합물로 수소가스를 사용하는 증착조건에 따라 비교적 낮은 증착온도인 230℃ 근처에서 고순도의 알루미늄 박막을 증착할 수 있으나, 상기 디메틸알루미늄하이드라이드는 알킬 알루미늄 계열의 화합물로 공기와 접촉시 폭발적 인화성을 가지므로 취급 하기에 어려운 점이 있고, 화합물 제조 공정의 난이도가 높기 때문에 생산성의 저하로 인하여 높은 가격으로 인해 경제성이 취약하며, 점도가 높은 액체화합물이기 때문에 전구체 전달 속도의 조절이 용이하지 않은 단점도 함께 가지고 있다.In order to solve this problem, the development of process and technology for Al-CVD method using dimethyl aluminum hydride compound as a precursor began in the early 1980s, and the dimethyl aluminum hydride has a high vapor pressure (2 torr at 25 ° C.). It is a compound having a high deposition rate and a colorless liquid at room temperature, and according to the deposition conditions using hydrogen gas, it is possible to deposit a high purity aluminum thin film at a relatively low deposition temperature of around 230 ° C, but the dimethyl aluminum hydride is alkyl aluminum It is difficult to handle because it has explosive flammability when it is contacted with air as a compound of the series, and because the difficulty of compound manufacturing process is high, economic efficiency is weak due to high price due to the decrease of productivity, and because it is a high viscosity liquid compound, it is a precursor. Disadvantages of Adjusting the Delivery Speed I also have it.

이에 대한 대안으로 알랜(AlH3)계열 화합물이 Al-CVD용 전구체 화합물로 사용되었으며 일반적인 알킬아민알랜은 저온인 100∼200℃에서 고순도 알루미늄 박막을 증착하고, 높은 증기압(25℃에서 1.5torr)을 갖는 상온에서 무색 액체로 기존에 사용되던 디메틸알루미늄하이드라이드에 비해 인화성이 다소 적으며, 단순제조공정 에 의하여 제조되는 관계로 경제성이 우수한 장점을 지니고 있다.As an alternative to this, alan (AlH 3 ) -based compound was used as a precursor compound for Al-CVD, and general alkylamine alan deposited a high purity aluminum thin film at a low temperature of 100 to 200 ° C. It is a colorless liquid at room temperature and has slightly less flammability than dimethylaluminum hydride, which is conventionally used, and has excellent economical efficiency because it is manufactured by a simple manufacturing process.

그러나 상기 알킬아민알랜은 상온에서 또는 증착 공정에 적용하기 위하여 30-40℃로 가열하는 경우 열적 불안정성 때문에 전구체를 보관하는 용기의 내부에서 서서히 분해되어 반도체 소자의 제조 공정에 적용 시 가장 중요시 여기며, 반드시 실현되어야 할 재현성이 있는 증착 공정의 개발이 어렵고 상온 보관이 용이하지 않다고 하는 치명적인 단점을 지니고 있다.However, the alkylaminealan is decomposed slowly in the container holding the precursor due to thermal instability when heated to 30-40 ° C. at room temperature or to be applied to the deposition process. It has a fatal disadvantage that it is difficult to develop a reproducible deposition process to be realized, and that it is not easy to store at room temperature.

따라서 본 발명에서는 Al-CVD용 전구체 화합물의 선행기술의 문제점들 즉, 열적 불안정성, 높은 점성도, 폭발적 인화성 등을 극복하고 전구체 화합물의 선택범위를 확장하기 위한 신규의 알루미늄 전구체 화합물의 제조방법을 제공하는 것이다.Accordingly, the present invention provides a novel method for preparing a precursor compound of aluminum to overcome the problems of the prior art of the precursor compound for Al-CVD, that is, thermal instability, high viscosity, explosive flammability, etc. and to expand the selection range of the precursor compound. will be.

본 발명은 상기 알루미늄(Al) 금속 박막 증착을 위한 기존 전구체들의 장점을 최대한 포괄하며 단점을 최대한 보완할 수 있도록 설계된 새로운 알루미늄 박막 증착을 위한 전구체 화합물로서 하기의 화학식 1로 정의되는 화합물의 제조방법을 제공한다.The present invention provides a method for preparing a compound defined by the following Chemical Formula 1 as a precursor compound for the deposition of a new aluminum thin film designed to fully cover the advantages of the existing precursors for the deposition of the aluminum (Al) metal thin film and to maximize the disadvantages. to provide.

[화학식 1][Formula 1]

H2AlBH4:N(CH3)3 H 2 AlBH 4 : N (CH 3 ) 3

상기 화학식 1로 정의되는 트리메틸아민알란보란 화합물은 기존 알루미늄 박막 제조용 전구체로 사용되던 일반적인 구조인 아민으로 안정화된 알란 화합물의 가장 취약한 단점인 열안정성을 양산 공정에서 안정성으로 기인한 문제가 발생되지 않기에 충분한 정도의 열 안정성을 가진다.The trimethylamine alanborane compound defined by Chemical Formula 1 does not cause problems due to stability in the mass production process, which is the weakest disadvantage of the alan compound stabilized with the amine, which is a general structure used as a precursor for manufacturing an aluminum thin film. It has a sufficient degree of thermal stability.

상기 화학식 1로 정의되는 알루미늄 박막 증착을 위한 전구체 화합물은 하기 반응식 1 내지 4로부터 용이하게 제조될 수 있으며, 하기 반응식 1 내지 4에 따른 전구체 화합물의 합성은 반응용기에 벤젠, 디에틸에테르 또는 디에틸에테르와 헥산의 혼합용액을 용매로 하여 각 단계에 따른 혼합물의 부유물을 만든 다음 생성된 염을 제거하고 용매를 진공증류하여 본 발명에 따른 화학식 1의 전구체 화합물이 제조될 수 있다.The precursor compound for aluminum thin film deposition defined by Chemical Formula 1 may be easily prepared from Schemes 1 to 4, and the synthesis of the precursor compounds according to Schemes 1 to 4 may be performed by applying benzene, diethyl ether or diethyl to a reaction vessel. Precursor compounds of formula 1 according to the present invention can be prepared by preparing a suspension of the mixture according to each step by using a mixture of ether and hexane as a solvent, then removing the salts produced and distilling the solvent under vacuum.

[반응식 1]Scheme 1

LiAlH4+ AlCl3+ 2N(CH3)3 + 2MBH4→ 2H2AlBH4:N(CH3)3 (1) LiAlH 4 + AlCl 3 + 2N (CH 3 ) 3 + 2MBH 4 → 2H 2 AlBH 4 : N (CH 3 ) 3 (1)

[반응식 2]Scheme 2

LiAlH4+ AlCl3+ 2N(CH3)3 → 2ClH2Al:N(CH3)3 (2) LiAlH 4 + AlCl 3 + 2N (CH 3 ) 3 → 2ClH 2 Al: N (CH 3 ) 3 (2)

ClH2Al:N(CH3)3 (2) + MBH4 → H2AlBH4:N(CH3)3 (1) ClH 2 Al: N (CH 3 ) 3 (2) + MBH 4 → H 2 AlBH 4 : N (CH 3 ) 3 (1)

[반응식 3]Scheme 3

LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al: OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2

ClH2Al: OEt2 + N(CH3)3 → ClH2Al:N(CH3)3 (2) + Et2OClH 2 Al: OEt 2 + N (CH 3 ) 3 → ClH 2 Al: N (CH 3 ) 3 (2) + Et 2 O

ClH2Al:N(CH3)3 (2) + MBH4 → H2AlBH4:N(CH3)3 (1) ClH 2 Al: N (CH 3 ) 3 (2) + MBH 4 → H 2 AlBH 4 : N (CH 3 ) 3 (1)

[반응식 4]Scheme 4

AlCl3+ 3LiAlH4+ 4N(CH3)3 → 4H3Al:N(CH3)3 (3) AlCl 3 + 3LiAlH 4 + 4N (CH 3 ) 3 → 4H 3 Al: N (CH 3 ) 3 (3)

2H3Al:N(CH3)3 (3) + HgCl2 → 2ClH2Al:N(CH3)3 (2) + Hg + H2 2H 3 Al: N (CH 3 ) 3 (3) + HgCl 2 → 2ClH 2 Al: N (CH 3 ) 3 (2) + Hg + H 2

ClH2Al:N(CH3)3 (2) + MBH4 → H2AlBH4:N(CH3)3 (1) ClH 2 Al: N (CH 3 ) 3 (2) + MBH 4 → H 2 AlBH 4 : N (CH 3 ) 3 (1)

[상기 반응식 1 내지 4에서, M은 Na 또는 Li 이다.][In Reaction Schemes 1 to 4, M is Na or Li.]

상기 반응식 1에 나타난 바와 같이 화학식 1의 트리메틸아민알란보란 화합물(1)은 수소화리튬알루미늄, 트리클로로알루미늄, 트리메틸아민과 수소화알칼리금속붕소(MBH4; M = Na 또는 Li)를 반응시켜 1단계로 제조된다.As shown in Scheme 1, the trimethylaminealanborane compound of Formula 1 is reacted with lithium aluminum hydride, trichloroaluminum, trimethylamine, and alkali metal borohydride (MBH 4 ; M = Na or Li) in one step. Are manufactured.

또한 반응식 2 내지 4에 나타난 바와 같이, 상기 화학식 1의 트리메틸아민알 란보란 화합물(1)은 클로로알란 화합물(2)와 수소화알칼리금속붕소(MBH4; M = Na 또는 Li)를 반응시켜 얻어지며, 상기 클로로알란 화합물(2)는 아민알란 화합물(3)을 수소화리튬알루미늄, 트리클로로알루미늄 및 트리메틸아민과 반응시켜 제조하거나 염화수은과 반응시켜 제조될 수 있다.In addition, as shown in Schemes 2 to 4, the trimethylaminealanborane compound of Formula 1 is obtained by reacting a chloroalanine compound (2) with an alkali metal borohydride (MBH 4 ; M = Na or Li). The chloroalan compound (2) may be prepared by reacting the aminealan compound (3) with lithium aluminum hydride, trichloroaluminum and trimethylamine, or by reacting with mercury chloride.

트리메틸아민알란보란 화합물(1)을 대량 제조함에 있어 반응 당량보다 초과 사용된 반응 시약은 반응의 부생성물과 함께 거동하여, 반응공정의 여과 공정등에 부하를 주는 악영향을 주며, 제조 원가를 증가시키며, 또한 폐기물이 강한 반응성을 가지게 됨으로 폐기물 처리에도 어려움을 갖게한다.In the mass production of trimethylaminealanborane compound (1), the reaction reagent used in excess of the reaction equivalent behaves together with the by-product of the reaction, adversely affecting the filtration process of the reaction process and increasing the manufacturing cost, In addition, waste has a strong reactivity, which makes it difficult to dispose of waste.

트리메틸아민알란보란 화합물(1)을 대량 제조하기 위하여 상기 반응식 1부터 반응식 4에 나타난 각각의 반응 방법의 최고 수율을 내기 위한 조성을 찾기 위하여 반응에 사용되는 수소화리튬알루미늄, 틀리클로로알루미늄, 트리메틸아민과 수소화알칼리금속붕소(MBH4; M = Na 또는 Li)의 반응 당량비를 조절하고 반응 용매를 변경하는 방법으로 최적의 반응 조건을 찾는 평가 실험을 하였다.In order to mass-produce trimethylaminealanborane compound (1), hydrogenation with lithium aluminum hydride, trichloroaluminum, trimethylamine used in the reaction to find a composition for yielding the highest yield of each reaction method shown in Schemes 1 to 4 above Evaluation experiments were conducted to find the optimum reaction conditions by adjusting the reaction equivalent ratio of alkali metal boron (MBH 4 ; M = Na or Li) and changing the reaction solvent.

이하, 본 발명의 알루미늄 화합물의 제조방법에 대하여 하기의 실시예를 통하여 좀더 상세하게 설명하기로 한다.Hereinafter, the method for preparing the aluminum compound of the present invention will be described in more detail with reference to the following examples.

[실시예 1] 트리메틸아민알란보란의 제조Example 1 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 133.34g(1.0몰)과 벤젠 1000ml 가 더하여진 부유용액에 질소 가스의 기류 하에서 벤젠 500ml 를 첨가하고 수소화리튬알루미늄 37.95g (1.0몰)을 적가한 후 24시간 동안 상온에서 교반시켰다. 교반이 완료된 후 저온(-10℃)에서 트리메틸아민 177.33g(3.0몰)을 첨가한 후 10분간 교반하였다. 교반이 완료된 후 수소화리튬붕소 65.34g(3.0몰)을 상기 반응혼합물에 적가하고 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 500 ml of benzene was added to a suspension solution containing 133.34 g (1.0 mole) of trichloroaluminum and 1000 ml of benzene under a stream of nitrogen gas, and 37.95 g (1.0 mole) of lithium aluminum hydride was added dropwise and stirred at room temperature for 24 hours. After stirring was complete, 177.33 g (3.0 mol) of trimethylamine was added at low temperature (-10 ° C), followed by stirring for 10 minutes. After stirring was completed, 65.34 g (3.0 mol) of lithium boron hydride was added dropwise to the reaction mixture and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 125.59g (수율 61%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 125.59 g (yield 61%) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다. Chemical reactions for the preparation of trimethylaminealanborane are as follows.

LiAlH4+ AlCl3+ 2N(CH3)3 + 2LiBH4→ 2H2AlBH4:N(CH3)3 LiAlH 4 + AlCl 3 + 2N (CH 3 ) 3 + 2LiBH 4 → 2H 2 AlBH 4 : N (CH 3 ) 3

[실시예 2-11] 트리메틸아민알란보란의 제조Example 2-11 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 대비 수소화리튬알루미늄의 당량, 트리메틸아민의 당량, 수소화리튬붕소의 당량과 반응 용매를 변경하여 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물을 합성한 결과를 [표 1]에 나타내었다.Colorless high purity trimethylaminealanborane, the title compound, in the same manner as in Example 1, except that the equivalent weight of lithium aluminum hydride, the equivalent weight of trimethylamine, the equivalent weight of lithium boron hydride, and the reaction solvent were used. The results of synthesizing the compound are shown in [Table 1].

[표 1]TABLE 1

Figure 112006034837421-pat00001
Figure 112006034837421-pat00001

[실시예 12] 트리메틸아민알란보란의 제조Example 12 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 133.34g(1.0몰) 과 수소화리튬알루미늄 37.95g (1.0몰)이 더하여진 벤젠1000ml 부유용액에 질소 가스의 기류 하에서 생성된 디클로로알란 화합물에 트리메틸아민 177.33g(3.0몰)을 첨가하고 수소화리튬붕소 65.34g(3.0몰)을 적가한 후 30℃ 에서 약 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 177.33 g (3.0 mole) of trimethylamine was added to a dichloroalan compound produced under a stream of nitrogen gas to a 1000 ml suspension of benzene added with 133.34 g (1.0 mole) of trichloroaluminum and 37.95 g (1.0 mole) of lithium aluminum hydride. 65.34 g (3.0 mol) of lithium boron was added dropwise and stirred at 30 ° C. for about 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 124g(수율 60%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification with 124 g (60% yield) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of trimethylaminealanborane are as follows.

LiAlH4+ AlCl3+ 2N(CH3)3 → 2ClH2Al:N(CH3)3 LiAlH 4 + AlCl 3 + 2N (CH 3 ) 3 → 2ClH 2 Al: N (CH 3 ) 3

ClH2Al:N(CH3)3 + LiBH4 → H2AlBH4:N(CH3)3 ClH 2 Al: N (CH 3 ) 3 + LiBH 4 → H 2 AlBH 4 : N (CH 3 ) 3

[실시예 13-22] 트리메틸아민알란보란의 제조Example 13-22 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 대비 수소화리튬알루미늄의 당량, 트리메틸아민의 당량, 수소화리튬붕소의 당량과 반응 용매를 변경하여 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물을 합성한 결과를 [표 2]에 나타내었다Colorless high-purity trimethylaminealanborane, which is the title compound, in the same manner as in Example 3, except that the equivalent weight of lithium aluminum hydride, the equivalent weight of trimethylamine, the equivalent weight of lithium borohydride, and the reaction solvent were used. The results of synthesizing the compound are shown in [Table 2].

[표 2]TABLE 2

Figure 112006034837421-pat00002
Figure 112006034837421-pat00002

[실시예 23] 트리메틸아민알란보란의 제조Example 23 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 133.3g(1.0몰)과 수소화리튬알루미늄 37.95g (1.0몰)의 디에틸에테르 1000ml 부유용액에 질소 가스의 기류 하에서 -10℃로 냉각시키면서 한 시간 동안 교반시켜 생성된 클로로알란 화합물을 -10℃로 유지하면서 트리메틸아민 177.33g(3.0몰)을 첨가 한 후 -10℃ 에서 2시간 동안 교반하고, 반응기의 온도를 25℃로 올린 후 1시간 동안 교반하였다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 얻어진 중간생성물을 벤젠 1000ml에 녹인 다음 수소화리튬붕소 65.34g(3.0몰)을 적가하고 30℃ 에서 8시간 동안 교반하였다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. Into a suspended solution of 133.3 g (1.0 mole) of trichloroaluminum and 37.95 g (1.0 mole) of lithium aluminum hydride, a chloroalan compound formed by stirring for 1 hour while cooling to -10 ° C under a stream of nitrogen gas- 177.33 g (3.0 mol) of trimethylamine was added thereto while maintaining at 10 ° C., followed by stirring at −10 ° C. for 2 hours, raising the temperature of the reactor to 25 ° C., and then stirring for 1 hour. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid. The obtained intermediate was dissolved in 1000 ml of benzene, and 65.34 g (3.0 mol) of lithium boron hydride was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 130g(수율 63%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. To obtain 130g (yield 63%) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of trimethylaminealanborane are as follows.

LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al:OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2

ClH2Al:OEt2 + N(CH3)3 → ClH2Al:N(CH3)3 + Et2OClH 2 Al: OEt 2 + N (CH 3 ) 3 → ClH 2 Al: N (CH 3 ) 3 + Et 2 O

ClH2Al:N(CH3)3 + LiBH4 → H2AlBH4:N(CH3)3 ClH 2 Al: N (CH 3 ) 3 + LiBH 4 → H 2 AlBH 4 : N (CH 3 ) 3

[실시예 24-33] 트리메틸아민알란보란의 제조Example 24-33 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 대비 수소화리튬알루미늄의 당량, 트리메틸아민의 당량, 수소화리튬붕소의 당량과 반응 용매를 변경하여 사용하는 것을 제외하고는 상기 실시예 5과 동일한 방법으로 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물을 합성한 결과를 [표 3]에 나타내었다Colorless high purity trimethylaminealanborane, the title compound, in the same manner as in Example 5, except that the equivalent weight of lithium aluminum hydride, the equivalent weight of trimethylamine, the equivalent weight of lithium borohydride, and the reaction solvent were used. The results of synthesizing the compound are shown in [Table 3].

[표 3]TABLE 3

Figure 112006034837421-pat00003
Figure 112006034837421-pat00003

[실시예 34] 트리메틸아민알란보란의 제조Example 34 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 133.3g(1.0몰)과 핵산 800ml 가 더하여진 부유용액에 질소 가스의 기류 하에서 -10℃로 냉각시키면서 디에틸에테르 용액 1200ml를 천천히 투입하고 수소화리튬알루미늄 37.95g(1.0몰)을 적가 한 후 36시간 동안 상온에서 교반시켰다. 교반이 완료된 후 -10 ℃에서 트리메틸아민 177.33g(3.0몰)을 첨가한 후 -10℃에서 2시간 교반시키고, 반응기 내부 온도를 25℃로 올려 1시간동안 교반 하였다. 교반이 완료된 후 수소화나트륨붕소 113.494g(3.0몰)을 적가하고 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다 To a suspension solution containing 133.3 g (1.0 mole) of trichloroaluminum and 800 ml of nucleic acid, 1200 ml of diethyl ether solution was slowly added while cooling to −10 ° C. under a stream of nitrogen gas, and 37.95 g (1.0 mole) of lithium aluminum hydride was added dropwise. After stirring for 36 hours at room temperature. After stirring was complete, 177.33g (3.0 mol) of trimethylamine was added at -10 ° C, and then stirred at -10 ° C for 2 hours, and the temperature inside the reactor was raised to 25 ° C and stirred for 1 hour. After stirring was completed, 113.494 g (3.0 mol) of sodium borohydride was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 117.9g (수율 57%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 117.9 g (yield 57%) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of trimethylaminealanborane are as follows.

LiAlH4+ AlCl3+ 2N(CH3)3 + 2NaBH4→ 2H2AlBH4:N(CH3)3 LiAlH 4 + AlCl 3 + 2N (CH 3 ) 3 + 2NaBH 4 → 2H 2 AlBH 4 : N (CH 3 ) 3

[실시예 35-44] 트리메틸아민알란보란의 제조Example 35-44 Preparation of Trimethylamine Alanborane

틀리클로로알루미늄 대비 수소화리튬알루미늄의 당량, 트리메틸아민의 당량, 수소화나트륨붕소의 당량과 반응 용매를 변경하여 사용하는 것을 제외하고는 상기 실시예 7과 동일한 방법으로 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물을 합성한 결과를 [표 4]에 나타내었다Colorless high purity trimethylaminealanborane, the title compound, in the same manner as in Example 7, except for changing the equivalent of lithium aluminum hydride, the equivalent of trimethylamine, the equivalent of sodium boron hydride, and the reaction solvent with respect to false chloro aluminum. The results of synthesizing the compound are shown in [Table 4].

[표 4]TABLE 4

Figure 112006034837421-pat00004
Figure 112006034837421-pat00004

[실시예 45] 트리메틸아민알란보란의 제조Example 45 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 133.3g(1몰) 과 수소화리튬알루미늄 37.95g(1.0몰)이 더하여진 벤젠 1000ml 부유용액에 질소 가스의 기류 하에서 생성된 디클로로알란 화합물에 트리메틸아민 177.33g(3.0몰)을 첨가하고 수소화나트륨붕소 113.49g(3.0몰)을 적가한 후 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하 에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 177.33 g (3.0 mole) of trimethylamine was added to a dichloroalan compound produced under a stream of nitrogen gas to a 1000 ml suspension of benzene added with 133.3 g (1 mole) of trichloroaluminum and 37.95 g (1.0 mole) of lithium aluminum hydride. 113.49 g (3.0 mol) of sodium boron was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered off was rinsed twice with a sufficient amount of hexane to obtain a secondary filtrate, which was then combined with the first filtrate. It was. The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 125g(수율 61%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 125 g (61% yield) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of trimethylaminealanborane are as follows.

LiAlH4+ AlCl3+ 2N(CH3)3 → 2ClH2Al:N(CH3)3 LiAlH 4 + AlCl 3 + 2N (CH 3 ) 3 → 2ClH 2 Al: N (CH 3 ) 3

ClH2Al:N(CH3)3 + NaBH4 → H2AlBH4:N(CH3)3 ClH 2 Al: N (CH 3 ) 3 + NaBH 4 → H 2 AlBH 4 : N (CH 3 ) 3

[실시예 46-55] 트리메틸아민알란보란의 제조Example 46-55 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 대비 수소화리튬알루미늄의 당량, 트리메틸아민의 당량, 수소화나트륨붕소의 당량과 반응 용매를 변경하여 사용하는 것을 제외하고는 상기 실시예 9과 동일한 방법으로 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물을 합성한 결과를 [표 5]에 나타내었다Colorless high purity trimethylaminealanborane, the title compound, in the same manner as in Example 9, except that the equivalent weight of lithium aluminum hydride, the equivalent weight of trimethylamine, the equivalent amount of sodium boron hydride, and the reaction solvent were used. The results of synthesizing the compound are shown in [Table 5].

[표 5]TABLE 5

Figure 112006034837421-pat00005
Figure 112006034837421-pat00005

[실시예 56] 트리메틸아민알란보란의 제조Example 56 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 133.3g(1.0몰)과 수소화리튬알루미늄 37.95g (1.0몰)의 디에틸에테르 1000ml 부유용액에 질소 가스의 기류 하에서 -20℃로 냉각시키면서 한 시간 동안 교반시켜 생성된 클로로알란 화합물을 -10℃로 유지하면서 트리메틸아민 177.33g(3.0몰)을 첨가 한 후 -10℃ 에서 2시간 동안 교반하고, 반응기의 온 도를 25℃로 올린 후 1시간 동안 교반하였다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 얻어진 중간생성물을 벤젠 1000ml에 녹인 다음 수소화나트륨붕소 113.49g(3.0몰)을 적가하고 30℃ 에서 8시간 동안 교반하였다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다.A chloroalan compound produced by stirring for 13 hours in an aqueous solution of 133.3 g (1.0 mole) of trichloroaluminum and 37.95 g (1.0 mole) of lithium aluminum hydride was cooled to -20 ° C under a stream of nitrogen gas. 177.33 g (3.0 mole) of trimethylamine was added thereto while maintaining at 10 ° C., followed by stirring at −10 ° C. for 2 hours, raising the temperature of the reactor to 25 ° C., and then stirring for 1 hour. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid. The obtained intermediate was dissolved in 1000 ml of benzene, and then 113.49 g (3.0 mol) of sodium borohydride was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 127g(수율 62%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification of the resultant product gave 127 g (yield 62%) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of trimethylaminealanborane are as follows.

LiAlH4+ AlCl3+ 2Et2O → 2ClH2Al:OEt2 LiAlH 4 + AlCl 3 + 2Et 2 O → 2ClH 2 Al: OEt 2

ClH2Al:OEt2 + N(CH3)3 → ClH2Al:N(CH3)3 + Et2OClH 2 Al: OEt 2 + N (CH 3 ) 3 → ClH 2 Al: N (CH 3 ) 3 + Et 2 O

ClH2Al:N(CH3)3 + NaBH4 → H2AlBH4:N(CH3)3 ClH 2 Al: N (CH 3 ) 3 + NaBH 4 → H 2 AlBH 4 : N (CH 3 ) 3

[실시예 57-66] 트리메틸아민알란보란의 제조Example 57-66 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 대비 수소화리튬알루미늄의 당량, 트리메틸아민의 당량, 수소화나트륨붕소의 당량과 반응 용매를 변경하여 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물을 합성한 결과를 [표 6]에 나타내었다.Colorless high purity trimethylaminealanborane, the title compound, in the same manner as in Example 11, except that the equivalent weight of lithium aluminum hydride, the equivalent weight of trimethylamine, the equivalent amount of sodium boron hydride, and the reaction solvent were used. The results of synthesizing the compound are shown in [Table 6].

[표 6]TABLE 6

Figure 112006034837421-pat00006
Figure 112006034837421-pat00006

[실시예 67] 트리메틸아민알란보란의 제조Example 67 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 22.7g(0.17몰) 이 적가된 디에틸에테르 부유용액 500ml 를 -10℃로 냉각시키면서 질소 가스의 기류 하에서 수소화리튬알루미늄 21.3g(0.56몰)를 30초에 걸쳐 적가한 뒤 트리메틸아민을 40g(0.68몰) 첨가하고 -10℃에서 5시간 교반시켰다. 교반이 완료된 후 상기 반응물을 여과한 후 여과액을 -25℃에서 24시간 동안 냉각시켜 석출된 고체를 여과하여 얻은 트리메틸아민알란 화합물을 디에 틸에테르 용매 250ml 하에 염화수은 92g(0.34몰)을 첨가한 후 수소화나트륨붕소 28.3g(0.75몰)을 적가한 후 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 21.3 g (0.56 mol) of lithium aluminum hydride was added dropwise over 30 seconds while cooling 500 ml of diethyl ether floating solution to which 22.7 g (0.17 mol) of trichloro aluminum was added dropwise to -10 ° C. 40g (0.68mol) was added and it stirred at -10 degreeC for 5 hours. After stirring was completed, the reaction mixture was filtered, and then the filtrate was cooled at −25 ° C. for 24 hours, and trimethylamine alan compound obtained by filtering the precipitated solid was added 92 g (0.34 mol) of mercury chloride in 250 ml of a solvent of diethyl ether. Then, 28.3 g (0.75 mol) of sodium borohydride was added dropwise, followed by stirring at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 42g(수율 60%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification was carried out to give 42 g (yield 60%) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of trimethylaminealanborane are as follows.

AlCl3+ 3LiAlH4+ 4N(CH3)3 → 4H3Al:N(CH3)3 + 3LiClAlCl 3 + 3LiAlH 4 + 4N (CH 3 ) 3 → 4H 3 Al: N (CH 3 ) 3 + 3LiCl

2H3Al:N(CH3)3 + HgCl2 → 2ClH2Al:N(CH3)3 + Hg + H2 2H 3 Al: N (CH 3 ) 3 + HgCl 2 → 2ClH 2 Al: N (CH 3 ) 3 + Hg + H 2

ClH2Al:N(CH3)3 + NaBH4 → H2AlBH4:N(CH3)3 ClH 2 Al: N (CH 3 ) 3 + NaBH 4 → H 2 AlBH 4 : N (CH 3 ) 3

[실시예 68] 트리메틸아민알란보란의 제조Example 68 Preparation of Trimethylamine Alanborane

트리클로로알루미늄 22.7g(0.17몰) 이 적가된 디에틸에테르 부유용액 500ml 를 -10℃로 냉각시키면서 질소 가스의 기류 하에서 수소화리튬알루미늄 21.3g(0.56 몰)를 30초에 걸쳐 적가한 뒤 트리메틸아민을 40g(0.68몰) 첨가하고 -10℃에서 5시간 교반시켰다. 교반이 완료된 후 상기 반응물을 여과한 후 여과액을 -25℃에서 24시간 동안 냉각시켜 석출된 고체를 여과하여 얻은 트리메틸아민알란 화합물을 디에틸에테르 용매 250ml 하에 염화수은 92g(0.34몰)을 첨가한 후 수소화리튬붕소 16.2g(0.75몰)을 적가한 후 30℃ 에서 8시간 동안 교반시켰다. 여과기를 사용하여 질소 기류 하에서 상기 반응혼합물을 걸러 1차 여과액을 얻고 여과기에 걸러진 부산물은 충분한 양의 헥산을 사용하여 2회 헹구어 여과하여 2차 여과액을 얻은 후, 최초의 여과액과 합하였다. 여과액은 상온(20℃)에서 진공을 이용하여 휘발 가능한 모든 물질을 제거하여 무색의 액체를 얻었다. 21.3 g (0.56 mol) of lithium aluminum hydride was added dropwise over 30 seconds while cooling 500 ml of diethyl ether floating solution to which 22.7 g (0.17 mol) of trichloro aluminum was added dropwise to -10 ° C, followed by trimethylamine. 40g (0.68mol) was added and it stirred at -10 degreeC for 5 hours. After stirring was completed, the reaction mixture was filtered, and then the filtrate was cooled at -25 ° C for 24 hours, and trimethylamine alan compound obtained by filtering the precipitated solid was added 92 g (0.34 mole) of mercury chloride under 250 ml of a diethyl ether solvent. Then 16.2 g (0.75 mol) of lithium boron hydride was added dropwise and stirred at 30 ° C. for 8 hours. The reaction mixture was filtered under a nitrogen stream using a filter to obtain a primary filtrate, and the by-product filtered was rinsed twice with a sufficient amount of hexane, filtered to obtain a secondary filtrate, and then combined with the first filtrate. . The filtrate was removed at room temperature (20 ℃) using a vacuum to remove all volatile substances to obtain a colorless liquid.

건조된 무색의 여과액을 45℃에서 진공(1.3 torr)상태를 유지하면서 증류하면, 드라이아이스로 냉각된 용기에 무색의 증류액이 응결되고, 얻어진 무색의 1차 증류액을 45℃ 에서 같은 방법으로 정제하여 표제 화합물인 무색의 고순도 트리메틸아민알란보란 화합물 43.5g(수율 62%)을 수득하였다.When the dried colorless filtrate is distilled while maintaining a vacuum (1.3 torr) at 45 ° C., the colorless distillate is condensed in a vessel cooled with dry ice, and the resulting colorless primary distillate is obtained at 45 ° C. in the same manner. Purification with 43.5 g (62% yield) of the title compound as a colorless high purity trimethylaminealanborane compound.

트리메틸아민알란보란의 제조를 위한 화학반응은 하기와 같다.Chemical reactions for the preparation of trimethylaminealanborane are as follows.

AlCl3+ 3LiAlH4+ 4N(CH3)3 → 4H3Al:N(CH3)3 + 3LiClAlCl 3 + 3LiAlH 4 + 4N (CH 3 ) 3 → 4H 3 Al: N (CH 3 ) 3 + 3LiCl

2H3Al:N(CH3)3 + HgCl2 → 2ClH2Al:N(CH3)3 + Hg + H2 2H 3 Al: N (CH 3 ) 3 + HgCl 2 → 2ClH 2 Al: N (CH 3 ) 3 + Hg + H 2

ClH2Al:N(CH3)3 + LiBH4 → H2AlBH4:N(CH3)3 ClH 2 Al: N (CH 3 ) 3 + LiBH 4 → H 2 AlBH 4 : N (CH 3 ) 3

[표 7]TABLE 7

Figure 112006034837421-pat00007
Figure 112006034837421-pat00007

상술한 바와 같이, 본 발명에 따른 트리메틸아민알란보란 화합물의 제조방법으로 휘발성이 우수하며, 기존의 아민으로 안정화된 알란과 비교하여 열적 안정성이 우수하면서 점도가 낮은 트리메틸아민알란보란 화합물을 용이하게 제조할 수 있다.As described above, the trimethylamine alanborane compound according to the present invention has excellent volatility and excellent thermal stability as compared to alan stabilized with conventional amines, and easily prepares a trimethylamine alanborane compound with low viscosity. can do.

Claims (6)

하기 화학식 1의 트리메틸아민알란보란 화합물은 수소화리튬알루미늄(LiAlH4), 트리클로로알루미늄(AlCl3) 및 트리메틸아민을 반응시켜 제조된 하기 화학식 2의 클로로알란 화합물과 수소화리튬붕소(LiBH4) 또는 수소화나트륨붕소(NaBH4)를 반응시켜 제조되는 것을 특징으로 하는 트리메틸아민알란보란 화합물의 제조방법.To trimethylamine Alan borane compound of formula (I) is lithium aluminum hydride (LiAlH 4), aluminum trichloroethane (AlCl 3), and to the prepared by reacting trimethylamine-chloro Alan compound and lithium hydride, boron of formula 2 (LiBH 4), or hydrogenated A method for producing a trimethylaminealanborane compound, which is prepared by reacting sodium boron (NaBH 4 ). [화학식 1][Formula 1] H2AlBH4:N(CH3)3 H 2 AlBH 4 : N (CH 3 ) 3 [화학식 2][Formula 2] ClH2Al:N(CH3)3 ClH 2 Al: N (CH 3 ) 3 삭제delete 삭제delete 제 1항에 있어서,The method of claim 1, 상기 반응은 벤젠, 디에틸에테르 또는 디에틸에테르와 헥산의 혼합용액 하에서 일어나는 것을 특징으로 하는 트리메틸아민알란보란 화합물의 제조방법.Wherein said reaction occurs under a mixed solution of benzene, diethyl ether or diethyl ether and hexane. 하기 화학식 1의 트리메틸아민알란보란 화합물은 수소화리튬알루미늄(LiAlH4), 트리클로로알루미늄(AlCl3), 트리메틸아민 및 수소화리튬붕소(LiBH4) 또는 수소화나트륨붕소(NaBH4)를 반응시켜 제조되는 것을 특징으로 하는 트리메틸아민알란보란 화합물의 제조방법.The trimethylaminealanborane compound of Formula 1 is prepared by reacting lithium aluminum hydride (LiAlH 4 ), trichloroaluminum (AlCl 3 ), trimethylamine and lithium boron hydride (LiBH 4 ) or sodium borohydride (NaBH 4 ) A method for producing a trimethylamine alanborane compound, characterized in that. [화학식 1][Formula 1] H2AlBH4:N(CH3)3 H 2 AlBH 4 : N (CH 3 ) 3 제 5항에 있어서,The method of claim 5, 상기 반응은 벤젠, 디에틸에테르 또는 디에틸에테르와 헥산의 혼합용액 하에서 일어나는 것을 특징으로 하는 트리메틸아민알란보란 화합물의 제조방법.Wherein said reaction occurs under a mixed solution of benzene, diethyl ether or diethyl ether and hexane.
KR1020060044872A 2006-05-18 2006-05-18 Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition KR100756403B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060044872A KR100756403B1 (en) 2006-05-18 2006-05-18 Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition
PCT/KR2007/002389 WO2007136186A1 (en) 2006-05-18 2007-05-16 Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060044872A KR100756403B1 (en) 2006-05-18 2006-05-18 Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition

Publications (1)

Publication Number Publication Date
KR100756403B1 true KR100756403B1 (en) 2007-09-10

Family

ID=38723481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060044872A KR100756403B1 (en) 2006-05-18 2006-05-18 Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition

Country Status (2)

Country Link
KR (1) KR100756403B1 (en)
WO (1) WO2007136186A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954448B1 (en) 2007-05-04 2010-04-27 (주)덕산테코피아 Manufacturing method of Hydrido aluminum borohydride trialkylamine complexes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145612B2 (en) 2012-07-06 2015-09-29 Applied Materials, Inc. Deposition of N-metal films comprising aluminum alloys
EP3728688B1 (en) * 2017-12-20 2021-11-10 Basf Se Process for the generation of metal-containing films
US11421318B2 (en) 2018-05-04 2022-08-23 Applied Materials, Inc. Methods and apparatus for high reflectivity aluminum layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279067B1 (en) 1998-04-23 2001-01-15 신현국 Aluminum complex derivative for chemical vapor deposition and production of the same derivative

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277932A (en) * 1991-07-29 1994-01-11 Syracuse University CVD method for forming metal boride films using metal borane cluster compounds
KR100289945B1 (en) * 1998-09-15 2001-09-17 신현국 Precursor for chemical vapor deposition of aluminum thin film and preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279067B1 (en) 1998-04-23 2001-01-15 신현국 Aluminum complex derivative for chemical vapor deposition and production of the same derivative

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chem. Mater., 1992, 4(3), 530-538.
Inorg. Chem., 1963, 2(3), 515-519.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954448B1 (en) 2007-05-04 2010-04-27 (주)덕산테코피아 Manufacturing method of Hydrido aluminum borohydride trialkylamine complexes

Also Published As

Publication number Publication date
WO2007136186A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
EP1921061B1 (en) Metal-containing compound, process for producing the same and method of forming a metal-containing thin film
US7329768B2 (en) Chemical vapor deposition precursors for deposition of tantalum-based materials
US7635441B2 (en) Raw material for forming a strontium-containing thin film and process for preparing the raw material
JP5148186B2 (en) Imido complex, method for producing the same, metal-containing thin film, and method for producing the same
EP1947081A1 (en) Titanium complexes, process for production thereof, titanium -containing thin films, and method for formation thereof
CN101443338A (en) Compound containing five (dimethyl amidocyanogen)disilane precursor and preparation method thereof
KR100756403B1 (en) Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition
US6399772B1 (en) Aluminum complex derivatives for chemical vacuum evaporation and the method of producing the same
TW201738250A (en) Transition metal compound, preparation method thereof, and composition for depositing transition metal-containing thin film comprising the same
US20210061833A1 (en) Lanthanoid compound, lanthanoid-containing thin film and formation of lanthanoid-containing thin film using the lanthanoid compound
JP5260148B2 (en) Method for forming strontium-containing thin film
KR100829472B1 (en) Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis
JP5042548B2 (en) Metal-containing compound, method for producing the same, metal-containing thin film and method for forming the same
KR20070122435A (en) Aluminum compound for forming aluminum films by chemical vapor deposition and their synthesis
KR100756388B1 (en) Aluminium precursor for cvd and its preparation method thereof
KR100954448B1 (en) Manufacturing method of Hydrido aluminum borohydride trialkylamine complexes
CN114957014A (en) Preparation method of high-purity pentakis (dimethylamino) tantalum for chip film formation
KR20230050655A (en) Halogen-free tungsten compounds, preparation method thereof and process for the formation of thin films using the same
JP2017222612A (en) Silyldiamine compound and organic metal compound having the same as ligand
KR20220166960A (en) Fluorine-free tungsten compounds, preparation method thereof and process for the formation of thin films using the same
KR20170005345A (en) Method for the preparation of alkylaminosilane
JP2005197675A (en) Hafnium-containing film forming material and hafnium-containing film manufactured therefrom

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130829

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140819

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180814

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190819

Year of fee payment: 13