KR100744664B1 - Method for forming of ruthenium by chemical vapor deposition - Google Patents

Method for forming of ruthenium by chemical vapor deposition Download PDF

Info

Publication number
KR100744664B1
KR100744664B1 KR1020010037395A KR20010037395A KR100744664B1 KR 100744664 B1 KR100744664 B1 KR 100744664B1 KR 1020010037395 A KR1020010037395 A KR 1020010037395A KR 20010037395 A KR20010037395 A KR 20010037395A KR 100744664 B1 KR100744664 B1 KR 100744664B1
Authority
KR
South Korea
Prior art keywords
ruthenium film
source
ruthenium
vapor deposition
chemical vapor
Prior art date
Application number
KR1020010037395A
Other languages
Korean (ko)
Other versions
KR20030001065A (en
Inventor
하승철
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020010037395A priority Critical patent/KR100744664B1/en
Publication of KR20030001065A publication Critical patent/KR20030001065A/en
Application granted granted Critical
Publication of KR100744664B1 publication Critical patent/KR100744664B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Abstract

본 발명은 증착률, 모폴로지 및 누설전류 특성을 개선시키도록 한 화학기상증착법에 의한 루테늄막의 제조 방법을 제공하기 위한 것으로, 기판상에 Ru(od)3 소스를 플로우시켜 루테늄막의 핵을 생성시키는 제 1 단계, 및 상기 루테늄막의 핵이 생성된 상기 기판상에 Ru(EtCp)2 소스를 플로우시켜 루테늄막을 성장시키는 제 2 단계를 포함하여 이루어진다.
The present invention is to provide a method for producing a ruthenium film by chemical vapor deposition to improve the deposition rate, morphology and leakage current characteristics, the present invention is to make a ruthenium film nucleus by flowing a Ru (od) 3 source on the substrate And a second step of growing a ruthenium film by flowing a Ru (EtCp) 2 source onto the substrate on which the nucleus of the ruthenium film is generated.

캐패시터, BST, 루테늄소스, 화학기상증착법Capacitor, BST, Ruthenium Source, Chemical Vapor Deposition

Description

화학기상증착법에 의한 루테늄막의 제조 방법{METHOD FOR FORMING OF RUTHENIUM BY CHEMICAL VAPOR DEPOSITION} METHOD FOR FORMING OF RUTHENIUM BY CHEMICAL VAPOR DEPOSITION}             

도 1은 종래기술에 따른 화학기상증착법에 의한 루테늄막의 제조 방법을 도시한 공정 흐름도,1 is a process flow diagram illustrating a method for producing a ruthenium film by chemical vapor deposition according to the prior art;

도 2는 본 발명의 실시예에 따른 화학기상증착법에 의한 루테늄막의 제조 방법을 공정 흐름도,2 is a process flow chart of a method for producing a ruthenium film by chemical vapor deposition according to an embodiment of the present invention;

도 3은 도 2에 따라 제조된 캐패시터를 도시한 도면.
3 shows a capacitor made according to FIG. 2;

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

32 : 하부전극 33 : BST32: lower electrode 33: BST

34 : 루테늄막
34: ruthenium film

본 발명은 반도체소자의 제조 방법에 관한 것으로서, 특히 모폴로지 특성 및 누설전류 특성이 우수한 루테늄막의 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method of forming a ruthenium film having excellent morphology characteristics and leakage current characteristics.

최근에 메모리 소자의 집적도가 증가하면서 보다 높은 캐패시턴스와 작은 누설전류 특성이 요구됨에 따라 ONO구조에서 누설전류가 작은 MIM(Metal-Insulator-Metal) 구조로 변화되고 있다.Recently, as the degree of integration of memory devices increases, higher capacitance and smaller leakage current characteristics are required, thereby changing from ONO structure to metal-insulator-metal (MIM) structure with low leakage current.

다시 말하면, 집적화되면서 보다 높은 유전상수를 지니는 BLT, BST, Ta2O5 등의 고유전 상수를 갖는 유전막이 요구됨과 동시에 누설전류를 감소시키기 위해 일함수값이 큰 금속을 상부전극 및 하부전극으로 적용해야 된다.In other words, a dielectric film having a high dielectric constant such as BLT, BST, Ta 2 O 5, etc. having a higher dielectric constant while being integrated is required, and a metal having a large work function is used as the upper electrode and the lower electrode to reduce leakage current. Should apply.

전극으로 적용되는 금속은 백금(Pt), 이리듐(Ir), 루테늄(Ru), 산화이리듐막(IrO), 산화루테늄막(RuO), 백금합금(Pt-alloy) 등이 있다. Metals applied as electrodes include platinum (Pt), iridium (Ir), ruthenium (Ru), iridium oxide film (IrO), ruthenium oxide film (RuO), platinum alloys (Pt-alloy), and the like.

상기한 전극들 중 루테늄(Ru) 박막 및 산화루테늄 박막을 포함하는 루테늄계 박막은 백금(Pt)과 비교하여 식각 공정이 상대적으로 쉬워, DRAM 및 FeRAM과 같은 메모리 소자(memory device)에 사용되는 강유전체 및 고유전체 재료로 구성되는 박막 캐패시터의 캐패시터 전극으로 적용될 수 있을 것으로 기대된다.Among the electrodes, ruthenium-based thin films including ruthenium (Ru) thin films and ruthenium oxide thin films are relatively easy to etch compared to platinum (Pt), and thus ferroelectrics used in memory devices such as DRAM and FeRAM. And a capacitor electrode of a thin film capacitor composed of a high dielectric material.

금속 박막, 산화금속 박막 및 복합 산화금속 박막을 형성하기 위한 박막공정은 스퍼터링법(sputtering), 이온 도금법(ion plating), 열분해 도포법(pyrolytic coating), 화학기상증착법(CVD) 등을 포함한다.Thin film processes for forming metal thin films, metal oxide thin films and composite metal oxide thin films include sputtering, ion plating, pyrolytic coating, chemical vapor deposition (CVD), and the like.

특히 화학기상증착법은 다양한 가스들을 반응챔버로 주입시키고, 열, 빛, 플라즈마와 같은 고에너지에 의해 유도된 가스들을 화학반응시키므로써 기판상에 요구되는 두께의 박막을 증착시킨다. 아울러, 화학기상증착법(CVD)에서는 반응에너지만큼 인가된 플라즈마 또는 가스들의 비(ratio) 및 양(amount)을 통해 반응조건을 제어하므로서 증착률을 증가시킬 수 있다.In particular, the chemical vapor deposition method injects various gases into the reaction chamber and chemically reacts gases induced by high energy, such as heat, light, and plasma, thereby depositing a thin film having a desired thickness on the substrate. In addition, in chemical vapor deposition (CVD), the deposition rate may be increased by controlling the reaction conditions through the ratio and amount of plasma or gases applied by the reaction energy.

최근에 소자의 집적도 증가에 따라 캐패시터의 면적을 최대한 증가시켜 캐패시턴스를 증가시키기 위해서 캐패시터 구조의 종횡비(aspect ratio)를 점점 증가시키고 있어 전극으로 사용할 루테늄 박막도 단차피복성이 우수한 화학기상증착법(CVD)을 이용하여 증착하고 있다.Recently, the aspect ratio of the capacitor structure is gradually increasing to increase the capacitance by increasing the area of the capacitor as much as the integration density of the device, so that the ruthenium thin film to be used as an electrode has excellent step coverage. It is deposited using.

루테늄(Ru)을 DRAM 및 FeRAM의 상부전극으로 이용하고, BST를 유전막으로 이용하는 경우, 금속유기화학기상증착법(Metal Organic CVD; MOCVD)에 의해 루테늄을 상하부전극으로 증착할 때, 루테늄 박막의 소스(Source)로는 경제적으로 유리한 트리옥타네디오네이트루테늄[trioctanedionateruthenium; 이하 'Ru(od)3'라 약칭함] 또는 디에틸사이클로펜타디엔루테늄[dimethylcyclopentadieneruthenium; 이하 'Ru(EtCp)2'라 약칭함]가 주로 사용되고 있다.When ruthenium (Ru) is used as the upper electrode of DRAM and FeRAM, and BST is used as the dielectric film, when ruthenium is deposited to the upper and lower electrodes by metal organic CVD (MOCVD), the source of the ruthenium thin film ( Source is economically advantageous trioctanedionate ruthenium (trioctanedionateruthenium; Hereinafter abbreviated as 'Ru (od) 3 ' or dimethylcyclopentadieneruthenium; Hereinafter, 'Ru (EtCp) 2 ' is mainly used.

도 1은 종래기술에 따른 화학기상증착법에 의한 루테늄막의 제조 방법을 도시한 공정 흐름도이다.1 is a process flow diagram illustrating a method for producing a ruthenium film by chemical vapor deposition according to the prior art.

BST가 증착된 기판을 증착챔버내에 로딩시킨 후, Ru(od)3 또는 Ru(EtCp)2 소스 중 어느 하나를 선택해서 공급하고, 반응가스로서 산소가스를 일정하게 공급한다(11∼12).After loading the BST-deposited substrate into the deposition chamber, one of Ru (od) 3 and Ru (EtCp) 2 sources is selected and supplied, and oxygen gas is constantly supplied as a reaction gas (11-12).

그러나, 종래기술에서는 이들 단일 소스만을 사용하여 루테늄전극을 형성하는데, Ru(EtCp)2의 경우, 이를 분해시키기위해 반응가스로 산소를 첨가시켜주어야 하는데, BST의 표면에 존재하는 티타늄의 댕글링결합(dangling bond)이 표면에 존 재하는 산소를 빼앗아감에 따라 BST위에서는 분해가 잘 이루어지지 않는다. 이로 인해 BST위에서는 핵생성(nucleation)이 잘되지 않아 성장하기 어려운 단점이 있다.However, in the prior art, ruthenium electrodes are formed using only these single sources. In the case of Ru (EtCp) 2 , oxygen must be added to the reaction gas to decompose it, and a dangling bond of titanium on the surface of the BST is used. As dangling bonds take away the oxygen present on the surface, it does not degrade well on BST. As a result, the nucleation is not good on the BST, so it is difficult to grow.

반면 Ru(od)3의 경우에는 소스내에 산소를 함유하고 있어서 BST위에서 핵생성이 쉽게 되는 공정 윈도우(Window)를 가지고 있지만 박막내 산소 함유량이 많고 성장률이 느리다는 단점이 있다.
On the other hand, Ru (od) 3 has a process window that contains oxygen in the source to facilitate nucleation on the BST, but has a disadvantage in that the oxygen content in the thin film is high and the growth rate is slow.

본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출한 것으로서, 증착률, 모폴로지 및 누설전류 특성을 저하를 방지하는데 적합한 화학기상증착법에 의한 루테늄막의 제조 방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to provide a method for producing a ruthenium film by chemical vapor deposition which is suitable for preventing the deposition rate, morphology and leakage current characteristics from being lowered.

상기의 목적을 달성하기 위한 본 발명의 화학기상증착법에 의한 루테늄막의 제조 방법은 기판상에 Ru(od)3 소스를 플로우시켜 루테늄막의 핵을 생성시키는 제 1 단계, 및 상기 루테늄막의 핵이 생성된 상기 기판상에 Ru(EtCp)2 소스를 플로우시켜 루테늄막을 성장시키는 제 2 단계를 포함하여 이루어짐을 특징으로 한다.Ruthenium film production method according to the chemical vapor deposition method of the present invention for achieving the above object is a first step of generating a nucleus of the ruthenium film by flowing a Ru (od) 3 source on the substrate, and the nucleus of the ruthenium film And a second step of growing a ruthenium film by flowing a Ru (EtCp) 2 source on the substrate.

바람직하게, 상기 제 1 단계는, 상기 Ru(od)3 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 200sccm∼1000sccm의 산소가스를 첨가하며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 한다.Preferably, in the first step, the flow rate of the Ru (od) 3 source is 0.05 ml / min to 0.5 ml / min, 200 sccm to 1000 sccm of oxygen gas is added, and under a pressure condition of 0.5 tor to 5 tor Characterized in that made.

바람직하게, 상기 제 2 단계는, 상기 Ru(EtCp)2 소스의 플로우율 0.05ml/min∼0.5ml/min으로 하고, 20sccm∼400sccm의 산소가스를 플로우시키며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 한다.Preferably, the second step may be performed at a flow rate of 0.05 ml / min to 0.5 ml / min of the Ru (EtCp) 2 source, flowing an oxygen gas of 20 sccm to 400 sccm, and under a pressure condition of 0.5 tor to 5 tor. It is characterized by.

본 발명의 캐패시터의 제조 방법은 소정 공정이 완료된 반도체기판상에 하부전극을 형성하는 단계, 상기 하부전극상에 BST를 증착하는 단계, 및 상기 BST상에 Ru(od)3 소스와 Ru(EtCp)2 소스를 순차적으로 플로우시켜 루테늄막을 증착하는 단계를 포함하여 이루어짐을 특징으로 한다.The capacitor manufacturing method of the present invention comprises the steps of forming a lower electrode on a semiconductor substrate having a predetermined process, depositing a BST on the lower electrode, and Ru (od) 3 source and Ru (EtCp) on the BST And sequentially depositing a ruthenium film by flowing two sources sequentially.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .

도 2는 본 발명의 실시예에 따른 BST 캐패시터의 상부전극으로 이용하기 위한 화학기상증착법에 의한 루테늄막의 제조 방법을 도시한 공정 흐름도이고, 도 3은 도 2에 따른 루테늄막을 전극으로 이용하는 캐패시터를 도시한 도면이다.2 is a process flowchart illustrating a method of manufacturing a ruthenium film by chemical vapor deposition for use as an upper electrode of a BST capacitor according to an embodiment of the present invention, and FIG. 3 is a view illustrating a capacitor using a ruthenium film as an electrode according to FIG. 2. One drawing.

도 2 및 도 3을 참조하면, 루테늄막의 증착 공정은 크게 핵생성단계(22)와 성장단계(23)로 이루어지는데, 핵생성단계(22)에서의 산소가스의 플로우량과 성장단계에서의 산소가스의 플로우량을 다르게 한다. 즉, 초기 핵생성단계(22)에서는 과량의 산소를 플로우시키고 성장단계(23)에서는 산소가스의 플로우량을 감소시킨다. 2 and 3, the deposition process of the ruthenium film is largely composed of the nucleation step 22 and the growth step 23, the flow amount of oxygen gas in the nucleation step 22 and the oxygen in the growth step The flow rate of gas is varied. That is, the initial nucleation step 22 flows excess oxygen and the growth step 23 reduces the flow amount of oxygen gas.                     

먼저 하부전극(32), BST(Barium Strontium Titanate, 33)이 증착된 기판(31)을 증착챔버내에 로딩시킨 후(21), 초기 핵생성단계(22)에서는 Ru(od)3 소스를 플로우시키는데, Ru(od)3 [Ru(od)3는 'tris(2,4-octanedionato)'이며, 화학식은 Ru(C8H13O2)3] 소스를 엔부틸아세테이트(n-butyl acetate)에 용해시키거나, 디글라임(diglyme)에 용해시키되, 0.1mol/L∼0.5mol/L로 용해시킨다. First, after loading the substrate 31 on which the lower electrode 32 and the BST (Barium Strontium Titanate, 33) are deposited (21), the Ru (od) 3 source is flowed in the initial nucleation step 22. Ru (od) 3 [Ru (od) 3 is 'tris (2,4-octanedionato)' and the formula Ru (C 8 H 13 O 2 ) 3 ] is added to n-butyl acetate. Or dissolve in diglyme, but dissolve at 0.1 mol / L to 0.5 mol / L.

이러한 Ru(od)3 소스를 이용한 핵생성 단계(22)는, Ru(od)3 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 산소 가스의 플로우율을 200sccm∼1000sccm으로 하며, 증착챔버내 압력을 0.5torr∼5torr로, 기판의 온도를 200℃∼500℃으로 유지한다.This Ru (od) nucleation step with a third source (22), the flow rate of the Ru (od) 3 source to 0.05ml / min~0.5ml / min and, and the flow rate of oxygen gas to 200sccm~1000sccm The pressure in the deposition chamber is kept at 0.5 to 5 tor, and the temperature of the substrate is maintained at 200 to 500 ° C.

이처럼, 초기 핵생성단계(22)에서 Ru(od)3 소스를 열분해시키는 산소가스를 Ru(od)3 소스의 플로우량에 비해 상대적으로 과량 플로우시키므로써 Ru(od)3소스의 분해를 촉진시키면서 핵생성 밀도를 높여준다.Thus, in the initial nucleation stage 22 to write because Ru (od) 3 oxygen gas Ru (od) relatively large excess flow relative to the flow fineness of 3 source of pyrolysis source while promoting Ru (od) decomposition of the 3 source Increases nucleation density.

다음으로 성장단계(23)에서는 Ru(EtCp)2 소스를 플로우시키는데, Ru(EtCp)2 소스를 테트라하이드로푸란(THF)에 용해시키거나, Ru(EtCp)2 소스를 메탄올(Methanol)에 용해시키되, 0.1mol/L∼0.5mol/L로 용해시킨다. 여기서, Ru(EtCp)2의 화학식은 Ru(C2H5C5H4)2이다.Next, in the growth step 23, the Ru (EtCp) 2 source is flowed, and the Ru (EtCp) 2 source is dissolved in tetrahydrofuran (THF), or the Ru (EtCp) 2 source is dissolved in methanol. And 0.1 mol / L to 0.5 mol / L. Here, the chemical formula of Ru (EtCp) 2 is Ru (C 2 H 5 C 5 H 4 ) 2 .

상기한 Ru(EtCp)2 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 산소가스의 플로우율을 20sccm∼400sccm으로 한다. 그리고, 증착챔버내 압력을 0.5torr∼5torr으로 유지하고, 기판(31)의 온도를 200℃∼500℃으로 유지한다.The flow rate of the Ru (EtCp) 2 source described above is 0.05 ml / min to 0.5 ml / min, and the flow rate of oxygen gas is 20 sccm to 400 sccm. The pressure in the deposition chamber is maintained at 0.5 tortor to 5 tor, and the temperature of the substrate 31 is maintained at 200 to 500C.

이처럼, 성장 단계(23)에서는 성장률이 크고 막내 산소함유량이 적으며 모폴 로지 특성이 좋은 Ru(EtCp)2 소스를 이용하므로 루테늄막(34)의 증착률을 증가시키고 모폴로지를 좋게 한다.As such, in the growth step 23, the Ru (EtCp) 2 source having a high growth rate, low oxygen content in the film, and good morphology characteristics is used to increase the deposition rate of the ruthenium film 34 and improve the morphology.

그리고, 본 발명의 실시예는 상술한 테트라하이드로퓨란, 메탄올, 엔부틸아세테이트, 디글라임의 용매 외에 다른 용매를 적용할 수도 있다.In addition, in the embodiment of the present invention, a solvent other than the solvent of tetrahydrofuran, methanol, enbutyl acetate, and diglyme may be applied.

예를 들면, 에탄올, 이소프로필 알콜(IPA) 및 n-부탄올, 에틸 아세테이트, 부틸 아세테이트, 메톡시에틸 아세테이트, 에틸렌글리콜 모노메틸 에테르, 에틸렌글리콜 모노에틸 에테르, 에틸렌 글리콜 모노부틸 에테르, 디에틸렌글리콜 모노메틸 에테르, 디글라임(diglyme), 트리글라임(triglyme), 디부틸 에테르, 메틸 부틸 케톤, 메틸 이소부틸 케톤, 에틸 부틸 케톤, 디프로필 케톤,디이소부틸 케톤, 메틸 아밀 케톤, 시클로헥사논, 메틸시클로헥사논, 헥산, 시클로헥산, 헵탄, 옥탄, 톨루엔, 크실렌 등을 적용할 수 있다.For example, ethanol, isopropyl alcohol (IPA) and n-butanol, ethyl acetate, butyl acetate, methoxyethyl acetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol mono Methyl ether, diglyme, triglyme, dibutyl ether, methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, Methylcyclohexanone, hexane, cyclohexane, heptane, octane, toluene, xylene and the like can be applied.

상기한 용매들은 용질의 용해도, 사용 온도와 용매의 끓는점 또는 인화점과의 관계에 따라 적당하게 선택될 수 있으나, 테트라하이드로퓨란(THF), 글라임 및 디글라임이 그들 착화합물의 안정화 효과때문에 바람직하다.The above solvents may be appropriately selected depending on the solubility of the solute, the use temperature and the relationship between the boiling point or flash point of the solvent, but tetrahydrofuran (THF), glyme and diglyme are preferable because of the stabilizing effect of their complex compounds.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 바와 같은 본 발명은 우수한 모폴로지와 높은 성장률 및 불순물 함유 량이 적은 루테늄막을 캐패시터의 상부전극으로 이용할 수 있어 캐패시터의 누설전류 특성을 감소시킬 수 있는 효과가 있다.As described above, the ruthenium film having excellent morphology, high growth rate, and small amount of impurities can be used as the upper electrode of the capacitor, thereby reducing the leakage current characteristics of the capacitor.

그리고, 0.1㎛이하의 고집적 소자의 BST 캐패시터의 상/하부전극으로 루테늄막을 이용가능하므로 MIM 구조의 우수한 캐패시터를 구현할 수 있는 효과가 있다.
In addition, since ruthenium films can be used as upper / lower electrodes of the BST capacitor of 0.1 μm or less of the highly integrated device, an excellent capacitor having an MIM structure can be realized.

Claims (6)

루테늄막의 제조 방법에 있어서,In the ruthenium film production method, 기판상에 Ru(od)3 소스를 플로우시켜 루테늄막의 핵을 생성시키는 단계; 및Flowing a Ru (od) 3 source over the substrate to generate a nucleus of the ruthenium film; And 상기 루테늄막의 핵이 생성된 상기 기판상에 Ru(EtCp)2 소스를 플로우시켜 루테늄막을 성장시키는 단계;Growing a ruthenium film by flowing a Ru (EtCp) 2 source onto the substrate on which the nucleus of the ruthenium film is generated; 를 포함하는 화학기상증착법에 의한 루테늄막의 제조 방법.Method for producing a ruthenium membrane by the chemical vapor deposition method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 루테늄막의 핵을 생성시키는 단계는, Generating the nucleus of the ruthenium film, 상기 Ru(od)3 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 200sccm∼1000sccm의 산소가스를 첨가하며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 하는 화학기상증착법에 의한 루테늄막의 제조 방법.In the chemical vapor deposition method, the flow rate of the Ru (od) 3 source is 0.05 ml / min to 0.5 ml / min, and 200 sccm to 1000 sccm of oxygen gas is added, and the pressure is 0.5 to 5 torr. Method for producing a ruthenium film 제 1 항에 있어서,The method of claim 1, 상기 루테늄막을 성장시키는 단계는, Growing the ruthenium film, 상기 Ru(EtCp)2 소스의 플로우율을 0.05ml/min∼0.5ml/min으로 하고, 20sccm∼400sccm의 산소가스를 플로우시키며, 0.5torr∼5torr의 압력 조건하에서 이루어지는 것을 특징으로 하는 화학기상증착법에 의한 루테늄막의 제조 방법.In the chemical vapor deposition method, a flow rate of the Ru (EtCp) 2 source is 0.05 ml / min to 0.5 ml / min, and 20 sccm to 400 sccm of oxygen gas is flowed under a pressure condition of 0.5 tor to 5 torr. Method for producing a ruthenium film 제 1 항에 있어서,The method of claim 1, 상기 Ru(EtCp)2 소스는, Ru(EtCp)2를 0.1mol/L∼0.5mol/L의 몰분율로 테트라하이드로푸란에 용해시키거나, 메탄올에 용해시킨 용액을 이용함을 특징으로 하는 화학기상증착법에 의한 루테늄막의 제조 방법.The Ru (EtCp) 2 source is a chemical vapor deposition method characterized by using a solution in which Ru (EtCp) 2 is dissolved in tetrahydrofuran at a mole fraction of 0.1 mol / L to 0.5 mol / L, or dissolved in methanol. Method for producing a ruthenium film 제 1 항에 있어서,The method of claim 1, 상기 Ru(od)3 소스는, Ru(od)3를 0.1mol/L∼0.5mol/L의 몰분율로 엔부틸아세테이트트에 용해시키거나, 글라임에 용해시킨 용액을 이용함을 특징으로 하는 화학기상증착법에 의한 루테늄막의 제조 방법.The Ru (od) 3 source is a chemical vapor phase characterized by using a solution in which Ru (od) 3 is dissolved in enbutyl acetate at a mole fraction of 0.1 mol / L to 0.5 mol / L, or dissolved in glyme. A method for producing a ruthenium film by a vapor deposition method. 캐패시터의 제조 방법에 있어서,In the manufacturing method of a capacitor, 소정 공정이 완료된 반도체기판상에 하부전극을 형성하는 단계;Forming a lower electrode on the semiconductor substrate on which a predetermined process is completed; 상기 하부전극상에 BST(Barium Strontium Titanate)를 증착하는 단계; 및Depositing Barium Strontium Titanate (BST) on the lower electrode; And 상기 BST상에 Ru(od)3 소스와 Ru(EtCp)2 소스를 순차적으로 플로우시켜 루테늄막을 증착하는 단계Depositing a ruthenium film by sequentially flowing a Ru (od) 3 source and a Ru (EtCp) 2 source on the BST 를 포함하는 캐패시터의 제조 방법.Method of manufacturing a capacitor comprising a.
KR1020010037395A 2001-06-28 2001-06-28 Method for forming of ruthenium by chemical vapor deposition KR100744664B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010037395A KR100744664B1 (en) 2001-06-28 2001-06-28 Method for forming of ruthenium by chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010037395A KR100744664B1 (en) 2001-06-28 2001-06-28 Method for forming of ruthenium by chemical vapor deposition

Publications (2)

Publication Number Publication Date
KR20030001065A KR20030001065A (en) 2003-01-06
KR100744664B1 true KR100744664B1 (en) 2007-08-02

Family

ID=27711722

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010037395A KR100744664B1 (en) 2001-06-28 2001-06-28 Method for forming of ruthenium by chemical vapor deposition

Country Status (1)

Country Link
KR (1) KR100744664B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230361B1 (en) * 1996-06-25 1999-11-15 윤종용 Uneven metal film and method for fabricating capacitor using this
KR20020058408A (en) * 2000-12-30 2002-07-12 박종섭 Method for fabricating metal electrode with ruthenium
KR100389913B1 (en) * 1999-12-23 2003-07-04 삼성전자주식회사 Forming method of Ru film using chemical vapor deposition with changing process conditions and Ru film formed thereby
KR100434489B1 (en) * 2001-03-22 2004-06-05 삼성전자주식회사 Method for depositing ruthenium layer having Ru02 seeding layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230361B1 (en) * 1996-06-25 1999-11-15 윤종용 Uneven metal film and method for fabricating capacitor using this
KR100389913B1 (en) * 1999-12-23 2003-07-04 삼성전자주식회사 Forming method of Ru film using chemical vapor deposition with changing process conditions and Ru film formed thereby
KR20020058408A (en) * 2000-12-30 2002-07-12 박종섭 Method for fabricating metal electrode with ruthenium
KR100434489B1 (en) * 2001-03-22 2004-06-05 삼성전자주식회사 Method for depositing ruthenium layer having Ru02 seeding layer

Also Published As

Publication number Publication date
KR20030001065A (en) 2003-01-06

Similar Documents

Publication Publication Date Title
KR101179774B1 (en) Vapor deposition methods for forming a metal-containing layer on a substrate
JP4684706B2 (en) Thin film formation method
US6992022B2 (en) Fabrication method for semiconductor integrated devices
US20020173054A1 (en) Method for fabricating ruthenium thin layer
KR100629023B1 (en) Titanium containing dielectric films and methods of forming same
KR20010033553A (en) Method for selectively depositing bismuth based ferroelectric films
KR100390938B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100373159B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100744664B1 (en) Method for forming of ruthenium by chemical vapor deposition
CN1737193B (en) Method of depositing noble metal electrode using oxidation-reduction reaction
KR100716642B1 (en) Capacitor in dielectric and method for fabricating of the same
JP2005206874A (en) Iridium-containing film deposition material, and method for producing iridium-containing film
JP2005158919A (en) Method for forming metal oxide thin film
KR20030003329A (en) Chemical vapor deposition method for depositing ruthenium
KR100600261B1 (en) Method of forming a capacitor in a semiconductor device
KR20070114519A (en) Dielectric layer in capacitor and fabricating using the same and capacitor in semiconductor device and fabricating using the same
KR100474592B1 (en) method for fabricating capacitor
KR20230113111A (en) Metal precursor compound including cyclopentadienyl ligand and deposition method for preparing film using the same
KR100648142B1 (en) A method for fabricating dielectric films
KR100498603B1 (en) Formation method of SrTiO3 thin film
KR100744666B1 (en) A capacitor of semiconductor device and method for manufacturing the same
JP2002033462A (en) Method for fabricating semiconductor device
KR20030092579A (en) Method of fabrication capacitor using ruthenium
KR20070087323A (en) Capacitor in semiconductor device and method for using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100624

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee