KR100743279B1 - 가스 터빈 및 증기 터빈 설비와 그 설비의 연료 시스템 플러싱 방법 - Google Patents

가스 터빈 및 증기 터빈 설비와 그 설비의 연료 시스템 플러싱 방법 Download PDF

Info

Publication number
KR100743279B1
KR100743279B1 KR1020027009234A KR20027009234A KR100743279B1 KR 100743279 B1 KR100743279 B1 KR 100743279B1 KR 1020027009234 A KR1020027009234 A KR 1020027009234A KR 20027009234 A KR20027009234 A KR 20027009234A KR 100743279 B1 KR100743279 B1 KR 100743279B1
Authority
KR
South Korea
Prior art keywords
gas
flushing
line
steam
turbine
Prior art date
Application number
KR1020027009234A
Other languages
English (en)
Other versions
KR20020065930A (ko
Inventor
울리히 쉬퍼스
프랑크 한네만
클라우스 그레베
Original Assignee
지멘스 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7627993&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100743279(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 지멘스 악티엔게젤샤프트 filed Critical 지멘스 악티엔게젤샤프트
Publication of KR20020065930A publication Critical patent/KR20020065930A/ko
Application granted granted Critical
Publication of KR100743279B1 publication Critical patent/KR100743279B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)

Abstract

화석 연료용 기화 장치(132)를 포함하는 가스 터빈 및 증기 터빈 설비(1)가 기술된다. 가스 터빈(2)의 기화 장치(132)와 연소 챔버(6)는 가스 라인(130)을 통하여 연결된다. 본 발명에 따르면, 가스 록(200)이 가스 라인(130)으로 연결된다. 상기 가스 록은 급-작동 전기자(202), 압력 방출 또는 과압 시스템(206)과 가스 록 전기자(202)를 포함한다.

Description

가스 터빈 및 증기 터빈 설비와 그 설비의 연료 시스템 플러싱 방법{GAS AND STEAM TURBINE INSTALLATION AND METHOD FOR FLUSHING A FUEL SYSTEM OF THE INSTALLATION}
본 발명은 가스 터빈 및 증기 터빈 설비에 관한 것으로서, 연소-가스측 가스 터빈 하류에 연결되고 그 가열 표면이 증기 터빈의 물/증기 회로에 연결되는 폐열 증기 발생기를 구비하고, 가스 터빈의 연소 챔버 상류에 연결되어 화석 연료를 위한 기화 장치를 구비하며 기화 장치로부터 분기되고 가스 터빈의 연소 챔버로 개방되는 가스 라인을 구비하는 연료 시스템을 구비한다. 본 장치에서, 가스 정화를 위하여 제공되는 구성 요소는 통상적으로 가스 라인에 연결된다.
이러한 설비는 예를 들어 GB-A 2 234 984 또는 DE 198 32 294 C1으로부터 공지된다.
기화 화석 연료 또는 합성 가스를 연소시키는 동안 오염물질 배기 가스를 줄이기 위하여, 상기 설비의 작동 중에 합성 가스를 증기로 충진시키는 포화기(saturator)가 가스 라인으로 연결될 수 있다. 이를 위하여, 합성 가스는 포화기 회로로서 설계된 물 회로내에서 안내되는 물 유동에 대한 대향류로 포화기를 거쳐 유동한다. 이러한 장치에서, 특히 높은 효율을 위하여 물/증기 회로로부터 포화기 회로로 열이 투입된다.
포화기 회로에서 안내되는 가열된 물 유동과의 포화기에서의 접촉으로 인하여, 기화 연료는 증기로 포화되고 제한 한도까지 가열된다. 열 공학적인 이유 및 작업 상의 이유로 인해, 열 교환기를 통한 연료의 추가적인 가열이 가스 터빈 내의 연소 챔버로의 공급 이전에 필요할 수 있다. 가스 터빈 및 증기 터빈 설비의 특히 안전한 작동을 확보하기 위하여, 어느 때라도 가스 터빈 연소 챔버로 합성 가스를 공급하는 것을 중단할 수 있어야 한다. 이를 위하여, 통상적으로 급-작동(quick-action) 밸브가 연소 챔버 전방의 가스 라인에 연결된다. 필요하다면 급-작동 밸브는 특히 단시간 내에 가스 라인을 차단하게 되어, 어떠한 합성 가스도 가스 터빈과 연계된 연소 챔버에 도달할 수 없게 한다.
관련된 안전 기술 규제때문에, 통상적으로 연료 시스템은 가스 록(gas lock)을 포함한다. 가스 록은 예를 들어 가스의 관통-유동(through-flow)을 위하여 개방되거나 폐쇄되는 볼 콕(ball cocks)과 같은 두 개의 밸브를 포함한다. 중간 해제 시스템(intermediate relief system) 또는 압력 라인이 두 개의 밸브 사이에 연결된다. 중간 해제 시스템은 플레어(flare)에 연결되는데, 이 플레어를 통하여 여분의 가스가 연소될 수 있다. 중간 해제 시스템의 대안으로서, 어떠한 가스도 가스 록 밸브를 통하여 유입될 수 없도록 하는 압력 라인을 연결하는 것이 가능하다. 그러므로 가스 록은, 연료 시스템을 가스 록 상류의 제 1 영역 또는 기화 시스템과 가스 록 하류의 제 2 영역 또는 소위 가스 터빈 연료 시스템으로, 기밀 방식으로 분리시킨다. 이러한 가스 록은 예를 들어 허쓰, 엠.(Huth, M.) 등의 :"Combustion of synthesis gas in gas turbines"; BWK Brennstoff Waerme Kraft, DE, VDI Verlag GmbH, Duesseldorf, Vol. 50, No. 9, 09.01.1998, pp 35-39, XP 000777542 ISSN: 0006-9612로부터 공지된다.
기화 장치를 구비한 가스 터빈 및 증기 터빈 설비는, 예를 들어 석탄 또는 잔류 오일로부터 생성되는 합성 가스 및 천연 가스와 같은 제 2 연료 모두를 가지고 작동될 수 있다. 합성 가스로부터 제 2 연료로 변경시키는 경우 또는 그 반대로 변경시키는 경우에, 안전 기술적인 이유로 예를 들어, 가스 터빈 연료 시스템과 같은 연소 챔버와 가스 록 사이의 영역을 질소와 같은 불활성 매질 또는 증기로 플러싱(flushing)하는 것이 필요하다. 적합한 경우에는 열 교환기를 포함할 수도 있는 플러싱될 영역의 체적이 크기 때문에, 합성 가스 또는 제 2 연료의 거의 완전한 디스플레이스먼트(displacement) 그리고 필요하다면 가스 터빈 연료 시스템으로부터 연소 가스를 진입시키는 것을 달성하기 위하여, 이러한 영역을 플러싱하는 것은 전방 방향 및 후방 방향으로 모두 요구된다. 하지만 플러싱될 체적의 크기로 인하여 순질소로 플러싱하는 것은 비경제적이라고 알려진다. 다른 한편으로 증기로 플러싱하는 것은 증기 공급을 전제로하여, 플러싱 과정은 대체로 증기 터빈 설비의 폐열 증기 발생기의 작동에 의존한다. 더욱이 이러한 장치에서, 폐열 증기 발생기로부터 추출된 증기를 냉각시키는 것 또는 특히 높은 증기 온도로부터 구성 요소를 보호하는 것이 필요하여, 플러싱 과정을 위한 준비는 매우 높은 수준의 복잡도로 연계된다. 더욱이, 복잡한 탈수 시스템(dewatering systems)이 필요하고, 증기에 노출되는 시스템을 부식으로부터 보호하여야 한다.
전방 그리고 후방 플러싱을 포함하는 플러싱 개념은 플러싱 작동 동안의 복잡한 제어 개념을 유도하고 설비의 작동을 위한 특히 복잡한 제어 모드를 유도한다. 또한 플러싱 개념은 상대적으로 긴 설비 준비 시간과 설비 정지 시간을 일으킨다.
본 발명은, 가스 터빈의 연소 챔버로 공급되는 가스를 변경시키는 경우 연료 시스템이 특히 단순한 방식으로 플러싱될 수 있는 상기 언급된 유형의 가스 터빈 및 증기 터빈 설비를 특정할 목적을 근거로한다. 또한 본 발명의 방법은 특히 단시간에 그리고 특히 단순한 방식으로 가스 터빈 및 증기 터빈 설비의 연료 시스템을 플러싱하는 것을 허용하는 것에 특정된다.
본 발명에 따라 가스 터빈 및 증기 터빈 설비에 대한 목적은 가스 라인으로 연결되는 가스 록에 의하여 달성되고, 가스 록은 연소 챔버의 상류에 배치되며 급-작동 록 밸브, 가스 록 밸브 하류의 가스 라인으로 개방되는 증기없는(steam-free) 플러싱을 위한 플러싱 라인을 포함한다.
본 발명은, 가스 터빈 연소 챔버로 공급될 가스를 변경시키는 경우에, 연료 시스템으로부터 합성 가스 또는 제 2 연료 그리고 필요하다면 연소 가스의 디스플레이스먼트는 플러싱될 체적이 작은 경우에 특히 신뢰할 만한 방식으로 확보될 수 있다는 것을 기초로 한다. 더욱이 플러싱될 체적이 작은 경우에, 단지 일방향으로의 플러싱만으로 충분한 것으로 알려져 있기 때문에 플러싱 과정을 위하여 복잡한 제어 메카니즘이 필요 없을 수도 있다. 그리고 플러싱은 예를 들어 가스 터빈 연소 챔버로의 방향과 같은 전방 방향으로만 발생된다. 이와 달리, 플러싱 과정은 예를 들어, 증기 또는 순질소(pure nitrogen)와 같은 질소로 실행될 수 있다. 질소로 플러싱하는 것은 플러싱될 체적이 작기 때문에 경제적이다. 이와 더불어 플러싱 과정을 위하여 증기 터빈 설비로부터 증기를 추출하는 것이 불필요하여, 가스 터빈 및 증기 터빈 설비의 전체 효율은 특히 높다고 알려진다. 추가적으로, 시스템은 부식 현상이 일어날 수 없거나 단지 미미한 부식 현상이 일어날 수 있기 때문에 고 합금 강(highly alloyed steel)을 사용할 필요가 없다.
플러싱될 작은 체적은 구성 요소의 컴팩트한 배치에 의하여 달성될 수 있다. 가스 록 및 급-작동 밸브가 서로 인접 배치된다면 급-작동 밸브는 가스 록에 제공되는 밸브 중의 어느 한가지 기능을 수행할 수 있어, 상기 밸브가 필요없을 수 있고 가스 터빈 연료 시스템의 플러싱될 체적이 특히 작아지는 것으로 밝혀졌다.
통상적으로 가스 록을 위한 밸브로서 높은 정도의 가스-기밀을 나타내는 볼 콕 또는 볼 밸브가 채택된다. 급-작동 밸브는 통상적으로 급-작동 플랩(flap)으로 구현된다. 그러나 밸브의 크기에 따라, 적절한 밸브와 같은 다른 급속 폐쇄 피팅(closing fitting)이 이러한 목적을 위해 채택될 수 있다.
본 발명의 유리한 실시예에서, 열 교환기(적절한 경우에, 가스 라인으로 연결됨)는 가스 록의 상류에 연결된다. 또한 이는 가스 터빈 연료 시스템에서 플러싱될 체적을 감소시킨다. 예를 들어, 열 교환기의 제 1 측면은 기화 장치와 포화기 사이의 가스 라인으로 연결되며, 포화기는 유사하게 가스 록의 상류에 배치된다. 이러한 장치와 함께, 열 교환기는 포화기로 유동하는 합성 가스로부터의 열을 포화기로부터 유동하는 합성 가스로 전달한다. 따라서, 합성 가스 열 교환기로도 불리는 이러한 열 교환기는 적어도 부분적인 포화기의 열적 바이패스(thermal bypass)에 영향을 미쳐서, 합성 가스에 의한 합성 가스의 가열로 인하여 전체적인 프로세스의 열역학적 손실을 특히 작게 유지한다. 일정한 최종 온도의 경계 조건하에서 비교적 큰 열량이 포화기로부터 유동하는 합성 가스로 전달될 수 있기 때문에 이러한 장치에 의하여 특히 바람직한 열 교환이 이루어질 수 있다.
물론 합성 가스를 예열시키기 위하여 고온의 급수 또는 증기를 허용하는 것과 같이 열 교환기의 연결을 위한 대안으로서 다른 실시예가 고려될 수 있다.
합성 가스를 질소와 혼합시키기 위하여, 증기를 합성 가스에 유입시키기 위해 제공되는 포화기 상류의 가스 라인에 혼합 기구를 연결할 수 있다. 합성 가스를 연소시키는 동안 특히 낮은 NOx 제한치를 유지하도록 합성 가스에 질소가 추가된다.
플러싱 라인은 가스 록 밸브 바로 아래의 가스 라인으로 개방되는 것이 유리하다. 이는 가스 록 밸브와 연소 챔버 사이의 연료 시스템의 신뢰할 만한 플러싱을 확보한다. 연료 시스템의 컴팩트한 구조로 인하여, 필요한 플러싱 양이 특히 작은 것으로 알려져서 설비의 작동이 특히 경제적이다. 증기로 플러싱하는 것과 같은 경우에서의 라인 시스템의 탈수가 필요없기 때문에 연료 시스템을 플러싱하기 위하여 질소 또는 다른 불활성 매질을 채택하는 것은 증기로 플러싱하는 것과 비교하여 특히 유리하다. 추가적으로 질소 또는 다른 불활성 매질은 물/증기 시스템의 작동에 무관하게 가능하도록 제조될 수 있다. 더불어, 질소 또는 불활성 매질은 설비로부터 추출되는 증기와 비교하여 저온이기 때문에, 허용할 수 없을 정도의 높은 증기 온도로부터 구성 요소를 보호할 필요가 없을 수도 있다. 더욱이, 부식에 민감성이 없거나 또는 부식에 대한 미미한 정도의 민감성만 있어서, 고 합금 강(highly alloyed steel)을 채택할 필요가 없다. 그러나 원칙적으로 가능하다면 증기로 플러싱하는 것도 가능하다. 질소 플러싱의 경우에 또는 증기와는 별개인 다른 불활성 가스로 플러싱하는 경우에, 중간 저장소는 유리하다. 중간 저장소는 불활성 매질을 제공하기 위한 시스템 고장의 경우에 조차도 플러싱하는 것을 확보한다.
높은 온도의 기화 장치에서 화석 연료를 완전히 변환시키기 위하여 통상적으로 공기 분리 설비로부터 산소를 공급하는 것이 제공된다. 그 후에, 질소가 획득된다. 이러한 질소, 특히 획득되는 순질소는 플러싱을 위하여 사용될 수 있다. 이를 위하여 중간 저장소가 공급 라인을 통하여 공기 분리 설비로 연결되는 것이 유리하다.
질소를 위하여, 특히 순질소를 위하여 유입 단부에서 비상 충진 시스템(emergency filling system)으로 연결되는 저장소 라인은 공기 분리 라인으로부터 멀어지도록 유도되는 공급 라인으로 개방된다. 이는 신뢰할 만한 방식으로 공기 분리 설비가 고장나는 경우에도 질소, 특히 순질소로 연료 시스템을 플러싱하는 것을 보장한다.
적절하다면 공기 분리 설비에 연결되는 중간 저장소를 구비하는 플러싱 시스템은 더 나아가, 가스 터빈 및 증기 터빈 설비 내의 가스 록에 대한 전술한 특정 실시예가 없이도 적용될 수 있다.
가스 터빈 및 증기 터빈 설비의 연료 시스템을 플러싱하기 위한 방법에 대하여, 본 발명에 따른 목적은 연소 챔버 방향과 같이 가스 록 및 연소 챔버 사이의 전방 방향으로 연료 시스템이 플러싱됨으로써 달성된다. 전방 방향만으로 플러싱 작동하는 경우에, 플러싱하기 위한 시간은 특히 짧은 것으로 알려져 있으며, 그에 따라 합성 가스로부터 제 2 연료로의 변경은 특히 경제적인 방식으로 이루어진다.
플러싱을 위하여 질소가 제공되는 경우, 이는 공기 분리 설비로부터 추출되는 것이 바람직하다. 이를 위하여, 공기 분리 설비에서 생성되는 질소, 특히 순질소는 공급 라인을 통하여 중간 저장소로 공급된다. 요구되는 바와 같이 순질소는 연료 시스템을 플러싱하기 위하여 중간 저장소로부터 가스 라인으로 공급될 수 있 다.
연료 시스템은 가스 록 밸브와 제어 밸브 사이에 공급되는 불활성 플러싱 매질을 사용하여 전방으로 연소 챔버와 가스 록 사이에서 플러싱되는 것이 유리하다. 가스 터빈 연료 시스템의 경우에서와 같이, 안전 기술 규제때문에 기화 장치와 가스 록 사이에서 불활성 매질로 기화 시스템이 플러싱되어야 한다. 이를 위하여 필요한 압력 레벨의 질소, 특히 순질소 또는 증기가 불활성 매질로서 통상적으로 채택된다. 플러싱 과정을 위한 개념과 경계 조건은 채택된 기화 방법에 의존한다.
이와 같은 본 발명을 통해, 특히 간단한 방식으로 연료 시스템을 플러싱할 수 있으며, 특히 청구범위에 의해 특정되는 가스 터빈 및 증기 터빈 설비를 제공하여 플러싱 시간을 단축함으로써 보다 경제적인 플러싱 방법을 제공할 수 있다.
본 발명의 예시적인 실시예는 다음 도면을 이용하여 보다 상세하게 설명된다. 여기서,
도 1a와 도 1b는 가스 터빈 및 증기 터빈 설비로서, 기화 장치를 구비한 연료 시스템이 가스 터빈의 상류에 연결된 가스 터빈 및 증기 터빈 설비를 도시하고,
도 2는 도 1의 일부를 도시한다.
도면에 도시된 가스 터빈 및 증기 터빈 설비는 가스 터빈 설비(1a)와 증기 터빈 설비(1b)를 포함한다. 가스 터빈 설비(1a)는 공기 압축기(4)와 연소 챔버(6)가 연결되는 가스 터빈(2)을 포함하는데, 상기 연소 챔버는 가스 터빈(2)의 상류에 연결되고 공기 압축기(4)의 압축 공기 라인(8)에 연결된다. 가스 터빈(2) 및 공기 압축기(4)는 발생기(generator)(10)와 함께 공통 축(12) 상에 놓여 있다.
증기 터빈 설비(1b)는 발생기(22)와 결합되는 증기 터빈(20), 물/증기 회로(24)에서 증기 터빈(20)의 하류에 연결되는 응축기(26), 그리고 폐열 증기 발생기(waste-heat steam generator, 30)를 포함한다. 증기 터빈(20)은 공통 축(32)을 통하여 발생기(22)를 구동하는 제 3 압력단 또는 저압 부분(20c)과 함께, 제 1 압력단 또는 고압 부분(2a) 및 제 2 압력단 또는 중압 부분(2b)으로 구성된다.
가스 터빈(2)에서 팽창된 연소 가스 또는 작동 매질(working medium, AM)을 폐열 증기 발생기(30)로 공급하기 위하여, 배기 가스 라인(34)은 폐열 증기 발생기(30)의 유입구(30a)에 연결된다. 가스 터빈(2)으로부터 팽창된 작동 매질은 굴뚝(더 상세하게는 도시되지 않음) 방향으로 유출구(30b)를 통하여 폐열 증기 발생기(30)를 벗어난다.
폐열 증기 발생기(30)는 응축물 예열기(40)를 포함하는데, 이 응축물 예열기는 응축기(26)로부터 응축물 라인(42)을 통하여 응축물(K)을 유입구 단부에서 공급받을 수 있으며, 상기 응축물 라인은 응축물 펌프 유닛(44)에 연결된다. 유출구 단부에서 응축물 예열기(40)는 라인(45)을 통하여 급수 탱크(46)로 연결된다. 요구되는 바와 같이 응출물 예열기(40)를 우회하기 위하여 응축물 라인(44)은 부가적으로 바이패스 라인(도시되지 않음)을 통하여 급수 탱크(46)에 직접 연결될 수 있다. 급수 탱크(46)는 라인(47)을 통하여 중압 추출로 고압 피드 펌프(48)에 연결된다.
고압 피드 펌프(48)는 급수 탱크(46)로부터 유출되는 급수(S)를 증기 터빈(20)의 고압부(20a)와 연계되는 물/증기 회로(24)의 고압단(50)에 적합한 압력 레벨이 되도록 한다. 급수 예열기(52)를 통하여 고압의 급수(S)가 고압단(50)에 공급될 수 있는데, 이 급수 예열기는 유출구 단부에서 밸브(54)에 의하여 차단될 수 있는 급수 라인(56)을 통하여 고압 드럼(58)에 연결된다. 물/증기 순환(62)을 형성하기 위하여 폐열 증기 발생기(30)에 배치된 고압 증발기(60)에 연결된다. 생증기(F)를 제거하기 위하여 고압 드럼(58)은 폐열 증기 발생기(30)에 배치되는 고압 과열기(64)로 연결되는데, 고압 과열기(64)가 유출구 단부에서 증기 터빈(20)내의 고압부(20a)의 증기 유입구(66)에 연결된다.
증기 터빈(20) 고압부(20a)의 증기 유출구(68)는 예열기(70)를 통하여 증기 터빈(20) 중압부(20b)의 증기 유입구(72)에 연결된다. 중압부의 증기 유출구(74)는 전달 라인(76)을 통하여 증기 터빈(20) 저압부(20c)의 증기 유입구(78)에 연결된다. 저압부(20c)의 증기 유출구(80)는 증기 라인(82)을 통하여 응축기(26)에 연결되어, 물/증기 폐회로(closed water/steam circuit, 24)가 형성된다.
추가적으로, 분기 라인(84)은 응축물(K)이 중간 압력에 도달하는 추출 스테이션에서 고압 피드 펌프(48)로부터 분기된다. 이러한 분기 라인(84)은 추가적인 급수 예열기(86) 또는 중압 이코노마이저(medium-pressure economizer)를 통하여 증기 터빈(20)의 중압부(20b)와 연계된 물/증기 회로의 중압단(90)에 연결된다. 이를 위하여, 두번째 급수 예열기(86)는 유출구 단부에서 밸브(92)에 의하여 차단될 수 있는 급수 라인(94)을 통하여 중압단(90)의 중압 드럼(96)에 연결된다. 물/증기 순환(100)을 형성하기 위하여 중압 드럼(96)이 가열 표면(98)에 연결되는데, 이 가열 표면은 폐열 증기 발생기(30)에 배치되고 중압 증발기로 형성된다. 중압 생증기(F')를 제거하기 위하여, 중압 드럼(96)은 증기 라인(102)을 통하여 예열기(70)에 연결되고, 증기 터빈(20) 중압부(20b)의 증기 유입구(72)에 연결된다.
저압 피드 펌프(107)가 제공되고 밸브(108)에 의하여 차단될 수 있는 추가적인 라인(110)이 다른 라인(47)으로부터 분기되는데, 라인(110)은 증기 터빈(20)의 저압부(20c)와 연계된 물/증기 회로(24)의 저압단(120)에 연결된다. 물/증기 순환(126)을 형성하기 위하여, 저압단(120)은 저압 드럼(122)을 포함하고, 저압 드럼은 가열 표면(124)에 연결되며, 가열 표면은 폐열 증기 발생기(30)에 배치되고 저압 증발기로 구성된다. 저압 생증기(F")를 제거하기 위하여, 저압 드럼(122)은 증기 라인(127)을 통하여 전달 라인(76)에 연결되는데, 증기 라인에는 저압 과열기(128)가 연결된다. 따라서, 가스 터빈 및 증기 터빈 설비(1)의 물/증기 회로(24)는 실시예에서 3개의 압력단(50, 90, 120)을 포함한다. 그러나, 대안적으로 보다 적은 압력단, 특히 두 개의 압력단이 제공될 수 있다.
가스 터빈 설비(1a)는 기화된 원료 가스(gasified raw gas) 또는 합성 가스(SG)로 작동하도록 설계되는데, 이러한 가스는 화석 연료(B)를 기화시켜 생성된다. 합성 가스와 같이 예를 들어, 기화 석탄(gasified coal) 또는 기화 오일이 공급될 수 있다. 이를 위하여, 가스 터빈 설비(1a)는 연료 시스템(129)을 포함하는데, 이 연료 시스템에 의하여 합성 가스가 가스 터빈(2)의 연소 챔버(6)로 공급될 수 있다. 연료 시스템(129)은 가스 라인(130)을 포함하며, 상기 가스 라인은 기화 장치(132)를 가스 터빈의 연소 챔버(6)에 연결한다. 석탄, 천연 가스 또는 오일이 화석 연료(B)로서 장입 시스템(charging system, 134)을 통하여 기화 장치(132)에 공급될 수 있다. 추가적으로 기화 시스템(129)은 기화 장치(132)와 가스 터빈(2)의 연소 챔버(6) 사이에서 가스 라인(130)으로 연결되는 구성 요소를 포함한다.
화석 연료(B)를 기화시키는데 필요한 산소(O2)를 제공하기 위하여, 기화 시스템(129)과 연계된 공기 분리 설비(air separation installation, 138)가 산소 라인(136)을 통하여 기화 장치(132)의 상류에 연결된다. 제 1 부분 유동(T1)과 제 2 부분 유동(T2)으로 구성되는 공기유동(L)은 유입 단부에서 공기 분리 설비(138)에 도달될 수 있다. 제 1 부분 유동(T1)은 공기 압축기(4)에서 압축된 공기로부터 추출될 수 있다. 이를 위하여, 공기 분리 설비(138)는 유입 단부에서 추출 공기 라인(extraction air line, 140)에 연결될 수 있고, 이 추출 공기 라인은 분기 스테이션(142)에서 압축 공기 라인(8)으로부터 분기된다. 그리고, 추가 공기 라인(143)이 추출 공기 라인(140)으로 개방되는데, 추가 공기 압축기(144)가 추가 공기 라인(143)에 연결되고, 추가 공기 라인(143)을 통하여 제 2 부분 유동(T2)이 공기 분리 설비(138)로 공급될 수 있다. 따라서, 실시예에서 공기 분리 설비(138)로 유동하는 전체 공기유동(L)은 압축 공기 라인(8)으로부터 분기되는 부분 유동(T1)과 추가 공기 압축기(144)로부터 공급되는 공기유동(T2)로 구성된다. 또한, 이러한 연결 개념은 부분 통합 설비 개념(partially integrated installation concept)으로 설계된다. 소위 완전 통합 설비 개념(fully-integrated installation concept)의 대안적인 실시예에서, 추가적인 공기 압축기(144)와 함께 추가적인 공기 라인(143)을 불필요하게 하는 것도 가능하여, 공기 분리 설비(138)로의 완전한 공기 공급은 압축 공기 라인(8)으로부터 추출되는 부분 유동(T1)을 통하여 이루어진다.
공기유동(L)을 분리하는 동안 공기 분리 설비(138)에서 산소(O2)와 더불어 회수되는 질소(N2)가 질소 라인(145)을 통하여 공급되는데, 이 질소 라인은 공기 분리 설비(138)에 연결되고 혼합 기구(mixing appliance, 146)에 연결되며 여기에는 합성 가스(SG)가 부가된다. 이러한 장치에서, 혼합 기구(146)는 질소(N2)와 합성 가스(SG)의 특히 균일하고 스트릭없는(streak-free) 혼합을 위하여 구성된다.
기화 장치(132)로부터 유동하는 합성 가스(SG)는 초기에 가스 라인(130)을 통하여 합성 가스 폐열 증기 발생기(147)를 거치는데, 여기서 합성 가스(SG)의 냉각은 유동 매질(flow medium)과의 열 교환을 통해 이루어진다. 이러한 열 교환 동안 생성되는 고압 증기는 더 상세히는 도시되지 않는 방식으로 물/증기 회로(24)의 고압단(50)으로 공급된다.
합성 가스(SG)의 유동 방향으로 보아, 이러한 합성 가스 폐열 증기 생성기(147) 후방 및 혼합 기구(146)의 전방에서 합성 가스(SG)를 위한 분진 제거 장치(dust removal device, 148)와 탈황 설비(149)가 가스 라인(130)에 연결된다. 대안적인 실시예로서, 특히 연료로 기화 오일을 사용하는 경우에 분진 제거 장치(148) 대신에 매연 세척 기구(soot washing appliance)가 제공될 수도 있다.
연소 챔버(6)에서 기화 연료를 연소시키는 동안 특히 저오염물질 배기를 위하여 연소 챔버(6)로의 진입 전에, 증기를 구비한 기화 연료를 장입하는 것이 제공된다. 이는 열 기술 측면으로부터 특히 유리한 방식으로서, 포화기 시스템에서 발생한다. 이를 위하여, 기화 연료가 가열 포화수에 대향류로 안내되는 포화기(150)가 가스 라인(130)에 연결된다. 이러한 장치에서, 포화수는 포화기 회로(152)에서 순환되는데, 상기 회로에는 포화기(150)가 연결되고 순환 펌프(154)가 연결되며 포화수를 예열시키기 위하여 열 교환기(156)가 연결된다. 상기 장치에서 물/증기 회로(24) 중압단(90)으로부터의 예열 급수는 열 교환기(156)의 제 1 측면으로 인가된다. 기화 연료의 포화동안 발생하는 포화수 손실을 보상하기 위하여, 급수 라인(158)이 포화기 회로(152)에 연결된다.
합성-가스/혼합-가스 열 교환기로 작동하는 열 교환기(159)의 제 2 측면은 합성 가스 유동 방향으로 보아 포화기(150) 후방의 가스 라인에 연결된다. 이러한 장치에서, 열 교환기(159)의 제 1 측면은 유사하게도 분진 제거 설비(148)의 전방 위치에서의 가스 라인(130)에 연결되어, 분진 제거 설비(148)로 유동하는 합성 가스(SG)가 포화기(150)로부터 멀어지도록 유동하는 합성 가스(SG)로 일부 열을 전달한다. 이러한 장치에서 다른 구성 요소에 대하여 수정되는 연결 개념의 경우조차도 탈황 설비로의 입구 전의 열 교환기(159)를 통하여 합성 가스(SG)를 제공하는 것도 가능하다. 매연 세척 장치를 연결하는 경우, 특히 열 교환기의 합성 가스 측면은 매연 세척 기구의 하류에 배치되는 것이 바람직하다.
추가적인 열 교환기(160)의 제 2 측면은 포화기(150)와 열 교환기(159) 사이의 가스 라인(130)으로 연결되는데, 열 교환기(160)의 제 1 측면은 급수에 의하여 가열될 수 있거나 또는 증기에 의하여 가열될 수 있다. 가스 터빈 및 증기 터빈 설비(1)의 작동 조건이 상이한 경우에도 특히 가스 터빈(2)의 연소 챔버(6)로 유동하 는 합성 가스(SG)의 신뢰할 만한 예열은 합성-가스/순-가스 열 교환기로 구성되는 열 교환기(159)와 다른 열 교환기(160)를 통하여 확보된다.
공기 분리 설비(138)로 공급되는 압축 공기 또는 소위 추출 공기로의 부분 유동(T1)을 냉각시키기 위하여, 열 교환기(162)의 제 1 측면은 추출 공기 라인(140)으로 연결되고, 열 교환기(162)의 제 2 측면은 유동 매질(S')을 위한 중압 증발기로 구성된다. 증발기 순환(163)을 형성하기 위하여 열 교환기(162)는 물/증기 드럼(164)에 연결되는데, 이 물/증기 드럼은 중압 드럼으로 구성된다. 물/증기 드럼(164)은 라인(166, 168)을 통하여 물/증기 순환(100)과 연계되는 중압 드럼(96)에 연결된다. 그러나 열 교환기(162)의 대안적인 제 2 측면은 직접 중압 드럼(96)에 연결될 수도 있다. 그러므로 예시적인 실시예에서 물/증기 드럼(164)은 직접 중압 증발기로 구성되는 가열 표면(98)에 연결된다. 추가적으로 급수 라인(170)은 증발된 유동 매질(S')의 보충 피드를 위한 물/증기 드럼(164)에 연결된다.
제 2 측면이 유동 매질(S")을 위한 저압 증발기로 구성되는 추가적인 열 교환기(172)는 압축 공기의 부분 유동(T1)의 유동 방향으로 보아 열 교환기(162) 후방의 추출 공기 라인(140)으로 연결된다. 증발기 순환(174)을 형성하기 위하여 이러한 장치에서 열 교환기(172)는 저압 드럼으로 구성되는 물/증기 드럼(176)에 연결된다. 예시적인 실시예에서 물/증기 드럼(176)은 라인(178, 180)을 통하여 물/증기 순환(126)과 연계되는 저압 드럼(122)에 연결되어 저압 증발기로 구성되는 가열 표면(124)에 직접 연결된다. 하지만, 대안적인 물/증기 드럼(176)은 다른 적절한 방식으로 연결될 수도 있고, 물/증기 드럼(176)으로부터 추출되는 증기를 프로세싱된 증기 및/또는 가열 증기로서 보조 소비 유닛(auxiliary consumption unit)에 공급하는 것도 가능하다. 다른 대안적인 실시예에서, 열 교환기(172)의 제 2 측면은 직접 저압 드럼(122)에 연결된다. 물/증기 드럼(176)은 추가적으로 급수 라인(182)에 연결된다.
각각의 증발기 순환(163, 174)은 강제 순환으로 구성되고, 유동 매질(S' 및 S")의 순환은 순환 펌프에 의하여 각각 확보되고 유동 매질(S' 및 S")은 적어도 부분적으로 열 교환기(162 또는 172)에서 증발되며, 열 교환기는 증발기로 구성된다. 하지만, 예시적인 실시예에서 증발기 순환(163)과 다른 증발기 순환(174)은 각각 자연 순환을 위하여 구성되고, 유동 매질(S' 및 S")의 순환은 증발 프로세스 동안 발생하는 압력차에 의하여 및/또는 각각의 열 교환기(162 및 172) 및 각각의 물/증기 드럼(164 및 176)의 측지적(geodetic) 배치에 의하여 확보된다. 본 실시예에서, 비교적 소형 치수의 단지 하나의 순환 펌프(도시 안됨)가 각각 증발기 순환(163) 및 증발기 순환(174)으로 연결된다.
포화기 회로(152)로 열을 입력시키기 위하여 열 교환기(156)에 더하여 포화기-물 열 교환기(184)가 제공되는데, 이 포화기-물 열 교환기에는 급수 예열기(86)의 후방에서 분기되는 급수가 수용된다; 급수 탱크(46)로부터의 급수(S)는 포화기-물 열 교환기(184)의 제 1 측면에 수용된다. 이를 위하여, 포화기-물 열교환기의 제 1 측면은 유입 단부에서 라인(186)을 통하여 분기 라인(84)으로 연결되고 유출 단부에서 라인(188)을 통하여 급수 탱크(46)로 연결된다. 포화기-물 열 교환기(184)로부터 유동하는 냉각 급수(S)를 재가열시키기 위하여, 제 1 측면이 열 교환기(172) 하류의 추출 공기 라인(140)으로 연결되는 추가적인 열 교환기(190)는 라인(188)으로 연결된다. 이러한 장치는 특히 추출 공기로부터 높은 열 회복을 달성할 수 있어 가스 터빈 및 증기 터빈 설비(1)의 특히 높은 효율을 달성할 수 있다.
부분 유동(T1)의 유동 방향으로 보아, 냉각 공기 라인(192)은 열 교환기(172)와 다른 열 교환기(190)의 사이에서 추출 공기 라인(140)으로부터 분기되는데, 냉각 공기 라인(192)을 통하여 냉각된 부분 유동(T)의 부분 양(T')은 블레이드/베인을 냉각시키기 위한 냉각 공기로서 가스 터빈(2)으로 공급될 수 있다.
연료 시스템(129)이 고장나는 경우 플러싱 작업(flushing operation)이 필요하다. 이는 하나 또는 그 이상의 단계로서 연료 기화 시스템(129)의 제 1 및 제 2 영역이 개별적으로 질소로 플러싱되는 방식으로 이루어진다. 기화 시스템 또는 제 1 영역 그리고 가스 터빈 연료 시스템 또는 제 2 영역은 영역(236)의 가스 록(gas lock,200)에 의하여 서로 분리된다. 이러한 장치에서 기화 시스템은 가스 록(200)까지의 기화 장치(132)를 포함하고, 가스 터빈 연료 시스템은 가스 터빈(2)의 연소 챔버(6)까지의 가스 록(200) 및 그 하류에 연결된 구성 요소들을 포함한다.
가스 록(200)은 도 2에서 상세하게 도시되는데[영역(236)의 확대도], 가스 록은 도 1a에 도시된 바와 같이 가스 라인(130)에 배치된다. 가스 록(200)은 가스 라인(130)에서 열 교환기(159)의 후방에 배치된다. 가스 록은 급-작동 밸브(quick-action valve, 202)를 포함하는데 이는 가스 라인(130)에 배치되고 볼 콕(ball cock)으로 구현되는 가스 록 밸브(204)의 하류에 연결된다. 기화 장치를 스위칭 오프시킨 후에 또는 포화기와 하류 열 교환기를 플러싱한 후에, 플러싱 작업으로부터의 잔류 가스는 가스 록 밸브(202) 상류의 배기 가스 라인(207)을 통하여 플레어(flare)까지 유도된다. 밸브와 연계된 배기 가스 라인(207)은 가스 록용 압력 해제 시스템(pressure relief system, 206)으로서 사용된다. 가스 라인(130)은 가스-기밀(gas-tight) 방식으로 가스 록(200)을 통하여 차단될 수 있고, 필요하다면 급-작동 밸브(202)를 통하여 특히 단시간 내에 폐쇄될 수 있다.
가스 록(200)은 제어 밸브(208)의 하류에 바로 연결되는데, 제어 밸브는 가스 라인(130)에 연결되고 그리고 모든 부하의 경우에 이 제어 밸브를 통하여 가스 터빈으로의 연료 유동이 제어된다.
공기 분리 설비(138)로부터의 순질소(pure nitrogen, R-N2)는 기화 시스템 또는 연료 시스템의 제 1 영역을 플러싱하기 위하여 질소(N2)와 함께 예를 들어 기화 장치(132)로부터 가스 록(200)까지 제공된다. 이를 위하여, 공기 분리 설비(138)에서의 공기유동(L)을 분리하는 동안 산소(O2)와 더불어 생성된 질소(N2)는 순질소(R-N2)로서 공급 라인(210)을 통하여 분리된다. 밸브(212)에 의하여 차단될 수 있는 그리고 연료 시스템(129)의 제 1 영역을 플러싱하기 위하여 화석 연료(B)용 기화 장치(132)로 개방되는 분기 라인(214)은 제 1 공급 라인(210)으로부터 분기된다.
유사하게 순질소(R-N2)는 제 2 영역을 또는 가스 터빈 연료 시스템(129)을 플러싱하기 위한 플러싱 매질로서 질소(N2)와 함께 제공된다. 이를 위하여, 공급 라인(210)은 질소 저장소(220)로 개방된다. 또한 밸브(222)에 의하여 차단될 수 있고 유입 단부에서 순질소(R-N2)를 위한 긴급 충전 시스템(emergency filling system, 226)에 연결되는 저장 라인(224)은 공급 라인(210)으로 개방된다. 질소 저장소(220)는 공기 분리 설비(138)와 긴급 충전 시스템(226) 모두에 연결되기 때문에, 공기 분리 설비(138)로부터의 순질소(R-N2)와 긴급 충전 시스템(226)으로부터의 순질소(R-N2) 모두로 충전될 수 있다. 그러므로 기화 시스템(129)를 플러싱하는 것은 특히 공기 분리 설비(138)의 고장의 경우에도 신뢰할 만하게 보장된다. 본 장치에서, 질소 저장소(226)는 플러싱 과정을 위하여 요구되는 순질소(R-N2)를 담당하는 방식으로 치수화되고 충분히 큰 저장 용량을 포함한다. 질소 저장소(226)는 유출 단부에서 질소 라인(228)을 통하여 가스 라인(130)에 연결된다. 질소 라인(228)은 예를 들어 가스 록 밸브(204)의 후방과 같은 가스 록(200)의 후방에 바로 합성 가스(SG)의 하류 가스 라인(130)으로 개방된다.
혼합 기구(146)로 개방되는 제 2 공급 라인(230)은 공기 분리 설비(138)에서 생성되는 비순질소(impure nitrogen, U-N2)를 공급하기 위하여 공기 분리 설비(138)로부터 분기된다. 가스 터빈으로부터의 NOx 배출을 감소시키기 위하여 비순질소(U- N2)가 혼합 기구(146)의 합성 가스(SG)에 부가된다. 본 장치에서 혼합 기구(146)는 질소(N2)와 합성 가스(SG)를 특히 균일하고 스트릭없게(streak-free) 혼합시키기 위하여 구성된다.
질소로 가스 터빈 연료 시스템(129)을 플러싱하는 것은 가스 터빈으로의 장입물을 합성 가스(SG)로부터 제 2 연료로 변경할 때이다. 이는 연소 챔버(6)에 공급되는 연료 가스의 변경에 대응한다. 기술적인 안전성을 이유로, 가스 터빈 연료 시스템에서의 합성 가스(SG) 존재는 플러싱 프로세스에 의하여 거의 완전하게 디스플레이스먼트되어야 한다.
연료 시스템(129)의 제 1 영역 또는 기화 시스템을 순질소(R-N2)로 플러싱하기 위하여 공급 라인(210)과 분기 라인(214)을 통하여 기화 장치(132)로 순질소(R-N2)가 공급된다. 이러한 프로세싱 동안, 통상적으로 전방 플러싱(forward flushing)이 기화 장치(132)와 가스 록(200) 사이에 제공되고, 연료 시스템(129)으로부터의 합성 가스(SG)의 디스플레이스먼트를 확보하기 위하여 충분히 긴 주기에 대하여 플러싱 매질로서의 충분히 큰 양의 순질소(R-N2)를 사용한다. 플러싱 과정으로부터의 배기 가스가 가스 록(200) 하류의 배기 가스 라인(207)을 통하여 기화 시스템으로부터 유도된다.
가스 록(200)과 가스 터빈(2)의 연소 챔버(6) 사이의 연료 시스템은 전방 방향에서 순질소(R-N2)로 플러싱된다. 이를 위하여, 공기 분리 설비(132)에서 생성된 순질소(R-N2)가 질소 라인(228)을 통하여 가스 라인(130)에 공급된다. 이러한 시스템의 체적이 작기 때문에, 순질소(R-N2)로 전방 플러싱하는 것이 충분하다.
열 교환기(159) 후방의 합성 가스(SG) 하류의 가스 록(200) 장치와 함께, 급-작동 밸브(202), 플레어(flare)에 연결되는 압력 해제 시스템(206), 그리고 가스 록 밸브(204)를 포함하는 가스 록(200)의 컴팩트한 실시예 때문에, 합성 가스(SG)로부터 제 2 연료로 가스 터빈(2)의 장입물을 변경한 후에 필요한 연료 시스템(129)의 플러싱이 특히 간단하고 특히 단시간에 실행될 수 있다. 이는 비교적 적은 수의 그리고 특히 구성 요소의 바람직한 장치에 의하여 달성되어, 플러싱될 체적이 특히 적은 것으로 알려진다. 또한 가스 터빈 및 증기 터빈 설비(1)가 고장나는 경우에도 플러싱이 필요하다. 이러한 경우에, 후자는 폐열 증기 발생기(30)의 조건과는 독립적으로 가능하도록 제조될 수 있기 때문에 플러싱을 위하여 특히 질소를 제공하는 것이 선호된다고 알려진다. 결과적으로 특히 신뢰할 만한 방식으로 가스 터빈 및 증기 터빈 설비(1)가 작동될 수 있다.

Claims (11)

  1. 가스 터빈 및 증기 터빈 설비(1)로서:
    연소-가스 측면에서 가스 터빈(2)의 하류에 연결되고 가열 표면이 증기 터빈(20)의 물/증기 회로(24)에 연결되는 폐열 증기 발생기(30); 및
    상기 가스 터빈(2)의 연소 챔버(6) 상류에 연결된 연료 시스템(129)을 포함하며;
    상기 연료 시스템은 화석 연료(B)용 기화 장치(132), 상기 기화 장치(132)로부터 분기되고 상기 가스 터빈(2)의 연소 챔버(6)내로 개방되는 가스 라인(130), 및 상기 연소 챔버(6) 상류의 상기 가스 라인(130)으로 연결되고 가스 록 밸브(204)를 포함하는 가스 록(200)을 포함하며;
    증기 이외의 불활성 가스로의 플러싱 및 질소 플러싱 중 하나 이상을 위한 플러싱 라인(228)이 상기 가스 록 밸브(204) 하류의 가스 라인(130)내로 개방되며, 상기 플러싱 라인은 중간 저장소(220)에 연결되는,
    가스 터빈 및 증기 터빈 설비.
  2. 제 1항에 있어서,
    상기 가스 록(200) 상류에서 상기 가스 라인(130)으로 열 교환기(159)가 연결되는,
    가스 터빈 및 증기 터빈 설비.
  3. 제 1항 또는 제 2항에 있어서,
    상기 가스 록(200) 상류에서 상기 가스 라인(130)으로 포화기(150)가 연결되는,
    가스 터빈 및 증기 터빈 설비.
  4. 제 3항에 있어서,
    상기 포화기(150)가 상기 열 교환기(159)의 상류에 배열되는,
    가스 터빈 및 증기 터빈 설비.
  5. 제 1항 또는 제 2항에 있어서,
    상기 플러싱 라인(228)이 일방향 구성을 구비하는,
    가스 터빈 및 증기 터빈 설비.
  6. 삭제
  7. 제 1항 또는 제 2항에 있어서,
    상기 중간 저장소(220)가 공급 라인(210)을 통하여 공기 분리 설비(138)에 연결되는,
    가스 터빈 및 증기 터빈 설비.
  8. 제 7항에 있어서,
    상기 공급 라인(210)으로 저장소 라인(224)이 개방되고, 상기 저장소 라인(224)은 유입 단부에서 질소(U-N2, R-N2), 특히 순질소(R-N2)를 위하여 긴급 충진 시스템(226)에 연결되는,
    가스 터빈 및 증기 터빈 설비.
  9. 가스 터빈의 연소 챔버(6)의 상류에 연결된 가스 터빈 및 증기 터빈 설비(1)의 연료 시스템(129)을 플러싱하는 방법으로서, 상기 연료 시스템은 가스 록 밸브(204)를 가지는 가스 록(200) 그리고 증기 이외의 불활성 매질로의 플러싱 및 질소 플러싱 중 하나 이상을 위한 플러싱 라인(228)을 포함하고, 상기 플러싱 라인이 중간 저장소(220)에 연결되는 상기 가스 록 밸브 하류의 가스 라인(130)내로 상기 연료 시스템이 개방되는, 연료 시스템 플러싱 방법으로서,
    상기 가스 록과 상기 연소 챔버 사이에서, 증기 이외의 불활성 매질 및 질소 중 하나 이상으로 상기 연소 챔버의 방향으로 연료를 플러싱하는 단계; 및
    상기 중간 저장소를 통해 플러싱을 보장하는 단계를 포함하는,
    가스 터빈 및 증기 터빈 설비의 연료 시스템을 플러싱하는 방법.
  10. 제 9항에 있어서,
    상기 플러싱 매질은 상기 가스 록 밸브(204)와 상기 제어 밸브(208) 사이에서 상기 가스 록(200)의 하류에 공급되는,
    가스 터빈 및 증기 터빈 설비의 연료 시스템을 플러싱하는 방법.
  11. 제 9항에 있어서,
    플러싱하기 위하여 질소(U-N2, R-N2)가 공기 분리 설비(138)로부터 추출되는,
    가스 터빈 및 증기 터빈 설비의 연료 시스템을 플러싱하는 방법.
KR1020027009234A 2000-01-19 2001-01-05 가스 터빈 및 증기 터빈 설비와 그 설비의 연료 시스템 플러싱 방법 KR100743279B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10002084A DE10002084C2 (de) 2000-01-19 2000-01-19 Gas- und Dampfturbinenanlage
DE10002084.4 2000-01-19

Publications (2)

Publication Number Publication Date
KR20020065930A KR20020065930A (ko) 2002-08-14
KR100743279B1 true KR100743279B1 (ko) 2007-07-26

Family

ID=7627993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020027009234A KR100743279B1 (ko) 2000-01-19 2001-01-05 가스 터빈 및 증기 터빈 설비와 그 설비의 연료 시스템 플러싱 방법

Country Status (9)

Country Link
US (1) US6889506B2 (ko)
EP (1) EP1248897B1 (ko)
JP (1) JP3866976B2 (ko)
KR (1) KR100743279B1 (ko)
CN (1) CN1317487C (ko)
CA (1) CA2397612C (ko)
DE (2) DE10002084C2 (ko)
ES (1) ES2244582T3 (ko)
WO (1) WO2001053660A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2455011C (en) 2004-01-09 2011-04-05 Suncor Energy Inc. Bituminous froth inline steam injection processing
CN101238341B (zh) 2005-08-10 2012-04-18 阿尔斯托姆科技有限公司 用于运行燃气透平的方法以及用于实施该方法的燃气透平
US8075646B2 (en) * 2006-02-09 2011-12-13 Siemens Energy, Inc. Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency
US7874139B2 (en) * 2006-10-13 2011-01-25 Siemens Energy, Inc. IGCC design and operation for maximum plant output and minimum heat rate
US9217566B2 (en) 2007-03-27 2015-12-22 Boyle Energy Services & Technology, Inc. Method and apparatus for commissioning power plants
US8205451B2 (en) * 2008-08-05 2012-06-26 General Electric Company System and assemblies for pre-heating fuel in a combined cycle power plant
EP2230389A1 (de) * 2009-01-26 2010-09-22 Siemens Aktiengesellschaft Synthesegasbrennstoffsystem sowie ein Verfahren zum Betrieb eines Synthesegasbrennstoffsystems
EP2282017A1 (de) 2009-01-26 2011-02-09 Siemens Aktiengesellschaft Synthesegasbrennstoffsystem mit Zweitbrennstoffbeimischung sowie Verfahren zum Betrieb eines Synthesegasbrennstoffsystems
EP2284467A1 (de) 2009-01-27 2011-02-16 Siemens Aktiengesellschaft Luftzerlegungsanlage für schnelle Laständerungen eines Gas- und Dampfkraftwerks mit integrierter Vergasung sowie Verfahren zum Betrieb einer Luftzerlegungsanlage
US20110036092A1 (en) * 2009-08-12 2011-02-17 General Electric Company Methods and Systems for Dry Low NOx Combustion Systems
DE102009038322A1 (de) * 2009-08-21 2011-02-24 Krones Ag Verfahren und Vorrichtung zur Umwandlung thermischer Energie aus Biomasse in mechanische Arbeit
US8354082B2 (en) * 2010-03-17 2013-01-15 General Electric Company System for heat integration with methanation system
ES2399677T3 (es) * 2010-06-16 2013-04-02 Siemens Aktiengesellschaft Instalación con turbina de gas y turbina de vapor, y el método correspondiente
US8505299B2 (en) * 2010-07-14 2013-08-13 General Electric Company Steam turbine flow adjustment system
DE102010051956A1 (de) * 2010-11-19 2012-05-24 Siemens Aktiengesellschaft Schnellschlussklappe
US9429044B2 (en) * 2012-01-13 2016-08-30 Alstom Technology Ltd Supercritical heat recovery steam generator reheater and supercritical evaporator arrangement
EP3048366A1 (de) 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Abhitzedampferzeuger
EP3219940B1 (en) * 2016-03-18 2023-01-11 General Electric Technology GmbH Combined cycle power plant and method for operating such a combined cycle power plant
US20180106612A1 (en) * 2016-10-19 2018-04-19 Superior Optics Company Range finding binoculars
US10900418B2 (en) * 2017-09-28 2021-01-26 General Electric Company Fuel preheating system for a combustion turbine engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048618B2 (ja) * 1978-11-22 1985-10-28 株式会社日立製作所 気体燃料系統のパ−ジ系統
JPS63255531A (ja) * 1987-04-13 1988-10-21 Toshiba Corp ガスタ−ビンの燃料供給装置
JP2507426B2 (ja) * 1987-05-27 1996-06-12 株式会社東芝 石炭ガス化コンバインドサイクルの制御装置
DE3901451A1 (de) * 1989-01-19 1990-07-26 Asea Brown Boveri Verfahren zum erzeugen elektrischer energie in einer kombinierten gasturbinen-dampfkraftanlage mit zugeordneter brennstoffvergasungsanlage sowie anlage zur durchfuehrung des verfahrens
IE63440B1 (en) 1989-02-23 1995-04-19 Enserch Int Investment Improvements in operating flexibility in integrated gasification combined cycle power stations
DE3916477A1 (de) 1989-05-20 1990-11-22 Mak Maschinenbau Krupp Verfahren und einrichtung zum entleeren von kraftstoffleitungen und einspritzduesen in gasturbinen
US5129222A (en) * 1990-06-21 1992-07-14 Sundstrand Corporation Constant air/fuel ratio control system for EPU/IPU combustor
WO1994016210A1 (en) * 1992-12-30 1994-07-21 Combustion Engineering, Inc. Control system for integrated gasification combined cycle system
DE4301100C2 (de) * 1993-01-18 2002-06-20 Alstom Schweiz Ag Baden Verfahren zum Betrieb eines Kombikraftwerkes mit Kohle- oder Oelvergasung
US5309707A (en) * 1993-03-12 1994-05-10 Pyropower Corporation Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine
US5685138A (en) * 1995-02-09 1997-11-11 Fluor Corporation Integrated drying of feedstock feed to IGCC plant
DE59709514D1 (de) * 1997-11-10 2003-04-17 Alstom Switzerland Ltd Verfahren zum Prüfen der Dichtheit eines Brennstoffverteilsystems einer Gasturbine
DE59810159D1 (de) * 1998-02-26 2003-12-18 Alstom Switzerland Ltd Verfahren zum sicheren Entfernen von Flüssigbrennstoff aus dem Brennstoffsystem einer Gasturbine sowie Vorrichtung zur Durchführung des Verfahrens
DE19832294C1 (de) * 1998-07-17 1999-12-30 Siemens Ag Gas- und Dampfturbinenanlage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUTH M ET AL. : "VERBRENNUNG VON SYNTHESEGAS IN GASTURBINEN BWK BRENNSTOFF WARME KRAFT, DE, VDI VERLAG GMBH. DUSSELDORF, Volume 50, Number 9, 1 September 1998 (1998-09-01), pages 35-39
독일특허공보 제19832294호 (1999.12.30)

Also Published As

Publication number Publication date
CA2397612C (en) 2008-08-12
DE10002084A1 (de) 2001-08-02
EP1248897A1 (de) 2002-10-16
JP2003520318A (ja) 2003-07-02
DE10002084C2 (de) 2001-11-08
CN1317487C (zh) 2007-05-23
JP3866976B2 (ja) 2007-01-10
ES2244582T3 (es) 2005-12-16
EP1248897B1 (de) 2005-08-03
CA2397612A1 (en) 2001-07-26
KR20020065930A (ko) 2002-08-14
US20030000214A1 (en) 2003-01-02
CN1401047A (zh) 2003-03-05
US6889506B2 (en) 2005-05-10
DE50106972D1 (de) 2005-09-08
WO2001053660A1 (de) 2001-07-26

Similar Documents

Publication Publication Date Title
KR100743279B1 (ko) 가스 터빈 및 증기 터빈 설비와 그 설비의 연료 시스템 플러싱 방법
JP4081439B2 (ja) ガスタービン用バーナの運転方法と原動所設備
JP4463423B2 (ja) ガス・蒸気タービン複合設備
RU2380548C2 (ru) Котельная установка и способ эксплуатации и дооборудования котельной установки
JP2001514353A (ja) ガス・蒸気複合タービン設備の運転方法とこの方法を実施するためのガス・蒸気複合タービン設備
JP3961219B2 (ja) ガス・蒸気複合タービン設備
JPH06500374A (ja) ガス・蒸気タービン複合設備
JP4390391B2 (ja) ガス・蒸気タービン複合設備
KR100615730B1 (ko) 가스 및 증기 터빈 장치
US20110277440A1 (en) Synthesis gas-based fuel system, and method for the operation of a synthesis gas-based fuel system
JP3825090B2 (ja) コンバインドサイクル発電プラント
JP3679094B2 (ja) ガス・蒸気複合タービン設備の運転方法とその設備
US20040011049A1 (en) Method for operating a gas and steam turbine system and a corresponding system
CN109312635A (zh) 冷凝物再循环
CA2289546A1 (en) Gas-and steam-turbine plant and method of cooling the coolant of the gas turbine of such a plan

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20051130

Effective date: 20070323

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130618

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140618

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150617

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160810

Year of fee payment: 10