KR100664079B1 - Supporting method of steam reformer catalyst for fuel cell - Google Patents

Supporting method of steam reformer catalyst for fuel cell Download PDF

Info

Publication number
KR100664079B1
KR100664079B1 KR1020050105639A KR20050105639A KR100664079B1 KR 100664079 B1 KR100664079 B1 KR 100664079B1 KR 1020050105639 A KR1020050105639 A KR 1020050105639A KR 20050105639 A KR20050105639 A KR 20050105639A KR 100664079 B1 KR100664079 B1 KR 100664079B1
Authority
KR
South Korea
Prior art keywords
catalyst
fuel cell
metal precursor
carrier
reactor
Prior art date
Application number
KR1020050105639A
Other languages
Korean (ko)
Inventor
육형규
강정화
이원호
Original Assignee
엘지전자 주식회사
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 주식회사 엘지화학 filed Critical 엘지전자 주식회사
Priority to KR1020050105639A priority Critical patent/KR100664079B1/en
Application granted granted Critical
Publication of KR100664079B1 publication Critical patent/KR100664079B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

A supporting method of the steam reformer catalyst for a fuel cell is provided to disperse uniformly the catalyst with the metal component into the surface of the catalyst supporter in the fuel cell. The metal precursor comprises metal such as ruthenium, platinum, rhodium and the like and glass ligand. The metal precursor is sublimed at the atmosphere of nitrogen(300). The sublimed metal precursor is deposited on the supporter(400). Thereafter, the impurities of the supporter are removed(500). The metal precursor is constructed by the coordinate bond between the metal component selected from a group consisting of ruthenium, platinum and rhodium and the glass ligand.

Description

연료전지의 수증기 개질용 촉매 담지 방법{SUPPORTING METHOD OF STEAM REFORMER CATALYST FOR FUEL CELL}SUPPORTING METHOD OF STEAM REFORMER CATALYST FOR FUEL CELL}

도 1은 연료전지의 구조를 개략적으로 도시한 개략도,1 is a schematic diagram schematically showing the structure of a fuel cell;

도 2는 종래의 워시코팅법의 과정을 개략적으로 도시한 흐름도,2 is a flowchart schematically showing a process of a conventional wash coating method;

도 3은 본 발명의 일 실시예에 따른 연료전지의 수증기 개질용 촉매 담지 방법의 과정을 개략적으로 도시한 흐름도,3 is a flowchart schematically illustrating a process of a catalyst supporting method for steam reforming of a fuel cell according to an embodiment of the present invention;

도 4는 금속전구체가 모노리스에 증착된 상태를 도시한 평면도이다. 4 is a plan view showing a metal precursor deposited on a monolith.

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

10 : 연료공급부 20 : 개질기부10: fuel supply unit 20: reforming unit

21 : 탈황반응기 22 : 개질반응기21: desulfurization reactor 22: reforming reactor

23 : 고온수반응기 24 : 저온수반응기23: high temperature water reactor 24: low temperature water reactor

25 : 부분산화반응기 26 : 반응로25: partial oxidation reactor 26: reactor

30 : 스택부 100 : 모노리스30: stack portion 100: monolith

200 : 금속전구체200: metal precursor

본 발명은 기상화학증착법(CVD)을 사용한 연료전지의 수증기 개질용 촉매 담지 방법에 관한 것이다. The present invention relates to a catalyst supporting method for steam reforming of a fuel cell using vapor phase chemical vapor deposition (CVD).

도 1은 연료전지의 구조를 개략적으로 도시한 개략도이고, 도 2는 종래의 워시코팅법의 과정을 개략적으로 도시한 흐름도이다. 1 is a schematic view showing a structure of a fuel cell, and FIG. 2 is a flowchart schematically showing a process of a conventional wash coating method.

이들 도면에 도시한 바와 같이, 종래의 연료전지는 일정량의 연료를 공급하는 연료공급부(10)와, 연료공급부(10)의 연료를 공급받아 수소가스와 열을 포함하는 수소부유가스를 발생시키는 개질기부(20)와, 개질기부(20)에서 발생되는 수소가스와 별도로 공급되는 산소의 전기화학반응으로 전기와 열을 발생시키는 스택부(30)와, 스택부(30)에서 발생된 전기를 변환시키는 전력변환기(40)로 구성되어 있다. As shown in these drawings, the conventional fuel cell is reformed to generate a hydrogen supply gas including hydrogen gas and heat by receiving a fuel supply unit 10 for supplying a certain amount of fuel and fuel from the fuel supply unit 10. The base unit 20 and the stack unit 30 generating electricity and heat by electrochemical reaction of oxygen supplied separately from the hydrogen gas generated from the reformer unit 20 and the electricity generated from the stack unit 30 are converted. Is composed of a power converter 40.

개질기부(20)는 연료공급부(10)를 통해 공급되는 연료가 물과 공기와 함께 유입되어 상기 연료에 함유된 황을 제거하는 탈황반응기(DS, 21)와, 연료와 수증기가 반응하는 수증기 개질반응기(SR, 22)와, 일산화탄소와 수증기가 반응하도록 하는 고온수반응기(HTS, 23)와, 일산화탄소를 이산화탄소로 변환시키는 저온수반응기(LTS, 24)와, 산화되지 않은 일산화탄소를 이산화탄소로 변환시키는 부분산화반응기(PRO, 25) 및 개질반응 그리고 수소정제반응이 일어나면서 연료로부터 수소가 생성되는 반응로(26)와, 반응로(26)에 접촉 결합되어 반응로(26)에서 필요한 열을 공급하는 버너(27)로 이루어진다.The reformer 20 is a desulfurization reactor (DS, 21) for removing the sulfur contained in the fuel by the fuel supplied through the fuel supply unit 10 is introduced with water and air, steam reforming reacting the fuel and steam Reactor (SR, 22), high temperature water reactor (HTS, 23) to allow carbon monoxide and water vapor to react, low temperature water reactor (LTS, 24) to convert carbon monoxide to carbon dioxide, and carbon monoxide to carbon dioxide Partial oxidation reactor (PRO) 25 and reforming and hydrogen purification reactions occur in contact with the reactor 26 where hydrogen is produced from the fuel, and the reactor 26 is brought into contact with the reactor 26 to supply the necessary heat. It consists of a burner (27).

이러한 개질기부(20)에서 이루어지는 여러 반응의 과정 중에서 수증기 개질반응에는 반응성을 향상시키기 위하여 촉매가 사용되는데 촉매는 모노리스 (Monolith) 담체에 담지된 형태로 사용되며 촉매를 모노리스 담체에 담지시키는 방법은 워시코딩(Wash coating)법이 사용된다. In the reforming process of the reforming unit 20, a catalyst is used to improve the reactivity in the steam reforming reaction. The catalyst is used in the form supported on the monolith carrier, and the method of supporting the catalyst on the monolith carrier is wash. Wash coating method is used.

워시코팅(Wash coating)법은 먼저 물과 루독스(rudox, 실리콘 계열의 바인더)를 혼합한 용액을 만들고, 이 용액에 촉매를 넣고 반죽을 한다. 그리고, 그 촉매와 바인더가 골고루 섞이게 하기 위해 볼밀 등의 장비를 이용하여 그 용액과 촉매를 24시간 이상 교반시킨다. 이렇게 만들어진 용액을 볼 타입의 담체나 모노리스에 디핑(Dipping)하게 되며, 그 디핑에 의해 촉매 혼합 용액의 촉매가 담체나 모노리스에 코팅되는 방법이다. Wash coating method first creates a solution of water and rudox (silicon-based binder), and then adds a catalyst to the solution and kneads. In order to mix the catalyst and the binder evenly, the solution and the catalyst are stirred for 24 hours or more using equipment such as a ball mill. The solution thus made is dipped in a ball-type carrier or monolith, and the catalyst of the catalyst mixture solution is coated on the carrier or monolith by the dipping.

상기 디핑(Dipping) 과정은 모노리스 또는 담체의 전방에서 촉매 혼합 용액을 분사시키고, 그 모노리스 또는 담체에 분사된 촉매 혼합 용액이 그 모노리스 또는 담체의 표면을 타고 흘러 내리도록 하여 그 담체 또는 모노리스의 표면을 코팅하는 과정이다. The dipping process injects the catalyst mixture solution in front of the monolith or carrier, and causes the catalyst mixture solution sprayed on the monolith or carrier to flow down the surface of the carrier or monolith. Coating process.

그런데, 이러한 종래의 연료전지에 있어서는, 상기 모노리스 또는 담체에 담지된 형태의 상기 촉매 혼합 용액을 상기한 바와 같은 워시코딩(Wash coating)법을 이용하여 형성하므로 촉매가 모노리스의 전면적에 걸쳐서 미세한 형태로 균일하게 분산 담지되지 않게 됨으로써 촉매의 성능이 저하되는 문제점이 있다. However, in such a conventional fuel cell, the catalyst mixture solution formed on the monolith or the carrier is formed by using the wash coating method as described above, so that the catalyst is formed in a fine form over the entire area of the monolith. There is a problem in that the performance of the catalyst is lowered by not being uniformly dispersed and supported.

따라서, 본 발명의 목적은, 연료전지의 개질용 촉매 담체 표면에 금속 성분의 촉매를 미세하고 균일하게 분산 담지시켜 촉매의 성능을 향상시킬 수 있는 연료전지의 수증기 개질용 촉매 담지 방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a catalyst supporting method for steam reforming of a fuel cell which can improve the performance of the catalyst by finely and uniformly dispersing and carrying a catalyst of a metal component on the surface of the catalyst carrier for reforming the fuel cell. .

상기 목적은, 본 발명에 따라, 루테늄, 플레티늄, 로듐 등의 금속과 유기리간드로 이루어진 금속전구체를 질소 분위기 하에서 승화시키는 단계와; 상기 승화된 금속전구체를 담체에 증착시키는 단계와; 상기 금속전구체가 증착된 담체의 불순물을 제거하는 단계를 포함하여 진행된다. The object is, according to the invention, the step of subliming a metal precursor consisting of a metal such as ruthenium, platinum, rhodium and an organic ligand in a nitrogen atmosphere; Depositing the sublimed metal precursor on a carrier; And removing the impurities of the carrier on which the metal precursor is deposited.

이하, 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

도 3은 본 발명의 일 실시예에 따른 연료전지의 수증기 개질용 촉매 담지 방법의 과정을 개략적으로 도시한 흐름도이고, 도 4는 금속전구체가 모노리스에 증착된 상태를 도시한 평면도이다. 3 is a flowchart schematically illustrating a process of a catalyst supporting method for steam reforming of a fuel cell according to an embodiment of the present invention, and FIG. 4 is a plan view illustrating a metal precursor deposited on a monolith.

먼저, 연료전지의 구성은 위에서 서술한 바와 같이, 일정량의 연료를 공급하는 연료공급부(10)와, 연료공급부(10)의 연료를 공급받아 수소가스와 열을 포함하는 수소부유가스를 발생시키는 개질기부(20)와, 개질기부(20)에서 발생되는 수소가스와 별도로 공급되는 산소의 전기화학반응으로 전기와 열을 발생시키는 스택부(30)와, 스택부(30)에서 발생된 전기를 변환시키는 전력변환기(40)를 포함하여 구성된다. First, as described above, the configuration of the fuel cell includes a fuel supply unit 10 for supplying a certain amount of fuel, and a reforming for generating a hydrogen floating gas including hydrogen gas and heat by receiving fuel from the fuel supply unit 10. The base unit 20 and the stack unit 30 generating electricity and heat by electrochemical reaction of oxygen supplied separately from the hydrogen gas generated from the reformer unit 20 and the electricity generated from the stack unit 30 are converted. The power converter 40 is configured to include.

개질기부(20)는 연료공급부(10)를 통해 공급되는 연료가 물과 공기와 함께 유입되어 상기 연료에 함유된 황을 제거하는 탈황반응기(DS, 21)와, 연료와 수증기가 반응하는 수증기 개질반응기(SR, 22)와, 일산화탄소와 수증기가 반응하도록 하는 고온수반응기(HTS, 23)와, 일산화탄소를 이산화탄소로 변환시키는 저온수반응기(LTS, 24)와, 산화되지 않은 일산화탄소를 이산화탄소로 변환시키는 부분산화반응 기(PRO, 25) 및 개질반응 그리고 수소정제반응이 일어나면서 연료로부터 수소가 생성되는 반응로(26)와, 반응로(26)에 접촉 결합되어 반응로(26)에서 필요한 열을 공급하는 버너(27)를 포함하여 구성된다. The reformer 20 is a desulfurization reactor (DS, 21) for removing the sulfur contained in the fuel by the fuel supplied through the fuel supply unit 10 is introduced with water and air, steam reforming reacting the fuel and steam Reactor (SR, 22), high temperature water reactor (HTS, 23) to allow carbon monoxide and water vapor to react, low temperature water reactor (LTS, 24) to convert carbon monoxide to carbon dioxide, and carbon monoxide to carbon dioxide Partial oxidation reactor (PRO) 25 and reforming and hydrogen purification reactions occur in contact with the reactor 26, where hydrogen is produced from the fuel, and the reactor 26 in contact with the heat required in the reactor 26. It is comprised including the burner 27 to supply.

개질기부(20)의 부분산화 반응기(25)에서 발생되는 부분산화 반응은 다음과 같은 화학식으로 표현된다. The partial oxidation reaction generated in the partial oxidation reactor 25 of the reformer 20 is represented by the following formula.

CH4 + 0.5 O2 → 2H2 + COCH 4 + 0.5 O 2 → 2H 2 + CO

상기와 같은 식으로 표현되는 부분산화 반응은 반응기의 재료 선택에 제한이 있으며, 반응 시스템 내부에 탄소침적이 쉽게 발생하기 때문에 반응기 운전이 어렵다는 단점이 있으나, 반응기의 소형화가 쉽고 기동시간이 빠르다는 장점을 가지고 있다. Partial oxidation reaction represented by the above formula is limited to the material selection of the reactor, there is a disadvantage that it is difficult to operate the reactor because the carbon deposition easily occurs inside the reaction system, but the advantages of the miniaturization of the reactor and fast start-up time Have

개질기부(20)의 반응로(26)에서 발생되는 수소정제반응은 다음과 같은 화학식으로 표현된다. The hydrogen purification reaction generated in the reactor 26 of the reformer 20 is represented by the following formula.

Co + H2O → CO2 + H2 Co + H 2 O → CO 2 + H 2

최근 들어 수소 이용기술로서 수소 연료전지분야는 물론 여러 산업분야에서 수소에 대한 수요가 증가하며 반응의 특성을 고려할 때 매우 큰 용량의 반응기가 필요하므로 공정의 최적화가 필수적으로 요구된다. Recently, the demand for hydrogen is increasing in the hydrogen fuel cell field as well as in the hydrogen fuel cell industry as a technology using hydrogen, and considering the characteristics of the reaction, a very large capacity reactor is required, and thus, optimization of the process is essential.

개질기부(20)의 수증기 개질 반응기(22)에서 발생되는 수증기 개질 반응은 다음과 같은 화학식으로 표현된다. The steam reforming reaction generated in the steam reforming reactor 22 of the reformer 20 is represented by the following formula.

CH4 + H2O → 3H2 + COCH 4 + H 2 O → 3H 2 + CO

상기와 같은 식으로 표현되는 수증기 개질 반응은 지난 수십년 동안 화학공장 등에서 사용되어온 대표적인 개질 반응으로 다른 공정에 비해 수소의 생산량이 높다는 장점이 있어서 지속적으로 이용되고 있으며, 개질 가스 중의 수소 순도를 높이고 CO의 농도를 낮추는 중요한 화학공정으로 인식되고 있다. The steam reforming reaction represented by the above formula is a representative reforming reaction that has been used in chemical plants for several decades, and has been used continuously because of the advantage of higher production of hydrogen than other processes. It is recognized as an important chemical process to lower the concentration of.

이러한 측면에서 수증기 개질 반응의 반응성을 높일 수 있도록 촉매를 담지시키는 여러 방법 중에서 본 발명에 의한 기상화학증착법(CVD)을 사용한 연료전지의 수증기 개질용 촉매 담지 방법에 대하여 구체적으로 설명하도록 한다. In this respect, the catalyst supporting method for steam reforming of a fuel cell using the vapor phase chemical vapor deposition (CVD) method according to the present invention will be described in detail among various methods of supporting the catalyst to increase the reactivity of the steam reforming reaction.

본 발명의 연료전지의 개질용 촉매 담지 방법은 루테늄, 플레티늄, 로듐 등의 금속과 유기리간드로 이루어진 금속전구체(200)를 질소 분위기 하에서 승화시키는 단계(300), 상기 승화된 금속전구체(200)를 담체에 증착시키는 단계(400) 및 상기 금속전구체(200)가 증착된 담체의 불순물을 제거하는 단계(500)를 포함하여 진행된다. The catalyst supporting method for reforming a fuel cell of the present invention comprises the steps of subliming the metal precursor 200 consisting of a metal such as ruthenium, platinum, rhodium and an organic ligand in a nitrogen atmosphere (300), the sublimed metal precursor (200) Deposition on the carrier 400 and the metal precursor 200 comprises the step of removing impurities 500 of the deposited carrier.

상기 금속전구체(200)는 루테늄, 플레티늄 및 로듐으로 이루어지는 군으로부터 선택되는 금속 성분 및 사이클로펜타디에닐(Cp), 테트라메틸 헵탄디오네이토(TMHD) 및 에틸사이클로펜타디에닐(EtCp) 등의 유기리간드의 배위 결합에 의하여 이루어진다. 예컨대, 금속 성분이 루테늄으로 선택되는 경우, 금속전구체(200)는 Ru(Cp)2, Ru(TMHD)3, Ru(EtCp)3일 수 있다. 상기 금속전구체(200)의 승화 단계는 금속전구체(200)를 기상화학증착 시에 통상적으로 기화기를 사용하여 불활성 기체 분위기 하에서 상기 금속전구체(200)의 승온 온도를 100℃ 내지 300℃의 온도로 승 온시키는 방식으로 수행하며, 보다 바람직하게는 150℃ 내지 250℃의 온도로 승온시키는 방식으로 수행한다. 상기와 같은 금속전구체(200)의 승화 단계는 진공 조건하에 수행될 수도 있으나, 상용 실시를 위해서는 상압 조건하에 수행하는 것이 바람직하다.The metal precursor 200 is a metal component selected from the group consisting of ruthenium, platinum and rhodium and organic ligands such as cyclopentadienyl (Cp), tetramethyl heptanedioneto (TMHD) and ethylcyclopentadienyl (EtCp). By coordination of For example, when the metal component is selected as ruthenium, the metal precursor 200 may be Ru (Cp) 2 , Ru (TMHD) 3 , Ru (EtCp) 3 . In the sublimation step of the metal precursor 200, the temperature rise temperature of the metal precursor 200 is raised to a temperature of 100 ° C. to 300 ° C. under an inert gas atmosphere by using a vaporizer during the vapor deposition of the metal precursor 200. It is carried out by the method of warming up, and more preferably by heating up to a temperature of 150 ℃ to 250 ℃. Sublimation of the metal precursor 200 as described above may be carried out under vacuum conditions, it is preferable to perform under normal pressure conditions for commercial implementation.

기화기 내에서 금속전구체(200)를 승온시키면 금속전구체(200)가 승화하여 담체 표면에 증착된다. When the metal precursor 200 is heated in the vaporizer, the metal precursor 200 is sublimed and deposited on the surface of the carrier.

금속전구체(200)가 담체 표면에 증착된 후, 금속전구체(200)를 수소를 이용하여 환원처리(소성)함으로써 유기리간드 불순물을 제거한다. 금속전구체(200) 중의 유기리간드의 제거 단계는 수소 대 질소의 비가 1:1 내지 5:1, 보다 바람직하게는 1:1 내지 2:1인 혼합기체를 사용하고, 이와 함께 담체의 온도를 200℃에서 450℃로 승온시켜 이 온도에서 2시간 내지 4시간 유지시키는 방식으로 행해진다. 불순물인 유기리간드가 제거되면 담체 표면에는 촉매 작용을 하는 금속 성분만이 잔류하게 된다. After the metal precursor 200 is deposited on the surface of the carrier, the organic precursor impurities are removed by firing the metal precursor 200 with hydrogen. The removal of the organic ligand in the metal precursor 200 uses a mixed gas having a hydrogen to nitrogen ratio of 1: 1 to 5: 1, more preferably 1: 1 to 2: 1, and together with the temperature of the carrier, 200 The temperature is raised from 450 deg. C to 450 deg. C and held at this temperature for 2 to 4 hours. When the organic ligand, which is an impurity, is removed, only the metal component catalyzing remains on the surface of the carrier.

이상과 같은 본 발명의 방법에 의하면, 연료전지의 개질용 촉매 담지체 표면에 금속 성분의 촉매를 작고 고르게 분산 담지시켜 촉매의 성능을 향상시킬 수 있다. According to the method of the present invention as described above, the performance of the catalyst can be improved by dispersing and supporting the catalyst of the metal component on the surface of the catalyst carrier for reforming the fuel cell small and evenly.

이하, 실시예를 통하여 본 발명의 연료전지의 수증기 개질용 촉매 담지 방법에 대하여 보다 구체적으로 설명하도록 한다. Hereinafter, the catalyst supporting method for steam reforming of the fuel cell of the present invention will be described in more detail with reference to Examples.

실시예Example

실시예 1Example 1

본 발명의 기상화학증착법을 사용하여 연료전지의 수증기 개질용 촉매를 제조하였다. 구체적인 제조 방법은 다음과 같다. A catalyst for steam reforming of a fuel cell was prepared using the vapor phase chemical vapor deposition method of the present invention. The specific manufacturing method is as follows.

300cc 부피의 금속(Fe-Cr 합금, sus316) 및 세라믹 담체에 0.05-1.0wt에 해당하는 Ru(Cp)2를 기화기에 놓고 질소 분위기(유량: 50cc/분) 하에서 150 - 250℃까지 승온시켜 루테늄 전구체를 승화시켰다. 기화기에서 승화된 전구체를 반응기에 있는 모노리스(100)에 증착시킨다. 증착이 완료된 후 수소와 질소로 혼합된 가스(수소: 질소 = 1:1)를 분당 50cc로 흘려 주면서 200℃에서 분당 10℃ 간격으로 450℃까지 승온시킨 후 450℃에서 두 시간 동안 유지하며 촉매를 소성 시켜주었다. Ru (Cp) 2 corresponding to 0.05-1.0wt in a 300cc metal (Fe-Cr alloy, sus316) and ceramic carrier was placed in a vaporizer and heated to 150-250 ° C under nitrogen atmosphere (flow rate: 50cc / min). The precursor was sublimed. Sublimed precursor in the vaporizer is deposited on the monolith 100 in the reactor. After the deposition was completed, the mixture of hydrogen and nitrogen (hydrogen: nitrogen = 1: 1) was flowed at 50cc per minute, and the temperature was raised from 200 ° C to 10 ° C per minute to 450 ° C and maintained at 450 ° C for two hours. Fired.

비교예 1Comparative Example 1

종래의 워시코딩(Wash coating)법을 이용하여 연료전지의 수증기 개질용 촉매를 제조하였다. 구체적인 방법은 다음과 같다.A catalyst for steam reforming of a fuel cell was prepared by using a conventional wash coating method. The specific method is as follows.

물과 루독스(rudox,실리콘 계열의 바인더)을 1:1로 500cc 용액을 만들고 이 용액에 RuCl2 50g 넣고 반죽을 한다. 촉매가 바인더에 고루 섞이게 하기 위해 볼 밀 등을 이용하여 24시간 이상 교반하였다. 모노리스(100) 100cc에 1% Ru 촉매 용액 10cc를 딥핑(dipping)하였다. 딥핑 과정은 만들어진 용액을 앞 단에서 진공 펌프를 이용하여 흡입해주면 촉매 용액이 모노리스(100) 벽면을 타고 코팅되게 된다. 코팅 후 수소 대 질소 비가 1:1인 가스를 100cc 흘려 주면서 450도에서 2시간 동안 소성하였다. 승온 속도는 분당 10℃이었다. Water and Rudox (silicon-based binder) are made into a 500cc solution 1: 1, and 50g of RuCl 2 is added to the solution and kneaded. The catalyst was stirred for 24 hours or more using a ball mill or the like to mix the catalyst evenly. Dipping 10 cc of 1% Ru catalyst solution into 100 cc of monolith (100). In the dipping process, the prepared solution is sucked using a vacuum pump at the front end, and the catalyst solution is coated on the wall of the monolith 100. After the coating was fired at 450 degrees for 2 hours while flowing a 100cc gas having a hydrogen to nitrogen ratio of 1: 1. The temperature increase rate was 10 degreeC per minute.

실시예 2: 촉매 성능 비교 실험Example 2: Catalyst Performance Comparison Experiment

상기 실시예 1과 비교예 1에 의하여 제조된 촉매를 사용하여 메탄의 수증기 개질반응을 실시하였다. 메탄 전환율 및 CO 발생량을 비교함으로써 본 발명의 실시예 1에 의하여 제조된 촉매의 성능을 확인하였다. Steam reforming of methane was carried out using the catalysts prepared in Example 1 and Comparative Example 1. By comparing the methane conversion rate and the amount of CO generated, the performance of the catalyst prepared according to Example 1 of the present invention was confirmed.

실험 조건은 다음과 같으며, 그 결과를 표 1에 나타내었다.Experimental conditions are as follows, and the results are shown in Table 1.

반응 온도 : 700℃Reaction temperature: 700 ℃

공간 속도 : 8000 /hSpace speed: 8000 / h

수증기/메탄 : 2.5Water Vapor / Methane: 2.5

촉매(중량%)Catalyst (% by weight) 메탄 전환율(%)Methane conversion rate (%) CO 발생량(%)CO generation amount (%) 실시예 1(0.5)Example 1 (0.5) 9595 1212 실시예 1(1.0)Example 1 (1.0) 9797 1313 실시예 1(1.5)Example 1 (1.5) 9090 1111 비교예 1(0.5)Comparative Example 1 (0.5) 9292 1515 비교예 1(1.0)Comparative Example 1 (1.0) 9595 1616 비교예 1(2.0)Comparative Example 1 (2.0) 9494 1313

상기 표 1의 결과에서 볼 수 있는 바와 같이, 본 발명의 기상화학증착법(CVD)을 사용하여 제조한 촉매(실시예 1)는 종래 워시코팅법에 의하여 제조된 촉매(비교예 1)와 비교할 때, 촉매 성능이 메탄 전환율과 CO 발생량을 개선시키는 효과가 있음을 알 수 있다. 이러한 결과는 본 발명에 의한 촉매에 루테늄 금속이 보다 균일하게 분산되어 있기 때문이다.As can be seen from the results of Table 1, the catalyst prepared using the vapor phase chemical vapor deposition (CVD) of the present invention (Example 1) compared with the catalyst prepared by the conventional wash coating method (Comparative Example 1) In addition, it can be seen that the catalytic performance has an effect of improving the methane conversion rate and CO generation amount. This result is because ruthenium metal is more uniformly dispersed in the catalyst according to the present invention.

비록 발명이 상기에서 언급된 바람직한 실시예에 관해 설명되어 졌으나, 발명의 요지와 범위를 벗어남이 없이 많은 다른 가능한 수정과 변형이 이루어질 수 있음에 유념해야 할 것이다.Although the invention has been described with reference to the preferred embodiments mentioned above, it should be noted that many other possible modifications and variations can be made without departing from the spirit and scope of the invention.

이상 설명한 바와 같이, 본 발명은, 루테늄, 플레티늄, 로듐 등의 금속과 유기리간드로 이루어진 금속전구체를 질소 분위기 하에서 승화시키는 단계와; 상기 승화된 금속전구체를 담체에 증착시키는 단계와; 상기 금속전구체가 증착된 담체의 불순물을 제거하는 단계를 포함하여 수증기 개질 반응이 진행되도록 하여, 연료전지의 개질용 촉매 담지체 표면에 금속 성분의 촉매를 미세하고 균일하게 분산 담지시켜 수증기 개질 반응에 사용되는 촉매의 성능을 향상시킬 수 있는 효과가 있다. As described above, the present invention includes the steps of subliming a metal precursor consisting of a metal such as ruthenium, platinum, rhodium and an organic ligand in a nitrogen atmosphere; Depositing the sublimed metal precursor on a carrier; The steam reforming reaction proceeds by removing impurities in the carrier on which the metal precursor is deposited, and finely and uniformly dispersed and supported the catalyst of the metal component on the surface of the catalyst carrier for reforming the fuel cell. There is an effect that can improve the performance of the catalyst used.

Claims (4)

루테늄, 플레티늄 및 로듐으로 이루어지는 군으로부터 선택되는 금속과 유기리간드로 이루어진 금속전구체를 질소 분위기 하에서 승화시키는 단계와;Subliming a metal precursor consisting of an organic ligand and a metal selected from the group consisting of ruthenium, platinum and rhodium under a nitrogen atmosphere; 상기 승화된 금속전구체를 담체에 증착시키는 단계와;Depositing the sublimed metal precursor on a carrier; 상기 금속전구체가 증착된 담체의 불순물을 제거하는 단계로 이루어지는 것을 특징으로 하는 기상화학증착법(CVD)을 이용한 연료전지의 수증기 개질용 촉매 담지 방법.A method of supporting a catalyst for steam reforming of a fuel cell using vapor phase chemical vapor deposition (CVD), characterized in that it comprises the step of removing impurities of the carrier on which the metal precursor is deposited. 제1항에 있어서, 상기 유기리간드는 사이클로펜타디에닐(Cp), 테트라메틸 헵탄디오네이토(TMHD) 및 에틸사이클로펜타디에닐(EtCp)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 연료전지의 수증기 개질용 촉매 담지 방법.The steam reforming of claim 1, wherein the organic ligand is selected from the group consisting of cyclopentadienyl (Cp), tetramethyl heptanedioneto (TMHD) and ethylcyclopentadienyl (EtCp). Catalyst loading method. 제1항에 있어서, 상기 승화 단계에서의 승온 온도는 100℃ 내지 300℃인 것을 특징으로 하는 연료전지의 수증기 개질용 촉매 담지 방법.The method of claim 1, wherein the elevated temperature in the sublimation step is 100 ° C to 300 ° C. 제1항에 있어서, 상기 불순물 제거 단계는 수소와 질소의 비가 1:1 ~ 5:1인 혼합기체를 사용하고, 200℃에서 450℃로 승온시켜 450℃에서 2 내지 4시간 동안 유지시키는 것을 특징으로 하는 연료전지의 수증기 개질용 촉매 담지 방법. The method of claim 1, wherein the impurity removing step comprises using a mixed gas having a ratio of hydrogen and nitrogen in a ratio of 1: 1 to 5: 1, and raising the temperature from 200 ° C to 450 ° C for 2 to 4 hours. A catalyst supporting method for steam reforming of a fuel cell.
KR1020050105639A 2005-11-04 2005-11-04 Supporting method of steam reformer catalyst for fuel cell KR100664079B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050105639A KR100664079B1 (en) 2005-11-04 2005-11-04 Supporting method of steam reformer catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050105639A KR100664079B1 (en) 2005-11-04 2005-11-04 Supporting method of steam reformer catalyst for fuel cell

Publications (1)

Publication Number Publication Date
KR100664079B1 true KR100664079B1 (en) 2007-01-03

Family

ID=37866737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050105639A KR100664079B1 (en) 2005-11-04 2005-11-04 Supporting method of steam reformer catalyst for fuel cell

Country Status (1)

Country Link
KR (1) KR100664079B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308894A (en) 2001-04-13 2002-10-23 Tanaka Kikinzoku Kogyo Kk Process for preparing bis(cyclopentadienyl)ruthenium derivative, bis(cyclopentadienyl)ruthenium derivative prepared through the process and chemical vapor deposition process for ruthenium film or ruthenium compound film
KR20030058040A (en) * 2001-12-29 2003-07-07 주식회사 하이닉스반도체 Method of manufacturing metal layer having high degree of purity
KR20030065343A (en) * 2002-01-29 2003-08-06 에이에스엠 마이크로케미스트리 오와이 Process for producing metal thin films by ald

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308894A (en) 2001-04-13 2002-10-23 Tanaka Kikinzoku Kogyo Kk Process for preparing bis(cyclopentadienyl)ruthenium derivative, bis(cyclopentadienyl)ruthenium derivative prepared through the process and chemical vapor deposition process for ruthenium film or ruthenium compound film
KR20030058040A (en) * 2001-12-29 2003-07-07 주식회사 하이닉스반도체 Method of manufacturing metal layer having high degree of purity
KR20030065343A (en) * 2002-01-29 2003-08-06 에이에스엠 마이크로케미스트리 오와이 Process for producing metal thin films by ald

Similar Documents

Publication Publication Date Title
JP4858890B2 (en) Hydrogen production method and hydrogen supply apparatus
CN107649124A (en) A kind of single atomic dispersion noble metal catalyst and its application
FI118647B (en) Procedure for reforming gas containing tar-like pollutants
CN101462058A (en) Catalyst for producing synthesis gas by reforming natural gas-carbon dioxide for industry
WO2012016582A1 (en) Chemical looping system
KR20090118940A (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
CN101145617A (en) Reformer for fuel cell, and fuel cell system including same
CN111017875A (en) Catalytic permeability integrated membrane reactor for preparing H2 and CNTs through direct natural gas cracking and application
KR20200126681A (en) A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition
KR100981109B1 (en) Unified Fuel Processing Reactor for Solid Oxide Fuel Cell
CN1131322C (en) Apparatus for producing heat treatment atmospheres
CN1321136A (en) Apparatus for producing hydrogen gas and fuel cell system using same
KR100741788B1 (en) Catalyst for water gas shift reaction of fuel cell and preparation method thereof
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
KR100664079B1 (en) Supporting method of steam reformer catalyst for fuel cell
US6897178B1 (en) Carbide/nitride based fuel processing catalysts
CN108821236A (en) A kind of method of the continuous producing synthesis gas of chemical chain
JP5731202B2 (en) Syngas production method and apparatus
JP3589309B2 (en) Hydrogen production by methane reforming.
CN109694037A (en) The method of reforming hydrogen-preparation reactor, reformation hydrogen production reburner and reformation hydrogen production reaction
WO2018030655A1 (en) Carbon nitride heterogeneous catalyst containing rhodium and palladium, preparation method therefor, acetic acid preparation method using same, and acetic acid prepared thereby
KR20120097593A (en) Producing method for synthesis gas and hydrogen, and apparatus for the same
KR101725293B1 (en) Nickel supported catalyst for combined steam and carbon dioxide reforming with natural gas
CN114602496A (en) Nano-carbon-loaded platinum-iron bimetallic catalyst, preparation method thereof and application thereof in CO selective oxidation reaction under hydrogen-rich atmosphere
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 13