KR100648357B1 - Polyester filament yarn having dimensional stability and high strength. preparation thereof - Google Patents

Polyester filament yarn having dimensional stability and high strength. preparation thereof Download PDF

Info

Publication number
KR100648357B1
KR100648357B1 KR1020010002400A KR20010002400A KR100648357B1 KR 100648357 B1 KR100648357 B1 KR 100648357B1 KR 1020010002400 A KR1020010002400 A KR 1020010002400A KR 20010002400 A KR20010002400 A KR 20010002400A KR 100648357 B1 KR100648357 B1 KR 100648357B1
Authority
KR
South Korea
Prior art keywords
yarn
high strength
polyester yarn
strength
heat
Prior art date
Application number
KR1020010002400A
Other languages
Korean (ko)
Other versions
KR20020061368A (en
Inventor
김윤조
김효대
Original Assignee
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코오롱 filed Critical 주식회사 코오롱
Priority to KR1020010002400A priority Critical patent/KR100648357B1/en
Publication of KR20020061368A publication Critical patent/KR20020061368A/en
Application granted granted Critical
Publication of KR100648357B1 publication Critical patent/KR100648357B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 고강력 폴리에스터 사에 관한 것으로서, 결정화도 45%~55%, 섬유축 방향의 결정크기 43~55Å 및 220℃에서 최대수축응력 0.20~0.45cN/dtex의 조건을 만족하는 폴리에스터 원사 및 이의 제조방법이 제공되며, 상기 특성을 보유하는 폴리에스터 사는 우수한 형태안정성과 고강력을 가지면서 열에 의한 강력저하의 발생을 방지할 수 있는 등의 특성이 있어서, 후공정상에 있어서 열처리공정이 들어가며 필요에 따라 염색공정도 포함되어 강력저하현상이 발생하는 좌석벨트, 웨빙물 등의 제조에 원사로서 유용하게 적용할 수 있다.
The present invention relates to a high-strength polyester yarn, polyester yarn that satisfies the conditions of 45% to 55% crystallinity, crystal size 43 to 55 의 in the fiber axis direction, and maximum shrinkage stress 0.20 to 0.45 cN / dtex at 220 ° C. A method of manufacturing the same is provided, and polyester yarn having the above characteristics has characteristics such as having excellent shape stability and high strength and preventing the occurrence of strong degradation due to heat. If necessary, the dyeing process is also included, which can be usefully applied as a yarn for the manufacture of seat belts, webbings, etc., in which strong deterioration occurs.

Description

형태안정성이 우수한 고강력 폴리에스터 원사 및 그 제조방법{Polyester filament yarn having dimensional stability and high strength. preparation thereof} High strength polyester yarn with excellent shape stability and its manufacturing method {Polyester filament yarn having dimensional stability and high strength. preparation             

도 1은 산업용 고강력사를 제조하는데 통상적으로 사용되는 직접방사연신장치를 개략적으로 나타낸 도면이고, 1 is a view schematically showing a direct radiation drawing apparatus commonly used to manufacture industrial high strength yarns,

도 2는 본 발명에 따르는 산업용 고강력사를 제조하기 위해서 도 1에 비해 단열판의 길이를 증대시킨 직접방사연신장치를 개략적으로 나타낸 도면이다.
FIG. 2 is a view schematically showing a direct radiation drawing apparatus in which a length of an insulation plate is increased compared to FIG. 1 to manufacture an industrial high strength yarn according to the present invention.

*도면중 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 후드히터1: hood heater

2 : 단열판2: insulation board

3 : 퀀칭스크린3: quenching screen

4 : 퀀칭챔버


4: quenching chamber


본 발명은 고강력 폴리에스터 사에 관한 것으로서, 보다 구체적으로는 좌석벨트(seat belt), 웨빙(webbing)물 등의 제조에 사용되며 형태안정성이 우수한 산업용 고강력 폴리에스터 사 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength polyester yarn, and more particularly, to the industrial high-strength polyester yarn used in the manufacture of seat belts, webbings, etc. and having excellent shape stability and a method of manufacturing the same. will be.

일반적으로 좌석벨트(seat belt), 웨빙(webbing)물 등의 제조에 사용되는 폴리에스터 산업용 사는 도 1에 개략적으로 나타낸 바와 같은 직접방사연신(DSD방식)의 방사 및 연신 장치를 사용하여 제조하고 있다. In general, the polyester industrial companies used to manufacture seat belts, webbing, and the like are manufactured using a direct radiation drawing (DSD type) spinning and drawing device as schematically shown in FIG. .

즉, 이러한 장치에서 사는 방사노즐을 통해 압출된 용융 폴리머는 고온의 후드히터(hood heater: 1) 및 단열판(2)을 거친 후 퀀칭스크린(quenching screen: 3)과 퀀칭챔버(quenching chamber: 4)를 통과하면서 냉각,고화되고 오일링롤러(5)에서 유제가 부여된 후 고뎃롤러군(6)에서 고배율로 연신 및 열처리되고 권취기(7)에서 권취되어 제조된다. In other words, the molten polymer extruded through the spinning nozzle live in such a device passes through a high-temperature hood heater (1) and a heat insulating plate (2), followed by a quenching screen (3) and a quenching chamber (4). Cooling and solidification while passing through the oil ring roller (5) is imparted with an oil agent, stretched and heat-treated at a high magnification in the high roller group (6) and wound and wound in the winder (7) to be manufactured.

이때, 고온의 후드히터는 연신성을 향상시키기 작용을 하며 또한 여기서 덕트를 통해 모노머가 흡입된다. 또한 후드히터는 멀티필라멘트의 지연냉각존(delayed quenching zone)의 역할을 일부 행한다. At this time, the high temperature hood heater acts to improve the stretchability and also the monomer is sucked through the duct. The hood heater also plays a part in the delayed quenching zone of the multifilament.

특히 고강력사는 "저속방사 + 고배율연신"이라 표현되는 방식으로 제조하게 되는데, 통상적으로 방사속도 500~600m/min, 연신배율(draw ratio: D/R) 5.0-6.0배, 연신이완율(relax ratio: R/R) 1.0-2.0%의 조건하에서 제조하게 된다. In particular, high-strength yarns are manufactured in a manner expressed as "low-speed spinning + high magnification stretching", typically spinning speed 500 ~ 600m / min, draw ratio (D / R) 5.0-6.0 times, stretching relaxation rate (relax ratio: R / R) is prepared under the conditions of 1.0-2.0%.                         

그러나 이와 같은 종래의 방식으로 제조한 고강력 폴리에스터 사는 결정배향성뿐 및 비정배향성이 크며, 분자결정크기가 작고, 타이사슬(Tie-Chain)이 많기 때문에 열에 대한 형태안정성이 떨어지며, 특히 후가공중에 염색을 행하는 웨빙(webbing)제품의 경우 강력저하가 크게 발생한다.However, the high-strength polyester yarn prepared by the conventional method has high crystal orientation and non-orientation, large molecular crystal size, and many tie-chains, which result in inferior morphological stability, especially in post-processing. In the case of webbing products, the strong deterioration occurs.

원사의 형태안정성을 높이는 방법의 하나로 제사 조건 중에 과도한 열처리를 하는 방법이 있다. 이 방법은 결정 크기를 크게 하고, 비정영역의 배향성(fa)을 낮추어 원사의 열수축율을 낮추어 줌으로써 강력저하를 어느 정도 막을 수 있으나, 모우 발생 및 조업성 저하 등을 유발하는 단점이 있다.One of the ways to increase the shape stability of the yarn is the method of excessive heat treatment during the weaving conditions. This method can prevent the strong deterioration to some extent by increasing the crystal size and lowering the thermal shrinkage of the yarn by lowering the orientation (fa) of the amorphous region, but has the disadvantage of causing the occurrence of moor and deterioration of operability.

다른 방법으로는 방사속도를 증가시켜는 방법이 있다. 이러한 방법은 결정배향성(fc)을 높여 주어 결정 크기를 크게 하고, 비정배향성(fa)을 낮추어 형태안정성을 개선할 수 있으나, 미연신사의 방사속도 증가에 의한 복굴절율 증가 등 미연신사의 구조변화를 유발하여 연신성이 저하되며 이로 인하여 고강력의 특성을 발현하기 어려울 뿐만 아니라, 무리한 연신으로 인하여, 모우 발생 등 품위가 상당히 떨어지며 조업성 저하를 유발하는 단점이 있다.
Another method is to increase the spinning speed. This method can improve the crystal orientation (fc) to increase the crystal size and decrease the non-orientation (fa) to improve the morphological stability, but the structure changes of the unstretched yarn, such as the increase in birefringence due to the increase in the spinning speed of the undrawn yarn It is not easy to express high-strength characteristics due to the induced elongation is deteriorated, and due to excessive stretching, there is a disadvantage in that the dignity, such as the generation of cows, is considerably lowered, causing deterioration of operability.

따라서, 본 발명은 우수한 형태안정성과 고강력을 가지면서 열에 의한 강력저하의 발생을 방지할 수 있는 산업용 폴리에스터 사를 제공하는 것을 기술적 과제로 한다. Accordingly, the present invention is to provide an industrial polyester yarn having excellent shape stability and high strength while being able to prevent the occurrence of strong degradation due to heat.

상기한 과제를 해결하기 위한 본 발명자의 연구에서 방사속도를 높여줌으로 써 결정배향성, 결정크기 및 결정화도를 향상시키고, 후드히터 직후에 단열판설치하되 그 길이 및 단열판에서의 체류시간을 조절하여 고속방사에 의한 미연신사의 배향성(Δn) 상승을 억제하는 지연냉각존의 역할을 강화시켜 고강력의 특성을 발휘할 수 있는 연신배율을 확보한 결과, 결정영역의 구조강화와 비정영역의 구조제어에 의해서 형태안정성 부여를 통한 내열강력의 향상과 연신배율 확보를 통한 고강력화를 달성할 수 있었다.
In order to solve the above problems, the present inventors improve the crystal orientation, crystal size and crystallinity by increasing the spinning speed, and install a heat insulating plate immediately after the hood heater to control the length and the residence time in the heat insulating plate. As a result of strengthening the role of the delayed cooling zone that suppresses the increase in the orientation (Δn) of the undrawn yarn, the drawing ratio is secured to exhibit high strength characteristics. It was able to achieve higher strength by improving heat resistance strength through granting and securing draw ratio.

그러므로 본 발명에 의하면 산업용 폴리에스터 사에 있어서, 결정화도 45%~55%, 섬유축 방향의 결정크기 43~55Å 및 220℃에서 최대수축응력 0.20~0.45cN/dtex의 조건을 만족하는 것을 특징으로 하는 폴리에스터 사가 제공된다.Therefore, according to the present invention, in the industrial polyester yarn, it satisfies the conditions of 45% to 55% of crystallinity, 43 to 55Å of crystal size in the fiber axis direction, and a maximum shrinkage stress of 0.20 to 0.45 cN / dtex at 220 ° C. Polyester yarns are provided.

또한 본 발명에 의하면 상기한 특성의 폴리에스터 사를 제조하기 위한 바람직한 방법으로서, 방사구금을 통해 압출된 용융 폴리에스터를 후드히터와 단열판을 경유하여 지연냉각한 후 냉각,고화하는 것을 포함하는 직접방사연신에 의한 폴리에스터 사의 제조방법에 있어서, 방사속도를 600~1000m/분으로 하고, 단열판의 길이를 150~500mm로 하는 것을 특징으로 하는 폴리에스터 사의 제조방법이 제공된다.In addition, according to the present invention, a preferred method for producing a polyester yarn of the above characteristics, the direct spinning comprising the cooling and solidification after delayed cooling the molten polyester extruded through the spinneret through the hood heater and the insulation plate In the manufacturing method of the polyester yarn by extending | stretching, the manufacturing method of the polyester yarn is provided, The spinning speed is 600-1000 m / min, and the length of a heat insulation board is 150-500 mm.

또한 본 발명은 상기한 폴리에스터 사의 제조방법에서 용융압출된 폴리에스터의 단열판 체류시간이 0.0001∼0.15초 인 것을 특징으로 한다.
In addition, the present invention is characterized in that the heat insulating plate residence time of the melt-extruded polyester in the manufacturing method of the polyester company is 0.0001 ~ 0.15 seconds.

이하, 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르는 산업용 고강력 폴리에스터 사는 결정화도 45%~55%, 섬유축 방향의 결정크기 43~55Å 및 220℃에서 최대수축응력 0.20~0.45cN/dtex의 조건을 동시에 만족하는 것이다. Industrial high strength polyester yarn according to the present invention simultaneously satisfies the conditions of 45% to 55% crystallization degree, 43 ~ 55 결정 crystal size in the fiber axis direction and the maximum shrinkage stress 0.20 ~ 0.45 cN / dtex at 220 ℃.

고강력 산업용 폴리에스터사를 그 분자내부의 결정크기, 결정화 및 배향성을 상기한 수준으로 조절하면 고강력 및 형태안정성이 우수하여 열에 의한 강력저하가 적어 내열강력이 우수한 고강력 고분자원사의 특성을 발현한다. When the high-strength industrial polyester yarn is adjusted to the above-mentioned levels of crystal size, crystallization, and orientation, the high-strength and morphological stability are excellent. do.

여기서, 내열강력이란, 원사상태에서의 강력에 대한 후공정중 열처리공정을 거친후의 강력비를 나타내며, 내열강력이 100%인 경우, 열에 의한 강력손상이 없음을 나타낸다.Here, the heat resistant strength indicates the strength ratio after the heat treatment step during the post-process to the strength in the yarn state, and when the heat resistance is 100%, there is no strong damage due to heat.

이와 같은 내열강력 현상을 위해서는 열에 대한 분자구조변화를 최소로 할 수 있는 분자내부 구조가 요구되며, 통상, 고강력 고분자원사의 경우에는 후공정을 거치며 강력저하가 심하게 발생한다.For such a heat-resistant strong phenomenon, the internal structure of the molecule that can minimize the change in the molecular structure of heat is required, and in the case of high-strength polymer yarns, the strong degradation occurs severely through the post-process.

이는 분자내부 구조에 있어서 결정 크기가 작고, 타이사슬의 수가 많으며, 결정 및 비정영역의 배향성이 높기 때문에 발생되는 현상이다.This is a phenomenon caused by small crystal size, large number of tie chains, and high orientation of crystal and amorphous regions in the intramolecular structure.

이하, 본 발명에 따르는 산업용 폴리에스터사를 제조하기에 적합한 방법의 일예를 들어 설명하기로 한다. Hereinafter, an example of a method suitable for producing an industrial polyester yarn according to the present invention will be described.

본 발명의 산업용 폴리에스터사는 기존의 산업용 폴리에스터사 제조에 적용되어온 직접방사연신방식에 비해 방사속도를 증가시키고, 도 2에 예시되는 바와 같이 후드히터 직후에 단열판을 설치하여 지연냉각영역의 역할을 강화시키는 것에 의 해 제조할 수 있다. 즉, 기존의 고강력 산업용사 대비 방사속도를 높여줌으로써 결정배향성, 결정크기 그리고 결정화도를 향상시키고, 지연냉각영역을 강화시켜 고속방사에 의한 미연신사의 배향성(Δn ) 상승을 억제하는 것에 의해 제조할 수 있다. 이렇게 함으로써 결정영역의 구조는 강화되고, 비정영역의 구조는 제어함으로서 형태안정성 부여를 통한 내열강력 향상 및 연신배율을 확보하여 고강력화를 이룰 수 있게 된다.Industrial polyester yarn of the present invention increases the spinning speed as compared to the direct radiation stretching method that has been applied to the conventional industrial polyester yarn manufacturing, and as shown in Figure 2 by installing an insulating plate immediately after the hood heater serves as a delay cooling area It can manufacture by strengthening. In other words, by increasing the spinning speed compared to the existing high-strength industrial yarns to improve the crystal orientation, crystal size and crystallinity, by strengthening the delay cooling zone to suppress the increase in the orientation (Δn) of undrawn yarn by high-speed spinning Can be. In this way, the structure of the crystal region is strengthened, and the structure of the amorphous region is controlled to achieve high strength by improving heat resistance strength and drawing magnification by providing shape stability.

보다 구체적으로 설명하면, 본 발명의 사를 제조하기 위해서는 직접방사연신방식에 의한 산업용 사의 제조에서 방사속도를 600~1000m/분으로 높여주고, 가열후드 직우의 단열판 길이를 150~500mm로 길게하여 주는 것이 요구된다. More specifically, in order to manufacture the yarn of the present invention to increase the spinning speed to 600 ~ 1000m / min in the manufacture of the industrial yarn by the direct radiation drawing method, length of the insulation plate of the heating hood right to 150 ~ 500mm Is required.

본 제조방법에서, 방사속도는 600~1000m/min가 적합한데, 이는 방사속도가 600m/min 이하의 경우에는 형태안정성을 얻기 어려우며, 1000m/min 이상의 경우에는 모우발생 등으로 인한 조업성이 크게 떨어지며 원사품위가 떨어져 적용이 곤란하기 때문이다. In this manufacturing method, the spinning speed is suitable to 600 ~ 1000m / min, which is difficult to obtain the form stability when the spinning speed is less than 600m / min, the operation efficiency due to the occurrence of the moor, etc. is greatly reduced. This is because the yarn quality is difficult to apply.

또한 단열판의 길이가 150mm 보다 짧고, 체류시간이 0.001초에 못미치는 경우에는 소망하는 정도로 지연냉각의 효과를 발현하기 어려우며 길이가 500mm 보다 길고 체류시간이 0.15초를 초과하는 경우에는 고화점의 지나친 하락으로 인하여 방사장력의 급격하게 감소하게 되고, 그 결과 권취가 어렵게 된다.In addition, if the length of the insulation board is shorter than 150mm, and the residence time is less than 0.001 seconds, it is difficult to express the effect of delayed cooling as desired. If the length is longer than 500mm and the residence time exceeds 0.15 seconds, the excessive drop of the freezing point As a result, the radiation tension is drastically reduced, and as a result, winding is difficult.

특별히 제한하기 위한 것은 아니지만, 방사온도는 285~295℃가 적당하고, 이러한 방사온도에서 용융하여 압출시킨 용융 고분자(Melt Polymer)는 200~350mm 길이의 후드히터을 통과시키는 것이 바람직하다. 이때 후드히터의 온도는 290~380℃, 후드히터의 길이는 200~350mm로 하는 것이 적합하다. 이는 후드히터의 온도가 290℃ 보다 낮고, 길이가 200mm 보다 짧은 경우에는 연신성이 떨어져 제사가 곤란하며, 온도가 380℃ 보다 높고 길이가 350mm 보다 긴 경우에는 고분자의 분해유발로 인한 강력저하가 발생하기 때문이다. Although not particularly limited, the spinning temperature is appropriately 285-295 ° C, and the molten polymer extruded by melting at this spinning temperature is preferably passed through a hood heater having a length of 200-350 mm. At this time, the temperature of the hood heater is suitable to 290 ~ 380 ℃, the length of the hood heater is 200 ~ 350mm. If the temperature of the hood heater is lower than 290 ℃, and the length is shorter than 200mm, the elongation is difficult due to lack of elongation.If the temperature is higher than 380 ℃ and longer than 350mm, strong degradation occurs due to decomposition of polymer. Because.

압출된 용융 고분자는 후드히터 직후에 150~500mm 길이의 단열판구간을 0.001~0.15sec의 체류시간조건으로 하는 지연냉각영역을 지나가게 한 후 냉각(Quenching)된 후, 연신된다. 연신배율은 4.0~5.8배가 적당하고, 이완율을 4%이하로 하는 것이 적당하며, 열처리 및 이완온도는 200~245℃가 적당하다. 연신배율이 너무 낮으면 고강력의 특성을 발현하기 어려우며, 너무 높으면 모우발생 등으로 인하여 원사의 품의가 떨어지게 된다. 또한 연신 이완율이 너무 높으면 수축응력은 낮으나, 고강력의 특성을 발현하기 어렵고, 내열강력이 다소 떨어지므로 4%이하로 하는 것이 적당하다. 또한 열처리 및 이완온도가 너무 낮은 경우에는 수축율의 상승으로 인한 형태안정성 저하로 인해 내열강력의 저하가 심하게 발생하며, 너무 높은 경우에는 절사 및 고데트 로울러(Godet roller, G/R)상에 타르(Tar)의 발생이 빈번하여 조업성이 떨어질 수 있으므로 200~245℃의 범위에서 설정하는 것이 적당하다The extruded molten polymer is stretched after being cooled after passing a delayed cooling zone having a 150 to 500 mm long insulation plate section having a residence time of 0.001 to 0.15 sec, immediately after the hood heater. The stretching ratio of 4.0 to 5.8 times is appropriate, the relaxation rate of 4% or less is appropriate, the heat treatment and the relaxation temperature is suitable 200 ~ 245 ℃. If the draw ratio is too low, it is difficult to express the characteristics of high strength, if too high, the quality of the yarn falls due to the occurrence of the hair. In addition, if the stretching relaxation rate is too high, the shrinkage stress is low, but it is difficult to express the characteristics of high strength, and the heat resistance strength is somewhat lower, so it is appropriate to be 4% or less. In addition, if the heat treatment and relaxation temperature is too low, the deterioration of the thermal strength is severely generated due to the deterioration of the form stability due to the increase of the shrinkage rate, and if the heat treatment is too high, the tar (Godet, G / R) on the tar ( It is appropriate to set in the range of 200 ~ 245 ℃ because the occurrence of tar) is frequent and the operability may decrease.

또한, 원사의 섬도는 500~2000de' 범위에서 단사섬도 12.5de'이하로 하는 것이 적당하다. In addition, it is appropriate that the yarn fineness is within the range of 500 to 2000de 'and the single yarn fineness is 12.5de' or less.

이상 설명한 바와 같은 방법으로 제조된 원사는 고강력 및 형태안정성이 우수하여 열에 의한 강력저하가 적어 내열강력이 우수한 고강력 고분자원사의 특성을 발현한다. The yarn prepared by the method as described above has a high strength and form stability, has a low strength drop due to heat, and expresses the characteristics of a high strength polymer yarn having excellent heat resistance.

이하, 실시예를 들어 본 발명을 더욱 상세히 설명하기로 한다. 단, 본 발명은 하기 실시예로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.

<실시예 1> <Example 1>

도 2의 직접방사연신장치에서 산업용 폴리에스터 고상중합칩을 290℃의 방사온도에서 용융,토출시킨 멜트 폴리머를 온도 300℃ 길이 300mm의 후드히터를 통과시키고 그 직후에 길이 200mm의 단열판을 0.071초의 체류시간으로 통과시켜 지연냉각한 후 냉각,고화하였다. 방사속도 700m/min에서, 연신비를 5.65 배로 하고, 이완율을 1.5%로 하며, 열처리온도는 235℃, 이완온도는 230℃로 하여 1000 데니어의 산업용 폴리에스터 원사를 제조하였다. 제조된 원사의 특성을 다음과 같은 방법으로 측정하였다. 측정 결과는 표 2 및 3에 제시된다.
In the direct radiation stretching apparatus of FIG. After passing through time and cooling by delay, it was cooled and solidified. At a spinning speed of 700 m / min, the draw ratio was 5.65 times, the relaxation rate was 1.5%, the heat treatment temperature was 235 ° C., and the relaxation temperature was 230 ° C. to manufacture 1000 denier industrial polyester yarns. The properties of the yarn produced were measured by the following method. The measurement results are shown in Tables 2 and 3.

원사물성Yarn Properties

※ 강력 및 절신 : 만능측정기(INSTRON)를 사용하여 측정.※ Power and Body: Measured using INSTRON.

※ 수축율 : 무장력하에서 150℃×30분의 조건으로 열수축시킨 원사의 ※ Shrinkage: Yarn heat-shrunk under 150 ℃ × 30 minutes under no tension

수축전,후의 길이변화율로 나타냄.    Expressed as the length change rate before and after shrinkage.

수축율(%) = (L0-L1)/L0 × 100 Shrinkage (%) = (L 0 -L 1 ) / L 0 × 100

(여기서, L0는 열수축전의 원사길이, L1는 열수축후의 원사길이) (L 0 is yarn length before heat shrink and L 1 is yarn length after heat shrink)

※ 내열강력 : 무장력하에서 220℃×10분의 조건으로 열처리된 원사의 ※ Heat-resistant strength: Yarn heat treated at 220 ℃ × 10 minutes under tension

열처리 전,후의 강력변화율로 나타냄.   Expressed as a strong change rate before and after heat treatment.

내열강력(%)=(S0-S1)/S0 ×100 Heat Resistance Strength (%) = (S 0 -S 1 ) / S 0 × 100

(여기서, S0는 열수축전의 원사강력, S1는 열수축후의 원사강력)Where S 0 is yarn strength before heat shrink and S 1 is yarn strength after heat shrink

※ 수축응력 : 테스트라이트(TESTRITE)을 이용하여 220℃에서의 최대※ Shrinkage stress: maximum at 220 ℃ using test light

수축응력 측정.(단위:cN/dtex)
Shrinkage stress measurement (unit: cN / dtex)

분자 내부구조 분석Molecular Internal Structure Analysis

※ 복굴절율(Δn) : 편광현미경을 사용하여 측정.※ birefringence n): measured using a polarization microscope.

※ 결정배향성(fc) 및 비정배향성(fa) : 하기 식으로 계산.※ Crystal orientation (fc) and nonorientation (fa): calculated by the following equation.

Δn=fc·XcΔnc°+fa(1-Xc)·Δna° Δ n = fc X c Δ n c ° + fa (1-Xc) Δ n a °

단, Δnc°=0.29, Δna°=0.20However, Δ n c ° = 0.29, Δ n a ° = 0.20

※ 결정화도 : 밀도구매법으로 측정.※ Crystallization degree: Measured by density purchasing method.

※ 결정구조 : X-ray 회절법으로 측정.
※ Crystal structure: measured by X-ray diffraction method.

<실시예 2 내지 8 및 비교예 1><Examples 2 to 8 and Comparative Example 1>

표 1에 나타낸 바와 같이 제조공정조건을 변경한 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다. 각 예의 원사특성은 표 2 및 3에 제시된다.
The same procedure as in Example 1 was repeated except that the manufacturing process conditions were changed as shown in Table 1. Yarn properties of each example are shown in Tables 2 and 3.

구분division 후드히터Hood heater 단열판Insulation 방사속도 (m/min)Spinning speed (m / min) 연신배율 (배)Stretch ratio (times) 이완율 (%)Relaxation rate (%) 열처리 이완온도 (℃)Heat Treatment Relaxation Temperature (℃) 온도 (℃)Temperature (℃) 길이 (mm)Length (mm) 길이 (mm)Length (mm) 체류시간 (sec)Residence time (sec) 실시예 1Example 1 300300 300300 200200 0.01710.0171 700700 5.655.65 1.51.5 235/230235/230 실시예 2Example 2 370370 300300 250250 0.02140.0214 700700 5.655.65 2.02.0 245/240245/240 실시예 3Example 3 320320 250250 300300 0.02250.0225 800800 5.45.4 3.53.5 230/220230/220 실시예 4Example 4 320320 300300 400400 0.03000.0300 800800 5.45.4 2.02.0 235/230235/230 실시예 5Example 5 320320 250250 200200 0.02000.0200 600600 5.85.8 1.01.0 235/230235/230 실시예 6Example 6 320320 300300 170170 0.01130.0113 900900 5.05.0 1.51.5 240/230240/230 실시예 7Example 7 350350 330330 400400 0.02400.0240 10001000 4.54.5 1.51.5 240/230240/230 실시예 8Example 8 320320 300300 300300 0.02250.0225 800800 5.45.4 1.81.8 220/200220/200 비교예 1Comparative Example 1 320320 300300 100100 0.01090.0109 550550 5.755.75 1.81.8 220/160220/160

구분division 원사물성Yarn Properties 내열강력 (%)Heat resistance strength (%) 최대수축응력 (cN/dtex)Maximum Shrinkage Stress (cN / dtex) De′De ′ 강도(g/d)Strength (g / d) 절신(%)Body cut (%) 건수(%)Number of cases (%) 실시예 1Example 1 10001000 9.359.35 14.314.3 9.29.2 85.685.6 0.410.41 실시예 2Example 2 10001000 9.129.12 15.215.2 8.78.7 86.386.3 0.370.37 실시예 3Example 3 15001500 9.019.01 15.515.5 7.77.7 86.086.0 0.350.35 실시예 4Example 4 10001000 9.059.05 14.414.4 7.27.2 89.589.5 0.420.42 실시예 5Example 5 15001500 9.209.20 15.415.4 10.110.1 83.783.7 0.440.44 실시예 6Example 6 10001000 8.958.95 12.812.8 6.86.8 88.788.7 0.410.41 실시예 7Example 7 10001000 9.109.10 12.512.5 6.56.5 89.889.8 0.410.41 실시예 8Example 8 500500 9.139.13 14.114.1 8.08.0 87.887.8 0.430.43 비교예 1Comparative Example 1 10001000 9.129.12 15.515.5 10.810.8 82.582.5 0.460.46

구분division 분자배향성Molecular orientation 결정화도Crystallinity 결정구조Crystal structure 복굴절율(Δn)The birefringence n) 결정배향(fc)Crystal orientation (fc) 비정배향(fa)Non-orientation (fa) A105 A 105 A010 A 010 실시예 1Example 1 0.20740.2074 0.93540.9354 0.75130.7513 47.247.2 7575 4747 실시예 2Example 2 0.20880.2088 0.93460.9346 0.74850.7485 48.748.7 7171 5454 실시예 3Example 3 0.20800.2080 0.93090.9309 0.74130.7413 49.149.1 7272 5353 실시예 4Example 4 0.20890.2089 0.92170.9217 0.73650.7365 51.351.3 7070 5656 실시예 5Example 5 0.21040.2104 0.93850.9385 0.78650.7865 46.246.2 7575 4343 실시예 6Example 6 0.20580.2058 0.91220.9122 0.71320.7132 51.851.8 6969 5858 실시예 7Example 7 0.20760.2076 0.92330.9233 0.70850.7085 52.352.3 7070 5757 실시예 8Example 8 0.20930.2093 0.92950.9295 0.74130.7413 50.350.3 7373 4545 비교예 1Comparative Example 1 0.20970.2097 0.94320.9432 0.79130.7913 44.644.6 7676 4242

상기한 표 2 및 3의 결과로부터 알 수 있는 바와 같이, 본 발명에 따르는 산업용 폴리에스터 사는 우수한 형태안정성과 고강력을 가지면서 열에 의한 강력저하의 발생을 방지할 수 있는 등의 특성을 보유하므로, 후공정상에 있어서 열처리공정이 들어가며 필요에 따라 염색공정도 포함되어 강력저하현상이 발생하는 좌석벨트, 웨빙물 등의 제조에 원사로서 유용하게 적용할 수 있는 것이다. As can be seen from the results of Tables 2 and 3 above, the industrial polyester yarn according to the present invention has characteristics such as being able to prevent the occurrence of strong degradation due to heat while having excellent form stability and high strength, In the post process, heat treatment process is included and dyeing process is included if necessary, so that it can be usefully applied as a yarn for manufacturing seat belts and webbings where strong degradation occurs.

Claims (3)

고강력 폴리에스터 사에 있어서, 결정화도 45%~55%, 섬유축 방향의 결정크기 43~55Å 및 220℃에서 최대수축응력 0.20~0.45cN/dtex의 조건을 만족하는 것을 특징으로 하는 형태안정성이 우수한 고강력 폴리에스터 원사.High strength polyester yarn, excellent in form stability, characterized by satisfying conditions of 45% to 55% of crystallinity, 43 ~ 55Å of crystal size in the fiber axis direction, and maximum shrinkage stress of 0.20 ~ 0.45cN / dtex at 220 ° C. High strength polyester yarn. 방사구금을 통해 압출된 용융 폴리에스터를 후드히터와 단열판을 경유하여 지연냉각한 후 냉각,고화하는 것을 포함하는 직접방사연신에 의한 고강력 폴리에스터 사를 제조하는 방법에 있어서, 방사속도를 600~1000m/분으로 하고, 단열판의 길이를 150~500mm로 하는 것을 특징으로 하는 형태안정성이 우수한 고강력 폴리에스터 원사의 제조방법.In the method of producing a high-strength polyester yarn by direct radiation stretching, including cooling and solidifying the molten polyester extruded through the spinneret through the hood heater and the heat insulating plate through a delayed cooling, the spinning speed is 600 ~ A method for producing a high strength polyester yarn having excellent shape stability, characterized in that it is set to 1000 m / min and the length of the heat insulating plate is 150 to 500 mm. 제 2 항에 있어서, 용융압출된 폴리에스터의 단열판 체류시간이 0.0001∼0.15초 인 것을 특징으로 하는 형태안정성이 우수한 고강력 폴리에스터 원사의 제조방법. 3. The method of manufacturing a high strength polyester yarn having excellent shape stability according to claim 2, wherein the heat-insulating plate residence time of the melt-extruded polyester is 0.0001 to 0.15 seconds.
KR1020010002400A 2001-01-16 2001-01-16 Polyester filament yarn having dimensional stability and high strength. preparation thereof KR100648357B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010002400A KR100648357B1 (en) 2001-01-16 2001-01-16 Polyester filament yarn having dimensional stability and high strength. preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010002400A KR100648357B1 (en) 2001-01-16 2001-01-16 Polyester filament yarn having dimensional stability and high strength. preparation thereof

Publications (2)

Publication Number Publication Date
KR20020061368A KR20020061368A (en) 2002-07-24
KR100648357B1 true KR100648357B1 (en) 2006-11-23

Family

ID=27691837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010002400A KR100648357B1 (en) 2001-01-16 2001-01-16 Polyester filament yarn having dimensional stability and high strength. preparation thereof

Country Status (1)

Country Link
KR (1) KR100648357B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262714B1 (en) 2007-12-28 2013-05-10 주식회사 효성 High-strength Polyester fiber for Seat Belt and its manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719046B1 (en) * 2002-07-26 2007-05-16 주식회사 코오롱 A high strength low shrinkage polyester drawn yarn, and a process of preparing for the same
KR100719045B1 (en) * 2002-07-26 2007-05-16 주식회사 코오롱 A high strength low shrinkage polyester drawn yarn, and a process of preparing for the same
KR100668618B1 (en) * 2003-02-19 2007-01-12 주식회사 코오롱 The Method and Device for producing Polyester filament with high strength property
KR20120002498A (en) * 2010-06-30 2012-01-05 코오롱인더스트리 주식회사 Polyester fiber and preparation method thereof
KR101307440B1 (en) * 2013-01-28 2013-09-12 주식회사 텍스랜드앤넥스코 A method for manufacturing a cord yarn having improved stability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930003366A (en) * 1991-07-24 1993-02-24 김광호 Device Separation Method of Semiconductor Device
KR960003673A (en) * 1994-07-29 1996-02-23 배순훈 Dust backflow prevention device of vacuum cleaner dust chamber
KR0138170B1 (en) * 1995-09-11 1998-05-15 백영배 A polyester fiber for industrial use and the preparation process thereof
JPH10292222A (en) * 1997-02-20 1998-11-04 Teijin Ltd Highly hollow polyester fiber, and knitted fabric, pile textile product and nonwoven fabric structure each using the polyester fiber
KR100233305B1 (en) * 1995-12-30 1999-12-01 구광시 Polyester filament of tire cord
KR20000074040A (en) * 1999-05-18 2000-12-05 조정래 Industrial polyester fiber and preparation method thereof
KR20010086572A (en) * 2000-03-04 2001-09-13 구광시 Preparation of high strength polyester multifilament yarn having good dimensional stability and dyeability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930003366A (en) * 1991-07-24 1993-02-24 김광호 Device Separation Method of Semiconductor Device
KR960003673A (en) * 1994-07-29 1996-02-23 배순훈 Dust backflow prevention device of vacuum cleaner dust chamber
KR0138170B1 (en) * 1995-09-11 1998-05-15 백영배 A polyester fiber for industrial use and the preparation process thereof
KR100233305B1 (en) * 1995-12-30 1999-12-01 구광시 Polyester filament of tire cord
JPH10292222A (en) * 1997-02-20 1998-11-04 Teijin Ltd Highly hollow polyester fiber, and knitted fabric, pile textile product and nonwoven fabric structure each using the polyester fiber
KR20000074040A (en) * 1999-05-18 2000-12-05 조정래 Industrial polyester fiber and preparation method thereof
KR20010086572A (en) * 2000-03-04 2001-09-13 구광시 Preparation of high strength polyester multifilament yarn having good dimensional stability and dyeability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262714B1 (en) 2007-12-28 2013-05-10 주식회사 효성 High-strength Polyester fiber for Seat Belt and its manufacturing method

Also Published As

Publication number Publication date
KR20020061368A (en) 2002-07-24

Similar Documents

Publication Publication Date Title
KR100648357B1 (en) Polyester filament yarn having dimensional stability and high strength. preparation thereof
KR100719045B1 (en) A high strength low shrinkage polyester drawn yarn, and a process of preparing for the same
KR20010101646A (en) Method for producing polyester-based combined filament yarn
JPH04228605A (en) Spinning apparatus of synthetic molten fiber-forming polymer
KR20030035389A (en) A process for preparing a polyester multifilament yarn for the industrial use
WO2004011702A1 (en) A high strength low shrinkage polyester drawn yarn, and a process of preparing for the same
US4956446A (en) Polyester fiber with low heat shrinkage
KR100208055B1 (en) A spinning process for producing high strength, high modulus, low shrinkage synthetic yarns
US5733653A (en) Ultra-oriented crystalline filaments and method of making same
KR100602286B1 (en) Polyester fiber and preparation thereof
KR20040008998A (en) A high-strength and low-shrinkage polyester yarn and process for its preparation
KR100591210B1 (en) A technical polyester fiber with high tenacity and low shrinkage and its manufacturing method
KR100622205B1 (en) Preparation of high strength polyester multifilament yarn having good dimensional stability and dyeability
KR101047046B1 (en) A manufacturing method of polyester yarn
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
KR970010695B1 (en) Manufacturing method of polyester fiber
KR100719046B1 (en) A high strength low shrinkage polyester drawn yarn, and a process of preparing for the same
KR100624149B1 (en) A high strength low shrinkage polyester drawn yarn
KR100621142B1 (en) Method for preparing of polyester yarn having high smoothness
KR100211134B1 (en) The manufacturing method of polyester fiber
KR940011314B1 (en) High tenacity-low shrinkage polyester fiber and manufacturing method thereof
KR100668618B1 (en) The Method and Device for producing Polyester filament with high strength property
KR100484119B1 (en) Manufacturing method of polyester microfilament yarn
JPH04228612A (en) High tension, high initial modulus and low shrink properties drawing polyester thread
KR100193939B1 (en) How to make nylon 46 multifilament

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120912

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131028

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171101

Year of fee payment: 12