KR100580621B1 - 전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를이용한 표적 물질 검출방법 - Google Patents

전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를이용한 표적 물질 검출방법 Download PDF

Info

Publication number
KR100580621B1
KR100580621B1 KR1020030014482A KR20030014482A KR100580621B1 KR 100580621 B1 KR100580621 B1 KR 100580621B1 KR 1020030014482 A KR1020030014482 A KR 1020030014482A KR 20030014482 A KR20030014482 A KR 20030014482A KR 100580621 B1 KR100580621 B1 KR 100580621B1
Authority
KR
South Korea
Prior art keywords
compound
probe
integer
group
formula
Prior art date
Application number
KR1020030014482A
Other languages
English (en)
Other versions
KR20040079308A (ko
Inventor
한정임
차준회
임근배
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030014482A priority Critical patent/KR100580621B1/ko
Priority to US10/791,524 priority patent/US7129363B2/en
Priority to JP2004063010A priority patent/JP4588336B2/ja
Priority to CNB2004100352793A priority patent/CN1250538C/zh
Priority to DE602004014549T priority patent/DE602004014549D1/de
Priority to EP04005433A priority patent/EP1454906B1/en
Publication of KR20040079308A publication Critical patent/KR20040079308A/ko
Application granted granted Critical
Publication of KR100580621B1 publication Critical patent/KR100580621B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 전도성을 갖는 화합물에 관한 것으로, 구체적으로는 일반식(I)을 갖는 화합물에 관한 것이다.
Figure 112003008150427-pat00001
(I)
여기서, Y는
Figure 112003008150427-pat00002
또는 -NH- 그룹이고, R은 H, OH, 이탈기(leaving group), 또는 프로브 그룹이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.
전도성, 티오펜, 전극, 센서

Description

전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를 이용한 표적 물질 검출방법{A conductive compound, an electrode and a sensor containing the same and a method for detecting a target molecule using the sensor}
도1은 본 발명의 전도성 화합물이 도포된 전극을 포함하는 센서의 일예를 나타내는 구성도이다.
도2는 본 발명의 전도성 화합물이 도포된 전극을 포함하는 센서의 다른 일예를 나타내는 구성도이다.
도3은 금 박막 상의 MTPAA 단분자막을 FTIR 분석한 결과를 나타낸다.
도4는 단분자막 형성, 프로브 고정화, DNA 혼성화에 이르기까지 전체적인 공명각의 변화를 시간에 따라 나타낸 센소그램(sensogram)이다.
도5는 MTPAA 단분자막의 순환성 볼타모그램이다.
도6은 전기화학적으로 안정화된 MTPAA 단분자막에 HNS/EDC로 처리한 후 프로브 ssDNA를 고정화 후 측정한 순환성 볼타모그램이다.
본 발명은 전도성을 갖는 신규한 화합물, 상기 화합물이 도포된 전극 및 상 기 전극을 포함하는 센서 및 상기 센서를 이용한 표적 검출방법에 관한 것이다.
현재 전기화학의 원리를 이용한 생체 물질 검지용 센서개발에 많은 연구가 진행되고 있다. 전기화학의 원리를 사용하게 되면 소형화하기 쉽다는 장점 때문에 이온센서, 가스센서 및 바이오센서 등에 많은 연구의 진전이 있었다. 생체 물질 중에서도 DNA 혼성화 유무에 대한 정보 또는 단백질 3차 구조의 변화를 모니터하는 것은 유전체학(genomics), 프로테오믹스(proteomics) 분야에서 매우 중요하다. 이를 위해서 전기화학적 활성을 가진 유기물을 이용한 센서 및 전도성 고분자를 이용한 센서의 개발이 있었다. 인터칼레이터(intercalator)를 이용한 센서의 경우 현재 시판을 앞두고 있을 정도로 많은 연구가 진행되어 왔다.
한편, 전도성 고분자의 경우, 전극에서 중합되는 대표적인 몇 가지 단량체만을 이용해야 하며 이 중합된 고분자 자체의 물성 제어의 어려움으로 상대적으로 연구가 더디게 진행되어왔다. 대표적인 전도성 고분자 센서로 이용되어지는 물질로는 피롤(pyrrole), 티오펜(thiophene), 아닐린(aniline) 등이 이용되지만 아닐린의 경우 산성 조건에서 그 효과가 나타나므로 피롤과 티오펜이 주 연구대상이 되어왔다.
그 중에서도 피롤의 경우 낮은 산화전위로 인하여 장시간 두고 사용하기가 용이하지 못하다(참조:미합중국 특허 제 6,201,086호). 티오펜의 경우 피롤보다 높은 산화전위를 유지하지만 더 소수성을 띠므로 물을 기본 용매로 사용하는 생체분자를 적용하는 시스템에 적합하지 않은 점이 있다(참조:Bauerle P. 및 Emge, A., Adv. Mater., 3: 324(1998)).
상기와 같은 전도성 고분자를 이용하여는 경우, 폴리피롤 또는 폴리티오펜의 사슬 길이를 제어할 수 없어 폴리머 박막의 두께가 불균일하게 되는 문제점이 있었다. 이러한 문제점으로 인하여, 상기 고분자를 포함하는 센서는 보통 확산이 요구되는 DNA와 같은 극미량의 표적 물질 검출에는 적합하지 않다. 또한, 사슬길이의 제어가 불가능함으로 표적 물질과의 반응에 의하여 발생하는 신호의 재현성도 낮았다.
이에, 박막의 두께를 균일하게 제어할 수 있는 자기조립 단분자막을 형성하려는 연구가 진행되었고, 본 발명자들은 최초로 자기조립 단분자막을 형성하는 신규의 전도성 화합물을 합성하였다.
결국, 본 발명의 목적은 전도성을 갖는 새로운 화합물을 제공하는 것이다.
또한, 본 발명의 목적은 상기 전도성 화합물을 포함하는 전극 및 이 전극을 포함하는 센서를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 센서를 이용하여 표적 물질을 검출하는 방법을 제공하는 것이다.
본 발명은 다음의 일반식(I)을 갖는 화합물을 제공한다.
하기 일반식(I)의 화합물:
Figure 112003008150427-pat00003
(I)
여기서, Y는
Figure 112003008150427-pat00004
또는 -NH- 그룹이고, R은 H, OH, 이탈기(leaving group), 또는 프로브 그룹이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다. 본 발명에 있어서 "이탈기(leaving group)"란 통상적으로 친핵체(nucleophile)에 의한 치환반응 과정에서 이탈하는 경향을 가진 그룹으로서, 통상 이탈하여 음전하를 띠는 화합물이다. 상기 이탈기에는 예를 들면, 히드록시숙신이미딜(hydroxysuccinimidyl),히드록시프탈이미딜(hydroxyphthalimidyl), 펜타플루오로페놀릴(pentafluorophenolyl), 4-클로로벤질알콜릴(4-chlorobenzyl alcoholic) 기, TsO-, I-, Br-, Cl-가 포함된다.
본 발명에 있어서, "프로브"란 특정화합물에 특이적으로 결합할 수 있는 화합물을 말한다. 상기 프로브에는 핵산 또는 단백질이 포함된다. 구체적으로는, DNA, RNA, PNA(peptide nucleic acid), 항체, 항원, 효소, 기질 또는 조효소가 포함된다. 본 발명은 상기 프로브가 본 발명의 전도성 고분자에 고정화된 상태에서, 그와 특이적으로 결합하는 화합물(수용체라고도 한다)과 결합시키고 그로부터 발생하는 전기적 신호를 측정하여 특정한 화합물을 검출할 수 있도록 하는 전극 또는 그를 이용한 검출방법을 제공한다.
상기 본 발명의 화합물은 전기 전도성을 가지는 화합물로서, 상기 화합물이 도포된 금 전극, 이 전극을 포함하는 센서에 사용될 수 있다. 상기 화합물은 바람직하기로는, Y는
Figure 112003008150427-pat00005
그룹이고, R은 OH이고, l은 5이고, m은 1이고, n은 1인 화학식(II)의 화합물, 또는 Y는
Figure 112003008150427-pat00006
그룹이고, R은 히드록시프탈이미딜 (hydroxyphthalimidyl) 그룹이고, l은 5이고, m은 3이고, n은 1인 화학식(III)의 화합물이다.
Figure 112003008150427-pat00007
(II)
Figure 112003008150427-pat00008
(III)
상기 화학식(II)의 화합물은 바람직하기로는 다음의 과정에 의하여 합성될 수 있다.
Figure 112003008150427-pat00009
또한, 상기 화학식(III)의 화합물은 바람직하기로는 다음의 과정에 의하여 합성될 수 있다.
Figure 112003008150427-pat00010
본 발명은 또한, 하기 일반식(IV)의 화합물을 티오우레아 (thiourea)와 반응시켜 일반식(I)의 화합물을 제조하는 방법을 제공한다.
Figure 112003008150427-pat00011
(IV)
여기서, Y는
Figure 112003008150427-pat00012
또는 -NH- 그룹이고, R은 H, OH, 이탈기, 또는 프로브 그룹이고, X는 할로겐이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다. 상기 이탈기는 바람직하기로는, 히드록시숙신이미딜 (hydroxysuccinimidyl),히드록시프탈이미딜 (hydroxyphthalimidyl), 펜타플루오로페놀릴 (pentafluorophenolyl), 또는 4-클로로벤질알콜릴(4-chlorobenzyl alcoholic) 기이다. 상기 반응은 염기성 조건하에서 반응시키고, 중화시키는 단계를 포함하는 것일 수 있다.
본 발명은 또한, 하기 일반식(V)의 화합물과 하기 일반식(VI)의 화합물을 반응시키는 단계를 포함하는 일반식(I)의 화합물을 제조하는 방법을 제공한다.
Figure 112003008150427-pat00013
(V)
Figure 112003008150427-pat00014
(VI)
여기서, R1, R2, 및 R3은 각각 C1-C8의 알킬기이고, Y는
Figure 112003008150427-pat00015
또는 -NH- 그룹이고, R은 H, OH, 이탈기, 또는 프로브 그룹이고, X는 할로겐이고, l은 3 내지 6의 정수이고, m1 및 m2는 각각 1 내지 4의 정수이고, 2 ≤ m1 + m2 ≤4이고, n은 0 내지 3의 정수이다. 상기 이탈기는 바람직하기로는, 히드록시숙신이미딜 (hydroxysuccinimidyl),히드록시프탈이미딜 (hydroxyphthalimidyl), 펜타플루오로페놀릴 (pentafluorophenolyl), 또는 4-클로로벤질알콜릴(4-chlorobenzyl alcoholic)기이다.
본 발명은 또한 상기 전도성 화합물이 도포된 전극을 제공한다. 전극 물질은 금과 같은 통상적으로 사용되는 재질이 사용될 수 있다.
또한, 본 발명은 상기 전도성 화합물이 도포된 전극을 포함하는 센서를 제공한다. 상기 센서는 상기 전도성 화합물이 도포된 전극을 포함하는 것을 제외하고는, 통상적인 센서의 구성 성분으로 구성된다. 상기 센서에는 통상적으로 사용되는 작업전극, 카운터 전극 및 표준 전극이 포함될 수 있다.
도1은 본 발명의 전도성 화합물이 도포된 전극을 포함하는 센서의 일예를 나타내는 구성도이다. 도1에 나타낸 바와 같이, 상기 센서는 프로브(8)가 공유결합된 본 발명의 전도성 화합물(6)이 도포된 작업전극(4), 카운터 전극(12) 및 표준 전극(14)을 포함하는 전극 및 전압을 측정할 수 있는 정전압계(2)로 구성된다. 상기 센서 중의 프로브가 공유결합된 본 발명의 전도성 화합물이 도포된 작업전극(4)은 다음의 과정에 의하여 제조될 수 있다. R이 H, OH, 히드록시숙신이미딜 (hydroxysuccinimidyl),히드록시프탈이미딜 (hydroxyphthalimidyl), 펜타플루오로페놀릴 (pentafluorophenolyl), 또는 4-클로로벤질알콜릴(4-chlorobenzyl alcoholic) 기인 일반식(I)의 화합물을 기판 위에 고정화하여 자기조립 단분자막을 형성하고, 프로브 예를 들면 DNA를 여기에 커플링하여 프로브가 공유결합된 본 발명의 전도성 화합물이 도포된 전극을 제조할 수 있다. 또한, R이 프로브인 일반식(I)의 화합물을 먼저 합성한 후 기판 상에 고정화하여 자기조립 단분자막을 형성함으로써, 프로브가 공유결합된 본 발명의 전도성 화합물이 도포된 전극을 제조할 수도 있다. 이렇게 제조된 전극을 센서의 작업전극(WE: working electrode)으로 사용한다.
본 발명의 상기 센서를 이용하여 시료중의 표적 물질(10)을 검출할 수 있다. 센서의 작업전극에 결합된 프로브(8)와 시료를 접촉시키면 시료에 존재하는 표적 물질(10)이 프로브와 혼성화되고, 이 혼성화 반응에 의하여 전압 또는 전류의 변화가 발생한다. 이러한 전압 또는 전류의 변화를 측정함으로써 시료 중의 표적 물질(10)을 검출할 수 있다(도1).
상기 전압 또는 전류의 변화는 다음과 같은 기작에 의하여 발생하는 것으로 생각되나, 여기에 한정되는 것은 아니다. 특정 산화/환원 전위에서 측정되는 전류의 양은 기판 상의 전도성 화합물이 이중 공액상태(delocalization)를 형성하는 정도에 의존한다. 본 발명의 전도성 화합물에 공유결합된 프로브가 표적 물질과 혼성화되는 경우, 혼성되지 않는 경우보다 이중 공액상태의 형성 정도가 낮다. 따라서, 프로브와 표적 물질이 혼성화되는 경우, 전류양은 감소하게 된다. 예를 들면, DNA 프로브가 표적 DNA와 혼성화되어 이중 가닥 DNA를 형성하게 되면, 전류양이 감소한다. 그러므로, 프로브와 표적 물질의 혼성화 여부에 따른, 산화/환원 전류의 감소 또는 산화/환원 전위의 증가를 측정함으로써 표적 물질을 검출할 수 있게 되는 것이다.
도2는 본 발명의 전도성 화합물이 도포된 전극을 포함하는 센서의 다른 일예를 나타내는 구성도이다. 상기 센서는 작업전극(4), 카운터 전극(12), 참조 전극(14)으로 구성된다. 상기 작업 전극에는 본 발명의 전도성 화합물이 도포되어 있다.
또한, 본 발명은 하기 단계를 포함하는 표적 물질을 검출하는 방법을 제공한다.
(a) 하기 화학식(I)의 화합물을 금 기판 위에 고정화하여 자기조립 단분자막을 형성하는 단계;
Figure 112003008150427-pat00016
(I)
[여기서, Y는
Figure 112003008150427-pat00017
또는 -NH- 그룹이고, R은 H, OH, 또는 이탈기이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
(b) 상기 단분자막의 표면에 프로브를 반응시키는 단계;
(c) 상기 단분자막의 프로브와 특이적으로 반응하는 표적 물질을 접촉시키는 단계; 및,
(d) 상기 표적 물질이 프로브와 결합된 상기 화학식(I)의 화합물과,상기 표적 물질이 프로브와 결합되지 않은 상기 화학식(I)의 화합물의 전기적 신호의 차이를 측정하여 표적 물질을 검출하는 단계.
상기 이탈기는 바람직하기로는, 히드록시숙신이미딜 (hydroxysuccinimidyl),히드록시프탈이미딜 (hydroxyphthalimidyl), 펜타플루오로페놀릴 (pentafluorophenolyl), 또는 4-클로로벤질알콜릴(4-chlorobenzyl alcoholic) 그룹이다. 상기 (d) 단계에서 "표적 물질이 프로브와 결합되지 않은 화학식(I)의 화합물이란, 어떠한 화합물도 프로브와 결합되어 있지 않은 경우 뿐만 아니라, 어떠한 화합물이 프로브와 결합되어 있더라도 그 결합 친화성이 다른 경우도 포함된다. 예를 들면, 표적 물질이 특정한 뉴클레오티드 서열을 갖는 DNA인 경우, 어떠한 폴리뉴클레오티드도 결합하지 않는 경우뿐만 아니라, 하나 이상의 뉴클레오티드가 비상보적인 염기로 치환된 뉴클레오티드를 갖는 폴리뉴클레오티드가 결합된 경우도 포함한다.
또한, 본 발명은 하기 단계를 포함하는 표적 물질을 검출하는 방법을 제공한다.
(a) 하기 화학식(I)의 화합물을 금 기판 위에 고정화하여 자기조립 단분자막을 형성하는 단계;
Figure 112003008150427-pat00018
(I)
[여기서, Y는
Figure 112003008150427-pat00019
또는 -NH- 그룹이고, R은 프로브 그룹이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
(b) 상기 단분자막의 프로브와 특이적으로 반응하는 표적 물질을 접촉시키는 단계; 및,
(c) 상기 표적 물질이 프로브와 결합된 상기 화학식(I)의 화합물과,상기 표적 물질이 프로브와 결합되지 않은 상기 화학식(I)의 화합물의 전기적 신호의 차이를 측정하여 표적 물질을 검출하는 단계.
상기 전기적 신호는 전압 또는 전류가 포함되나 여기에 한정되는 것은 아니다. 상기 프로브는 예를 들면, 핵산 또는 단백질이 포함되며, 구체적으로는 DNA, RNA, PNA, 항체, 항원, 효소, 기질 또는 조효소가 될 수 있다. 또한, 상기 표적 물질은 핵산 또는 단백질이 될 수 있다. 상기 (d) 단계에서 "표적 물질이 프로브와 결합되지 않은 화학식(I)의 화합물이란, 어떠한 화합물도 프로브와 결합되어 있지 않은 경우 뿐만 아니라, 어떠한 화합물이 프로브와 결합되어 있더라도 그 결합 친화성이 다른 경우도 포함된다. 예를 들면, 표적 물질이 특정한 뉴클레오티드 서열을 갖는 DNA인 경우, 어떠한 폴리뉴클레오티드도 결합하지 않는 경우뿐만 아니라, 하나 이상의 뉴클레오티드가 비상보적인 염기로 치환된 뉴클레오티드를 갖는 폴리뉴클레오티드가 결합된 경우도 포함한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예 에 의해 제한되는 것은 아니다.
실시예
실시예1: 화학식(II)의 화합물의 합성
본 실시예에서는 화학식(II)의 화합물을 합성하였다. 화학식(II)의 화합물은 본 발명의 제조방법에 따른 하기 흐름도에 따라 합성하였다.
Figure 112003008150427-pat00020
1. 중간체(1)의 합성
30 ml 2-네크(neck) 둥근 바닥 플라스크에 Ar 기류하에서 AlCl3 (312 mg, 2.34 mmole)을 디클로로메탄(dichlomethane) 6 ml 와 CS2 6 ml의 혼합 용매에서 교반시켰다. 수조(water bath)에서 급격한 발열을 방지하면서 2-티오펜아세틱산 (2-thiopheneacetic acid) (277 mg, 1.95 mmole)을 디클로로메탄 2 ml 와 CS2 2 ml의 혼합용매에 녹인 용액을 5 분 동안 적가하였다. 실온에서 20 분 동안 교반한 후 3 시간 동안 환류(reflux)시켰다.
클로로포름 : 메탄올 = 4 : 1 의 혼합용매로 칼럼 정제하여 중간체(1)를 410 mg (y = 52.7 %)을 흰색고체로 얻었다. 얻어진 중간체(1)의 NMR 및 FT-IR 확인 결과는 다음과 같았다.
1H-NMR(CDCl3, 400 MHz) :
δ7.51(d, J=4.0 Hz, 1H), 6.92(d, J=4.0 Hz, 1H), 3.82(s, 2H), 3.33(t, J=6.8 Hz, 2H), 2.81(t, J=7.3 Hz, 2H), 1.80(m, 2H), 1.66(m, 2H), 1.43(m, 2H)
FT-IR ( KBr ) :
3430(CO2H), 2950, 2845(C-H), 1650(C=O), 1590, 1450 cm-1
2. 화합물(II)의 합성
30 ml 2-네크 둥근 바닥 플라스크에 중간체(1) (204 mg, 0.511 mmole)을 티오우레아(thiourea) (78 mg, 1.02 mmole)와 함께 DMSO 2.0 ml에서 Ar 기체 하에서 실온 12 시간 동안 교반하였다. 그 후 10 % NaOH 3.2 ml를 투입하고 1 시간 더 교반하고, 1 M HCl 용액으로 pH = 2 내지 3 으로 조절(약 8 ml 1 M HCl 용액 소요) 하여 에틸아세이트(EtOAc)로 추출하였다. 이를 칼럼 정제하여 목적화합물(II) [5-(6-머캅토-헥사노일)-티오펜-2-일]-아세트산([5-(6-Mercapto-hexanoyl)-thiophen-2-yl]-acetic acid) (MTPAA)을 105 mg(y = 75.4 %) 얻었다. 얻어진 화합물(II)의 NMR 및 FT-IR 확인 결과는 다음과 같았다.
1H-NMR(CDCl3, 400 MHz) :
δ7.35(d, J=3.3 Hz, 1H), 6.92(s, 1H), 3.60(s, 2H), 2.70(t, J=7.1 Hz, 2H), 2.42(m, 2H), 1.25- 1.65(m, 6H)
FT-IR ( KBr ) :
3430(CO2H), 2950, 2840(C-H), 1650(C=O), 1580, 1450 cm-1
실시예2: 화학식(III)의 화합물의 합성
본 실시예에서는 화학식(III)의 화합물을 합성하였다. 화학식(III)의 화합물 은 본 발명의 제조방법에 따른 하기 흐름도에 따라 합성하였다.
Figure 112003008150427-pat00021
1. 중간체(1)의 합성
250 ㎖ 2-네트 둥근바닥 플라스크에 2'2-비티오펜(2'2-Bithiophene) (3 g, 18 mmol)을 넣고 DMF 50 ㎖를 가하여 교반시켰다. 얼음조(ice bath) 하에 NBS(N-Bromsuccimide) (3.2 g, 18 mmol)를 DMF 10 ㎖에 녹여 천천히 적가하였다.
반응 종결후 메틸렌 클로라이드(methylene chloride)로 추출한 후 메탄올(MeOH)로 재결정하여 연노란색의 고체 화합물 2.5 g (56 %)을 얻었다. 얻어진 중간체(1)의 NMR 분석 결과는 다음과 같았다.
1HNMR (CDCl3 400MHz ) : δ=6.91(1H, d), 6.96(1H, d), 7.00(1H, dd), 7.22(1H)
2. 중간체(2)의 합성
화합물(1) (3 g, 12 mmol)에 Pd(PPh3)4(tetrakis triphenyl phosphine palladium)을 넣고 정제된 톨루엔 50 ㎖에 녹여 교반시켰다. 여기에 트리부틸틴 클로라이드(tributyltin chloride) (4.76 g, 12 mmol)를 천천히 적가한 후 80℃ 에서 4 시간 동안 반응시켰다. 반응 종결 후 헥산으로 칼럼 정제하여 연두빛의 고체 화합물 4.2 g (78 %)을 얻었다. 얻어진 중간체(2)의 NMR 및 FR-IR 분석 결과는 다음과 같았다.
1HNMR (CDCl3 400MHz) : δ=7.19(1H, d), 7.10(1H, d), 6.98(1H, d), 6.85(1H, d), 6.82(1H, d), 1.60(6H, m), 1.30(12H, m ), 0.90(9H, t)
FT-IR ( KBr ) : 2950, 2850(C-H), 1590(C=C), 1450(C-H), 1375(C-H) cm-1
3. 중간체(3)의 합성
2-티오펜 아세트산(2-thiophene acetic acid) (3 g, 21.1 mmol)과 N-히드록시플탈이미드(N-Hydroxyphalimide) (3.44 g, 21.1 mmol)을 클로로포름 50 ㎖에 넣고 교반시켰다. 여기에 DCC(1,3-Dicyclohexylcarbodiimide) (4.35 g, 21.1 mmol)를 넣고 3시간 교반시켰다. 반응 종결후 헥산으로 트리튜레이션(trituration)하여 흰색의 고체 화합물 5.8g (91 %)을 얻었다. 얻어진 화합물의 NMR 및 FT-IR 분석결과는 다음 같았다.
1HNMR (CDCl3 400MHz ) : δ=7.80(4H, dd), 7.25(1H, d), 7.10(1H, d), 7.00(1H, d), 4.20(2H, s)
FT-IR(KBr) : v = 1741, 1359, 1139 cm-1
4. 중간체(4)의 합성
화합물(3) (5.4 g, 17.8 mmol)에 DMF 50 ㎖를 넣고 교반시킨 후, 여기에 NBS (3.17 g, 17.8 mmol)을 첨가하여 3 시간 동안 교반시켰다. 반응 종결후 메틸렌 클로라이드로 추출한 후, 다시 메틸렌 클로라이드로 칼럼 분리하여 주황색을 띄는 흰색 고체 화합물 3.57 g (52 %)을 얻었다. 얻어진 화합물의 NMR 및 FT-IR 분석결과는 다음 같았다.
1HNMR(CDCl3 400MHz ) : δ=7.80(4H, dd), 6.90(1H, d), 6.80(1H, d) 4.10(2H,s)
FT-IR(KBr) : v = 1743, 1363, 1074 cm-1
5. 중간체(5)의 합성
AlCl3 (0.7 g, 5.3 mmol)을 CS2 10 ml와 메틸렌 클로라이드 10 ml의 혼합물에 녹인 후 교반시켰다. 여기에 화합물(2) (2 g, 5.55 mmol)을 CS2 3 ml와 메틸렌 클로라이드 3 ml의 혼합물에 녹여 적가하였다. 다시 여기에 6-브로모헥사노일 클로라이드(6-Bromohexaonyl Chloride) 0.67 ml를 적가한 후 하룻밤 환류(reflux) 하였다. 반응 종결 후 메틸레노 클로라이드로 칼럼 정제하여 노란색의 고체 화합물 1.7 g (70 %)의 수율로 얻었다. 얻어진 화합물의 NMR 및 FT-IR 분석결과는 다음 같았다.
1HNMR(CDCl3 400MHz ) : δ = 8.0(1H, s), 7.5(1H, d ), 7.15-6.95(2H, t), 3.40(2H, t), 1.9(2H, t), 1.8-1.25(26H, m), 0.9(9H, t)
FT-IR(KBr) : 2950, 2850(C-H), 1650(C=O), 1590(C=O), 1450(C-H), 1375(C-H) cm-1
6. 중간체(6)의 합성
화합물(5) (1.7 g, 3.16 mmol)에 티오우레아(thiourea) (0.48 g, 6.32 mmol)을 넣고 DMSO 30 ml에 녹인 후 실온에서 12 시간 동안 교반하였. 여기에 10 % NaOH 10 ml를 투입하고 1시간 더 교반한 뒤 1M HCl 용액으로 pH = 2-3 으로 조절하였다. 에틸아세테이트(EtOAc)로 추출 한뒤 헥산으로 재결정하여 노란색의 고체 화합물 0.9 g (58 %)을 얻었다.
1HNMR(CDCl3 400MHz ) : δ= 7.5(1H, s), 7.3(1H, d), 7.15-6.95(2H, t), 2.85(2H, t), 2,7(2H, t), 2.5(1H,t) 1.8-1.1(24H, m), 0.9(9H, t)
FT-IR ( KBr ) : 2950, 2850(C-H), 1645(C=O), 1588(C=O), 1450(C-H), 1375(C-H) cm-1
실시예3: 화학식(I)의 화합물(MTPAA)의 단분자막의 형성 및 프로브의 고정화
1. 화학식(I)의 화합물(MTPAA)의 단분자막의 형성
본 실시예에서는 다음과 같이 화학식(I)의 화합물(MTPAA)을 금 박막(Au plate)에 고정화여, 단분자막(SAM)을 형성하였다. 먼저, 금 전극을 0.05, 0.3 및 5 ㎛의 알루미나 슬러리(alumina slurry)로 폴리싱(polishing)한 후, 1.0 M H2SO4 용액에서 전기화학적인 표면 활성 처리(-0.1 ~ +1.5 V, 200 mv/s, 80 회)하였다. 다음으로, 0.1mM의 티오펜을 녹인 DMSO 용액에서 15시간 동안 SAM을 형성하였다. 상기 반응에 사용한 DMSO는 굴절율 (nD20=1.479)이 커 공명각을 확인할 수 없기 때문에 금 박막에 MTPAA 단분자막이 형성되는 단계를 확인할 수 없었다. 그러나, MTPAA가 금 박막 상에 단분자막을 형성하였는지 여부는 전기화학적 방법과 FTIR-RAS로 확인하였다. 이 중 입사각 80˚로 FTIR-RAS 스펙트럼으로 분석 결과는 다음과 같다.
그 결과, 스펙트럼 상에 나타난 피크의 위치가 SAM과 KBr 펠렛에서의 결과와 비교해 본 결과 단파수 쪽으로 이동한 것을 확인하였다. 그리고, 스펙트럼 상에 2850~2960 ㎝-1에서 CH 스트레칭 모드(stretching mode)가 선명하게 나타나고 있기 때문에, 금(Au) 표면 위의 MTPAA의 SAM이 매우 규칙적인 형태로 배열하여서 존재하고 있는 것을 확인하였다. 이때 CH 스트레칭 모드 중 대칭 모드(symmetry) 대 비대칭 모드(asymmetry mode)의 상대적 밴드 세기로부터, 제조된 단분자막이 잘 정렬된 자기조립 단분자막임을 알 수 있었다 (도3).
2. 프로브의 고정화
상기 MTPAA의 단분자막에 프로브 ssDNA(5'-NH2-GTTCTTCTCATCATC-3': 서열번호 1)를 고정화하고 그 특성을 SPR (surface plasmon resonance)를 통하여 분석하였다.
상기 MTPAA 단분자막에 5'-아민기를 갖는 ssDNA를 고정화하였다. 고정화 반응은 NHS (N-hydroxysuccinimide)와 EDC (1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride)를 사용하여 MTPAA의 카르복실기을 굳리빙 그룹(good leaving group)인 NHS로 치환한 후 아미드(amide) 결합을 형성하였다. 이 단계는 NHS, EDC와 ssDNA를 동시에 사용하는 한 단계 반응으로 알려져 있다 (Langmuir 16, 3272, 2000).
도4는 단분자막 형성, 프로브 고정화, DNA 혼성화에 이르기까지 전체적인 공명각의 변화를 나타낸다. 도4에서, 1은 MTPAA 단분자막이 형성된 금 박막(Au plate)에 순수한 PBS 버퍼, 2는 NBS와 EDC가 포함된 PBS 버퍼, 3은 프로브 ssDNA를 녹인 PBS, 4는 DNA 고정화가 된 후 PBS 버퍼로 세척한 후, 5는 순수한 TE 버퍼, 6은 표적 ssDNA가 포함된 TE 버퍼, 7은 혼성화가 끝난 후 TE 버퍼로 세척하였을 때, 8은 PBS 버퍼를 주입하였을 때 공명각의 변화를 나타낸다.
도4에 나타낸 바와 같이, 형성된 MTPAA 단분자막에 PBS 버퍼로 채운 후 안정화되었을 때의 공명각은 순수한 PBS 버퍼일때 51.560, NHS/EDC가 포함된 PBS 버퍼일때 51.620로 각각 나타났다. PBS 버퍼가 채워진 상태에서 프로브 ssDNA를 주입하면 51.732로 증가함을 볼 수 있다. 프로브 주입 후 시간이 지남에 따라 초기에는 서서히 공명각이 작아지다가 차츰 증가하기 시작하여 포화되고, 이때의 공명각은 51.762이다. 이는 MTPAA 단분자막 상태에서 ssDNA가 서서히 물리흡착에서 화학흡착으로 고정화되면서 정렬되기 때문일 것으로 추측된다.
ssDNA를 고정화시키고 난 후 PBS 버퍼로 세척하였을 때의 공명각은 51.701인데, 최초 MTPAA 단분자막(51.560)은 ssDNA가 고정화(51.701)되면서 0.141 오른쪽으로 이동하였다. SPR의 공명각의 이동은 굴절율과 막의 두께가 영향을 미치기 때문에 MTPAA 단분자막의 굴절율과 두께의 변화는 공명각 변화로 나타난다. 따라서 프로브 ss-DNA가 고정화되었다는 것을 알 수 있었다.
TE 버퍼가 주입되었을 때 공명각이 52.017에서 표적 ssDNA가 주입되었을 때 52.269로 증가하였다. 시간이 지나면서 서서히 증가하여 포화되는 것을 확인 할 수 있었다. 완전히 포화되었을 때 공명각은 52.285가 되었다가 비특이적 결합(nonspecific binding)을 제거하기 위해서 TE 버퍼로 세척하였고, 그 결과 52.221로 감소하였다. 또한, PBS 버퍼 속에서 측정한 프로브 ssDNA의 공명각도와 비교하기 위하여 TE 버퍼 대신 PBS 버퍼를 주입하여 측정한 결과 51.802인 것을 확인하였다. 이 결과로부터, TE 버퍼 속에서 0.252 오른쪽으로 이동하였고, PBS 버퍼 속의 프로브 DNA (51.701)와 PBS 버퍼 속의 혼성화된 DNA(51.802)의 공명각 이동으로부터 상보적 결합을 형성하고 있다는 것을 다시 확인할 수 있었다.
실시예4: 화학식(I)의 화합물(MTPAA)의 단분자막의 형성, 프로브의 고정화 및 표적 DNA의 혼성화 및 전기화학적 특성의 측정
1. 화학식(I)의 화합물의 단분자막의 형성
금 전극 상에 MTPAA 단분자막을 다음과 같이 형성하였다. 금 전극을 0.05, 0.3 및 5 ㎛의 알루미나 슬러리(alumina slurry)로 폴리싱(polishing)한 후, 1.0 M H2SO4 용액에서 전기화학적인 표면 활성 처리(-0.1 ~ +1.5 V, 200 mv/s, 80 회)하였다. 다음으로, 0.1mM의 티오펜을 녹인 DMSO 용액에서 15시간 동안 SAM을 형성하였다.
2. ss DNA 고정화
다음과 같이 ss DNA를 고정화하였다.
1. 상기 Au 전극/SAM 상에 2 mM EDC, 5 mM NHS를 포함하는 50 mM 포스페이트 버퍼 용액(pH 7.40)에서 1시간 동안 반응시켜 링커를 형성시켰다.
2. 50 mM 포스페이트 버퍼 용액(pH 7.40)으로 세척하였다.
3. Au 전극/SAM/링커 표면 위에 100 ppm의 프로브(ss DNA)를 포함하는 0.5 M 아세테이트 버퍼 용액 (pH4.8)을 소량 (20㎕) 떨어뜨렸다.
4. 공기 중에서 오랜 시간(overnight) 건조한 후, 2시간 동안 증류수에 넣어두었다가 증류수로 세척하였다.
3. DNA 혼성화
1. 프로브 DNA 즉, ssDNA가 고정화된 Au 전극 표면에 100 ppm의 표적 DNA를 포함하는 20 mM Tris 버퍼 용액 (pH 7.00)을 20 ㎕ 떨어뜨렸다.
2. 공기 중에서 30분 동안 놓아 두면서 건조하였다.
4. 순환성 볼타메트리(cyclic voltammetry) 측정
각 단계마다 변형된 Au 전극를 포스페이트 버퍼로 세척 후 메탄올로 세척하였다. 일반적으로 전도성 고분자에서 필수적으로 사용되던 도펀트(dopant) 없이 N2 가스로 전극을 건조 시킨 후에 디클로로메탄(CH2Cl2)으로 세척하였다. 0.1 M Et4NBF4/CH2Cl2의 전해질 용액에서 Ag/AgCl 전극을 표준전극으로 사용하고, 백금 와이어(Pt wire) 전극을 카운터 전극으로 사용하여 100 ~ 1200 mV의 전위 범위에서 200 mV/s의 스캔 속도(scan rate)로 측정하였다. 측정이 끝나면 다음 단계로 진행하기 전에 CH2Cl2로 3회 세척 후 건조하고 포스페이트 버퍼 용액으로 세척하였다. 이때 유기 용매인 CH2Cl2를 사용하는 이유는 1V 이상의 전압에서는 물의 산화환원이 발생하여서 정확한 측정이 불가능하기 때문에, 측정하고자 하는 영역 (-0.1 ~ 1.2 V)에서 변화가 일어나지 않는 전해질인 Et4NBF4/CH2Cl2를 사용하여 실험을 진행하였 다.
도5는 MTPAA 단분자막의 순환성 볼타모그램이다. 모두 13회 반복 측정하였는데, 처음의 CV에서는 980 mV에서 산화 피크가 크게 나타나고, 420 mV에서 환원 피크가 나타났다. 반복 회수가 13번에 가까워 질수록 980 mV에서 나타나던 산화 피크 의 크기는 점차적으로 감소하고 420 mV의 환원 피크의 크기는 증가하였다. 그리고, 새로운 환원 피크가 480 mV에서 나타났다. 이 과정들은 13 회 반복 후에는 안정화 되어 같은 형태의 CV를 나타내었다.
도6은 전기화학적으로 안정화된 MTPAA 단분자막에 HNS/EDC로 처리한 후 프로브 ssDNA를 고정화 후에 첫번째 방법과 같은 방식으로 CV를 측정한 순환성 볼타모그램이다. 도5에 나타낸 바와 같이, MTPAA SAM에서 나타난 산화 환원 과정과 비교하여 보면 산화 피크 1(a1)의 전류값이 180 nA 감소하여 MTPAA SAM 에서 보다 작아지며 전압은 89 mV감소하였고, 산화 피크 2(a2)의 전류값은 110 nA 증가하며 전압은 24 mV 증가하였다. 환원피크 1(c1)의 전류값은 680 nA 감소하여 MTPAA SAM 에서 보다 작아지며 이때의 전압은 51 mV 감소하였다.
DNA 혼성화 후에 나타나는 변화를 프로브 ssDNA를 고정화 한 후에 측정한 CV와 비교하여 보면 산화 피크 1의 전류값이 190 nA 증가 하여 프로브 ssDNA를 고정화에서 보다 커지며 전압은 89 mV 증가하였다. 프로브 ssDNA 고정화시에 나타났던 산화 피크 2(c2)는 DNA 혼성화후에 사라졌다. 이 과정에서 155 mV에서 새로운 환원 피크 2(c2)가 나타나며 이때의 전류값은 100 nA로 나타난다. 환원 피크 1에서는 변화가 나타나지 않는다. 이 과정의 전체적인 값들은 표5에 나타내었다. 위 결과의 재현성을 확인하기 위하여 3개의 다른 전극을 사용하여 각 4회씩 반복실험을 시행하여 결과가 일치됨을 확인하였다.
표5. 각 단계에서의 산화 피크 및 환원 피크들의 전압 및 전류 값
산화 피크 (anodic peak) 환원 피크 (Cathodic peak)
1 2 1 2
Ep ip Ep ip Ep ip Ep ip
AuE/MTPAA 483 270 957 220 409 -1280 X X
AuE/MTPAA/SD 394 90 981 330 358 -680 X X
AuE/MTPAA/SD-SD 483 280 X X 360 -670 155 100
상기 표5에서 보듯이, 프로브 ssDNA 고정화 전, 후의 산화/환원 피크는 다음과 같이 변화하는데, 이러한 변화가 관찰되면 프로브가 단분자막에 고정화되었음을 알 수 있다: 산화 피크 1(a1)의 전류값 및 전압값 감소, 산화 피크 2(a2)의 전류값 및 전압값 증가, 환원 피크 1(c1)의 전류값 및 전압값 감소. 아울러, DNA 혼성화전, 후의 산화/환원 피크는 다음과 같이 변화하는데, 이러한 변화가 관찰되면 프로브에 표적 DNA가 혼성화되었음을 알 수 있다: 산화 피크 1(a1)의 전류값 및 전압값 증가, 프로브 고정화에서 나타났던 산화 피크 2(a2)의 사라짐, 환원 피크 1(c1)의 전류값 및 전압값 변화 없음, 새로운 환원 피크 2(c2) 나타남.
본 발명의 전도성 화합물에 따르면, 반응성 및 안정성이 좋은 전극 및 센서를 제조하는데 사용될 수 있다.
본 발명의 전극 및 센서에 의하면, 민감도 및 재현성이 높아 표적 물질을 검출하는 데 사용될 수 있다.
본 발명의 표적 물질 검출 방법에 의하면, 시료 중의 표적 물질을 효과적으로 검출할 수 있다.
<110> Samsung Electronics. Co. Ltd. <120> A conductive compound, an electrode and a sensor containing the same and a method for detecting a target molecule using the sensor <130> SI004228 <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> ssDNA probe having amino group at its 5' terminus. <400> 1 gttcttctca tcatc 15

Claims (12)

  1. 하기 일반식(I)의 화합물:
    Figure 112005069432159-pat00022
    (I)
    [여기서, Y는
    Figure 112005069432159-pat00023
    또는 -NH- 그룹이고, R은 H, OH, 또는 프로브 그룹이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
  2. 제1항에 있어서, 상기 프로브는 핵산 또는 단백질인 화합물.
  3. 제2항에 있었서, 상기 프로브는 DNA, RNA, 또는 PNA인 화합물.
  4. 하기 일반식(IV)의 화합물을 티오우레아 (thiourea)와 반응시켜 일반식(I)의 화합물을 제조하는 방법.
    Figure 112005069432159-pat00024
    (IV)
    [여기서, Y는
    Figure 112005069432159-pat00025
    또는 -NH- 그룹이고, R은 H, OH 또는 프로브 그룹이고, X는 할로겐이며, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
    Figure 112005069432159-pat00039
    (I)
    [여기서, Y는
    Figure 112005069432159-pat00040
    또는 -NH- 그룹이고, R은 H, OH, 또는 프로브 그룹이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
  5. 하기 일반식(V)의 화합물과 하기 일반식(VI)의 화합물을 반응시키는 단계를 포함하는 일반식(I)의 화합물을 제조하는 방법.
    Figure 112005069432159-pat00026
    (V)
    Figure 112005069432159-pat00027
    (VI)
    [여기서, R1, R2, 및 R3은 각각 C1-C8의 알킬기이고, Y는
    Figure 112005069432159-pat00028
    또는 -NH- 그룹이고, R은 H, OH, 또는 프로브 그룹이고, X는 할로겐이며, l은 3 내지 6의 정수이고, m1 또는 m2는 각각 1 내지 4의 정수이고, 2 ≤ m1 + m2 ≤ 4이고, n은 0 내지 3의 정수이다.]
    Figure 112005069432159-pat00041
    (I)
    [여기서, Y는
    Figure 112005069432159-pat00042
    또는 -NH- 그룹이고, R은 H, OH, 또는 프로브 그룹이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
  6. 제1항의 화합물이 도포된 금 전극.
  7. 제1항의 화합물이 도포된 금 전극을 포함하는 센서.
  8. 하기 단계를 포함하는 표적 물질을 검출하는 방법:
    (a) 하기 화학식(I)의 화합물을 금 기판 위에 고정화하여 자기조립 단분자막을 형성하는 단계;
    Figure 112005069432159-pat00029
    (I)
    [여기서, Y는
    Figure 112005069432159-pat00030
    또는 -NH- 그룹이고, R은 H, 또는 OH이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
    (b) 상기 단분자막의 표면에 프로브를 반응시키는 단계;
    (c) 상기 프로브와 특이적으로 반응하는 표적 물질을 접촉시키는 단계; 및,
    (d) 상기 표적 물질이 프로브와 결합된 상기 화학식(I)의 화합물과,상기 표적 물질이 프로브와 결합되지 않은 상기 화학식(I)의 화합물의 전기적 신호의 차이를 측정하여 표적 물질을 검출하는 단계.
  9. 하기 단계를 포함하는 표적 물질을 검출하는 방법:
    (a) 하기 화학식(I)의 화합물을 금 기판 위에 고정화하여 자기조립 단분자막을 형성하는 단계;
    Figure 112003008150427-pat00031
    (I)
    [여기서, Y는
    Figure 112003008150427-pat00032
    또는 -NH- 그룹이고, R은 프로브 그룹이고, l은 3 내지 6의 정수이고, m은 1 내지 4의 정수이고, n은 0 내지 3의 정수이다.]
    (b) 상기 단분자막의 프로브와 특이적으로 반응하는 표적 물질을 접촉시키는 단계; 및,
    (c) 상기 표적 물질이 프로브와 결합된 상기 화학식(I)의 화합물과,상기 표적 물질이 프로브와 결합되지 않은 상기 화학식(I)의 화합물의 전기적 신호의 차이를 측정하여 표적 물질을 검출하는 단계.
  10. 제8항 또는 제9항에 있어서, 상기 전기적 신호는 전압 또는 전류인 방법.
  11. 제8항 또는 제9항에 있어서, 상기 프로브는 DNA, RNA, 또는 PNA인 방법.
  12. 제8항 또는 제9항에 있어서, 상기 표적 물질은 DNA, RNA, 또는 PNA인 방법.
KR1020030014482A 2003-03-07 2003-03-07 전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를이용한 표적 물질 검출방법 KR100580621B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020030014482A KR100580621B1 (ko) 2003-03-07 2003-03-07 전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를이용한 표적 물질 검출방법
US10/791,524 US7129363B2 (en) 2003-03-07 2004-03-01 Conductive compound, electrode and sensor containing the same, and target molecule detection method using the sensor
JP2004063010A JP4588336B2 (ja) 2003-03-07 2004-03-05 導電性化合物、これを含む電極及びセンサー、並びに前記センサーを利用した標的分子の検出方法
CNB2004100352793A CN1250538C (zh) 2003-03-07 2004-03-07 导电化合物,含有该导电化合物的电极和传感器,以及使用该传感器检测目标分子的方法
DE602004014549T DE602004014549D1 (de) 2003-03-07 2004-03-08 Leitfähige Verbindung, sie enthaltende Elektrode und Sensor, und Verfahren zum Nachweis von Zielmolekülen unter Verwendung dieses Sensors
EP04005433A EP1454906B1 (en) 2003-03-07 2004-03-08 Conductive compound, electrode and sensor containing the same, and target molecule detection method using the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030014482A KR100580621B1 (ko) 2003-03-07 2003-03-07 전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를이용한 표적 물질 검출방법

Publications (2)

Publication Number Publication Date
KR20040079308A KR20040079308A (ko) 2004-09-14
KR100580621B1 true KR100580621B1 (ko) 2006-05-16

Family

ID=32822724

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030014482A KR100580621B1 (ko) 2003-03-07 2003-03-07 전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를이용한 표적 물질 검출방법

Country Status (6)

Country Link
US (1) US7129363B2 (ko)
EP (1) EP1454906B1 (ko)
JP (1) JP4588336B2 (ko)
KR (1) KR100580621B1 (ko)
CN (1) CN1250538C (ko)
DE (1) DE602004014549D1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874772B2 (ja) * 2004-07-21 2007-01-31 株式会社日立製作所 生体関連物質測定装置及び測定方法
JP5196517B2 (ja) * 2006-05-30 2013-05-15 国立大学法人 東京大学 オリゴチオフェン系液晶化合物、カラムナー液晶材料およびその用途
JP5181386B2 (ja) * 2008-02-01 2013-04-10 国立大学法人 新潟大学 ケミカルバイオセンサー
KR101127075B1 (ko) * 2008-05-30 2012-03-23 성균관대학교산학협력단 자기조립 단분자층의 잉크젯 프린팅을 이용한 바이오물질패턴 형성방법 및 바이오센서 제조방법
TWI453282B (zh) * 2010-09-17 2014-09-21 Univ Nat Taiwan 連接物、阻抗式生物晶片及使用該晶片在流體樣品中定量偵測目標分析物之方法
US8877022B2 (en) * 2011-06-21 2014-11-04 National Taiwan University Biosensor
CN105353015B (zh) * 2015-12-02 2019-04-12 厦门大学 一种聚二氧乙烯噻吩复合膜的制备方法及应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028970A (ja) * 1983-07-25 1985-02-14 Hidefumi Hirai 主鎖にテトラヒドロフラン環を含むオリゴエステル
US6320200B1 (en) * 1992-06-01 2001-11-20 Yale University Sub-nanoscale electronic devices and processes
FR2720832A1 (fr) * 1994-04-22 1995-12-08 Francis Garnier Electrodes et membranes électroactives à base de peptides bioactifs, pour la reconnaissance, l'extraction ou le relargage d'espèces biologiquement actives.
DE4430023A1 (de) * 1994-08-24 1996-02-29 Boehringer Mannheim Gmbh Elektrochemischer Sensor
JP2002530519A (ja) * 1998-11-19 2002-09-17 ベーイーオー・メリュー 導電性電気活性官能化結合ポリマーおよびその使用
US6878801B2 (en) * 1999-03-11 2005-04-12 Japan Science And Technology Optically active polythiophenes
US6890715B1 (en) * 1999-08-18 2005-05-10 The California Institute Of Technology Sensors of conducting and insulating composites
DE10002424A1 (de) * 2000-01-20 2001-07-26 Siemens Ag Di(het)arylaminothiophen-Derivate
US6414164B1 (en) * 2000-07-12 2002-07-02 International Business Machines Corporation Synthesis of soluble derivatives of sexithiophene and their use as the semiconducting channels in thin-film filed-effect transistors
US7029606B2 (en) * 2000-07-24 2006-04-18 University Of Washington Hyperpolarizable organic chromophores
JP4025920B2 (ja) * 2001-03-05 2007-12-26 入江  正浩 フォトクロミック材料
JP3963693B2 (ja) * 2001-10-15 2007-08-22 富士通株式会社 導電性有機化合物及び電子素子
US6987164B2 (en) 2002-03-09 2006-01-17 Samsung Electronics Co., Ltd. Electrically conductive polymer, sensor using the same, and method for detecting target molecule using the sensor
DE60305570T2 (de) * 2002-04-24 2007-05-03 Merck Patent Gmbh Reaktive mesogene Benzodithiophene
JP4253486B2 (ja) * 2002-09-25 2009-04-15 富士フイルム株式会社 ポジ型又はネガ型レジスト組成物、酸発生剤及びパターン形成方法
AU2003217219A1 (en) * 2003-01-15 2004-08-13 University Of Washington Nonlinear optical compounds and methods for their preparation

Also Published As

Publication number Publication date
EP1454906A1 (en) 2004-09-08
JP4588336B2 (ja) 2010-12-01
US20040175747A1 (en) 2004-09-09
CN1250538C (zh) 2006-04-12
DE602004014549D1 (de) 2008-08-07
EP1454906B1 (en) 2008-06-25
CN1535963A (zh) 2004-10-13
KR20040079308A (ko) 2004-09-14
JP2004269532A (ja) 2004-09-30
US7129363B2 (en) 2006-10-31

Similar Documents

Publication Publication Date Title
US7897348B2 (en) Detection of negatively charged polymers using water-soluble, cationic, polythiophene derivatives
US7708908B2 (en) Carboxylic acid-modified EDOT for bioconjugation
US7341759B2 (en) Electrically conductive polymer, sensor using the same, and method for detecting target molecule using the sensor
AU2002252868A1 (en) Detection of negatively charged polymers using water-soluble, cationic, polythiophene derivatives
JP2009515002A (ja) 水溶液に可溶であり、金属ポルフィリンを含む新規電解重合可能モノマー
KR100580621B1 (ko) 전도성 화합물, 이를 포함하는 전극 및 센서, 상기 센서를이용한 표적 물질 검출방법
Mouffouk et al. Electrosynthesis and characterization of biotin-functionalized poly (terthiophene) copolymers, and their response to avidin
KR100601999B1 (ko) 신규한 전도성 고분자를 이용한 표적 물질 검출 방법
EP1425275B1 (en) Novel terthiophene-3-carboxylic acid compound and fabricating method thereof, functionalized conductive terthiophene polymer with the compound as a monomer, and process for dna hybridizatioon detection using the polymer
US7812180B2 (en) Electropolymerisable monomers that are soluble in aqueous solution and electroactive probes that can be obtained with such monomers
KR100580620B1 (ko) 신규한 전도성 고분자, 이를 이용한 센서 및 표적 물질검출 방법
PL242327B1 (pl) Pochodna benzotiadiazolu-4,7-bis(5-(2-pirydyno)tiofen-2-ylo) benzotiadiazol, sposób jej otrzymywania oraz elektroda enzymatyczna do wykrywania epinefryny
WO2005019210A1 (en) Polythiophene-based sensors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140424

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150422

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160420

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170418

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180423

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190422

Year of fee payment: 14