KR100570417B1 - Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added - Google Patents

Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added Download PDF

Info

Publication number
KR100570417B1
KR100570417B1 KR1020040090773A KR20040090773A KR100570417B1 KR 100570417 B1 KR100570417 B1 KR 100570417B1 KR 1020040090773 A KR1020040090773 A KR 1020040090773A KR 20040090773 A KR20040090773 A KR 20040090773A KR 100570417 B1 KR100570417 B1 KR 100570417B1
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
electrode active
ion battery
lithium
Prior art date
Application number
KR1020040090773A
Other languages
Korean (ko)
Inventor
명승택
조명훈
홍현택
강태혁
김지수
Original Assignee
브이케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브이케이 주식회사 filed Critical 브이케이 주식회사
Priority to KR1020040090773A priority Critical patent/KR100570417B1/en
Application granted granted Critical
Publication of KR100570417B1 publication Critical patent/KR100570417B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온전지에 관한 것으로, 보다 상세하게는 LiNi1-x-yCoxAyO2-z Bz (A = Mg, Al, Ga, Zr, Ti, B = S, BO3, F, x = 0 - 0.3, y = 0 - 0.1, z = 0 - 0.1), Li[NixCo1-2xMnx]O2(x=0-0.5)로 이루어진 군으로부터 선택된 어느 하나 이상의 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온 전지에 대한 것으로서, 종래 니켈 산화물을 첨가하지 않은 리튬 망간산화물을 이용하여 제조된 리튬이온전지에 비해 장수명 및 고율 방전 특성과 열적 안정성이 우수한 이점이 있다.The present invention relates to a lithium ion battery using a spinel type LiMn 2 O 4 to which a Ni-based positive electrode active material is added as a positive electrode active material, and more specifically, LiNi 1-xy Co x A y O 2-z B z (A = Mg , Al, Ga, Zr, Ti, B = S, BO 3 , F, x = 0-0.3, y = 0-0.1, z = 0-0.1 ), Li [Ni x Co 1-2x Mn x ] O 2 Regarding a lithium ion battery having a spinel type LiMn 2 O 4 containing at least one Ni-based positive electrode active material selected from the group consisting of (x = 0-0.5) as a positive electrode active material, lithium manganese oxide without conventional nickel oxide addition Compared to the lithium ion battery manufactured by using a long life and high rate discharge characteristics and thermal stability there is an advantage excellent.

리튬 이온전지, 양극 활물질, 니켈, 리튬 2차전지Lithium ion battery, positive electrode active material, nickel, lithium secondary battery

Description

니켈계 양극 활물질이 첨가된 스피넬형 리튬사산화이망간을 양극 활물질로 하는 리튬 이온전지{Rechargeable Lithium Battery Comprising Spinel Structure LiMn.sub.2O.sub.4 for Cathode Active Material to Which Nickel Based Active Material is added} Rechargeable Lithium Battery Comprising Spinel Structure LiMn.sub.2O.sub.4 for Cathode Active Material to Which Nickel Based Active Material is added}             

도 1은 본 발명에 따른 반전지를 이용한 100 사이클 동안의 방전용량을 나타낸 것이고, Figure 1 shows the discharge capacity for 100 cycles using a half cell according to the present invention,

도 2는 HF 생성 억제제로서 LiNi0.8Co0.15Al0.05O2가 5 중량% 첨가된 양극과 첨가되지 않은 양극의 용량 유지율을 비교한 것이며, 그리고 FIG. 2 compares the capacity retention rates of a positive electrode to which 5 wt% of LiNi 0.8 Co 0.15 Al 0.05 O 2 is added as an HF generation inhibitor and an unadded positive electrode, and

도 3은 LiNi0.8Co0.15Al0.05O2가 50 중량% 첨가된 양극과 첨가되지 않은 양극의 용량 유지율을 비교한 것이다. FIG. 3 compares the capacity retention rates of a positive electrode to which 50 wt% of LiNi 0.8 Co 0.15 Al 0.05 O 2 is added and a positive electrode not to be added.

본 발명은 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하 는 리튬 이온전지에 관한 것으로, 보다 상세하게는 LiNi1-x-yCoxAyO2-z Bz (A = Mg, Al, Ga, Zr, Ti, B = S, BO3, F, x = 0 - 0.3, y = 0 - 0.1, z = 0 - 0.1), Li[NixCo1-2xMnx]O2(x=0-0.5)로 이루어진 군으로부터 선택된 어느 하나 이상의 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온 전지에 대한 것이다.The present invention relates to a lithium ion battery using a spinel type LiMn 2 O 4 to which a Ni-based positive electrode active material is added as a positive electrode active material, and more specifically, LiNi 1-xy Co x A y O 2-z B z (A = Mg, Al, Ga, Zr, Ti, B = S, BO 3 , F, x = 0-0.3, y = 0-0.1, z = 0-0.1 ), Li [Ni x Co 1-2x Mn x ] O A spinel type LiMn 2 O 4 to which at least one Ni-based positive electrode active material is added, selected from the group consisting of 2 (x = 0-0.5), is a lithium ion battery.

일반적으로, 상기 양극 활물질의 전기 화학적 특성에 의하여 리튬 이온전지의 우수한 수명 특성, 고율 방전 특성 및 고온에서의 용량유지율이 결정된다.In general, excellent life characteristics, high rate discharge characteristics, and capacity retention at high temperatures of lithium ion batteries are determined by the electrochemical characteristics of the positive electrode active material.

본 발명은 휴대폰, PDA(Personal Digital Assistants), MP3 플레이어, 캠코더, 노트북 컴퓨터 등의 이동용 정보통신기기의 에너지원으로 사용되는 고성능 리튬 2차 전지와 전기전동기, 하이브리드 전기 자동차(Hybrid Electric Vehicle; HEV) 등 고출력 대형 수송기기용 2차 전지 등으로 광범위하게 적용 가능하다.The present invention is a high-performance lithium secondary battery, an electric motor, a hybrid electric vehicle (HEV) used as an energy source for mobile information communication devices such as mobile phones, PDAs (Personal Digital Assistants), MP3 players, camcorders, notebook computers, etc. It is widely applicable to secondary batteries for high output large transport equipment.

2차전지는 양극·음극·전해질 등으로 구성되며 양극 활물질은 리튬이온을 전지에 공급하기 위한 핵심재료다. 양극 활물질은 전기화학반응을 일으키는 리튬 양이온을 음극쪽으로 전달하는 역할을 하며 음극 활물질에 비해 개발이 어려운 것으로 알려져 있다. 양극 활물질의 주원료는 그동안 리튬산화코발트가 주로 쓰였으나, 코발트가 희귀금속이라 가격이 비싸고 환경문제로 인해 망간 계통의 물질이 대 체물질로 떠오르고 있다. The secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and the positive electrode active material is a core material for supplying lithium ions to the battery. The positive electrode active material plays a role of transferring a lithium cation causing an electrochemical reaction toward the negative electrode, and is known to be more difficult to develop than the negative electrode active material. Lithium cobalt oxide has been mainly used as the main raw material of the positive electrode active material, but cobalt is a rare metal, which is expensive, and manganese-based materials are emerging as substitutes due to environmental problems.

양극 활물질은 2차전지 제조원가의 약 30%를 차지하고 있다. 또한, 이들 전지들의 용량을 좌우하는 인자 역시 양극 활물질이다. 특히, 리튬 2차 전지에 사용되는 양극 물질 중 하나인 리튬-니켈 복합 산화물이 리튬-코발트 산화물보다 고용량 특성을 갖는다. 그리고, 니켈(Ni)은 코발트(Co)보다 가격이 저렴하여 경제적이고 얻기가 쉬운 이점이 있기 때문에 차세대 양극 물질로 각광을 받고 있다. The cathode active material accounts for about 30% of the secondary battery manufacturing cost. In addition, a factor that determines the capacity of these batteries is also a positive electrode active material. In particular, lithium-nickel composite oxide, which is one of the positive electrode materials used in lithium secondary batteries, has higher capacity than lithium-cobalt oxide. In addition, nickel (Ni) has been in the spotlight as a next-generation anode material because nickel (Ni) is cheaper than cobalt (Co) and has an advantage of being economical and easy to obtain.

한편, 양극 활물질의 전기 화학적 특성에 의하여 우수한 수명 특성 및 고율 방전 특성이 결정된다. 다른 중요한 특성 요인은 고온에서의 용량유지율이다. 예를 들면, 휴대폰을 높은 온도(50℃)에 장시간 방치시 용량 저하가 급격하며, 이 원인은 고온에서 양극 활물질을 구성하는 원소가 전해액으로 용출되기 때문이다. On the other hand, excellent lifetime characteristics and high rate discharge characteristics are determined by the electrochemical characteristics of the positive electrode active material. Another important characteristic factor is capacity retention at high temperatures. For example, when the mobile phone is left at a high temperature (50 ° C) for a long time, the capacity decreases rapidly, and this is because the elements constituting the positive electrode active material elute into the electrolyte at high temperatures.

대한민국 공개특허 제1998-067020호에서는 LiNi1-xAlxO2 (여기서, x는 0.05-0.2이다)로 표시되는 양극 활물질에 대하여 개시하였다. Korean Unexamined Patent Publication No. 1998-067020 discloses a positive electrode active material represented by LiNi 1-x Al x O 2 (where x is 0.05-0.2).

대한민국 공개특허 제2004-0062872호에서는 양극이 고안정성 복합 산화물 LixNil-y-zMnyMI2O2와 고전도성 복합 산화물 LisMIIl-t-uMntMIIIuO2를 함유하고, MI, MIII은 2족 내지 14족의 원소 중의 하나 이상의 원소이고, MII는 Ni 및 Co 중의 적어도 하나의 원소인 양극 활물질 및 2차 전지에 대하여 개시하였다.In Korean Patent Laid-Open No. 2004-0062872, the anode contains a highly stable complex oxide LixNil-y-zMnyMI2O2 and a highly conductive complex oxide LisMIIl-t-uMntMIIIuO2, and MI and MIII are one or more elements of Groups 2 to 14 elements. , MII is disclosed with respect to a positive electrode active material and a secondary battery which is at least one element of Ni and Co.

대한민국 공개특허 제2004-0047252호에서는 Li[CrxLi(1/3-x/3)Mn(2/3-2x/3)]O2 (0.1 ≤ X ≤0.5) 조성을 가지는 리튬 이차전지용 층상 구조의 리튬-크롬-망간계 산화물의 제조 방법에 대하여 개시하였다.In Korean Patent Laid-Open No. 2004-0047252, Li [CrxLi (1 / 3-x / 3) Mn (2 / 3-2x / 3)] O2 (0.1 ≦ X ≦ 0.5) has a layered lithium structure for a lithium secondary battery. A method for producing a chromium-manganese oxide is disclosed.

또한, 미국 등록특허 제4,828,834호에서는 LiMn2O4 조성을 갖는 스피넬상의 최적 합성온도가 탄산리튬과 망간 산화물을 원료로 사용할 경우 430~520℃ 정도가 적합하다는 점을 개시하였다.In addition, US Patent No. 4,828,834 discloses that the optimum synthesis temperature of the spinel phase having a LiMn 2 O 4 composition is suitable when the lithium carbonate and manganese oxide are used as raw materials.

미국 등록특허 제5,425,932호에서는 출발물질로 LiCO3 또는 NiNO3와 EMD MnO2를 사용하여 LiMn2O4를 합성하였는데, 이들은 3-4.5V 영역에서 충방전시 약 100 mAh/g 정도의 초기 용량을 나타내었다.In U.S. Patent No. 5,425,932, LiMn 2 O 4 was synthesized using LiCO 3 or NiNO 3 and EMD MnO 2 as starting materials, and they had an initial capacity of about 100 mAh / g during charge and discharge in the 3-4.5V region. Indicated.

미국 등록특허 제5,135,732호에서는 고상 반응법을 이용한 LiMn2O4 합성법을 개시하고 있다. 그러나 고상 반응법은 불균일 반응이 일어나기 쉬워 균일한 상을 얻기 어렵고, 분말 입자의 크기를 일정하게 제어하기 곤란하여 소결성이 떨어지며, 장시간의 제조 시간이 요구되는 문제점이 발생하며, 이 방법으로 제조된 LiMn2O4를 사용하여 전지를 제조할 경우 초기 용량이 낮은 문제점이 있지만 계속적인 충방전시 안정성을 보였다.US Patent No. 5,135,732 discloses a LiMn 2 O 4 synthesis method using a solid phase reaction method. However, in the solid phase reaction method, it is difficult to obtain a uniform phase due to non-uniform reaction, difficult to control the size of the powder particles constantly, resulting in poor sintering ability, and require a long production time, resulting in the problem of LiMn produced by this method. When the battery was prepared using 2 O 4 , there was a problem of low initial capacity, but showed stability during continuous charge and discharge.

상기 리튬 이차 전지용 양극 활물질로 사용되고 있는 물질 중에서 LiMn2O4 , LiMnO2 등의 망간계 활물질은 합성이 용이하며, 제조 비용이 비교적 저렴하고, 환경에 대한 오염도 적다는 장점이 있다. 그 중에서도 LiMn2O4 는 전지 시스템의 안정성 등으로 하이브리드 전기 자동차(Hybrid Electric Vehicle; HEV)에 적용 가능성이 가장 높은 양극 활물질로 부각되고 있다. LiMn2O4 는 상온 사이클 수명은 우수하지만, 고온에서 연속적인 충방전시 용량이 급격히 감소하는 문제점이 있다. Among the materials used as the cathode active material for lithium secondary batteries, manganese-based active materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize, have a relatively low manufacturing cost, and have low environmental pollution. Among them, LiMn 2 O 4 has emerged as the cathode active material having the highest applicability to hybrid electric vehicles (HEVs) due to the stability of the battery system. LiMn 2 O 4 has excellent cycle life at room temperature, but has a problem in that capacity decreases rapidly during continuous charge and discharge at high temperatures.

LiMn2O4 에서 Mn의 원자가는 3.5로써, 실질적으로는 Mn이 다음과 같은 반응에 의해 Mn3+ 와 Mn4+ 의 형태로 전해질에 존재하게 된다. The valence of Mn in LiMn 2 O 4 is 3.5, so that Mn is present in the electrolyte in the form of Mn 3+ and Mn 4+ by the following reaction.

2Mn3+ → Mn2+ + Mn4+ 2Mn 3+ → Mn 2+ + Mn 4+

이때, 온도가 증가하면, Mn4+ 는 안정하나, Mn3+ 는 불안정하여, 고온 충방전시 Mn3+ 가 Mn4+ 와 Mn2+ 로 되는 불균형화 반응이 일어나서 Mn4+ 는 전해질 내의 리튬 이온과 결합하여 전기 화학적으로 불활성인 Li2MnO3를 형성시키고, Mn2+는 다른 착체를 형성시키며 음극 표면에 부착하게 된다. 이 때문에, LiMn2O4/탄소의 셀은 고온 충방전시 용량이 급격히 감소하는 것으로 알려져 있다. 또한, LiMn2O4 를 사용한 전지는 초기 10 사이클 이내에 용량이 급격하게 감소하는 현상이 발생되는 문제점이 있다.At this time, when the temperature increases, Mn 4+ is stable, but Mn 3+ is unstable, and at high temperature charge and discharge, an imbalance reaction occurs in which Mn 3+ becomes Mn 4+ and Mn 2+ and Mn 4+ is lithium in the electrolyte. It combines with ions to form Li 2 MnO 3 which is electrochemically inert, and Mn 2+ forms another complex and adheres to the cathode surface. For this reason, it is known that the capacity of LiMn 2 O 4 / carbon rapidly decreases at high temperature charge and discharge. In addition, a battery using LiMn 2 O 4 has a problem in that a phenomenon in which capacity decreases rapidly within an initial 10 cycle occurs.

본 발명의 목적은 상기한 문제점을 극복하기 위한 것으로, 양극 활물질의 수명 특성 및 고율 방전 특성이 우수한 리튬 이온전지를 제공하기 위한 것이다.
An object of the present invention is to overcome the above problems, to provide a lithium ion battery excellent in the life characteristics and high rate discharge characteristics of the positive electrode active material.

상기 목적을 달성하기 위하여 본 발명은 양극 활물질, 도전제 및 바인더를 포함하여 제조되는 리튬 이온 전지에 있어서, 상기 양극 활물질은 Ni계 양극 활물질이 첨가된 리튬 이온전지용 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온전지를 제공한다.In order to achieve the above object, the present invention provides a lithium ion battery including a cathode active material, a conductive agent and a binder, wherein the cathode active material is a spinel type LiMn 2 O 4 for a lithium ion battery to which a Ni-based cathode active material is added. A lithium ion battery is provided.

본 발명에 따른 첨가제로 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온전지에 있어서, 상기 Ni계 양극 활물질이 LiNi1-x-yCox A yO2-z B z (A = Mg, Al, Ga, Zr, Ti, B = S, BO3, F, x = 0 - 0.3, y = 0 - 0.1, z = 0 - 0.1), Li[NixCo1-2xMnx]O2(x=0-0.5)로 이루어진 군으로부터 선택된 어느 하나 이상인 것이 바람직하다.In a lithium ion battery using a spinel-type LiMn 2 O 4 to which a Ni-based cathode active material is added as an additive according to the present invention as a cathode active material, the Ni-based cathode active material is LiNi 1-xy Co x A y O 2-z B z (A = Mg, Al, Ga, Zr, Ti, B = S, BO 3 , F, x = 0-0.3, y = 0-0.1, z = 0-0.1 ), Li [Ni x Co 1-2x Mn x ] O 2 (x = 0-0.5) is preferably at least one selected from the group consisting of.

본 발명에 따른 첨가제로 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양 극 활물질로 하는 리튬 이온전지에 있어서, 상기 Ni계 양극 활물질과 스피넬형 LiMn2O4 양극 활물질이 각각 5~50 중량% 및 50~95 중량%인 것이 바람직하다.In a lithium ion battery using a spinel-type LiMn 2 O 4 to which an Ni-based cathode active material is added as an additive according to the present invention as a cathode active material, each of the Ni-based cathode active material and the spinel-type LiMn 2 O 4 cathode active material is 5 to 50. It is preferable that they are by weight and 50-95 weight%.

본 발명에 따른 첨가제로 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온전지에 있어서, 상기 Ni계 양극 활물질은 0.1∼3㎛의 직경을 갖는 다수개의 미세 입자로 구성된 3∼45㎛의 직경을 갖는 구형 입자가 바람직하다.In a lithium ion battery using a spinel type LiMn 2 O 4 to which a Ni-based cathode active material is added as an additive according to the present invention, as the cathode active material, the Ni-based cathode active material is composed of a plurality of fine particles having a diameter of 0.1 to 3 μm. Spherical particles having a diameter of 3 to 45 µm are preferred.

본 발명에 따른 첨가제로 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온 전지는 고율 방전 용량 및 충방전 사이클링 수명 특성이 우수하다.A lithium ion battery having a spinel type LiMn 2 O 4 containing an Ni-based positive electrode active material as an additive according to the present invention as a positive electrode active material has excellent high rate discharge capacity and charge / discharge cycling life characteristics.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 망간계 양극 활물질을 채용하는 리튬 이온전지에 관한 것으로, 보다 상세하게는 고율의 방전을 유지하면서 안정된 방전용량특성을 나타낼 수 있는 니켈이 첨가된 망간계 양극 활물질를 채용한 리튬 이온전지에 대한 것이다.The present invention relates to a lithium ion battery employing a manganese-based positive electrode active material, and more particularly to a lithium ion battery employing a manganese-based positive electrode active material containing nickel that can exhibit a stable discharge capacity characteristics while maintaining a high rate of discharge. will be.

리튬니켈 산화망간은 고가의 코발트(Co) 대신 저가의 니켈(Ni)을 이용해 리 튬 이온 전지 제조 원가의 15% 가량을 절감할 수 있으며, 코발트계에서 니켈계로 대체함으로써 용량을 약 10% 이상 높일 수 있어 용량밀도가 높고, 수명이 길며, 환경친화적인 것이 특징이다.Lithium nickel manganese oxide can save about 15% of lithium ion battery manufacturing cost by using inexpensive nickel (Ni) instead of expensive cobalt (Co), and increase capacity by about 10% by replacing cobalt based on nickel. It is characterized by high capacity density, long life, and environmental friendliness.

이러한 리튬니켈 산화망간은 리튬염과 니켈산화물을 반응시킴으로써 얻어질 수 있다. 이때, 충분한 반응시간, 높은 온도 및 충분한 량의 산소 공급을 필요로 한다. 즉, 리튬염이 열해리를 일으킬 수 있을 정도의 고온(예: 약 700~800℃)에서 반응을 시켜야만 리튬염이 열분해되어 리튬 이온으로 해리되고, 상기 해리된 리튬 이온이 금속산화물의 격자 속으로 고용된다. 또한, 충분한 량의 산소가 공급되지 않으면 니켈의 산화반응이 원활하지 않기 때문에 산소분위기가 유지되어야 한다.Such lithium nickel manganese oxide can be obtained by reacting lithium salt with nickel oxide. At this time, a sufficient reaction time, a high temperature and a sufficient amount of oxygen supply are required. That is, the lithium salt is pyrolyzed to dissociate into lithium ions only when the lithium salt reacts at a high temperature (for example, about 700 to 800 ° C.) to cause thermal dissociation, and the dissociated lithium ions are dissolved into the lattice of the metal oxide. do. In addition, if a sufficient amount of oxygen is not supplied, the oxygen atmosphere must be maintained because the oxidation of nickel is not smooth.

그러나, 상기와 같은 순수한 리튬니켈 산화물은 충방전시 리튬이 탈리(deintercalation)되고, 그 자리를 니켈이 차지함에 따라 충방전이 원활하게 이루어지지 않게 된다. However, the pure lithium nickel oxide as described above is deintercalation of lithium during charging and discharging, and charging and discharging is not performed smoothly as nickel occupies the place.

그러므로, 순수한 리튬니켈 산화물 대신 첨가제를 포함하는 리튬니켈 복합산화물을 만들어 사용한다. 구체적으로, 리튬이온의 삽입(intercalation)과 탈리(deintercalation)가 가능한 재료인 Ni계 양극 활물질, 예를 들면, LiNi1-x-yCox A yO2-z B z (A = Mg, Al, Ga, Zr, Ti, B = S, BO3, F, x = 0 - 0.3, y = 0 - 0.1, z = 0 - 0.1), Li[NixCo1-2xMnx]O2 (x는 0-0.5)을 첨가제로 하여 스피넬형 LiMn2O4 양극 활물질을 제조하여 사용한다. 스피넬형 LiMn2O4는 재료의 친환경성, 결정구조적 안정성 및 원료가 저렴한 것이 특징이다. Therefore, lithium nickel composite oxides containing additives are used instead of pure lithium nickel oxides. Specifically, a Ni-based positive electrode active material that is a material capable of intercalation and deintercalation of lithium ions, for example, LiNi 1-xy Co x A y O 2-z B z (A = Mg, Al, Ga , Zr, Ti, B = S, BO 3 , F, x = 0-0.3, y = 0-0.1, z = 0-0.1 ), Li [Ni x Co 1-2x Mn x ] O 2 (x is 0 Spinel type LiMn 2 O 4 positive electrode active material is prepared and used as an additive. Spinel type LiMn 2 O 4 is characterized by environmental friendliness, crystal structure stability and low cost of raw materials.

본 발명의 양극 활물질에 있어서, 상기 Ni계 양극 활물질과 스피넬형 LiMn2O4 양극 활물질이 각각 5~50 중량% 및 50~95 중량%인 것이 바람직하다. 이때, Ni계 양극 활물질이 5 중량% 미만이거나 스피넬형 LiMn2O4 양극 활물질이 95 중량%를 초과하면 용량유지율이 낮고, Ni계 양극 활물질이 50 중량%를 초과하거나 스피넬형 LiMn2O4 양극 활물질이 50 중량% 미만이면 유의적인 충방전 특성을 얻을 수 없어 바람직하지 않다.In the positive electrode active material of the present invention, the Ni-based positive electrode active material and the spinel type LiMn 2 O 4 positive electrode active material are preferably 5 to 50% by weight and 50 to 95% by weight, respectively. At this time, if the Ni-based positive electrode active material is less than 5% by weight or the spinel type LiMn 2 O 4 positive electrode active material is more than 95% by weight, the capacity retention rate is low, and the Ni-based positive electrode active material is more than 50% by weight or the spinel type LiMn 2 O 4 positive electrode If the active material is less than 50% by weight, significant charge and discharge characteristics cannot be obtained, which is not preferable.

상기 활물질은 0.1~3㎛의 직경을 갖는 다수개의 미세 입자로 구성된 3~45㎛의 직경을 갖는 구형 입자가 바람직하며, 또한, 0.1~3㎛의 직경을 갖는 미세한 단일 구형 입자일 수도 있다. 이때, 상기 활물질의 미세 입자의 직경이 0.1㎛ 미만이거나 또는 활물질의 구형 입자의 직경이 3㎛보다 작으면 용량은 증가하나 고율 충방전 조건에서 입자가 깨어지거나 수명이 저하되며, 상기 활물질 미세 입자의 직경이 3㎛를 초과하거나 또는 활물질의 구형 입자의 직경이 45㎛를 초과하게 되면 초기 용량이 저하되는 문제점이 있어 바람직하지 않다.The active material is preferably a spherical particle having a diameter of 3 ~ 45㎛ composed of a plurality of fine particles having a diameter of 0.1 ~ 3㎛, may also be a fine single spherical particles having a diameter of 0.1 ~ 3㎛. In this case, when the diameter of the fine particles of the active material is less than 0.1㎛ or the diameter of the spherical particles of the active material is less than 3㎛, the capacity is increased, but the particles are broken or the service life is reduced under high rate charge and discharge conditions, If the diameter exceeds 3 μm or the diameter of the spherical particles of the active material exceeds 45 μm, there is a problem that the initial capacity is lowered, which is not preferable.

또한, 상기의 스피넬형 LiMn2O4 양극 활물질에 Ni을 포함하는 양극 활물질, 예를 들면, LiNi1-x-yCoxAyO2-zBz (A = Mg, Al, Ga, Zr, Ti, B = S, BO3, F, x = 0 - 0.3, y = 0 - 0.1, z = 0 - 0.1), Li[NixCo1-2xMnx]O2 (x는 0-0.5)을 첨가하여 양극을 제조하여 탄소를 음극으로 하는 리튬 이온 전지를 제조하였을때, 아주 우수한 사이클링 특성을 나타내었다. 이는 첨가제로 넣은 Ni계 양극 활물질들이 전해질의 분해로 발생되는 HF의 생성을 저지 혹은 억제해 주는 역할을 하기 때문이다. 이들 HF 혹은 루이스 산 등은 셀 성능 열화 및 단수명화의 원인이 된다. In addition, the spinel-type LiMn 2 O 4 positive electrode active material containing a positive electrode active material, for example, LiNi 1-xy Co x A y O 2-z B z (A = Mg, Al, Ga, Zr, Ti , B = S, BO 3 , F, x = 0-0.3, y = 0-0.1, z = 0-0.1 ), Li [Ni x Co 1-2x Mn x ] O 2 (x is 0-0.5) When the positive electrode was added to prepare a lithium ion battery having carbon as the negative electrode, very good cycling characteristics were shown. This is because Ni-based positive electrode active materials added as additives play a role of inhibiting or suppressing the generation of HF generated by decomposition of the electrolyte. These HF or Lewis acids cause deterioration of cell performance and short life.

Ni계 양극 활물질들을 스피넬형 LiMn2O4의 리튬 이온전지용 양극 활물질로 사용함으로써, 고출력화, 장수명화 및 전지의 대형화의 실현이 가능하게 될 것이다.By using the Ni-based positive electrode active materials as the positive electrode active material for spinel type LiMn 2 O 4 lithium ion battery, it is possible to realize high output, long life and large battery.

또한, 리튬니켈 산화망간계 양극 활물질은 제조시간이 월등히 단축됨으로써 생산성을 향상시킬 수 있으며, 이 양극 활물질을 사용하여 제조한 리튬 이온전지는 초기 용량이 높으면서도 계속적인 충방전시에도 용량의 감소 정도, 즉 용량유지율이 안정적이므로 전지의 수명을 향상시킬 수 있다.In addition, the lithium nickel manganese oxide positive electrode active material can improve productivity by significantly shortening the manufacturing time, and the lithium ion battery manufactured by using the positive electrode active material has a high initial capacity and a degree of decrease in capacity even during continuous charge / discharge. That is, since the capacity maintenance rate is stable, the life of the battery can be improved.

본 기술 분야의 통상의 지식을 가진 기술전문가는 상기 본 발명의 양극 활물질을 사용하여 공지된 전지 제조방법에 따라 용이하게 리튬 이온 전지를 제조할 수 있을 것이다.A person skilled in the art will be able to easily manufacture a lithium ion battery according to a known battery manufacturing method using the cathode active material of the present invention.

상기 리튬 이온전지에서, 음극 활물질로는 리튬 이온의 삽입(intercalation)과 탈리(deintercalation)가 가능한 흑연(Graphite), 코크스, 탄소 섬유, 구상 탄소 등의 흑연질 재료 또는 탄소질 재료, 열경화성 수지, 등방성 피치, 메소페이즈 피치, 메소페이즈 피치계 탄소 섬유, 메소페이즈 소구체 등을 사용할 수 있으며, 전해액으로는 비수용액계 액체 전해질, 폴리머 전해질 등을 사용할 수 있다.In the lithium ion battery, as the negative electrode active material, graphite materials such as graphite, coke, carbon fiber, spherical carbon or carbonaceous materials, thermosetting resins, and isotropic materials capable of intercalation and deintercalation of lithium ions can be used. Pitch, mesophase pitch, mesophase pitch-based carbon fibers, mesophase globules, and the like can be used, and as the electrolyte, a non-aqueous liquid electrolyte, a polymer electrolyte, and the like can be used.

이하, 하기 실시예를 통하여 본 발명을 보다 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 하기 실시예에 의하여 한정되거나 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are provided to illustrate the present invention, but the scope of the present invention is not limited or limited by the following examples.

<실시예 1><Example 1>

LiNi0.8Co0.15Al0.05O2와 LiMn2O4를 각각 50 중량%, 50 중량% 가하여 균일하게 혼합하였다.50 wt% and 50 wt% of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiMn 2 O 4 were added and mixed uniformly.

상기 활물질, 바인더로서 폴리비닐리덴 플루오라이드, 도전제로서 카본 블랙을 95:2:3의 중량비로 NMP(N-메틸 피롤리돈)에 분산시켜 슬러리를 제조하였다. 이 슬러리를 디핑법을 이용하여 알루미늄 호일에 300㎛ 두께로 코팅한 후 120℃의 온도에서 NMP를 날려 보낸 다음 일정한 압력으로 프레싱하여 일정한 크기로 잘라 양극판을 제조하였다. 음극판으로서 리튬 호일도 양극과 같은 크기로 잘라 통상의 방법으로 제조하였다. 그리고, 상기 양극판과 음극판의 중간에 세퍼레이터를 개재한 후 가열·압착한 후 전지의 외장재인 파우치에 삽입하고 전해액을 주입한 후 밀봉하여 리튬 2차 전지를 제조하였다. 세퍼레이터는 셀가드(celgard)사 제품을 사용하였으며, 전해질은 LiPF6를 용해시킨 에틸렌 카보네이트/디메틸 카보네이트/에틸메틸 카보네이트(EC/DMC/EMC)를 사용하였다.A slurry was prepared by dispersing polyvinylidene fluoride as the active material and binder and carbon black as a conductive agent in a weight ratio of 95: 2: 3 in NMP (N-methyl pyrrolidone). The slurry was coated on an aluminum foil with a thickness of 300 μm by dipping, and then NMP was blown at a temperature of 120 ° C., and pressed at a constant pressure to cut into a predetermined size to prepare a positive electrode plate. As the negative electrode plate, the lithium foil was also cut to the same size as the positive electrode to prepare a conventional method. Then, a separator was interposed between the positive electrode plate and the negative electrode plate, and then heated and compressed. The separator was inserted into a pouch, which is an exterior material of the battery, injected with an electrolyte, and sealed to manufacture a lithium secondary battery. Separators were manufactured by celgard, and electrolytes were ethylene carbonate / dimethyl carbonate / ethylmethyl carbonate (EC / DMC / EMC) in which LiPF 6 was dissolved.

<실시예 2><Example 2>

LiNi0.8Co0.15Al0.05O2와 LiMn2O4를 각각 5 중량%, 95 중량% 가하여 균일하게 혼합한 후, 실시예 1과 동일한 방법으로 전지를 제조하였다.5 wt% and 95 wt% of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiMn 2 O 4 were added and mixed uniformly, and a battery was manufactured in the same manner as in Example 1.

<비교예 1>Comparative Example 1

LiNi0.8Co0.15Al0.05O2가 첨가되지 않은 LiMn2O 4 만의 리튬 이온전지용 양극 활물질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.A battery was manufactured in the same manner as in Example 1, except that a cathode active material for a lithium ion battery including only LiMn 2 O 4 without LiNi 0.8 Co 0.15 Al 0.05 O 2 added thereto was prepared.

<실험예 1>Experimental Example 1

실시예 1에 따라 제조된 전지와 비교예 1에 따라 제조된 전지 간의 Closed mark 25℃, Open mark: 60℃에서 100 사이클 동안의 방전 용량을 비교하였다. 2016형 반전지를 이용하여 1C의 전류를 인가하여 충방전 테스트한 결과이다. 그 결과를 도 1에 나타내었다. The discharge capacity for 100 cycles at the closed mark 25 ° C. and the open mark: 60 ° C. between the cell prepared according to Example 1 and the cell prepared according to Comparative Example 1 was compared. This is the result of charging and discharging test by applying 1C current using 2016 type half cell. The results are shown in Fig.

일반적으로, 고온에서 충방전을 실시할 경우, 전해질의 분해반응도 더 빨리 일어나게 되고, 그로 말미암아 전해질의 분해로 발생된 HF에 의하여 망간의 용출이 심하게 일어나게 된다(2Mn3+ → Mn2+ + Mn4+). 위의 반응에서 Mn4+ 는 전해질 내의 리튬이온과 결합하여 전기화학적으로 불활성인 Li2MnO3를 형성시키고, Mn2+는 다른 착제를 형성시키며 음극 표면에 부착하게 된다. 도 1에서 알 수 있는 바와 같이, 60℃로 충방전할 경우, LiNi0.8Co0.15Al0.05O2를 HF 억제제로 넣지 않은 시편의 경우 약 20%의 용량 감소를 나타내었지만, 첨가제를 넣은 경우는 약 8%의 용량 감소를 나타내었다.In general, when charging and discharging is performed at high temperature, the decomposition reaction of the electrolyte occurs more quickly, and the dissolution of manganese is caused by HF generated by decomposition of the electrolyte (2Mn 3+ → Mn 2+ + Mn 4). + ). In the above reaction, Mn 4+ combines with lithium ions in the electrolyte to form Li 2 MnO 3 which is electrochemically inert, and Mn 2+ forms another complex and adheres to the surface of the negative electrode. As can be seen in FIG . 1 , when charged and discharged at 60 ° C., a capacity reduction of about 20% was observed for specimens not containing LiNi 0.8 Co 0.15 Al 0.05 O 2 as an HF inhibitor, but the additive was about A dose reduction of 8% was shown.

<실험예 2>Experimental Example 2

실시예 1에 따라 제조된 전지와 비교예 1에 따라 제조된 전지 간에 리튬 이온 전지를 이용하여 25℃에서 1C의 전류로 충방전 시킴으로써 용량 유지율을 비교하였다. HF 생성 억제제로서 LiNi0.8Co0.15Al0.05O2이 5 중량% 첨가된 양극과 첨가되지 않은 양극의 용량유지율을 비교한 것이다. 그 결과를 도 2에 나타내었다.The capacity retention rate was compared by charging and discharging the battery prepared according to Example 1 and the battery prepared according to Comparative Example 1 at 25 ° C. with a current of 1C. The capacity retention ratio of the positive electrode to which 5 wt% of LiNi 0.8 Co 0.15 Al 0.05 O 2 was added as the HF generation inhibitor was compared. The result is shown in Fig.

상기 반전지의 특성에서도 규명되었듯이, 완전지를 이용하여 25℃에서 충방전한 경우에도 마찬가지로 5 중량%의 LiNi0.8Co0.15Al0.05O2를 HF 억제제로 넣어준 것만으로도 도 2에서 볼 수 있는 것처럼 우수한 셀 성능을 나타내는 것을 알 수 있다.As is also known in the characteristics of the half-cell, even when charged and discharged at 25 ℃ using a complete paper, as can be seen in Figure 2 just by adding 5% by weight of LiNi 0.8 Co 0.15 Al 0.05 O 2 as an HF inhibitor It can be seen that excellent cell performance.

<실험예 3>Experimental Example 3

실시예 1에 따라 제조된 전지와 비교예 1에 따라 제조된 전지 간에 리튬 이온 전지를 이용하여 25℃에서 1C의 전류로 충방전 시킴으로써 용량 유지율을 비교하였다. HF 생성 억제제로서 LiNi0.8Co0.15Al0.05O2이 50 중량% 첨가된 양극과 첨가되지 않은 양극의 용량유지율을 비교한 것이다. 그 결과를 도 3에 나타내었다.The capacity retention rate was compared by charging and discharging the battery prepared according to Example 1 and the battery prepared according to Comparative Example 1 at 25 ° C. with a current of 1C. The capacity retention ratio of the positive electrode to which 50% by weight of LiNi 0.8 Co 0.15 Al 0.05 O 2 was added as the HF generation inhibitor was compared. The results are shown in Fig.

상기 반전지의 특성에서도 규명되었듯이, 완전지를 이용하여 25℃에서 충방전한 경우에도 마찬가지로 50 중량%의 LiNi0.8Co0.15Al0.05O2를 HF 억제제로 넣어 주었을 때도 300 사이클 동안 우수한 성능을 나타내는 것을 알 수 있다.As it is clear from the characteristics of the half-cell, even when charged and discharged at 25 ° C. using a full cell, the same performance was obtained for 300 cycles even when 50 wt% of LiNi 0.8 Co 0.15 Al 0.05 O 2 was added as an HF inhibitor. Can be.

상기의 구성을 갖는 본 발명의 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 리튬 이온전지는 종래 니켈 산화물을 첨가하지 않은 리튬 망간산화물을 양극 활물질로 하여 제조된 리튬 이온전지에 비해 장수명 및 고율 방전 특성과 열적 안정성이 우수하다.
A lithium ion battery having a spinel type LiMn 2 O 4 to which a Ni-based positive electrode active material of the present invention having the above structure is added as a positive electrode active material is a lithium ion battery manufactured using lithium manganese oxide without nickel oxide as a positive electrode active material. Compared to the long life and high rate discharge characteristics and thermal stability is excellent.

Claims (4)

양극 활물질, 도전제 및 바인더를 포함하여 제조되는 리튬 이온전지에 있어서, 상기 양극 활물질은 Ni계 양극 활물질이 첨가된 스피넬형 LiMn2O4를 양극 활물질로 하는 것임을 특징으로 하는 리튬 이온전지.In a lithium ion battery manufactured by including a positive electrode active material, a conductive agent and a binder, the positive electrode active material is A spinel type LiMn 2 O 4 to which a Ni-based positive electrode active material is added is used as a positive electrode active material. 제 1 항에 있어서, 상기 Ni계 양극 활물질이 LiNi1-x-yCoxAyO2-z Bz (A = Mg, Al, Ga, Zr, Ti, B = S, BO3, F, x = 0 - 0.3, y = 0 - 0.1, z = 0 - 0.1), Li[NixCo1-2xMnx]O2(x=0-0.5)로 이루어진 군으로부터 선택된 어느 하나 이상인 것임을 특징으로 하는 리튬 이온전지.The method of claim 1, wherein the Ni-based positive electrode active material is LiNi 1-xy Co x A y O 2-z B z (A = Mg, Al, Ga, Zr, Ti, B = S, BO 3 , F, x = 0-0.3, y = 0-0.1, z = 0-0.1 ), Li [Ni x Co 1-2x Mn x ] O 2 (x = 0-0.5) Lithium characterized in that at least one selected from the group consisting of Ion battery. 제 1 항에 있어서, 상기 Ni계 양극 활물질과 스피넬형 LiMn2O4 양극 활물질의 중량 조성비가 각각 5~50 중량% 및 50~95 중량%인 것임을 특징으로 하는 리튬 이온전지.The lithium ion battery according to claim 1, wherein a weight composition ratio of the Ni-based positive electrode active material and the spinel type LiMn 2 O 4 positive electrode active material is 5 to 50% by weight and 50 to 95% by weight, respectively. 제 1 항에 있어서, 상기 Ni계 양극 활물질이 0.1∼3㎛의 직경을 갖는 다수개의 미세 입자로 구성된 3∼45㎛의 직경을 갖는 구형 입자인 것임을 특징으로 하는 리튬 이온전지.The lithium ion battery according to claim 1, wherein the Ni-based cathode active material is a spherical particle having a diameter of 3 to 45 µm consisting of a plurality of fine particles having a diameter of 0.1 to 3 µm.
KR1020040090773A 2004-11-09 2004-11-09 Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added KR100570417B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040090773A KR100570417B1 (en) 2004-11-09 2004-11-09 Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040090773A KR100570417B1 (en) 2004-11-09 2004-11-09 Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added

Publications (1)

Publication Number Publication Date
KR100570417B1 true KR100570417B1 (en) 2006-04-11

Family

ID=37180486

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040090773A KR100570417B1 (en) 2004-11-09 2004-11-09 Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added

Country Status (1)

Country Link
KR (1) KR100570417B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
WO2011065650A2 (en) 2009-11-25 2011-06-03 주식회사 엘지화학 Anode made by a combination of two components, and lithium secondary battery using same
WO2011065651A2 (en) 2009-11-25 2011-06-03 주식회사 엘지화학 Anode made by a combination of two components, and lithium secondary battery using same
WO2011122877A2 (en) 2010-04-01 2011-10-06 주식회사 엘지화학 Novel positive electrode for a secondary battery
WO2011122865A2 (en) 2010-04-01 2011-10-06 주식회사 엘지화학 Positive electrode active material and lithium secondary battery using same
CN101246957B (en) * 2007-02-13 2011-11-30 三洋电机株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
WO2012144785A2 (en) 2011-04-18 2012-10-26 주식회사 엘지화학 Positive electrode active material, and lithium secondary battery comprising same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
CN101246957B (en) * 2007-02-13 2011-11-30 三洋电机株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
US8501051B2 (en) 2009-11-25 2013-08-06 Lg Chem, Ltd. Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
WO2011065650A2 (en) 2009-11-25 2011-06-03 주식회사 엘지화학 Anode made by a combination of two components, and lithium secondary battery using same
WO2011065651A2 (en) 2009-11-25 2011-06-03 주식회사 엘지화학 Anode made by a combination of two components, and lithium secondary battery using same
US9324999B2 (en) 2009-11-25 2016-04-26 Lg Chem, Ltd. Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
US8871117B2 (en) 2009-11-25 2014-10-28 Lg Chem, Ltd. Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
US8449792B2 (en) 2009-11-25 2013-05-28 Lg Chem, Ltd. Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
US8709650B2 (en) 2010-04-01 2014-04-29 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
WO2011122865A2 (en) 2010-04-01 2011-10-06 주식회사 엘지화학 Positive electrode active material and lithium secondary battery using same
WO2011122877A2 (en) 2010-04-01 2011-10-06 주식회사 엘지화학 Novel positive electrode for a secondary battery
US9608259B2 (en) 2010-04-01 2017-03-28 Lg Chem, Ltd. Positive electrode for secondary battery
WO2012144785A2 (en) 2011-04-18 2012-10-26 주식회사 엘지화학 Positive electrode active material, and lithium secondary battery comprising same
US9246162B2 (en) 2011-04-18 2016-01-26 Lg Chem, Ltd. Cathode active material and lithium secondary battery containing the same

Similar Documents

Publication Publication Date Title
KR102217302B1 (en) Positive electrode additive material for rechargeable lithium battery, method of preparing the same, positive electrode including the same and rechargeable lithium battery including the same
KR100670507B1 (en) Lithium secondary battery
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
KR20190041715A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
EP3719883B1 (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery, and lithium secondary battery including the same
EP3686971A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
KR20180077090A (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
KR20190043855A (en) Positive electrode material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR20170063419A (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
EP3868714A1 (en) Octahedral lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery including same
KR20210118644A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR101206651B1 (en) Cathode active material with improved performance for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same
KR20230078980A (en) Method for preparing positive electrode active material for lithium secondary battery, positive electrode comprising the positive electrode active material prepared by the same and lithium secondary battery
KR20230143982A (en) Lithium secondary battery
JP2007103246A (en) Non-aqueous electrolyte secondary battery
EP3780174A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
EP3984960B1 (en) Preparation method for positive electrode active material for secondary battery
JP7225415B2 (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
KR100570417B1 (en) Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added
KR20220034586A (en) Negative electrode material, negative electrode and secondary battery comprising the same
KR20200086995A (en) Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby
KR20200107843A (en) Lithium secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
KR102563025B1 (en) Positive electrode active material and manufacturing method of the same
KR102604921B1 (en) Lithium transition metal oxide, positive electrode additive for lithium secondary battery, lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120403

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee