KR100569120B1 - Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof - Google Patents

Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof Download PDF

Info

Publication number
KR100569120B1
KR100569120B1 KR1020040061657A KR20040061657A KR100569120B1 KR 100569120 B1 KR100569120 B1 KR 100569120B1 KR 1020040061657 A KR1020040061657 A KR 1020040061657A KR 20040061657 A KR20040061657 A KR 20040061657A KR 100569120 B1 KR100569120 B1 KR 100569120B1
Authority
KR
South Korea
Prior art keywords
gasification
catalyst
fuel
tar
catalytic
Prior art date
Application number
KR1020040061657A
Other languages
Korean (ko)
Other versions
KR20060012934A (en
Inventor
강성규
신현동
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020040061657A priority Critical patent/KR100569120B1/en
Priority to US10/560,992 priority patent/US20070094929A1/en
Priority to EP05750463A priority patent/EP1773968A4/en
Priority to JP2006535283A priority patent/JP4243295B2/en
Priority to PCT/KR2005/001808 priority patent/WO2006031011A1/en
Publication of KR20060012934A publication Critical patent/KR20060012934A/en
Application granted granted Critical
Publication of KR100569120B1 publication Critical patent/KR100569120B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/046Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/16Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids
    • C10K1/18Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0272Processes for making hydrogen or synthesis gas containing a decomposition step containing a non-catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0989Hydrocarbons as additives to gasifying agents to improve caloric properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1693Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 처리 곤란한 바이오메스를 열병합 복합발전 연소 가능한 청정 가스 연료로 전환하는데 그 목적이 있다. It is an object of the present invention to convert a difficult biomass into a clean gas fuel capable of cogeneration combined combustion.

본 가스화 기술은 기존 가스화 기술과는 달리 1단에서 유동층 촉매가스화를 행하고 2단에서도 타르의 가스화 개질뿐만 아니라 타르중 질소와 가연성 가스 중의 HCN 등을 NH3로 전환하는 촉매개질반응을 행한다. Unlike the existing gasification technique, the present gasification technique performs a fluidized bed catalytic gasification in the first stage and performs a catalytic reforming reaction in which the gasification of the tar is converted into NH 3 as well as the gasification of the tar and the nitrogen in the flammable gas.

가스화 전체 공정의 온도는 회재 용융온도보다 낮아 분말상 회재가 발생되어 처리도 간편하고, 공정 온도가 낮아 방열 손실도 적어 소형의 고발열량 가스 반응기 설계가 가능하다. Since the temperature of the entire gasification process is lower than the ash melting temperature, powdery ash is generated to simplify the treatment, and the process temperature is low, so that the heat dissipation loss is small, thereby enabling the design of a small high calorific gas reactor.

또한 발생된 타르는 회수하여 타 공정에 재이용하며, 가스연료는 소량 암모니아가 함유된 특징이 있다.In addition, the generated tar is recovered and reused in other processes, and the gas fuel is characterized by containing a small amount of ammonia.

2단 촉매가스화, 바이오메스 정제 연료, 저온 촉매가스화, 저온 촉매개질, 타르 회수2-stage catalytic gasification, biomass refined fuel, low temperature catalytic gasification, low temperature catalyst reforming, tar recovery

Description

바이오메스 정제연료의 저온 촉매가스화 장치 및 가스제조방법{APPARATUS OF CATALYTIC GASIFICATION FOR REFINED BIOMASS FUEL AT LOW TEMPERATURE AND THE METHOD THEREOF}Low Temperature Catalytic Gasification Apparatus and Method for Gas Production of Biomass Refined Fuels {APPARATUS OF CATALYTIC GASIFICATION FOR REFINED BIOMASS FUEL AT LOW TEMPERATURE AND THE METHOD THEREOF}

도 1은 바이오메스의 무촉매 고온 2단 가스화 장치의 개략도,1 Schematic diagram of a non-catalytic high temperature two-stage gasifier of biomass,

도 2는 고품위 폐기물의 2단 촉매 가스화 장치 개략 공정도,2 is a schematic process diagram of a two-stage catalytic gasifier of high-grade waste;

도 3은 본 발명의 바이오메스 정제연료의 2단 촉매 가스화 장치도,3 is a two-stage catalytic gasifier of the biomass refined fuel of the present invention;

도 4는 하수슬러지 정제 연료의 무촉매 및 촉매 가스화 특성 비교도,Figure 4 is a comparison of the catalyst-free and catalytic gasification characteristics of sewage sludge refined fuel,

도 5는 하수슬러지 정제 연료의 2단 촉매 가스화 특성 비교도.5 is a comparison of two-stage catalyst gasification characteristics of sewage sludge refined fuel.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 연료호퍼 20 : 촉매 순환유동 가스화로10: fuel hopper 20: catalytic circulation flow gasifier

30 : 사이클론 40 : 촉매개질기30: cyclone 40: catalytic reformer

50 : 열교환기 60 : 타르스크러버50: heat exchanger 60: tar scrubber

70 : 가스저장조70: gas storage tank

본 발명은 무기물 회재가 적고 질소 성분은 비교적 많이 함유한 바이오메스 를 대도시 지역난방에서 청정연료로 사용하기 위한 가스화 기술에 관한 것이다.The present invention relates to a gasification technology for using biomass containing less inorganic ash and relatively high nitrogen content as a clean fuel in district heating in large cities.

특히, 본 발명은 바이오메스 유기 폐기물/중질유/석탄을 정제 혼합한 물질(SOCA : Sludge-Oil-Coal Agglomerates)을 청정가스화하여 가스연료로 제조하는 장치 및 제조방법에 관한 것이다.In particular, the present invention relates to an apparatus and a method for manufacturing a gas fuel by clean gasifying a material (SOCA: Sludge-Oil-Coal Agglomerates) obtained by purifying and mixing biomass organic waste / heavy oil / coal.

여기서 청정 가스화된 가스연료란 가스엔진, 가스터빈, 증기터빈 종합 발전, 연료전지, 보일러 등의 가스 발전장치나 열이용 기기에서 이용 가능한 청정 가스연료를 뜻하며, 또한 바이오메스란 하수 슬러지, 펄프 슬러지 등 산업폐기물이나 가정 쓰레기, 분뇨 등의 생활폐기물, 농산물의 폐재, 가축류의 분뇨 또는 절단한 목재류 등 유기성 고체물질을 총칭한다.Here, clean gasified gas fuel refers to clean gas fuel that can be used in gas power generation devices such as gas engines, gas turbines, steam turbine integrated power generation, fuel cells, boilers, and heat-use devices, and biomass refers to sewage sludge, pulp sludge, etc. Organic solid materials such as industrial waste, household waste, household waste such as manure, waste products of agricultural products, manure of livestock or cut wood.

가스화 기술은 초기에는 석탄 덩어리를 무촉매 상태에서 편리한 가스연료 또는 합성 가스를 제조하는 목적으로 시작하여 근래에는 대부분 미분탄에 대한 고정상 가스화 및 촉매 가스화 등의 방향으로 발전되고 있다. Gasification technology initially started with the aim of producing a convenient gas fuel or synthesis gas in a non-catalyst state of coal, and in recent years, most of them have been developed in the direction of fixed bed gasification and catalytic gasification of pulverized coal.

이후 유동층 연소 기술을 이용한 유동촉매 가스화 등은 중질유 개질 등의 목적으로 나타나고 점차 석탄 및 바이오메스 가스화로의 적용이 시도되면서 타르 발생을 최소화하는 고온 가스화와 청정화하는 방안으로 추진되어 왔다.Later, fluidized catalyst gasification using fluidized bed combustion technology has been promoted as a hot gas reforming and purifying method for minimizing tar generation as the application of coal and biomass gasification furnace is gradually attempted.

고체 연료는 공기, 산소 및 스팀과 같은 반응성 물질과의 가스화에 의해 가연성 가스, 응축성 액체/타르(Tar) 및 고체 잔류물 등으로 변환된다. 일반적으로 가스화는 고체연료로부터 가스연료를 최대화하나, 부분 가스화 공정에서는 제한적으로 응용되고 있다. 또한 열분해(Pyrolysis)는 가스화와 차이가 있는데, 이는 불활성 분위기 상태에서 이루어지는 열적 분해(Thermal decomposition)를 말한다. 그 러나 가스화의 초기 단계에서는 먼저 탈휘발화되는 열분해 상태가 되는데, 이 때는 연료가 차르(Char)와 휘발성분으로 분해된다. 이러한 탈휘발화 이후에 챠르와 가스 성분과의 2차 반응에 의해 가스화의 최종 성분 분포를 갖는 제품이 얻어진다. 실제적으로 제품의 분포도는 가스화 장치 형상과 조업 조건에 따라 크게 영향을 받는다. Solid fuels are converted into combustible gases, condensable liquids / Tar and solid residues, etc. by gasification with reactive materials such as air, oxygen and steam. In general, gasification maximizes gaseous fuel from solid fuels, but has limited application in partial gasification processes. Pyrolysis also differs from gasification, which refers to thermal decomposition in an inert atmosphere. In the initial stage of gasification, however, the pyrolysis is first devolatilized, whereby the fuel is decomposed into char and volatile components. After this devolatilization, a second reaction between the char and the gas component yields a product having a final component distribution of gasification. In practice, the distribution of the product is greatly influenced by the shape of the gasifier and the operating conditions.

고온 가스화에서는 석탄이나 슬러지에 함유된 무기물질의 대부분이 회재나 슬래그(Slag)로 발생되며, 철분이나 나트륨과 같은 무기물질은 900℃ 이상에서 휘발되어 열교환기 벽면 등에 용착된다. 또한 연료에 함유된 질소(Fuel-N)는 가스화 과정에서 NH3, HCN, N2 등으로 변하는데, 이는 가스화 반응기, 연료 물성 및 운전 조건 등에 따라 다르다.In hot gasification, most of the inorganic materials contained in coal or sludge are generated as ash or slag. Inorganic materials such as iron and sodium are volatilized at 900 ° C. or higher and deposited on heat exchanger walls. In addition, the nitrogen contained in the fuel (Fuel-N) is changed to NH 3 , HCN, N 2 in the gasification process, which depends on the gasification reactor, fuel properties and operating conditions.

석탄의 가스화는 일반적으로 고온에서 행해지므로 많은 에너지가 필요하고, 이로 인하여 얻어지는 가스의 발열량은 낮으면서도 재(Ash)가 용융 상태로 되어 시스템이 비대하거나 복잡한 것이 일반적이다. 그러나 촉매를 사용함으로써 가스의 조성과 운전 조건 등을 개선할 수 있는데, 비교적 저온에서 무촉매시의 가스조성을 얻고, Fuel-N의 전환에도 도움을 줄 수 있다. 일부 보고에 의하면 촉매물질과 반응 온도에 따라 Fuel-N의 NH3 및 HCN의 N2 변환은 아래와 같이 차이가 있는데, 전자의 경우는 Fe 및 Ni 촉매가 900℃ 이상에서 양호하며, 후자는 돌로마이트(Dolomite) 촉매 등이 800℃ 이상에서 양호한 것으로 보고되었다.Since gasification of coal is generally carried out at high temperature, a lot of energy is required, and as a result, the calorific value of the gas is low and ash is melted, so that the system is generally large or complicated. However, by using a catalyst, the composition and operating conditions of the gas can be improved, and at a relatively low temperature, a gas composition can be obtained at a relatively low temperature, and it can also help to convert Fuel-N. According to some reports, the N 2 conversion of Fuel-N to NH 3 and HCN varies according to the catalyst material and the reaction temperature. In the former case, the Fe and Ni catalysts are good at 900 ° C or higher, and the latter is dolomite ( Dolomite) catalyst and the like have been reported to be good at 800 ℃ or more.

가스화 가스는 발열량이 낮은 것이 보통인데, LNG의 발열량은 약 10,000kcal/Nm3인데 비하여 발열량이 6,850kcal/kg인 석탄을 가스화하면 1,100~1,450kcal/Nm3의 저발열량의 가스를 얻게 된다.Gasification gas is usually low calorific value, LNG calorific value is about 10,000kcal / Nm 3 compared to 6,850kcal / kg of coal calcining the gas to obtain a low calorific value of 1,100 ~ 1,450kcal / Nm 3 .

석탄의 저온 촉매가스화에서는 전환율이 낮아 실제로는 회재의 용융온도 이상으로 운전되고 있다. 그러나, 회재량이 적은 바이오메스의 가스화에서는 촉매가스화함으로써 애쉬슬래깅(Ash slagging)이 발생되지 않는 낮은 온도에서 Fuel-N의 NO 전환을 줄이면서 고품위 연료를 얻을 수 있다.In low temperature catalytic gasification of coal, the conversion rate is low and is actually operated above the melting temperature of ash. However, in the gasification of biomass with low ash content, high-quality fuel can be obtained while reducing NO conversion of Fuel-N at low temperatures where ash slagging does not occur by catalytic gasification.

한편 이 방법은 고발열량의 폐기물이나 중질유 등의 가스화 또는 석탄과 혼합한 연료에 대해 시도되고 있는데, 특히 염소계 이온이 포함된 폐기물의 경우는 이를 제거하는 공정 또는 가스화 후에 직접 소각하는 경우는 1200℃ 이상 온도에서 2초 이상 체류하도록 설계한다. 또한 고품위 고분자 폐기물의 경우는 수소와 같은 고품위 연료를 생산하는 특수가스화 공정도 있다.On the other hand, this method has been attempted for gasification of high calorific value waste or heavy oil, or fuel mixed with coal, especially for wastes containing chlorine-based ions, or incineration of gas directly after gasification to remove it. Designed to stay at temperature for at least 2 seconds. There is also a special gasification process for high quality polymer waste, which produces high quality fuels such as hydrogen.

그러나 이러한 가스화 장치는 원료 중에 회분 등의 불순물이 많이 포함되어 있어 이를 제거 정제하는 설비가 요구되며, 무촉매시에 가스화 전환율을 높이고자 고온화함으로써 용융된 회분이 생성되어 이를 미세화하여 슬래그가 되도록 하는 급냉(Quenching) 시스템 설치가 요구된다. 또한 순산소 또는 공기분리장치를 사용함으로써 운전비나 설치비가 고가가 된다. 발열량이 낮은 원료의 가스화에서는 특히 외부 열원에 의한 간접가열과 수증기만을 유입하여 열분해토록 하는 시스템을 설치하여 경제성을 고려하지 않는 특수 목적으로 사용된다.However, these gasifiers contain a large amount of impurities such as ash in the raw material, and require a facility for removing and refining them, and quenching the molten ash to produce a slag by miniaturizing it by increasing the temperature to increase the gasification conversion rate without the catalyst. (Quenching) System installation is required. In addition, the use of pure oxygen or an air separation device increases the operating and installation costs. In the gasification of raw materials with low calorific value, it is used for special purpose that does not consider economic feasibility by installing a system to induce pyrolysis by indirect heating and steam only by external heat source.

따라서 무촉매 부분산화 공정의 단점은 고온가스화 반응을 이루기 위해 고가 의 순산소 또는 부화산소를 사용해야 하고, 고온 및 고품의 생성가스(주로 CO와 H2)를 얻기 위해 추가 연료소비가 크며, 고온반응에 적합한 고가의 내열소재를 사용하여야 하고, 반응기의 내구년도 짧아진다는 점이다. 또한, 고정상 반응기에서 고온 부분연소에 의한 유리탄소 발생이 약 2~5% 침적되어 반응효율은 점점 감소되며, 이를 제거하기 위한 추가 비용이 소요된다는 점이다.Therefore, the disadvantage of the non-catalytic partial oxidation process is that expensive pure oxygen or oxygen enrichment must be used to achieve the high temperature gasification reaction, and additional fuel consumption is large to obtain high temperature and high quality product gases (mainly CO and H 2 ). It is necessary to use expensive heat-resistant materials suitable for the purpose and shorten the durability of the reactor. In addition, the generation of free carbon due to the high temperature partial combustion in the fixed bed reactor is deposited about 2 to 5%, so that the reaction efficiency gradually decreases, and additional costs are required to remove it.

타르나 챠르가 적은 비교적 청정한 가스연료에 대해서는 순환형 저온 촉매가스화 반응기가 적용될 수 있는데, 촉매의 산화반응과 환원반응성을 이용하는데, 유기물질 탄화수소와 수증기가 산화물촉매(MO) 상에서 생성가스로 전환되며, 이 때 촉매도 환원되어 순수 금속(M)으로 전환된다. 촉매로서 활성이 저하된 금속(M)은 연소반응로에서 다시 금속산화물(MO)로 재생된다. 촉매반응도 400~600℃ 정도의 낮은 온도에서 진행되고 액체생성물을 극히 적게 할 수 있는 특징이 있지만 폐기물이나 촉매독 성분이 함유된 폐가스에 적용하기에는 제한적이다.For a relatively clean gas fuel with less tar or char, a cyclic low-temperature catalytic gasification reactor can be applied, which utilizes the oxidation and reduction reactions of the catalyst, where organic hydrocarbons and water vapor are converted into the product gas on the oxide catalyst (MO). At this time, the catalyst is also reduced and converted into pure metal (M). The metal (M) having reduced activity as a catalyst is regenerated into a metal oxide (MO) in a combustion reactor. Catalytic reaction proceeds at a low temperature of about 400 ~ 600 ℃, and it is characterized by extremely low liquid products, but it is limited to be applied to waste gas containing waste or catalyst poison components.

이러한 순환반응 개질반응 촉매로는 일반적으로 Ni과 Co촉매가 일반적이고, V, Cr, Fe, Cu, Mo, Ag, Cd, La, Ce, Perovskite 등도 사용되나, 보다 효율이 좋은 촉매로는 Rh, Ru 등의 귀금속 촉매도 사용되며, 이들을 Mg, Ca, Sr, Ba, Al, Ce, Si, Ti, Zr 등의 산화물이 2종 이상 조합된 지지체에 담지하는 것이 보통이다. 그러나, 이들 촉매들은 저온에서 촉매독에 의한 활성 저하로 고온 반응 또는 재생하여 안정적으로 사용하고자 하는데, 이 때에 유리된 탄소분이 석출되어 촉매표면을 막거나, 담체와 반응하여 다른 생성물을 형성하는데, 예로서 Ni촉매가 알루미나와 고온 반응하여 NiAl2O4 등이 형성되어 활성이 저하되는 단점이 있다. 이 때에 내고온성 헥사알루미네이트(Hexaaluminate, MeO·6Al2O3) 등을 사용하는 경우도 있다. Ni and Co catalysts are generally used as the cyclic reforming catalyst, and V, Cr, Fe, Cu, Mo, Ag, Cd, La, Ce, Perovskite, etc. are also used, but more efficient catalysts include Rh, Precious metal catalysts such as Ru are also used, and these are usually supported on a support in which two or more kinds of oxides such as Mg, Ca, Sr, Ba, Al, Ce, Si, Ti, and Zr are combined. However, these catalysts are intended to be used stably by reacting or regenerating at high temperatures due to deactivation of the catalyst poison at low temperatures. At this time, free carbon is precipitated to block the surface of the catalyst or to react with the carrier to form other products. As a Ni catalyst is reacted with alumina at high temperature to form NiAl 2 O 4 and the like there is a disadvantage that the activity is reduced. At this time, a high temperature resistant hexaaluminate (Hexaaluminate, MeO. 6Al 2 O 3 ) or the like may be used.

중금속 등의 고형 불순물이 많이 포함된 액상 폐기물의 경우에 반응기에 촉매를 혼입하고 초임계 상태에서 가스화 반응을 시도하기도 하는데, 사용된 촉매로는 Ru, Pd, R, Pt, Au, Ir, Os, Fe, Ni, Ce, Mn 등을 내고온성 티타니아나, 지르코니아에 함침하여 250~600℃, 5~130MPa 상태에서 운전한 경우가 있다. 이 때 사용된 촉매는 고가의 귀금속류로서 기-액분리기로 회수하여 재사용토록 한다.In the case of liquid waste containing a lot of solid impurities such as heavy metals, the catalyst is mixed into the reactor and gasification reaction is attempted in a supercritical state. The catalysts used are Ru, Pd, R, Pt, Au, Ir, Os, Fe, Ni, Ce, and Mn were impregnated with high temperature resistant titania or zirconia and operated at 250 to 600 ° C. and 5 to 130 MPa. The catalyst used at this time is an expensive noble metal and is recovered and reused in a gas-liquid separator.

고체-고체 촉매반응은 사실상 어려워 처음에는 석탄에 알칼리 촉매성분을 함침시키거나 다량 포함된 회재의 알칼리 금속을 이용한 석탄 촉매가스화가 개발되었으나, 근래에는 석탄의 챠르 반응이 미세 휘발에 의한 표면반응에 의해 주로 발생되는 것으로 밝혀지면서, 고체 촉매를 석탄과 함께 섞어 반응토록 하고 있다. 휘발물질이 비교적 많은 아역청탄의 경우 탄산칼륨을 촉매로 사용하였는데, 이 때 회분에 포함된 고형물질에 따라 가스화 특성이 달라진다. 대체로 칼륨 촉매는 그와 결합된 음이온에 따라 활성의 차가 크고, 철 이온은 유황에 의해 쉽게 활성이 저하되며, 니켈 이온은 일시 촉매피독이 보다 심하나 피독물질이 탈착되는 고온에서는 높은 촉매활성을 회복한다. Solid-solid catalysis is virtually difficult, and at first, coal catalyst gasification was developed by impregnating an alkali catalyst component with coal or by using a large amount of alkali metal. However, in recent years, the char reaction of coal is caused by the surface reaction by fine volatilization. It has been found to occur mainly, and the solid catalyst is mixed with coal to cause the reaction. Potassium carbonate is used as a catalyst for sub-bituminous coals, which have a relatively high volatile matter, and the gasification characteristics vary depending on the solids contained in the ash. In general, potassium catalysts have a large difference in activity depending on the anion bound thereto, and iron ions are easily deactivated by sulfur, and nickel ions are more severe in temporary catalyst poisoning, but recover high catalytic activity at high temperatures at which poisoning substances desorb. .

이러한 촉매특성을 이용하여 보다 최적화한 촉매 구성으로 K2SO4+FeSO4나 K2SO4+Ni(NO3)2 또는 K2SO4+CaCO3 촉매를 사용하여 700~850℃의 비교적 저온에서 높은 가스화 반응속도의 운전이 가능하였다. 그러나 전환율은 그리 높지 못하여 잔유 회분을 용융화하는 등 복잡한 설비가 요구된다.A more optimized catalyst composition using these catalytic properties is relatively low temperature of 700 ~ 850 ℃ using K 2 SO 4 + FeSO 4 or K 2 SO 4 + Ni (NO 3 ) 2 or K 2 SO 4 + CaCO 3 catalyst High gasification reaction rates were possible at. However, the conversion rate is not so high that complex equipment is required, such as melting of the ash ash.

2단 가스화 방법 중 원통형 반응기 내부에서는 공기가스화가 외부에서는 수증기 가스화가 약 850℃에서 되도록 구성하여 중간정도 발열량의 가스생성물을 얻는데, 촉매로 석회석을 사용하여 석탄 중의 유황 피독을 고려하였으며 이 때 반응은 다음과 같이 발생된다.In the two-stage gasification method, air gasification is performed inside the cylindrical reactor so that water vaporization is at about 850 ° C outside to obtain a medium calorific value gas product. Limestone is used as a catalyst to consider sulfur poisoning in coal. It occurs as follows.

H2S + CaO → CaS + H2OH 2 S + CaO → CaS + H 2 O

이 때에 발생된 고체물질들은 그의 밀도차이를 이용하여 CaS, CaO 및 석회석 등을 반응기에서 분리할 수 있고, 반응기 하부에서도 회재와 석회석을 분리하는 것으로 하였으나 반응기와 공정이 복잡하여 정밀 운전이 요구된다.The solid materials generated at this time can be used to separate CaS, CaO and limestone in the reactor by using the density difference, and the ash and limestone are also separated from the bottom of the reactor, but the reactor and the process are complicated and require precise operation.

도 1은 종래의 바이오매스의 무촉매 고온2단 가스화장치로서 도에서 보는 바와 같이 기존 바이오메스 2단 열분해 설비는 바이오매스연료는 연료호퍼(101)로부터 순환유동가열로(102)로 이송되고, 사이클론(103) 및 챠르분리기(104)를 거쳐 가스개질로(105)로 보내지면서 2단 열분해된다. 그 후로 연료화가스는 예열장치(106), 가스급냉기(107)를 거쳐 다시 한번 플라이애쉬를 집진장치(108)에서 집진하고, 정제장치(109)에서 정제가스를 정제한다.1 is a conventional biomass non-catalyst high temperature two-stage gasifier as shown in the conventional biomass two-stage pyrolysis plant, the biomass fuel is transferred from the fuel hopper 101 to the circulating flow furnace 102, Two stages of pyrolysis are sent to the gas reformer 105 via the cyclone 103 and the char separator 104. Thereafter, the fuel gas is once again collected through the preheater 106 and the gas cooler 107 in the dust collector 108, and the purified gas is purified in the refiner 109.

본 장치에서는 중금속의 고온 휘발 등을 우려하여 무촉매에서 비교적 높지 않은 온도 450∼850℃에서 1단 열분해하여 가스화 수율이 낮고, 타르 발생이 과다하다. 따라서 가스화 수율을 높이기 위해 타르의 개질이 필요한데, 무촉매 하에서 1000∼1200℃에서 행한다. 바이오메스 중에 보통 유황분은 비교적 적게 포함되어 있음에도 불구하고, 배연탈황을 고려한 반면, 상대적으로 많은 인이나 Fuel-N에 의한 오염이나 공해발생에 대해서는 고려치 않아 제 2의 공해를 유발할 우려가 있다. 특히 이 공정에서는 원료 중에 존재하는 염소 이온에 의한 다이옥신 전환반응 억제를 위한 가스 급냉기(107)를 설치하고 있다.In this apparatus, the high temperature volatilization of heavy metals, etc., causes one-stage pyrolysis at a temperature of 450-850 ° C., which is relatively high in a non-catalyst, resulting in low gasification yield and excessive tar generation. Therefore, in order to increase the gasification yield, tar reforming is required, but it is performed at 1000 to 1200 ° C under a catalyst. Although flue gas desulfurization is considered, although sulfur is usually contained in biomass relatively little, it does not consider pollution or pollution caused by relatively large amounts of phosphorus or Fuel-N, and may cause secondary pollution. In particular, in this step, a gas quenching machine 107 for suppressing the dioxin conversion reaction by chlorine ions present in the raw material is provided.

도 2는 종래의 고품위 폐기물의 2단촉매가스화장치로서 불순물이 적고 발열량이 높은 폐기물이라도, 소량의 피독물질 때문에 도 2에서 보는 바와 같이 1단, 유동층가스화로(110)에서 원료를 약 700∼800℃에서 무촉매 유동층으로 부분산화와 열분해하고, 생성한 가연성 가스의 온도를 약 300℃ 정도로 낮춘 뒤에 소석회 등을 첨가하여 Cl 및 S를 고정하여 이들을 사이클론(103)에서 집진 제거한 후에 가스혼합기(111) 및 연소로(112)에서 가연성 가스의 온도를 다시 높여서 가스개질기(113)에서 제 2단의 타르 촉매 개질 반응을 시키는데, NiO/MoO 촉매의 경우는 400∼500℃에서 알루미나에 Ni, Cr 및 Fe 등을 담지한 촉매의 경우는 800∼1000℃에서 반응되는 것으로 알려졌다. 도면부호 114는 보일러이며, 115는 가스저장조이며 도 1과 공통된 장치는 동일한 도면부호를 사용하였다.FIG. 2 is a conventional two-stage catalyst gasifier for high-quality waste, even if the waste is low in impurities and has a high calorific value, since a small amount of poisonous material is used in the first stage and fluidized bed gasifier 110 as shown in FIG. Partial oxidation and pyrolysis in a non-catalyst fluidized bed at 0 ° C., lowered the temperature of the produced combustible gas to about 300 ° C., followed by addition of slaked lime and the like to fix Cl and S to collect and remove them from the cyclone 103, followed by a gas mixer 111. In addition, the temperature of the combustible gas is increased again in the combustion furnace 112 to perform the second catalytic reforming reaction of the tar in the gas reformer 113. In the case of the NiO / MoO catalyst, Ni, Cr, and Fe are added to the alumina at 400 to 500 ° C. It is known that the catalyst is supported at 800 to 1000 ° C. Reference numeral 114 denotes a boiler, 115 denotes a gas storage tank, and the apparatus common to FIG. 1 uses the same reference numerals.

본 발명은 상기한 문제점을 해결하기 위하여 창안된 것으로서, 보다 정제된 연료를 사용하여 1단 가스화 과정에서도 내피독성의 촉매가스화를 행하고 낮은 온도에서 가스화 수율을 높이며, 2단 촉매개질 반응에서는 타르의 가스화와 Tar-N과 가연성 가스 중의 HCN 등을 NH3로 전환토록 하는 것을 그 목적으로 한다. The present invention has been made to solve the above problems, using a more refined fuel to perform endothelial catalytic gasification even in the first stage gasification process, to increase the gasification yield at a low temperature, the gasification of tar in the two-stage catalytic reforming reaction And Tar-N and HCN in flammable gas are converted into NH 3 .

또한, 본 발명은 전체 공정온도를 낮추어 반응유지를 위한 계의 에너지 소비량을 적게 하여 가스 중의 CO2 함유량을 최소화함으로써 생성가스의 단위 발열량을 높이고, 발생 회재도 용융상태가 아닌 비산회재(Fly ash)로 발생되게 함으로써 용융회재 급냉 시스템 등의 설치가 불필요하게 하여 반응기를 콤팩트하게 하는 것을 그 목적으로 한다.In addition, the present invention increases the unit calorific value of the generated gas by minimizing the amount of CO 2 in the gas by reducing the overall process temperature to reduce the energy consumption of the system for maintaining the reaction, and also generated ash is not a molten fly ash (Fly ash) It is an object of the present invention to make the reactor compact by making the molten ash quenching system or the like unnecessary.

상술한 기술적 과제를 달성하기 위하여 본 발명은 연료호퍼와 상기 연료호퍼의 후방에 설치되며, 중앙부에 상기 연료호퍼로부터의 장입구가 설치되고, 하부에 열풍기관과 스팀관이 설치된 촉매순환유동가스화로와 상기 촉매순환유동가스화로의 상부로부터의 배관이 몸체의 상부로 연결되어 플라이애쉬 등을 집진하는 사이클론과 상기 사이클론의 상부로부터의 관이 그 하부로 연결되고, 저층에는 고정상 필터흡착제층과 상층에는 유동촉매층이 형성된 촉매개질기와 상기 촉매개질기의 상부의 관이 그 중앙부로 연결되는 열교환기와 상기 열교환기의 후방에 위치하며, 본체와 타르저장조로 구성되고 타르를 순환하는 순환펌프로 구성되는 타르스크러버와 상기 타르스크러버의 후방에 위치하는 가스저장조로 구성된 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 장치를 제공한다.In order to achieve the above technical problem, the present invention is installed at the rear of the fuel hopper and the fuel hopper, the charging hole from the fuel hopper is installed in the center, the catalytic circulation fluidization gas gas is installed in the hot air engine and the steam pipe at the bottom And a pipe from the upper portion of the catalytic circulation fluidization gasifier is connected to the upper portion of the body to collect fly ash, etc., and a tube from the upper portion of the cyclone is connected to the lower portion thereof, and the lower layer includes a fixed bed filter adsorbent layer and an upper layer. A catalyst reformer having a fluidized catalyst bed and a heat exchanger connected to the center of the catalyst reformer and a rear side of the heat exchanger, a tar scrubber composed of a main body and a tar storage tank and a circulation pump circulating tar; Biomass, characterized in that consisting of a gas storage tank located behind the tar scrubber It provides a low-temperature catalytic gasification apparatus of the fuel.

또한, 본 발명은 연료호퍼를 이용하여 가스화로의 중앙부로 바이오메스 유기 폐기물/석탄/중질유를 정제 혼합한 물질을 공급하는 연료공급단계; 연료와 촉매를 혼합하여, 공급된 열공기, 스팀과 함께 건조, 휘발화, 저온촉매가스화 및 부분연소 가 이루어지는 촉매순환유동가스화단계; 상기 단계의 가스중 함유하는 플라이애쉬를 집진하는 집진단계; 저층의 필터를 거치며 가스를 개질하고, 상층의 타르 및 방향족과 결합한 질소, 인, 유황을 개질하는 촉매개질단계; 가스를 200℃ 이하로 냉각하고, 응축액은 타르저장조로 보내는 열교환단계; 미전환된 타르나 미응축 액체는 응축하여 회수하되, 응축 액체를 가스 스트리핑을 행하는 타르스크러빙단계; 가스를 압축저장하는 가스저장단계;로 구성된 바이오메스 정제연료의 저온 촉매가스화 방법을 제공한다.In addition, the present invention provides a fuel supplying step of supplying a material in which the biomass organic waste / coal / heavy oil is purified and mixed to a central portion of a gasifier using a fuel hopper; A catalyst circulating fluidized gasification step in which a fuel and a catalyst are mixed and dried, volatile, low temperature catalyst gasification and partial combustion are performed together with the supplied hot air and steam; A dust collecting step of collecting the fly ash contained in the gas of the step; A catalytic reforming step of reforming gas through a filter of a lower layer and reforming nitrogen, phosphorus, and sulfur combined with tar and aromatics of an upper layer; A heat exchange step of cooling the gas to 200 ° C. or lower and sending the condensate to a tar storage tank; A tar scrubbing step in which unconverted tar or uncondensed liquid is condensed and recovered, and gas stripping of the condensed liquid; It provides a low-temperature catalytic gasification method of the biomass refined fuel consisting of a gas storage step of compressing and storing the gas.

이하, 도면을 참고하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

도 3은 본 발명의 바이오메스 정제 연료로부터 에너지를 가스 형태로 회수할 수 있는 촉매가스화 장치구성도이다.3 is a block diagram of a catalytic gasification apparatus capable of recovering energy in the form of gas from the biomass refined fuel of the present invention.

바이오메스 정제 연료는 기름응집법 또는 부선법에 의해 바이오메스와 석탄 중의 유기고형물만 선별적으로 기름과 함께 분리 회수된 가연성 물질로서 비가연 무기물질(이후 회분이라 칭함) 함유량은 건조물질 기준 6% 미만이고, 발열량은 7,000kcal/kg 이상인 고품위 고체연료이다.Biomass refined fuel is a combustible material that is selectively recovered and recovered with only organic solids in biomass and coal by oil flocculation or flotation, and the content of non-combustible inorganic matter (hereinafter referred to as ash) is less than 6% based on dry matter. The calorific value is a high quality solid fuel of 7,000 kcal / kg or more.

상기 연료가 장입되고 다음 장치로 연료를 공급하는 연료호퍼(10)가 설치되고, 연료호퍼(10)의 후방에는 촉매순환유동가스화로(20)가 설치된다.A fuel hopper 10 for charging the fuel and supplying fuel to the next device is installed, and a catalyst circulating flow gasifier 20 is installed behind the fuel hopper 10.

연료호퍼(10)로 공급되는 연료의 장입구는 촉매순환유동가스화로(20)의 중앙부에 설치될 수 있다.The charging hole of the fuel supplied to the fuel hopper 10 may be installed at the center of the catalytic circulation flow gasifier 20.

촉매순환유동가스화로(20)의 원추형 하부에 열공기관(21)과 스팀관(22)이 설치된다. 이 때 열공기관(21)은 원추형 하부에 맞게 설치하며, 스팀관(22)은 하부에 서 15~30cm 상단에 끝단이 닿게 설치한다.The hot air engine 21 and the steam pipe 22 are installed in the lower conical portion of the catalytic circulation flow gasifier 20. At this time, the hot air pipe 21 is installed in accordance with the conical lower portion, the steam pipe 22 is installed so that the end touches the top 15 ~ 30cm from the bottom.

촉매순환유동가스화로(20)의 상부에는 소형사이클론(23)이 더 설치될 수 있다.Small cyclone 23 may be further installed at the upper portion of the catalytic circulation flow gasifier 20.

촉매순환유동가스화로(20)의 후방에는 사이클론(30)이 설치되고, 촉매순환유동가스화로(20)의 상부로부터의 관이 사이클론(30)의 상부측에 연결되고 가스중 플라이애쉬 등은 사이클론(30)의 하부로 모아진다. 사이클론(30)의 후방에는 촉매개질기(40)가 설치되고, 사이클론(30)의 상부로부터의 관(31)이 촉매개질기(40)의 하부로 연결된다. The cyclone 30 is installed at the rear of the catalytic circulation gasifier 20, a pipe from the upper portion of the catalytic circulation gasifier 20 is connected to the upper side of the cyclone 30, and the fly ash in the gas is a cyclone. Collected at the bottom of 30. A catalytic reformer 40 is installed behind the cyclone 30, and a pipe 31 from the top of the cyclone 30 is connected to the lower part of the catalyst reformer 40.

촉매개질기(40)는 그 내부의 하부에 고정상 필터흡착제층(41)을 장착하고 고정상 필터흡착제층의 상부는 유동촉매층(42)이 형성된다.The catalyst reformer 40 is equipped with a fixed bed filter adsorbent layer 41 at the bottom thereof, and a fluidized catalyst layer 42 is formed at the top of the fixed bed filter adsorbent layer.

상기 고정상 필터흡착체층(41)은 카트리지 형태로서 석면재질필터와 입상 알칼리토금속산화물계와 알칼리금속염의 입상분말이 혼합된 것이 적치될 수 있다.The stationary filter adsorbent layer 41 may be a cartridge type, in which an asbestos filter and granular powder of an alkaline earth metal oxide system and an alkali metal salt are mixed.

사이클론(30)의 상부에서 나오는 관(31)의 중간부에 밸브(32)를 개재하여 스팀관(33)을 연통하고 상기 촉매개질기(40)의 고정상 필터흡착제층(41)의 하부에 위치한 스팀분무기(43)에 연통될 수 있다.Steam located in the lower part of the fixed bed filter adsorbent layer 41 of the catalytic reformer 40 by communicating with the steam pipe 33 via the valve 32 in the middle of the pipe 31 coming from the upper portion of the cyclone 30. May be in communication with the nebulizer 43.

사이클론(30)에서 촉매개질기(40)로 유도되는 가스관에서 응축액이 발생치 않도록 상기 스팀관(33)을 통하여 가열 수증기를 혼입하여 잔류한 타르를 촉매개질기(40)에서 재차 가스화 개질토록 가스와 함께 분출한다.In order to prevent condensation from occurring in the gas pipe leading from the cyclone 30 to the catalyst reformer 40, the remaining tar is mixed with the gas through the steam reformer 33 together with the gas to be reformed again in the catalytic reformer 40. Squirt.

상기 촉매개질기(40)의 후방에는 통상의 열교환기(50)가 설치되고, 그 후방에는 타르스크러버(Tar Scrubber)(60)가 설치되되, 타르스크러버 본체(61)와 하측 에 타르저장조(62)를 설치하고, 순환펌프(63)에 의하여 타르를 순환한다. 또한 타르저장조(62)는 촉매개질기(40)와 열교환기(50)에서 발생되는 타르를 수집하기 위해 각각의 하부관과 타르밸브(64)를 개재하여 연통되어 있다.A normal heat exchanger 50 is installed at the rear of the catalytic reformer 40, and a tar scrubber 60 is installed at the rear of the catalyst reformer 40, and a tar storage tank 62 at the lower side of the tar scrubber body 61. And circulate the tar by the circulation pump (63). In addition, the tar storage tank 62 is in communication with each of the lower pipe and the tar valve 64 to collect the tar generated in the catalytic reformer 40 and the heat exchanger (50).

타르스크러버(60)의 후방에는 가스저장조(70)가 설치되고, 그 사이에는 연료가스저장펌프(71)가 배치된다.A gas storage tank 70 is installed behind the tar scrubber 60, and a fuel gas storage pump 71 is disposed therebetween.

이하, 본 발명의 장치를 이용한 청정가스의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of the clean gas using the apparatus of this invention is demonstrated.

연료호퍼(10)로부터 투입되는 정제 혼합 연료를 촉매 순환유동 가스화로(20)에서 열공기관(21)과 스팀관(22)을 거쳐 공급되는 공기 또는 산소와 수증기에 의해 건조, 휘발화, 저온촉매가스화, 열분해 가스화 및 부분연소 반응이 일어난다. 가스화 원추형 하부 끝에서는 미반응 연료가 공기 또는 산소만으로 접촉되어 완전 연소반응한다.The refined mixed fuel introduced from the fuel hopper 10 is dried, volatilized, and low temperature catalyst by air or oxygen and water vapor supplied from the catalytic circulation flow gasifier 20 through the hot air engine 21 and the steam pipe 22. Gasification, pyrolysis gasification and partial combustion reactions occur. At the lower end of the gasification cone, the unreacted fuel is contacted only with air or oxygen, resulting in complete combustion.

촉매순환유동가스화로(20)에 투입되는 공기 또는 산소의 비율은 정제 혼합연료의 완전연소 이론 공기량에 대하여 0.3~0.7정도, 수증기는 공기에 대한 부피비로 0.5~10배로 한다. 촉매순환유동가스화로(20) 내의 가스화 공정의 유동촉매제는 유동화가 가능하도록 입상 또는 분말로서 천연의 석회석, 석회고토, 생석회나 칼슘, 마그네슘, 바륨 등의 알카리 토금속과 그의 산화물, 칼륨 등의 알칼리 금속과 그의 산화물 및 알루미나 또는 이들의 혼합물 등으로 최고온도를 900℃ 이하로 고속운전을 하며, 예를 들면 가스 체류시간이 2~4초 되도록 한다.The ratio of air or oxygen introduced into the catalytic circulating fluidized gasification furnace 20 is about 0.3 to 0.7 based on the total combustion theoretical air amount of the refined mixed fuel, and the water vapor is 0.5 to 10 times by volume ratio to air. The flow catalyst in the gasification process in the catalytic circulation fluidized gasification furnace 20 is a granular or powdery granule or powder to enable fluidization. And its oxide and alumina or a mixture thereof and the like at a high temperature of 900 ° C. or less, for example, so that the gas residence time is 2 to 4 seconds.

바람직하기로는 850℃ 이하에서 부분산화와 저온 촉매열분해반응이 동시에 일어나도록 하며, 시스템 열원 공급을 위한 부분 산화시 대부분의 가스화공정은 고 온으로 산소를 사용하나 신공정에서는 고품위 연료와 비교적 저온 반응으로 연료 산화제로서 공기 사용시에도 기존공정의 산소 사용시와 같은 열량의 가스 생산이 가능한 것이다. 이 때 공기는 가스화로 최하단부에서 분사되도록 하여 가스화로 최하부는 산소과잉 상태로 미반응 가연성 물질의 완전연소를 기할 수 있게 한다. Preferably, partial oxidation and low temperature catalytic pyrolysis occur simultaneously below 850 ° C. In case of partial oxidation to supply system heat source, most gasification processes use oxygen at high temperature, but in new process, high-grade fuel and relatively low temperature reaction When using air as an oxidant, it is possible to produce heat of the same amount of gas as when using oxygen in the existing process. At this time, the air is injected from the lower end of the gasification furnace so that the lowermost portion of the gasification furnace can completely burn unreacted combustible materials in an oxygen-excess state.

촉매순환유동가스화로(20)의 상부에 소형사이클론(23)을 설치하여 비산된 촉매 또는 미반응 원료와 중질 타르와 같은 연료응집물을 효율적으로 집진하여 촉매순환가스화로(20)로 재순환시켜서 가스화반응이 완결토록 할 수도 있다.Small cyclone 23 is installed on the upper portion of the catalytic circulation gasifier 20 to efficiently collect scattered catalyst or unreacted raw materials and fuel aggregates such as heavy tar, and recycle the catalyst circulation gasifier 20 to gasification reaction. This can be done.

사이클론(30)에서는 소량의 비산회재는 효율적으로 집진 제거한다.In the cyclone 30, a small amount of fly ash is effectively collected and removed.

촉매개질기(40)는 2층으로 구성되며 저층의 고정상 필터흡착체층(41)은 카트리지형이며, 그의 상층은 유동촉매층(42)으로 이루어진다.The catalyst reformer 40 is composed of two layers and the lower layer fixed bed filter adsorbent layer 41 is cartridge type, and the upper layer is formed of the fluidized catalyst layer 42.

고정상 필터흡착체층(41)에서는 먼저 석면사 필터로 미세 플라이애쉬를 제진하고, 유황과 인피독을 산화칼륨과 탄산나트륨 흡착제로서 화학흡착하여 제거하며, 제독필터는 일정 사용 후 재생 또는 교환한다. 예로서 가스화 과정에서 발생된 황화수소(H2S)는 CaO와 반응하여 CaS로 반응흡착하며, PH4-halogen 등의 증기화합물은 Na2CO3와 반응하여 NaPO3염으로 반응되어 각각 선택적으로 화학흡착하게 한다. 인 성분은 PαHβSγHalogenδ(α=1-7, β=0-5, γ=0-7, δ=0-7)으로 전환 화학흡착한다. 가스화 과정에서 발생되는 P x S y 화합물들은 마찬가지로 각각의 선택적 화학흡착물질과 반응되거나 칼슘염으로 함께 화학흡착된다.In the stationary filter adsorbent layer 41, fine fly ash is first dusted with an asbestos sand filter, and sulfur and phosphorous are chemically adsorbed and removed as potassium oxide and sodium carbonate adsorbents, and the detox filter is regenerated or exchanged after a predetermined use. For example, hydrogen sulfide (H 2 S) generated during gasification reacts with CaO and adsorbs with CaS. Vapor compounds such as PH 4 -halogen react with Na 2 CO 3 and react with NaPO 3 salts to selectively react with each other. Adsorption. The phosphorus component is converted chemisorption to P α H β S γ Halogen δ (α = 1-7, β = 0-5, γ = 0-7, δ = 0-7). P x S y compounds generated during gasification are likewise reacted with each selective chemisorbent or chemisorbed together with calcium salts.

유동촉매층(42)의 유동촉매는 타르의 가스화 분해 및 방향족 질소, HCN 등을 알칸(Alkane) 또는 알켄(Alkene) 화합물과 NH3로 전환하는 역할을 한다. 사용되는 개질 촉매로는 Ni, Fe, Co, Mo, Mn, Zr, Ti, Ce, Ru, Rh, Pt 등의 단일 금속과 산화금속 또는 이들의 혼합형태의 촉매로도 사용할 수 있으며, 사용온도는 650℃이하가 바람직하다. The flow catalyst of the fluidized catalyst bed 42 serves to convert gaseous decomposition of tar and aromatic nitrogen, HCN, etc. into alkanes or alkenes and NH 3 . The reforming catalyst used may be used as a catalyst in the form of a single metal such as Ni, Fe, Co, Mo, Mn, Zr, Ti, Ce, Ru, Rh, Pt, or a metal oxide or a mixture thereof. 650 degreeC or less is preferable.

개질 반응을 마친 가스는 열교환기(50)에서 열교환하여 가스를 200℃ 이하로 냉각하고, 응축액은 타르저장조(62)로 보낸다. 열교환 냉각매체는 가스화 공정에 사용되는 공기 또는 산소와 물을 사용하여 고온 공기와 수증기로 변환시킨다. 이 때 열교환기(50)는 고온용 재질의 금속 열교환기 사용으로 에너지 이용효율을 제고할 수 있다.After the reforming reaction, the gas is heat-exchanged in the heat exchanger 50 to cool the gas to 200 ° C. or lower, and the condensate is sent to the tar storage tank 62. The heat exchange cooling medium converts into hot air and steam using air or oxygen and water used in the gasification process. At this time, the heat exchanger 50 may improve energy use efficiency by using a metal heat exchanger made of a high temperature material.

촉매개질기(40)에서 미전환된 타르나 미응축 액체는 타르스크러버(60)에서 응축되어 타르저장조(62)로 회수된다. 이 때 분진 및 타르의 회수효율을 높이고자 150℃ 이하의 응축 액체를 타르순환펌프(63)로 타르스크러버(60) 상부로 다시 보내어 가스 스트리핑(stripping)을 행한다.The unconverted tar or uncondensed liquid in the catalyst reformer 40 is condensed in the tar scrubber 60 and recovered to the tar storage tank 62. At this time, in order to improve the recovery efficiency of dust and tar, condensed liquid of 150 ° C. or less is sent back to the tar scrubber 60 through the tar circulating pump 63 to perform gas stripping.

그 후 생성된 청정 가스연료는 가스저장조(70)에 청정 가스연료를 압축하여 저장한다.The clean gas fuel generated thereafter is compressed and stored in the gas storage tank 70.

이하, 실시예에 대하여 상세하게 설명한다.Hereinafter, an Example is described in detail.

실시예 1: 촉매가스화에 의한 가스발생 효율 제고효과Example 1: Improvement of Gas Generation Efficiency by Catalytic Gasification

SOCA(Sludge-Oil-Coal Agglomerates)의 Fe2O3/CaO 혼합촉매 가스화 특성은 무촉매 가스화와 유사한 운전 조건 하에 무게기준으로 혼합촉매:SOCA=3.4:1로 균일 하게 혼합하여 가스화 가스 생성물의 상태는 도 4와 같다. 혼합촉매 사용시 가스화 반응개시는 230℃로 무촉매시 560℃에 상당히 낮은 온도에서 개시되었으며, 무촉매 시에 비해 CO 전환은 적고, 탄화수소가 많이 발생되었는데 대부분 메탄가스인 것으로 확인되었다. 무촉매 가스화에서는 850℃ 이상에서 탄화수소 발생이 왕성하고, CO 발생도 1050℃ 이상에서 왕성하였으나, 혼합촉매 사용시 CO와 탄화수소가 500℃ 전후에서 왕성하게 발생되고, 특히 CO는 850℃ 정도에서 다시 최대 발생되면서 짧은 시간 내에 가스화반응이 완결된다. 혼합촉매 사용 가스화반응 후에 측정한 미반응 챠르 발생량은 약 0.35%로 미미하였으나, 무촉매로 1050℃에서 2시간 유지 후에 잔류 챠르 발생량 약 11.31% 보다 우수한 결과를 보였다.The Fe 2 O 3 / CaO mixed catalyst gasification characteristics of Sludge-Oil-Coal Agglomerates (SOCA) is a mixed gas: SOCA = 3.4: 1 uniformly mixed by weight under operating conditions similar to non-catalyzed gasification. Is the same as FIG. When the mixed catalyst was used, the gasification reaction was initiated at 230 ° C. and 560 ° C. without the catalyst. The conversion of CO was lower than that of the non-catalyst, and hydrocarbons were generated. In the non-catalyzed gasification, hydrocarbon generation was vigorous at over 850 ° C and CO generation was vigorous at over 1050 ° C, but CO and hydrocarbons were vigorously generated at around 500 ° C when mixed catalysts were used. The gasification reaction is completed in a short time. The amount of unreacted char generated after the gasification reaction using the mixed catalyst was insignificant, about 0.35%, but the residual char was generated better than about 11.31% after holding for 2 hours at 1050 ° C without a catalyst.

실시예 2 : 2단 촉매 가스화에 의한 타르발생 저감 및 Fuel-N 공해물질 발생저감 효과Example 2 Reduction of Tar and Fuel-N Pollutant Generation by Two-stage Catalyst Gasification

제 1단 가스화에서 알칼리토금속의 산화물인 CaO 촉매를 사용하고 2단 촉매개질과정에서 NiO촉매를 사용한 결과 도 5에서 보는 바와 같이 제 1단 촉매 CaO만 사용한 경우에 비해 CO 발생은 비슷하나 탄화수소 발생은 약간 증가하며 짧은 시간에 반응이 완료되었다. 그러나 표 1에서 보는 바와 같이 산화칼슘을 1단 촉매로 사용한 후에 2단 촉매로 NiO와 MnO2를 사용한 결과 1차 촉매만 사용한 경우에 비해 타르 발생 및 NH3와 HCN 발생이 현저하게 적었는데 이는 대부분 타르 개질반응과 Fuel-N이 바로 N2로의 전환되었기 때문인 것으로 판단된다. 한편 MnO2 촉매는 NiO 촉매에 비해 타르개질반응이 열등하고 Fuel-N이 HCN으로 전환되었을 뿐 암모니아까 지 전환되지 못하여 NiO 촉매가 2단 촉매로서 Fuel-N 개질에 보다 우수함을 보였다.As a result of using the CaO catalyst which is an oxide of alkaline earth metal in the first stage gasification and the NiO catalyst in the two stage catalytic reforming process, as shown in FIG. The reaction was complete in a short time with a slight increase. However, as shown in Table 1, after using calcium oxide as the first stage catalyst and using NiO and MnO 2 as the two stage catalysts, the generation of tar and NH 3 and HCN were significantly lower than those of the first catalyst alone. The tar reform reaction and Fuel-N have been converted to N 2 . On the other hand, MnO 2 catalyst was inferior to NiO catalyst in tar reforming, and Fuel-N was converted to HCN but not converted to ammonia, indicating that NiO catalyst was better in Fuel-N reforming as a two-stage catalyst.

[표 1] 2단 촉매 사용에 의한 Tar 및 Fuel-N 전환반응 실험 결과[Table 1] Experimental results of Tar and Fuel-N conversion using two stage catalyst

촉매 구성Catalyst composition 전환율 (%)% Conversion 타르발생율(%)Tar generation rate (%) NH3발생율(%)NH 3 occurrence rate (%) HCN발생율(%)HCN occurrence rate (%) 가스화 45분 경과시 가연성 가스 조성(ppm)Combustible gas composition (ppm) after 45 minutes of gasification COCO CH4 CH 4 C2H4 C 2 H 4 C2H6 C 2 H 6 C3H8 C 3 H 8 C4H10 C 4 H 10 1단:CaO 2단:없음One stage: CaO Two stage: None 99.0899.08 3.3853.385 0.8890.889 0.6560.656 14,80514,805 209209 1212 7676 223223 4,6704,670 1단:CaO 2단:NiO1st stage: CaO 2nd stage: NiO 99.9099.90 0.1230.123 0.2780.278 0.0450.045 14,42914,429 305305 4,9744,974 6,2236,223 4,2284,228 367367 1단:CaO 2단:MnO2 1st stage: CaO 2nd stage: MnO 2 99.8499.84 0.7030.703 0.4650.465 0.1640.164 15,76615,766 12,13412,134 4646 408408 2,1022,102 1,2631,263

본 발명에서 사용되는 연료는 가스화 반응개시가 단일 연료물질보다 비교적 낮은 온도에서 시작되는데, 촉매를 이용하여 더욱 낮추어서 온도 유지에 필요한 산소소모를 줄이므로 저가 생산이 가능하다. 더욱이 가스화로의 작업온도가 낮아 방열손실도 적고, 슬래깅(Slagging)처리 시스템이 불필요하여 장치 소형화를 이룰 수 있고, 적은 공기사용으로 기존 산소 사용의 가스화 생성가스와 동일한 열량을 유지할 수 있어 보다 경제적이다.The fuel used in the present invention starts the gasification reaction at a relatively lower temperature than a single fuel material, it is lowered by using a catalyst to reduce the oxygen consumption required to maintain the temperature can be produced at low cost. In addition, the operating temperature of the gasification furnace is low, the heat dissipation loss is small, and the slagging treatment system is unnecessary, so that the device can be miniaturized. to be.

본 발명은 고 품위로 정제된 슬러지/석탄 혼합물을 저가의 고열량 가스 연료로 전환하는 청정에너지 생산기술이다.The present invention is a clean energy production technology that converts a high quality refined sludge / coal mixture into a low cost, high calorific gas fuel.

정제된 슬러지/석탄/기름 혼합물의 가스화는 단일 성분의 가스화보다도 낮은 온도에서 시작되며, 비록 가스화반응 개시온도가 높은 물질도 낮은 온도에서 함께 시작되어 짧은 시간에 마칠 수 있기 때문에 급속 가스화를 달성할 수 있다. 적은 회분량과 낮은 온도에 의한 플라이애쉬 등의 제어 용이로 장치 소형화가 가능하여 에너지 절감의 건설 및 운전의 효율화를 기할 수 있다. 중금속 및 염분이 극히 적어 연소 후처리 시스템이 불필요하다.Gasification of the refined sludge / coal / oil mixture starts at a lower temperature than the gasification of a single component, and rapid gasification can be achieved because materials with higher initiation temperatures of gasification can start together and finish in a short time. have. The device can be miniaturized due to the easy control of fly ash due to the low ash content and the low temperature, and the construction of energy saving and the efficiency of operation can be achieved. Extremely low heavy metals and salts eliminate the need for post combustion treatment systems.

가스화는 비교적 저온 운전이 가능한 유동층 방식을 택하였으며, 저온에서 가스화 반응이 가능한 저가의 천연 석회석 분말 또는 입상을 사용하여 850℃ 운전으로 기존 무촉매 때의 1100℃ 이상의 운전효과를 갖는다.Gasification is a fluidized bed method that can be operated at a relatively low temperature, and using a low-cost natural limestone powder or granules capable of gasification at low temperature, it has an operation effect of more than 1100 ℃ when the existing catalyst-free operation at 850 ℃.

기존 타르 개질기에서의 개질반응 온도를 가스화 반응온도보다 높게 보통 1200℃ 이상에서 운전하나 본 장치에서는 낮게 650℃ 이하로 하여 개질기에서 추가 열원공급이 불필요하며, 개질촉매 반응 이전에 촉매독 성분인 유화수소와 오산화인 가스 등을 생석회로 반응 고정시켜 제거하고, 이후 촉매에 의해 타르의 개질 및 Fuel-N의 NH3로의 전환을 높인다.Although the reforming reaction temperature in the existing tar reformer is higher than the gasification reaction temperature, it is usually operated at 1200 ℃ or higher, but in this apparatus, it is lowered below 650 ℃, so that no additional heat source is supplied from the reformer, and hydrogen sulfide, which is a catalyst poison component, before the reforming catalyst reaction And phosphorus pentoxide gas and the like are removed by reacting with quicklime, and then the catalyst is reformed to improve tar and convert Fuel-N to NH 3 .

기존 공정에서는 타르가 불필요 물질로 이를 재순환 또는 폐기처리하고 있으나, 본 공정에서는 이들 미반응 또는 촉매개질에서 발생된 타르 및 가스의 냉각 저장시에 발생되는 액체 생성물 등을 회수하여 타 용도로 사용하는 특징을 갖고 있다. 즉 기존의 석탄 가스화 과정에서 발생된 타르 등의 액체성분은 원하는 생성물이 아니므로 이를 가스화 과정에 재투입하거나 액체 연료로 사용하는 등의 추가설비나 이용 방안이 필요하다. 그러나 본 공정에서는 이를 응집물 형성의 응집재로 사용되므로, 문제시되지 않는다.In the existing process, tar is not necessary and recycled or disposed of. However, in this process, liquid products generated during the cold storage and storage of tar and gas generated from unreacted or catalytic reforming are recovered and used for other purposes. Have That is, since the liquid component such as tar generated in the existing coal gasification process is not a desired product, additional equipment or use method such as re-entering it into the gasification process or using it as a liquid fuel is necessary. However, in this process, since it is used as a flocculant for forming aggregates, it does not matter.

Claims (11)

바이오메스 유기 폐기물/석탄/중질유를 정제 혼합한 바이오메스 정제연료가 공급되는 연료호퍼(10)와,A fuel hopper 10 to which biomass refined fuel obtained by refining and mixing biomass organic waste / coal / heavy oil is supplied; 상기 연료호퍼(10)의 후방에 설치되며, 중앙부에 상기 연료호퍼(10)로부터의 장입구가 설치되고, 하부에 열풍기관(21)과 스팀관(22)이 설치된 촉매순환유동가스화로(20)와,It is installed in the rear of the fuel hopper 10, the charging hole from the fuel hopper 10 is installed in the center, the hot air engine 21 and the steam pipe 22 is installed in the catalyst circulation fluidized gasifier (20) )Wow, 상기 촉매순환유동가스화로(20)의 상부로부터의 배관이 몸체의 상부로 연결되어 플라이애쉬 등을 집진하는 사이클론(30)과,A cyclone 30 configured to connect pipes from the upper portion of the catalytic circulation gasifier 20 to the upper portion of the body to collect fly ash and the like; 상기 사이클론(30)의 상부로부터의 관이 그 하부로 연결되고, 저층에는 고정상 필터흡착제층(41)과 상층에는 유동촉매층(42)이 형성된 촉매개질기(40)와,A tube reformer 40 having a tube from an upper portion of the cyclone 30 connected to the lower portion, a fixed bed filter adsorbent layer 41 at a lower layer, and a fluidized catalyst layer 42 at an upper layer, 상기 촉매개질기(40)의 상부의 관이 그 중앙부로 연결되는 열교환기(50)와,A heat exchanger (50) connected to the center of the pipe of the upper portion of the catalytic reformer (40), 상기 열교환기(50)의 후방에 위치하며, 본체(61)와 타르저장조(62)로 구성되고 타르를 순환하는 순환펌프(63)로 구성되는 타르스크러버(60)와,The tar scrubber 60, which is located at the rear of the heat exchanger 50, consists of a main body 61 and a tar storage tank 62 and consists of a circulation pump 63 for circulating tar, 상기 타르스크러버(60)의 후방에 위치하는 가스저장조(70)로 구성된 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 장치.Low temperature catalytic gasification apparatus for biomass refined fuel, characterized in that consisting of a gas storage tank (70) located behind the tar scrubber (60). 청구항 1에 있어서,The method according to claim 1, 상기 촉매순환유동가스화로(20)의 상부에는 소형사이클론(23)을 더 구비한 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 장치.Low-temperature catalytic gasification apparatus for a biomass refined fuel, characterized in that it further comprises a small cyclone (23) in the upper portion of the catalyst circulating fluidized gasifier (20). 청구항 1에 있어서,The method according to claim 1, 상기 촉매개질기(40)는 고정상 필터흡착체층(41)의 하부에 스팀분무기(43)가 더 설치된 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 장치.The catalyst reformer 40 is a low-temperature catalytic gasifier of biomass refined fuel, characterized in that the steam sprayer 43 is further installed below the fixed bed filter adsorbent layer (41). 청구항 1에 있어서,The method according to claim 1, 상기 고정상 필터흡착체층(41)은 카트리지 형태로서 석면재질필터와 입상 알칼리토금속산화물계와 알칼리금속염이 혼합된 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 장치.The fixed bed filter adsorbent layer (41) is a low temperature catalytic gasification apparatus for a biomass refined fuel, characterized in that the cartridge type asbestos filter, granular alkaline earth metal oxide system and alkali metal salt are mixed. 청구항 1에 있어서, The method according to claim 1, 상기 타르저장조(62)는 발생된 타르를 수집토록 상기 촉매개질기(40)와 상기 열교환기(50)의 각각의 하부관과 타르밸브(64)를 개재하여 연통되어 있는 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 장치.The tar storage tank 62 is biomass purification, characterized in that through the tar valve 64 and the lower pipe of each of the catalytic reformer 40 and the heat exchanger 50 to collect the generated tar. Low temperature catalytic gasifier of fuel. 연료호퍼를 이용하여 가스화로의 중앙부로 바이오메스 유기 폐기물/석탄/중질유를 정제 혼합한 바이오메스 정제연료를 공급하는 연료공급단계;A fuel supply step of supplying a biomass refined fuel obtained by purifying and mixing biomass organic waste / coal / heavy oil to a central portion of a gasifier using a fuel hopper; 연료와 촉매를 혼합하여, 공급된 열공기, 스팀과 함께 건조, 휘발화, 저온촉매가스화 및 부분연소 반응이 발생하는 촉매순환유동가스화단계;A catalyst circulating fluidized gasification step of mixing the fuel and the catalyst, and drying, volatilizing, low temperature catalyst gasification, and partial combustion reaction together with the supplied hot air and steam; 상기 촉매순환유동가스화단계에서 발생하는 가스중 함유하는 플라이애쉬를 집진하는 집진단계;A dust collecting step of collecting fly ash contained in the gas generated in the catalytic circulating fluidization gasification step; 저층의 고정상 흡착체층을 거치며 가스를 개질하고, 상층의 유동촉매층에서 타르 및 방향족과 결합한 질소, 인, 유황을 개질하는 촉매개질단계;A catalyst reforming step of reforming gas through a fixed bed adsorbent bed of a lower bed and reforming nitrogen, phosphorus, and sulfur in combination with tar and aromatics in a fluidized catalyst bed of an upper bed; 가스를 200℃ 이하로 냉각하고, 응축액은 타르저장조로 보내는 열교환단계;A heat exchange step of cooling the gas to 200 ° C. or lower and sending the condensate to a tar storage tank; 미전환된 타르나 미응축 액체는 응축하여 회수하되, 응축 액체를 가스 스트리핑을 행하는 타르스크러빙단계;A tar scrubbing step in which unconverted tar or uncondensed liquid is condensed and recovered, and gas stripping of the condensed liquid; 가스를 압축저장하는 가스저장단계;로 구성된 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 방법.Low temperature catalytic gasification method of biomass refined fuel, characterized in that consisting of; gas storage step of compressing and storing the gas. 청구항 6에 있어서, The method according to claim 6, 상기 촉매순환유동가스화단계의 상기 촉매는 유동화가 가능한 입상 또는 분말의 천연 석회석, 석회고토, 생석회나 칼슘, 마그네슘, 바륨 등의 알칼리 토금속과 그의 산화물, 칼륨 등의 알칼리 금속과 그의 산화물 및 알루미나 또는 이들의 혼합물인 것을 특징으로 하는 The catalyst of the catalyst circulating fluidized gasification step is a natural granite of lime or powder, lime clay, quicklime or alkaline earth metals such as calcium, magnesium, barium, oxides thereof, alkali metals such as potassium and oxides thereof, and alumina or these Characterized in that 바이오메스 정제연료의 저온 촉매가스화 방법.Low temperature catalytic gasification of biomass refined fuel. 청구항 6에 있어서, The method according to claim 6, 상기 촉매순환유동가스화단계는 비산된 촉매 또는 연료응집물을 소형 사이클론(23)을 통하여 다시 촉매순환유동가스화로(20)로 순환유동하는 단계를 더 포함하는 바이오메스 정제연료의 저온 촉매가스화 방법.The catalyst circulating fluidized gasification step further comprises the step of circulating the scattered catalyst or fuel aggregates back to the catalytic circulating fluidized gasifier (20) through a small cyclone (23). 청구항 6에 있어서, The method according to claim 6, 상기 촉매개질단계는 상기 고정상 흡착체층(41)의 하부에 개질반응 촉진 및 배관 막힘 방지를 위하여 수증기를 분무하며, 650℃ 이하에서 운전하는 단계를 더 포함하는 바이오메스 정제연료의 저온 촉매가스화 방법.The catalytic reforming step further comprises spraying steam to the bottom of the fixed bed adsorbent layer (41) to prevent reforming and to prevent clogging of the pipe, and further comprising operating at 650 ° C. or lower. 청구항 6 또는 9에 있어서, The method according to claim 6 or 9, 상기 촉매개질단계는 상기 고정상 흡착제층(41)에서 황화수소는 CaS로, 인 성분은 PαHβSγHalogenδ(α=1-7, β=0-5, γ=0-7, δ=0-7)으로 전환 화학흡착하는 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 방법.In the catalytic reforming step, hydrogen sulfide is CaS in the fixed bed adsorbent layer 41, and phosphorus is P α H β S γ Halogen δ (α = 1-7, β = 0-5, γ = 0-7, δ = Low temperature catalytic gasification of biomass refined fuel, characterized in that the conversion to chemisorption. 청구항 6에 있어서, The method according to claim 6, 상기 촉매개질단계의 상기 유동촉매층(42)의 유동촉매는 타르의 가스화 분해 및 방향족-질소, HCN 등을 알칸(Alkane) 또는 알켄(Alkene) 화합물과 NH3로 전환하는 역할을 가진 Ni, Fe, Co, Mo, Mn, Zr, Ti, Ce, Ru, Rh, Pt 등의 단일 금속과 산화금속 또는 이들의 혼합 형태인 것을 특징으로 하는 바이오메스 정제연료의 저온 촉매가스화 방법.The flow catalyst of the fluidized catalyst layer 42 of the catalyst reforming step is Ni, Fe, which has a role of converting gaseous decomposition of tar and aromatic-nitrogen, HCN, and the like into an alkane or alkene compound and NH 3 . A low-temperature catalytic gasification method for a biomass refined fuel comprising a single metal such as Co, Mo, Mn, Zr, Ti, Ce, Ru, Rh, Pt, or a metal oxide or a mixture thereof.
KR1020040061657A 2004-08-05 2004-08-05 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof KR100569120B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020040061657A KR100569120B1 (en) 2004-08-05 2004-08-05 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
US10/560,992 US20070094929A1 (en) 2004-08-05 2005-06-14 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
EP05750463A EP1773968A4 (en) 2004-08-05 2005-06-14 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
JP2006535283A JP4243295B2 (en) 2004-08-05 2005-06-14 Low-temperature catalytic gasification apparatus and method for biomass refined fuel
PCT/KR2005/001808 WO2006031011A1 (en) 2004-08-05 2005-06-14 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040061657A KR100569120B1 (en) 2004-08-05 2004-08-05 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof

Publications (2)

Publication Number Publication Date
KR20060012934A KR20060012934A (en) 2006-02-09
KR100569120B1 true KR100569120B1 (en) 2006-04-10

Family

ID=36060239

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040061657A KR100569120B1 (en) 2004-08-05 2004-08-05 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof

Country Status (5)

Country Link
US (1) US20070094929A1 (en)
EP (1) EP1773968A4 (en)
JP (1) JP4243295B2 (en)
KR (1) KR100569120B1 (en)
WO (1) WO2006031011A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912249B1 (en) 2008-03-25 2009-08-14 한국에너지기술연구원 Catalytic reactor for reforming tar and removing soot
KR100986241B1 (en) * 2007-10-23 2010-10-07 서울시립대학교 산학협력단 Catalytic for steam reforming of tar produced from biomass gasification process and method of steam reforming of tar using the same
KR101065184B1 (en) 2011-06-09 2011-09-19 한국에너지기술연구원 A production system of coal gas from low-rank coal
WO2012169711A1 (en) * 2011-06-09 2012-12-13 한국에너지기술연구원 Low-grade-coal coal gas production system
WO2012173922A3 (en) * 2011-06-13 2013-04-04 Nalco Company Method for reducing slag in biomass combustion
KR20150044279A (en) * 2013-10-16 2015-04-24 한국기계연구원 NOx REMOVAL DEVICE FOR SEMICONDUCTOR MANUFACTURING PROCESS
KR101537058B1 (en) * 2014-04-04 2015-07-16 주식회사 온이엔지 Apparatus for gasification of refuse derived fuel and method for gasification of refuse derived fuel using the same
KR20170004131A (en) * 2015-07-01 2017-01-11 한국에너지기술연구원 An apparatus of continuous catalytic reaction of bio-oil
CN110484306A (en) * 2019-08-27 2019-11-22 湖南工程学院 A kind of combined biomass graded gasification furnace
KR20210110157A (en) * 2020-02-28 2021-09-07 연세대학교 원주산학협력단 Biooil gasification system including steam reformer using spray bed reactor
KR20220032136A (en) * 2020-09-07 2022-03-15 비에이치아이 주식회사 Blomas gasification system
KR20220064125A (en) * 2020-11-11 2022-05-18 한국생산기술연구원 Gasifier capable of continuously regenerating carbon-based additives and method for producing syngas using the same

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1030864C2 (en) * 2006-01-06 2007-07-09 Stichting Energie Method and device for treating biomass.
FI118647B (en) * 2006-04-10 2008-01-31 Valtion Teknillinen Procedure for reforming gas containing tar-like pollutants
DE102006017353A1 (en) * 2006-04-11 2007-10-18 Spot Spirit Of Technology Ag Method and apparatus for process-integrated hot gas cleaning of dust and gaseous ingredients of a synthesis gas
JP2007283209A (en) * 2006-04-17 2007-11-01 Takuma Co Ltd Gasification catalyst, its manufacturing method and gasification system
FR2904405B1 (en) * 2006-07-31 2008-10-31 Inst Francais Du Petrole PROCESS FOR PREPARING A BIOMASS-CONTAINING LOAD FOR SUBSEQUENT GASIFICATION
JP5032101B2 (en) * 2006-11-29 2012-09-26 新日本製鐵株式会社 Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst
KR100784851B1 (en) * 2007-01-12 2007-12-14 한국에너지기술연구원 Biomass gasifier producing low tar
CN101611123B (en) * 2007-02-22 2013-11-20 株式会社Ihi Fuel gasification equipment
JP4787966B2 (en) * 2007-03-30 2011-10-05 国立大学法人群馬大学 Method for dry treatment of nitrogen-containing waste and apparatus therefor
WO2008135226A2 (en) * 2007-05-02 2008-11-13 Pall Corporation Gasification apparatus and method for generating syngas from gasifiable feedstock material
US7942943B2 (en) * 2007-06-15 2011-05-17 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Biomass gasifier system with low energy and maintenance requirements
US20090031698A1 (en) * 2007-07-31 2009-02-05 O'brien & Gere Engineers Inc. Liquid and Solid Biofueled Combined Heat and Renewable Power Plants
EP2034003A1 (en) * 2007-09-07 2009-03-11 ReSeTec Patents Geneva S.A. i.o. Process and apparatus for producing synthesis gas from waste
WO2009049063A1 (en) * 2007-10-09 2009-04-16 Silvagas Corporation Systems and methods for oxidation of synthesis gas tar
US20090165376A1 (en) 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Steam Generating Slurry Gasifier for the Catalytic Gasification of a Carbonaceous Feedstock
JP4966239B2 (en) * 2008-03-28 2012-07-04 メタウォーター株式会社 Organic waste treatment method, gasification furnace, reforming furnace, organic waste treatment equipment
CN101981163B (en) 2008-04-01 2014-04-16 格雷特波因特能源公司 Processes for the separation of methane from a gas stream
DE102008021084A1 (en) * 2008-04-28 2009-10-29 Süd-Chemie AG Use of a noble metal based catalyst for reducing tar content in gases from gasification processes
DE102008021081A1 (en) * 2008-04-28 2009-10-29 Süd-Chemie AG A process for the catalytic reduction of tar content in gases from gasification processes using a noble metal based catalyst
FI126542B (en) * 2008-06-13 2017-02-15 Valmet Technologies Oy Method and plant for handling lime slurry and bed material
US8460410B2 (en) * 2008-08-15 2013-06-11 Phillips 66 Company Two stage entrained gasification system and process
US8499471B2 (en) * 2008-08-20 2013-08-06 The Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno System and method for energy production from sludge
JP5521187B2 (en) * 2008-09-25 2014-06-11 株式会社神鋼環境ソリューション Combustible gas generator for gasifying waste and method for producing combustible gas
US8669404B2 (en) 2008-10-15 2014-03-11 Renewable Fuel Technologies, Inc. Method for conversion of biomass to biofuel
JP5572855B2 (en) * 2009-03-24 2014-08-20 昭和シェル石油株式会社 Biomass gasification reforming catalyst and method for producing synthesis gas using the same
US8668753B2 (en) * 2009-04-24 2014-03-11 G.D.O. Inc Two stage process for converting biomass to syngas
US8404910B2 (en) * 2010-02-17 2013-03-26 Uop Llc Low oxygen biomass-derived pyrolysis oils and methods for producing the same
WO2011112526A2 (en) * 2010-03-08 2011-09-15 Shulenberger Arthur M Device and method for conversion of biomass to biofuel
DE102011107621B4 (en) 2010-07-05 2022-11-03 Uwe Athmann Fine purification of product gases
WO2012031041A2 (en) 2010-09-01 2012-03-08 Starlight Energy Holdings LLC System and process for gasifying biomass products
CA2815243A1 (en) 2010-11-01 2012-05-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US20120137700A1 (en) * 2010-12-07 2012-06-07 Dennis John Werner System for Producing Power Using Low Pressure Gasification of a Stock Fuel
JP5857340B2 (en) * 2011-03-15 2016-02-10 九州電力株式会社 Combined system using coal for char / raw gas production and power generation
CA2833085A1 (en) 2011-04-21 2012-10-26 Shell Internationale Research Maatschappij B.V. Process for converting a solid biomass material
US9169444B2 (en) 2011-04-21 2015-10-27 Shell Oil Company Liquid fuel composition
US9249362B2 (en) 2011-04-21 2016-02-02 Shell Oil Company Separation of product streams
BR112013027137A2 (en) 2011-04-21 2017-01-10 Shell Int Research processes for the conversion of a solid biomass material, for the preparation of a biofuel component and / or biochemical component, and for the production of a biofuel and / or biochemical product
US9062597B2 (en) 2011-05-10 2015-06-23 Innerpoint Energy Corporation Centrifugal particle separator and method of operating the same
CN102226111A (en) * 2011-05-27 2011-10-26 吴道洪 Method for gasifying cyclone bed powder coal
WO2012166879A1 (en) 2011-06-03 2012-12-06 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9127219B2 (en) 2011-07-19 2015-09-08 General Electric Company Additive systems for biomass gasification
JP5971836B2 (en) * 2011-07-21 2016-08-17 株式会社タクマ Method for producing gasification catalyst and gasification treatment system
CN103974897A (en) 2011-10-06 2014-08-06 格雷特波因特能源公司 Hydromethanation of a carbonaceous feedstock
WO2013108920A1 (en) 2012-01-20 2013-07-25 新日鐵住金株式会社 Continuous fixed-bed catalyst reaction device and catalyst reaction method using same
JP5762318B2 (en) * 2012-01-20 2015-08-12 新日鐵住金株式会社 Continuous fixed bed catalytic reactor and catalytic reaction method using the same
TWI447598B (en) * 2012-06-13 2014-08-01 China Steel Corp Method for drying biomass and computer product thereof
JP5974363B2 (en) * 2012-06-15 2016-08-23 株式会社Ihi Gasification gas generator and tar reformer
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
WO2014055351A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
WO2014055349A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
KR101890950B1 (en) * 2012-12-07 2018-08-22 에스케이이노베이션 주식회사 Method for Gasification Using Spent Catalyst Discharged from Refinery Process
BR112015019391A2 (en) * 2013-02-14 2017-07-18 Veolia Water Solutions & Tech method for recovering polyhydroxy alkanoates (pha) from a biomass
JP2014205806A (en) * 2013-04-15 2014-10-30 株式会社Ihi Gasified gas generation system
WO2014182295A1 (en) * 2013-05-08 2014-11-13 Innerpoint Energy Corporation A centrifugal particle separator and method of operating the same
CN103343021B (en) * 2013-07-17 2015-06-24 王建伟 Device and method for waste heat recovery and purification of biomass gasified gas
US9545590B2 (en) 2015-01-16 2017-01-17 Innerpoint Energy Corporation Rotating centrifugal particle separator and gasifier having the same
CN106915861B (en) * 2015-12-24 2021-03-30 中国科学院过程工程研究所 Coal chemical industry wastewater biological treatment system based on sludge ozone catalytic oxidation and treatment method thereof
US10345048B2 (en) * 2016-05-12 2019-07-09 Golden Renewable Energy, LLC Cyclonic condensing and cooling system
US10961062B2 (en) 2016-06-21 2021-03-30 Golden Renewable Energy, LLC Bag press feeder assembly
BR112018076624B1 (en) 2016-06-21 2021-08-03 Golden Renewable Energy, LLC APPARATUS FOR PROCESSING REUSABLE FUEL, METHOD FOR CLEANING CARBONIZED CARBONIZED FROM VAPORS IN A REACTOR AND METHOD FOR PRODUCING FUEL
US11066613B2 (en) * 2016-06-23 2021-07-20 Glock Ökoenergie Gmbh Method and apparatus for gasifying carbon-containing material
CR20190052A (en) 2016-07-05 2019-05-03 Golden Renewable Energy Llc SYSTEM AND PROCESS FOR CONVERTING DISPOSABLE PLASTIC IN FUEL
DK3516016T3 (en) 2016-09-21 2021-02-22 Haldor Topsoe As Separator system for treating a gas from a biomass gasification unit
JP2019137717A (en) * 2018-02-06 2019-08-22 国立研究開発法人産業技術総合研究所 Method and device of treating tar component
CN108409077A (en) * 2018-03-30 2018-08-17 中石化石油工程技术服务有限公司 Oily sludge materialization coupled processing method
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
SI25771A (en) * 2019-01-07 2020-07-31 Teos Perne Device for the gasification of solid materials with carbon content, with emphasized concentration of tar and their catalytic conversion into carbon monoxide and hydrogen
CN109628158B (en) * 2019-01-21 2024-01-16 中国科学院广州地球化学研究所 Method for preparing low-nitrogen high-value fuel gas by fractional thermal conversion of light industrial organic solid waste
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN110129100B (en) * 2019-05-28 2023-12-22 彭万旺 Efficient combustion system and method
EP3805340B1 (en) * 2019-10-09 2023-06-07 Reissner, Markus Method and use of system for producing a hydrocarbon and hydrogen-containing gas mixture from plastic
JP7192830B2 (en) 2020-06-24 2022-12-20 カシオ計算機株式会社 Electronic musical instrument, accompaniment sound instruction method, program, and accompaniment sound automatic generation device
JP6991647B1 (en) * 2020-08-07 2022-02-03 株式会社エコクルジャパン Thermochemical conversion method and thermochemical conversion device
CN113477186B (en) * 2021-06-22 2022-07-01 沈阳化工大学 Selective catalytic upgrading device and method for heavy tar
US20230132767A1 (en) * 2021-10-29 2023-05-04 Simonpietri Enterprises LLC Processing and gasification of construction and demolition materials
US11905476B1 (en) * 2021-11-29 2024-02-20 The United States Of America, As Represented By The Secretary Of The Navy Apparatus and method for capturing renewable and non-renewable energy from biodegradable and non-biodegradable municipal waste
KR102653928B1 (en) * 2022-01-05 2024-04-02 한국에너지기술연구원 Gasifier integrated with tar reformer
CN115806839A (en) * 2022-11-29 2023-03-17 华中科技大学 Solid waste treatment system based on sludge and biomass cooperative gasification

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115394A (en) * 1961-05-29 1963-12-24 Consolidation Coal Co Process for the production of hydrogen
US3929431A (en) * 1972-09-08 1975-12-30 Exxon Research Engineering Co Catalytic reforming process
US5213587A (en) * 1987-10-02 1993-05-25 Studsvik Ab Refining of raw gas
DK583587D0 (en) * 1987-11-06 1987-11-06 Dansk Termo Ind METHOD AND APPARATUS FOR GAS PRODUCTION FROM FINDING BIOLOGICAL MATERIAL
US4865625A (en) * 1988-05-02 1989-09-12 Battelle Memorial Institute Method of producing pyrolysis gases from carbon-containing materials
DE19681320C2 (en) * 1995-03-31 2000-06-29 Univ Hawaii Honolulu Process for supercritical catalytic gasification of wet biomass
KR100590973B1 (en) * 2000-02-29 2006-06-19 미츠비시 쥬고교 가부시키가이샤 Apparatus for methanol synthesis using gas produced by gasifying biomass and the using method thereof
EP1142981A3 (en) * 2000-03-23 2003-04-02 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Apparatus for power generation by gasification of biomass with subsequent catalytic removal of tar compounds from the heating gas
US6797253B2 (en) * 2001-11-26 2004-09-28 General Electric Co. Conversion of static sour natural gas to fuels and chemicals
JP3975271B2 (en) * 2001-12-18 2007-09-12 国立大学法人東北大学 Biomass gasification method and catalyst used therefor
JP2003342588A (en) * 2002-05-27 2003-12-03 Setec:Kk Biomass gasification equipment
JP2004149556A (en) * 2002-10-28 2004-05-27 Nishinippon Environmental Energy Co Inc Method for gasifying biomass and gasifying apparatus therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986241B1 (en) * 2007-10-23 2010-10-07 서울시립대학교 산학협력단 Catalytic for steam reforming of tar produced from biomass gasification process and method of steam reforming of tar using the same
KR100912249B1 (en) 2008-03-25 2009-08-14 한국에너지기술연구원 Catalytic reactor for reforming tar and removing soot
KR101065184B1 (en) 2011-06-09 2011-09-19 한국에너지기술연구원 A production system of coal gas from low-rank coal
WO2012169711A1 (en) * 2011-06-09 2012-12-13 한국에너지기술연구원 Low-grade-coal coal gas production system
WO2012173922A3 (en) * 2011-06-13 2013-04-04 Nalco Company Method for reducing slag in biomass combustion
KR20150044279A (en) * 2013-10-16 2015-04-24 한국기계연구원 NOx REMOVAL DEVICE FOR SEMICONDUCTOR MANUFACTURING PROCESS
KR101623476B1 (en) 2013-10-16 2016-06-07 한국기계연구원 NOx REMOVAL DEVICE FOR SEMICONDUCTOR MANUFACTURING PROCESS
KR101537058B1 (en) * 2014-04-04 2015-07-16 주식회사 온이엔지 Apparatus for gasification of refuse derived fuel and method for gasification of refuse derived fuel using the same
KR20170004131A (en) * 2015-07-01 2017-01-11 한국에너지기술연구원 An apparatus of continuous catalytic reaction of bio-oil
KR101863359B1 (en) 2015-07-01 2018-06-01 한국에너지기술연구원 An apparatus of continuous catalytic reaction of bio-oil
CN110484306A (en) * 2019-08-27 2019-11-22 湖南工程学院 A kind of combined biomass graded gasification furnace
KR20210110157A (en) * 2020-02-28 2021-09-07 연세대학교 원주산학협력단 Biooil gasification system including steam reformer using spray bed reactor
KR102437950B1 (en) * 2020-02-28 2022-08-30 연세대학교 원주산학협력단 Biooil gasification system including steam reformer using spray bed reactor
KR20220032136A (en) * 2020-09-07 2022-03-15 비에이치아이 주식회사 Blomas gasification system
KR102439355B1 (en) * 2020-09-07 2022-09-01 비에이치아이 주식회사 Blomas gasification system
KR20220064125A (en) * 2020-11-11 2022-05-18 한국생산기술연구원 Gasifier capable of continuously regenerating carbon-based additives and method for producing syngas using the same
KR102465674B1 (en) 2020-11-11 2022-11-11 한국생산기술연구원 Gasifier capable of continuously regenerating carbon-based additives and method for producing syngas using the same

Also Published As

Publication number Publication date
JP4243295B2 (en) 2009-03-25
US20070094929A1 (en) 2007-05-03
KR20060012934A (en) 2006-02-09
WO2006031011A1 (en) 2006-03-23
EP1773968A1 (en) 2007-04-18
EP1773968A4 (en) 2012-03-28
JP2007506856A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
KR100569120B1 (en) Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
RU2433163C2 (en) Method of solid fuel gasification combined with gas sweetening and gasification system
US9528057B2 (en) System and method for dual fluidized bed gasification
Shen et al. Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production
US4436532A (en) Process for converting solid wastes to gases for use as a town gas
EP1194508B1 (en) Electric power generating system by gasification
US20100301273A1 (en) Biomass gasification method and apparatus for production of syngas with a rich hydrogen content
EP1207132A1 (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
CA2349608A1 (en) Electric generating system by gasification of combustibles
CN108946661B (en) Method and system for preparing hydrogen through biomass gasification
EP1195353A1 (en) Method and apparatus for production of hydrogen by gasification of combusible material
WO2001028916A1 (en) Method of producing hydrogen by gasification of combustibles and electric power generation using fuel cell
Blasi et al. Second generation biodiesel synthesis and its innovative utilization in order to improve biomass gasification process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120403

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20120824

Year of fee payment: 9