KR100567899B1 - Method of preparing trans-1S,2S-2-bromo-1-indanyl acetate by enzymatic method - Google Patents

Method of preparing trans-1S,2S-2-bromo-1-indanyl acetate by enzymatic method Download PDF

Info

Publication number
KR100567899B1
KR100567899B1 KR1019990009566A KR19990009566A KR100567899B1 KR 100567899 B1 KR100567899 B1 KR 100567899B1 KR 1019990009566 A KR1019990009566 A KR 1019990009566A KR 19990009566 A KR19990009566 A KR 19990009566A KR 100567899 B1 KR100567899 B1 KR 100567899B1
Authority
KR
South Korea
Prior art keywords
bromo
trans
indanol
acetate
indanyl
Prior art date
Application number
KR1019990009566A
Other languages
Korean (ko)
Other versions
KR20000060898A (en
Inventor
황순욱
정기남
김종근
조남륜
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1019990009566A priority Critical patent/KR100567899B1/en
Publication of KR20000060898A publication Critical patent/KR20000060898A/en
Application granted granted Critical
Publication of KR100567899B1 publication Critical patent/KR100567899B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/087Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 효소, 특히 리파제를 사용하여 라세믹 (racemic) 화합물로부터 키랄 (chiral) 화합물을 선택반응시키는 방법에 관한 것으로, 좀 더 상세하게는 라세믹 트랜스-2-브로모-1-인다놀 (racemic trans-2-bromo-1-indanol)을 초산비닐에 용해시킨 후, 미생물 유래의 리파제를 별도의 처리없이 작용시켜 하나의 수산기를 입체선택적으로 에스테르화하는 것으로 이루어지며, 반응기질의 농도를 높게 유지하면서 반응을 진행할 수 있을 뿐 아니라, 반응이 끝난 뒤 회수한 초산비닐을 계속 사용함으로써 경제성이 있고, 높은 수율과 높은 광학적 순도를 얻을 수 있는 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조공정에 관한 것이다. 본 발명의 제조방법은 공정이 용이하며, 경제적으로 우수하고, 광학순도 및 수율이 높아 산업상 매우 유용하다The present invention relates to a method for the selective reaction of chiral compounds from racemic compounds using enzymes, in particular lipases, and more particularly racemic trans-2-bromo-1-indanol ( After dissolving racemic trans-2-bromo-1-indanol) in vinyl acetate, the microorganism-derived lipase is reacted without any treatment to stereoselectively esterify one hydroxyl group, thereby increasing the concentration of the reactor. The trans- (1S, 2S) -2-bromo-1, which is not only able to carry out the reaction while maintaining it, but also is economical by continuing to use the vinyl acetate recovered after the reaction, and has high yield and high optical purity. It relates to a process for producing indanyl acetate. The manufacturing method of the present invention is very useful industrially because the process is easy, economically superior, high optical purity and yield.

인덴옥사이드, 아미노인다놀, 리파제, 비닐초산, 트랜스브로모인다놀Indenoxide, aminoindanol, lipase, vinyl acetate, transbromoininol

Description

효소적 방법에 의한 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법{Method of preparing trans-(1S,2S)-2-bromo-1-indanyl acetate by enzymatic method}Method of preparing trans- (1S, 2S) -2-bromo-1-indanyl acetate by enzymatic method}

본 발명은 효소적 방법에 의한 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법에 관한 것으로, 좀 더 상세하게는 라세믹 트랜스-2-브로모-1-인다놀 (racemic trans-2-bromo-1-indanol)을 초산비닐 (vinyl acetate)에 용해시킨 후, 미생물 유래의 리파제를 별도의 처리없이 작용시켜 하나의 수산기를 입체선택적으로 에스테르화시키는 효소적 방법에 의한 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법에 관한 것이다. 본 발명의 방법은 반응기질의 농도를 높게 유지하면서 반응을 진행할 수 있을 뿐 아니라, 반응이 끝난 뒤 회수한 초산비닐을 계속 사용함으로써 경제성이 있고, 높은 수율과 높은 광학적 순도를 얻을 수 있다.The present invention relates to a process for preparing trans- (1S, 2S) -2-bromo-1-indanyl acetate by enzymatic method, more specifically racemic trans-2-bromo-1-. By enzymatic method of dissolving racemic trans-2-bromo-1-indanol in vinyl acetate, lipase derived from microorganisms is reacted without any treatment to stereoselectively esterify one hydroxyl group. It relates to a process for the preparation of trans- (1S, 2S) -2-bromo-1-indanyl acetate. The method of the present invention can not only proceed with the reaction while maintaining the concentration of the reactor, but also by using the vinyl acetate recovered after the reaction is economical, high yield and high optical purity can be obtained.

본 발명의 라세믹 화합물은 트랜스-2-브로모-1-인다놀 (trans-2-bromo-1-indanol)로서 트랜스-(1S,2S)-브로모 인다놀과 트랜스-(1R,2R)-브로모 인다놀로 반반씩 존재하고 있다.The racemic compounds of the present invention are trans-2-bromo-1-indanol and are trans- (1S, 2S) -bromo indanol and trans- (1R, 2R). -There is half and half of bromo indano.

본 발명의 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트 (indanyl acetate)는 테트라하이드로퓨란(이하, 'THF'라 함) 하에서 NaOH를 단순히 첨가함으로써 시스-(1S,2R) 인덴 옥사이드 (cis-(1S,2R) indene oxide)로 합성되고, 이는 HIV 프로테아제 저해제인 크릭시반 (Crixivan)의 합성에 필요한 중간체로 사용되는 시스-(1S,2R)-아미노 인다놀의 합성에 사용된다. 트랜스-(1R,2R)-2-브로모-1-인다놀은 시스-(1R,2S) 인덴 옥사이드로 합성되며, 또한 시스-(1R,2S)-아미노 인다놀 또는 시스-(1S,2R)-아미노 인다놀로 합성된다.The trans- (1S, 2S) -2-bromo-1-indanyl acetate of the present invention is prepared by adding cis- (1S, 2R) by simply adding NaOH under tetrahydrofuran (hereinafter referred to as 'THF'). ) Is synthesized from cis- (1S, 2R) indene oxide, which is used for the synthesis of cis- (1S, 2R) -amino indanol, which is used as an intermediate for the synthesis of Crixivan, an HIV protease inhibitor. Used. Trans- (1R, 2R) -2-bromo-1-indanol is synthesized from cis- (1R, 2S) indene oxide, and also cis- (1R, 2S) -amino indanol or cis- (1S, 2R ) -Amino indanol.

상기 시스-아미노 인다놀은 시스-인단디올로부터 합성가능하며, 시스-인단디올을 합성하는 방법은 다수 알려져 있다. 예를 들어, 1988년에 Wackett 등은 톨루엔 다이옥시제나아제 (toluene dioxygenase) 효소를 함유하는 슈도모나스 (Pseudomonas) 균주를 배양하여 인덴으로부터 (-)-시스-(1S,2R)-인단디올 (indandiol)을 합성하였고 (Biochemistry, vol. 27: 1360-1367), Connors 등은 슈도모나스 푸티다 (Pseudomonas putida) 돌연변이 균주를 사용하여 1g/ℓ의 인덴으로부터 최고 200mg/ℓ 농도의 시스-(1S,2R)-인단디올 (95% e.e.)을 합성하였다 (J. Ind. Microbiol. Biotechnol., 18:353-359,1997).The cis-amino indanol can be synthesized from cis-indandiol, and a number of methods for synthesizing cis-indandiol are known. For example, in 1988, Wackett et al. Incubated Pseudomonas strains containing toluene dioxygenase enzymes to incubate (-)-cis- (1S, 2R) -indandiol from indene. (Biochemistry, vol. 27: 1360-1367), and Connors et al. Used cis- (1S, 2R)-at concentrations up to 200 mg / l from 1 g / l indene using a Pseudomonas putida mutant strain. Indandiol (95% ee) was synthesized (J. Ind. Microbiol. Biotechnol., 18: 353-359,1997).

또한, Nukina 등은 인덴으로부터 니시카도 (Nishikado) 곰팡이 피리큘라리아 징지베리 (Pyricularia zingiberi)를 이용하여 (-)-(1R,2S)-시스-인단디올 (7.3% 수율, 15% e.e.)과 (+)-(1R,2R)-트랜스-인단디올 (3% 수율, 83% e.e.)을 얻었다 (Biosci. Biotech. Biochem. vol. 60:2097-2098, 1996).Nukina et al. Also used (-)-(1R, 2S) -cis-indandiol (7.3% yield, 15% ee) and (Nishikado fungus Pyicularia zingiberi) from Inden. +)-(1R, 2R) -trans-indandiol (3% yield, 83% ee) was obtained (Biosci. Biotech. Biochem. Vol. 60: 2097-2098, 1996).

현재, 다량의 톨루엔으로부터 발현되는 톨루엔 다이옥시제나아제 효소에 의해 인덴으로부터 시스-(1S,2R)-인단디올을 합성하고, 이로부터 화학합성에 의해 (1S)-아미노-(2R)-인다놀을 합성하는 공정이 1996년에 국제특허로 출원되었다 (PCT/US96/10445). 상기 생전환 공정 (Bioconversion)에 의하면 총 26 여시간 (20여시간의 발효와 6시간의 반응) 후에, 2.5 g/ℓ의 인덴으로부터 500∼700 mg/ℓ의 시스-(1S,2R)-인단디올을 얻을 수 있다고 보고되어 있다. 그러나, 상기 공정은 톨루엔이 다량으로 사용되는 단점이 있다.Currently, cis- (1S, 2R) -indandiol is synthesized from indene by a toluene dioxygenase enzyme expressed from a large amount of toluene, from which (1S) -amino- (2R) -indanol is synthesized by chemical synthesis Was synthesized in 1996 (PCT / US96 / 10445). According to the Bioconversion, after about 26 hours (20 hours of fermentation and 6 hours of reaction), 500 to 700 mg / L of cis- (1S, 2R) -indane from 2.5 g / L of indene It is reported that diols can be obtained. However, this process has the disadvantage of using a large amount of toluene.

라세믹 인덴 옥사이드로부터 디플로디아 고시피나 (Diplodia gossipina) 유래 에폭사이드 하이드로라아제 (epoxide hydrolase)에 의해 (1R,2S) 인덴 옥사이드를 인단디올로 가수분해하여, 원하는 (1S,2R) 인덴 옥사이드를 분리하는 국제특허가 Merck사에 의해 출원되었고 (PCT/US95/13297), 상기 특허의 일부 내용 (1g/ℓ 농도의 라세믹 인덴 옥사이드를 14% 수율 및 100% e.e. 값을 갖는 (1S,2R) 인덴 옥사이드로 분해하는 논문)이 Merck사의 Zhang 등에 의해 보고되었다 (J. Ferment. Bioeng., vol. 80:244-246, 1995).Hydrolysis of (1R, 2S) indene oxide to indandiol by diplodia gossipina-derived epoxide hydrolase from racemic indene oxide to separate the desired (1S, 2R) indene oxide An international patent was filed by Merck (PCT / US95 / 13297), and part of the patent (1 g / L concentration of racemic indene oxide (1S, 2R) indene with 14% yield and 100% ee value). Papers that decompose into oxides) have been reported by Zhang et al. Of Merck (J. Ferment. Bioeng., Vol. 80: 244-246, 1995).

또한, 1996년 Pedragosa-Moreau 등에 의해 (Tetrahedron Letters, vol. 37:3319-3322) 뷰베리아 설퓨레센스 (Beauveria sulfurescens) 곰팡이 유래 에폭사이드 하이드롤라아제 (Epoxide hydrolase) 효소를 써서, 1g/ℓ의 라세믹 인덴 옥사이드로부터 (1R,2R)-인단디올 (49% 수율, 77% e.e.)과 (1R,2S)-인덴 옥사이드 (20% 수율, 98% e.e.)를 합성하는 방법이 보고되었다.Also, in 1996, Pedragosa-Moreau et al. (Tetrahedron Letters, vol. 37: 3319-3322) using a Beauveria sulfurescens fungus-derived epoxide hydrolase enzyme, 1 g / L of Lase A method for synthesizing (1R, 2R) -indanediol (49% yield, 77% ee) and (1R, 2S) -indene oxide (20% yield, 98% ee) from mic indene oxide has been reported.

한편, 커뷸라리아 프로튜베레이트 (Curvularia protuberata) MF5400 (ATCC 74332) 곰팡이에서 유래된 할로퍼록시다아제 (haloperoxidase) 효소를 사용하여 pH 7에서 인덴을 KBr과 과산화수소 존재하에서 반응시켜 트랜스-(1S,2S)-2-브로모-인 다놀을 합성하고, 이로부터 pH를 알칼리로 조절하여 (1S,2R) 인덴 옥사이드를 합성한 후, 이의 pH를 산으로 조절하여 시스-(1S,2R)-인단디올을 합성하는 방법이 Merck사에 의해 출원되어 있다 (PCT/US96/06954). 이 경우, 기질인 인덴 농도는 1g/ℓ이다. 또한, 다른 기질인 KBr과 과산화수소수를 일정한 속도로 주입해 주어야 한다. 이 특허는 1997년에 미국특허로 등록되어 있다 (USP 5,605,819).Meanwhile, the indene was reacted with KBr at pH 7 in the presence of hydrogen peroxide using a vuloperaria protuberata MF5400 (ATCC 74332) fungus derived from a fungus. 2S) -2-bromo-indanol was synthesized, and the pH was adjusted with alkali to synthesize (1S, 2R) indene oxide, and then its pH was adjusted with acid to make cis- (1S, 2R) -indane A method for synthesizing diols is filed by Merck (PCT / US96 / 06954). In this case, the concentration of indene as a substrate is 1 g / l. In addition, other substrates, KBr and hydrogen peroxide water, should be injected at a constant rate. This patent was registered as a US patent in 1997 (USP 5,605,819).

상기에 언급된 공정들은 기질인 인덴과 인덴 옥사이드를 주로 수용액 상에서 반응시키는데 인덴과 인덴 옥사이드는 물에 대한 용해도가 낮아 반응시에 기질 농도가 낮은 것이 단점이다.The above-mentioned processes react the substrates of indene and indene oxide mainly in an aqueous solution. The disadvantages of indene and indene oxide are low substrate solubility in water due to low solubility in water.

한편, 상기 공정들과는 다르게, 리파제 효소를 사용하여 라세믹 화합물을 분리하는 공정이 개발되었다. Takahashi 및 Ogasawara 등은 인덴으로부터 라세믹 트랜스-1-아지도-인단-2-올 (racemic trans-1-azido-indan-2-ol)을 합성하여, 리파제 PS (아마노사) 효소를 이용하여 초산비닐과 반응시켜 트랜스-(1S,2S)-1-아지도-인단-2-올을 합성한 후, 이로부터 시스-(1S,2R)-1-아지도-2-올을 거쳐 시스-(1S,2R)-아미노 인다놀을 합성하였다 (Synthesis, pP. 954 - 958, 1996). 그러나, 상기 반응 공정은 최소 6 단계 이상이어서, 수율 및 e.e. 값이 낮은 단점이 있다. 또한, Mitrochkin 등 (1995)은 라세믹 브로모 인다놀로부터 리파제 효소 (LP 237.87)를 써서 헥산/에테르 용매에 아실화 반응 매체로 초산비닐를 첨가하여 트랜스-(1S,2S)-2-브로모-1-인다놀을 분리한 후 (반응시간은 8 일, e.e. 값은 99% 이상), 이로부터 시스-(1S,2R) 인덴 옥사이드를 합성하였다. 이때, 수율은 20%로 낮으며, 반응시간도 8일로 실제공정에서는 불리한 것으로 나타나 있다 (Tetrahedron: Asymmetry, vol 6:59-62, 1995).On the other hand, unlike the above processes, a process for separating racemic compounds using lipase enzymes has been developed. Takahashi and Ogasawara et al. Synthesized racemic trans-1-azido-indan-2-ol from indene and used acetic acid using lipase PS (Amanosa) enzymes. React with vinyl to synthesize trans- (1S, 2S) -1-azido-indan-2-ol, from which is then cis- (1S, 2R) -1-azido-2-ol and through cis- ( 1S, 2R) -amino indanol was synthesized (Synthesis, p. 954-958, 1996). However, the reaction process is at least six steps, so yield and e.e. The disadvantage is low value. In addition, Mitrochkin et al. (1995) added vinyl acetate as acylation reaction medium to hexane / ether solvents using lipase enzyme (LP 237.87) from racemic bromo indanol to trans- (1S, 2S) -2-bromo- After 1-indanol was separated (reaction time is 8 days, ee value is more than 99%), cis- (1S, 2R) indene oxide was synthesized therefrom. At this time, the yield is low as 20%, the reaction time is 8 days, it appears to be disadvantageous in the actual process (Tetrahedron: Asymmetry, vol 6: 59-62, 1995).

따라서, 상기와 같은 이유로 간단한 공정을 이용하여 경제적으로 우수하며, 광학순도가 높은 광학활성 아미노인다놀을 생산할 수 있는 공정의 개발이 필요하다.Therefore, there is a need for the development of a process capable of producing optically active aminoindanol that is economically superior using a simple process and has high optical purity.

이에, 본 발명자들은 Mitrochkin 등의 방법과 같이 분말상인 반응기질을 녹이기 위한 에테르와 헥산의 첨가없이 비용매상에서 아실화제로서 초산비닐과 기질인 라세믹 트랜스-2-브로모-1-인다놀 (racemic trans-2-bromo-1- indanol)을 혼합하여 사용하므로써, 반응기질의 농도를 높게 유지하면서 반응을 진행할 수 있을 뿐 아니라, 헥산 및 에테르와 비닐초산을 분리하는데 증류탑 등을 사용하거나 폐기하여야 할 필요가 없으므로 반응이 끝난 뒤 회수한 초산비닐을 계속 사용함으로써 경제성이 있고, 높은 수율과 높은 광학적 순도를 얻을 수 있는 시스-(1S,2R) 인덴 옥사이드를 합성하기 위한 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조공정을 개발하였으며, 본 발명은 이에 기초하여 완성되었다.Accordingly, the present inventors used racemic trans-2-bromo-1-indanol as a vinyl acetate and a substrate as an acylating agent in a nonsolvent without addition of ether and hexane for dissolving powdery reactive substances as in the method of Mitrochkin et al. By using trans-2-bromo-1-indanol), the reaction can be carried out while maintaining a high concentration of the reactor, and a distillation column or the like must be used to separate hexane, ether, and vinyl acetate. Since it is economical by continuing to use the vinyl acetate recovered after the reaction, the trans- (1S, 2S) -2 for synthesizing cis- (1S, 2R) indene oxide with high yield and high optical purity is obtained. A process for preparing bromo-1-indanyl acetate has been developed and the present invention has been completed based on this.

따라서, 본 발명의 목적은 반응기질의 농도를 높게 유지하면서, 경제적이며, 고수율과 높은 광학적 순도를 얻을 수 있는 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method for preparing trans- (1S, 2S) -2-bromo-1-indanyl acetate, which is economical while maintaining a high concentration of reactor mass and obtains high yield and high optical purity. To provide.

상기 목적을 달성하기 위한 본 발명의 제조방법은 분말 형태의 기질인 라세믹 트랜스-2-브로모-1-인다놀을 초산비닐에 용해시킨 후, 칸디다 속 미생물 유래의 리파제를 별도의 처리없이 첨가하고, 상기 반응 혼합물을 20∼50℃의 온도에서 100 ∼300rpm으로 교반시켜 하나의 수산기를 입체선택적으로 에스테르화시키는 것으로 이루어진다.In order to achieve the above object, the preparation method of the present invention dissolves racemic trans-2-bromo-1-indanol, which is a substrate in powder form, in vinyl acetate, and then adds a lipase derived from Candida microorganism without additional treatment. And the reaction mixture is stirred at 100 to 300 rpm at a temperature of 20 to 50 ° C. to stereosterically esterify one hydroxyl group.

이하, 본 발명을 좀 더 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

전술한 바와 같이, 본 발명에서는 기질인 트랜스-2-브로모-1-인다놀을 초산비닐에 적절히 용해시킨 후, 칸디다속 미생물 유래 리파제를 별도의 처리 공정없이 첨가한 다음, 상기 반응 혼합물을 20∼50℃의 온도에서 100∼300rpm으로 교반시켜 수산화기를 입체선택적으로 에스테르화하여 광학활성을 갖는 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트를 제조한다.As described above, in the present invention, after dissolving the substrate, trans-2-bromo-1-indanol in vinyl acetate, and adding candida microorganism-derived lipase without a separate treatment step, the reaction mixture is added to 20 Stirring at 100 to 300 rpm at a temperature of ˜50 ° C. to stereoselectively esterify hydroxyl groups to prepare trans- (1S, 2S) -2-bromo-1-indanyl acetate having optical activity.

본 발명의 반응 공정은 하기 반응식 1과 같다.The reaction process of the present invention is shown in Scheme 1 below.

Figure 111999002433114-pat00001
Figure 111999002433114-pat00001

본 발명에 사용되는 리파제는 칸디다속 미생물로부터 얻은 것으로, 분말이나 액상형태로 제공되는 효소 또는 고정화된 리파제, 또는 리파제를 함유하는 생물세 포 및 고정화된 생물세포를 포함한다. 특히, 아크릴수지를 담체로 사용하는 리파제가 바람직하다.Lipases used in the present invention are obtained from the Candida microorganism, and include enzymes or immobilized lipases provided in powder or liquid form, or biocells containing lipases and immobilized biological cells. In particular, the lipase which uses acrylic resin as a support | carrier is preferable.

상기 칸디다속 미생물로는 칸디다 안타티카 (Candida antarctica) 등이 있으며, 상기 리파제 효소는 안정성 및 반응성을 위하여 아크릴 수지와 같은 소수성 담체로 고정화시켜 사용한다.The Candida genus microorganisms include Candida antarctica, and the lipase enzyme is used by immobilization with a hydrophobic carrier such as acrylic resin for stability and reactivity.

상기 리파제는 상업적으로 판매되는 것을 사용하거나 필요에 따라서는 제조하여 사용할 수 있다.The lipase may be commercially available, or may be manufactured and used as necessary.

본 발명에 있어서, 초산비닐은 아실화제(acylating agent) 및 용매로 사용되므로 별도의 용매가 필요하지 않다.In the present invention, vinyl acetate is used as an acylating agent and a solvent, so no separate solvent is required.

상기 에스테르화 반응 후, 증류 및 유기용매 추출법, 크로마토그래피 등의 잘 알려진 방법에 의해 생성된 광학활성이 있는 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트와 라세믹 트랜스-2-브로모-1-인다놀로 분리한다. 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트는 THF 등에 NaOH 등의 알카리를 첨가한 통상적인 방법에 의해 쉽게 광학활성이 있는 시스-(1S,2R) 인덴 옥사이드로 제조할 수 있다.After the esterification reaction, optically active trans- (1S, 2S) -2-bromo-1-indanyl acetate and racemic trans- produced by well-known methods such as distillation, organic solvent extraction and chromatography. Separate with 2-bromo-1-indanol. Trans- (1S, 2S) -2-bromo-1-indanyl acetate can be prepared from easily optically active cis- (1S, 2R) indene oxide by the conventional method of adding alkali such as NaOH to THF or the like. Can be.

광학활성의 2-브로모-1-인다닐 및 2-브로모-1-인다닐 아세테이트 및 인덴 옥사이드의 분석은 키랄 칼럼 (Chiralcel OB-H)을 써서 다음과 같은 조건에서 행하였다.Analysis of optically active 2-bromo-1-indanyl and 2-bromo-1-indanyl acetate and indene oxide was carried out using a chiral column (Chiralcel OB-H) under the following conditions.

헥산과 이소프로판올의 혼합물 (97.5:2.5)을 0.7ml/분으로 흘려, HPLC의 흡광도는 220nm로 하여 분석하였다. 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트는 머무른 시간 (retention time)이 10.9분, 트랜스-(1R,2R)-2-브로모-1-인다닐 아 세테이트는 10.4분, 트랜스-(1S,2S)-2-브로모-1-인다놀은 19.6분, 및 트랜스-(1R,2R)-2-브로모-1-인다놀은 27.9분에서 확인되었고, 시스-(1S,2R) 인덴 옥사이드는 20.8분, 시스-(1R,2S) 인덴 옥사이드는 32.8분에서 확인되었다.A mixture of hexane and isopropanol (97.5: 2.5) was flowed at 0.7 ml / min, and the absorbance of HPLC was analyzed to be 220 nm. Trans- (1S, 2S) -2-bromo-1-indanyl acetate had a retention time of 10.9 minutes, and trans- (1R, 2R) -2-bromo-1-indanyl acetate 10.4 minutes, trans- (1S, 2S) -2-bromo-1-indanol was identified at 19.6 minutes, and trans- (1R, 2R) -2-bromo-1-indanol at 27.9 minutes, cis -(1S, 2R) indene oxide was found at 20.8 minutes and cis- (1R, 2S) indene oxide was found at 32.8 minutes.

또한, 기체크로마토그래피 (휴렛-패카드사 제품 모델 5890)를 이용하여 상기의 화합물을 정량할 수 있었다. 분석 조건으로는 휴렛-패카드사의 HP-1 모세관 컬럼 (내경 0.32mm, 길이 25m)을 100℃에서 1분간 가열하고, 분당 10℃씩 250℃까지 증가시킨 뒤, 250℃에서 4분간 정지시켰다. 담체 (carrier)로는 헬륨 기체를 분당 2ml의 속도로 흘리고, 250℃에서 FID (flame ionization detector)를 사용하여 검출하였다. 트랜스-브로모 인다닐 아세테이트는 7.6분, 트랜스-브로모 인다놀은 6.1분, 시스-인덴 옥사이드는 4.1분에서 검출되었다.In addition, the above compound could be quantified by using gas chromatography (Hewlett-Packard Company Model 5890). As analytical conditions, HP-1 capillary column (0.32 mm inner diameter, 25 m length) of Hewlett-Packard was heated at 100 ° C. for 1 minute, increased to 250 ° C. at 10 ° C. per minute, and stopped at 250 ° C. for 4 minutes. As a carrier, helium gas was flowed at a rate of 2 ml / min and detected using a flame ionization detector (FID) at 250 ° C. Trans-bromo indanyl acetate was detected at 7.6 minutes, trans-bromo indanol at 6.1 minutes and cis-indene oxide at 4.1 minutes.

이하, 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만, 하기 실시예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

실시예 1Example 1

분말 형태의 라세믹 트랜스-브로모 인다놀 6g을 초산비닐 100ml가 들어 있는 삼구 플라스크 (three-neck flask)에 넣고 녹인 다음, 노보짐 (Novozym) 435 리파제 효소 (Novo 사)를 약 4g을 넣은 후, 40℃에서 반응을 시작하였다. 일정시간 마다 반응 샘플을 분석하였다. 약 72시간 후에 반응을 중단시킨 후 (트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트; 93.3% e.e., 수율 = 31.7%), 초산비닐을 증발시켜 제거하고, 헥산을 첨가하여 2-브로모-1-인다닐 아세테이트를 용해시킨 후, 고체 형태의 2-브로모-1-인다놀로부터 분리하여 THF 하에 NaOH를 첨가하여 순 수한 인덴 옥사이드 0.9g를 합성하였다. 합성한 시스-(1S,2R) 인덴 옥사이드 (87.9% e.e.)는 다음과 같이 분석되었다.6 g of racemic trans-bromo indanol in powder form was dissolved in a three-neck flask containing 100 ml of vinyl acetate, followed by 4 g of Novozym 435 lipase enzyme (Novo). The reaction was started at 40 ° C. The reaction samples were analyzed at regular intervals. After about 72 hours the reaction was stopped (trans- (1S, 2S) -2-bromo-1-indanyl acetate; 93.3% ee, yield = 31.7%), and vinyl acetate was removed by evaporation and hexane was added. 2-bromo-1-indanyl acetate was dissolved and then separated from 2-bromo-1-indanol in solid form, and NaOH was added under THF to synthesize 0.9 g of pure indene oxide. The synthesized cis- (1S, 2R) indene oxide (87.9% e.e.) was analyzed as follows.

1H-NMR (ppm, CDCl3) : 7.5-7.6 (1H, doublet), 7.3 (3H, singlet) 4.3 (1H, singlet), 4.1 (1H, singlet), 3.2-3.3 (1H, doublet), 2.9-3.0 (1H, doublet). 1 H-NMR (ppm, CDCl 3 ): 7.5-7.6 (1H, doublet), 7.3 (3H, singlet) 4.3 (1H, singlet), 4.1 (1H, singlet), 3.2-3.3 (1H, doublet), 2.9 -3.0 (1H, doublet).

Mass Spectrum : 132 (m/z, M+).Mass Spectrum: 132 (m / z, M + ).

이상에서 살펴본 바와 같이, 본 발명의 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법은 공정이 용이하며, 경제적으로 우수하고, 광학순도 및 수율이 높아 산업상 매우 유용하다.
As described above, the preparation method of the trans- (1S, 2S) -2-bromo-1-indanyl acetate of the present invention is easy in the process, economically superior, high optical purity and yield is very industrial useful.

Claims (4)

라세믹 트랜스-2-브로모-1-인다놀을 초산비닐에 용해시킨 후, 칸디다 속 미생물 유래의 리파제를 별도의 처리없이 첨가하고, 상기 반응 혼합물을 20∼50℃의 온도에서 하나의 수산기를 입체선택적으로 에스테르화시키는 것을 특징으로 하는 고순도 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법.After dissolving racemic trans-2-bromo-1-indanol in vinyl acetate, lipase derived from Candida microorganism is added without further treatment, and the reaction mixture is added with one hydroxyl group at a temperature of 20 to 50 ° C. A process for producing high purity trans- (1S, 2S) -2-bromo-1-indanyl acetate characterized by stereoselective esterification. 제 1항에 있어서, 상기 칸디다 속 미생물은 칸디다 안타티카 (Candida antarctica)임을 특징으로 하는 고순도 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법,According to claim 1, wherein the Candida genus microorganism is Candida antarctica (Candida antarctica) characterized in that the manufacturing method of high purity trans- (1S, 2S) -2-bromo-1-indanyl acetate, 제 1항에 있어서, 상기 리파제가 소수성 담체로 고정화된 것을 특징으로 하는 고순도의 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법,The method for preparing high purity trans- (1S, 2S) -2-bromo-1-indanyl acetate according to claim 1, wherein the lipase is immobilized with a hydrophobic carrier. 제 3항에 있어서, 상기 소수성 담체는 아크릴 수지임을 특징으로 하는 고순도의 트랜스-(1S,2S)-2-브로모-1-인다닐 아세테이트의 제조방법.The method of claim 3, wherein the hydrophobic carrier is an acrylic resin. 5.
KR1019990009566A 1999-03-20 1999-03-20 Method of preparing trans-1S,2S-2-bromo-1-indanyl acetate by enzymatic method KR100567899B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990009566A KR100567899B1 (en) 1999-03-20 1999-03-20 Method of preparing trans-1S,2S-2-bromo-1-indanyl acetate by enzymatic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990009566A KR100567899B1 (en) 1999-03-20 1999-03-20 Method of preparing trans-1S,2S-2-bromo-1-indanyl acetate by enzymatic method

Publications (2)

Publication Number Publication Date
KR20000060898A KR20000060898A (en) 2000-10-16
KR100567899B1 true KR100567899B1 (en) 2006-04-04

Family

ID=19577205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990009566A KR100567899B1 (en) 1999-03-20 1999-03-20 Method of preparing trans-1S,2S-2-bromo-1-indanyl acetate by enzymatic method

Country Status (1)

Country Link
KR (1) KR100567899B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650546B1 (en) * 2005-05-31 2006-11-29 엔자이텍 주식회사 The method of preparing optically active trans-1-ramino-2-indanol and their esters by enzymatic method
KR100832749B1 (en) * 2006-08-28 2008-05-27 한국화학연구원 Method for preparing chiral alpha fluoromethyl propargyl alcohol derivatives

Also Published As

Publication number Publication date
KR20000060898A (en) 2000-10-16

Similar Documents

Publication Publication Date Title
JP2707076B2 (en) Production method of optically active compound
EP0879890A1 (en) Enantioselective epoxide hydrolases and genes encoding these
KR20050104481A (en) The method of making optically active ester derivatives and their acids from racemic esters
KR100567899B1 (en) Method of preparing trans-1S,2S-2-bromo-1-indanyl acetate by enzymatic method
Nakamura et al. Production of (R)-3-chloro-1, 2-propanediol from prochiral 1, 3-dichloro-2-propanol by Corynebacterium sp. strain N-1074
US5457051A (en) Enantioselective hydrolysis of ketoprofen esters by beauveria bassiana and enzymes derived therefrom
US20100261251A1 (en) Microbial kinetic resolution of ethyl-3,4-epoxybutyrate
EP1550730B1 (en) Method for producing optically active 3-chloro-2-methyl-1,2-propanediol taking advantage of microorganism
Singh et al. Enantioselective transesterification of (RS)-1-chloro-3-(3, 4-difluorophenoxy)-2-propanol using Pseudomonas aeruginosa lipases
JP3587569B2 (en) Method for producing optically active 1- (3,4-dimethoxyphenyl) -2-propanol
KR100567108B1 (en) Method of preparing trans-1S,2S-1-azido 2-indanol and trans-1R,2R-1-azido 2-indanyl acetate by enzymatic method
EP1290208B1 (en) Method for optically resolving a racemic alpha-substituted heterocyclic carboxylic acid using enzyme
JP4475407B2 (en) Process for producing optically active 3-chloro-2-methyl-1,2-propanediol using microorganisms
JPH01132399A (en) Production of optically active unsaturated alcohol and esterified product thereof
US20040121435A1 (en) Biocatalytic preparation of enantiomerically enriched aminopentanenitrile
US6995001B2 (en) Processing for preparing monoprotected diols from symmetric diols
US5605833A (en) Process for preparation of D-lactic acid from D,L lactic acid ester using wheat germ or pancreatic lipase
Moon-Young et al. Resolution of 1, 3-dioxolane derivatives using the lipase from an Acinetobacter junii SY-01
EP1428888B1 (en) Method for the production of (1S,4R)-(-)-4-Hydroxycyclopent-2-enyl esters
JP3741758B2 (en) Process for producing optically active glycerol derivatives
US5959159A (en) Method for preparing optically active 5-hydroxy-3-(4'-hydroxyphenyl)-1,1,3-trimethylindane
JPH1146793A (en) Production of optically active glycidol
JPH0799993A (en) Production of optically active glycidol
KR20030093609A (en) The method of making optical active 1-phenyl ethanol and their esters in non-solvent phase
JPH0775564A (en) Production of optically active diols and microorganism capable of decomposing cyclic carbonic acid ester

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee