KR100544418B1 - A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY - Google Patents

A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY Download PDF

Info

Publication number
KR100544418B1
KR100544418B1 KR1020000071263A KR20000071263A KR100544418B1 KR 100544418 B1 KR100544418 B1 KR 100544418B1 KR 1020000071263 A KR1020000071263 A KR 1020000071263A KR 20000071263 A KR20000071263 A KR 20000071263A KR 100544418 B1 KR100544418 B1 KR 100544418B1
Authority
KR
South Korea
Prior art keywords
grain
steel sheet
silicon steel
oriented silicon
less
Prior art date
Application number
KR1020000071263A
Other languages
Korean (ko)
Other versions
KR20020041599A (en
Inventor
우종수
한찬희
차상윤
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020000071263A priority Critical patent/KR100544418B1/en
Publication of KR20020041599A publication Critical patent/KR20020041599A/en
Application granted granted Critical
Publication of KR100544418B1 publication Critical patent/KR100544418B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 변압기 등 전기기기의 철심으로 사용되는 방향성 규소강판의 제조방법에 관한 것으로서, 방향성 규소강판을 제조하는데 있어서, 입계편석을 형성하는 Sb를 제강단계에서 적정량 함유시키고 슬라브 재가열온도와 Al, N량을 적절히 제어하여 완전용체화가 일어나도록 하며, 냉간압연후 적정량의 질소를 강내에 부화시킴으로써, 자기적특성이 우수한 방향성 규소강판을 제조하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet used as an iron core of an electrical apparatus such as a transformer. In manufacturing a grain-oriented silicon steel sheet, Sb forming grain boundary segregation is contained in an appropriate amount in the steelmaking step, and the slab reheating temperature and Al, N The proper amount is controlled so that complete solution formation occurs, and after cold rolling, an appropriate amount of nitrogen is incubated in the steel to produce a grain-oriented silicon steel sheet having excellent magnetic properties.

상기 목적을 달성하기 위한 본 발명은, The present invention for achieving the above object,

중량%로 Si:2.0~4.0%, C:0.07% 이하, Mn:0.01% 이상, P:0.02% 이하, Sb:0.01~0.12%, Al:0.015% 이하, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어진 강 슬라브를 재가열하여 열간압연한 다음, 1회 또는 중간소둔을 포함한 2회 냉간압연한 후, 탈탄소둔 및 질소부화처리를 동시에 혹은 잇달아 행하여 N의 총량이 150~250ppm로 되도록 하는 것을 포함하여 이루어지는 자기적 특성이 우수한 방향성 규소강판의 제조방법을 기술적 요지로 한다.Si: 2.0% to 4.0%, C: 0.07% or less, Mn: 0.01% or more, P: 0.02% or less, Sb: 0.01 to 0.12%, Al: 0.015% or less, balance Fe and other unavoidable impurities Re-heating the steel slab consisting of hot-rolled and then cold-rolled once or two times including intermediate annealing, followed by de-carbon annealing and nitrogen enrichment treatment simultaneously or successively so that the total amount of N is 150-250 ppm. The manufacturing method of the grain-oriented silicon steel plate excellent in the magnetic characteristic made is a technical summary.

입계편석, 결정립 성장억제, 2차 재결정, Sb, AlNGrain boundary segregation, grain growth inhibition, secondary recrystallization, Sb, AlN

Description

자기적 특성이 우수한 방향성 규소강판의 제조방법{A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY}A method for producing oriented silicon steel sheet having excellent magnetic properties {A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY}

본 발명은 변압기 등 전기기기의 철심으로 사용되는 방향성 규소강판의 제조방법에 관한 것으로서, 보다 상세하게는 제강성분 중 Al, Sb의 함량과 냉간압연후 질소부화처리시 N의 함량을 적절히 제어함으로써, 우수한 자기적 특성을 제공할 수 있는 방향성 규소강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a grain-oriented silicon steel sheet used as an iron core of an electric device such as a transformer, and more specifically, by appropriately controlling the content of Al, Sb in the steel components and the content of N during the nitrogen enrichment treatment after cold rolling, The present invention relates to a method for producing a grain-oriented silicon steel sheet capable of providing excellent magnetic properties.

일반적으로 방향성 규소강판은, 특수한 가공과 열처리에 의해 압연방향으로 [001]방향이 배향된 집합조직(일명 '고스조직'이라고도 함)을 가지고 있는 재료를 말한다. 상기 방향성 규소강판에 있어서 [001]방향은 철의 자화가 용이한 방향으로, 그 배향된 정도가 높을수록 자기적 특성은 우수하게 된다. Generally, a grain-oriented silicon steel sheet refers to a material having an aggregate structure (also called a 'goth structure') in which the [001] direction is oriented in the rolling direction by special processing and heat treatment. In the grain-oriented silicon steel sheet, the [001] direction is a direction in which magnetization of iron is easy, and the higher the degree of orientation thereof, the better the magnetic characteristics.

상기 방향성 규소강판의 제조방법에 관한 종래기술로는, 미국특허 제3,159,511호와 일본특공소51-13469 등이 있다. 이들 방법에서는 AlN, MnS, MnSe등의 미세한 석출물들을 강판내부에 형성시킴으로써, 다른 방위의 결정립성장을 억 제시키고 (110)[001] 방향의 결정립들만을 성장시키는 방법을 개시하고 있다. Conventional techniques related to the method for producing the grain-oriented silicon steel sheet include US Patent No. 3,159,511 and Japanese Patent Application No. 51-13469. In these methods, fine precipitates such as AlN, MnS, and MnSe are formed in the steel sheet to suppress grain growth in different orientations and to grow only grains in the (110) [001] direction.

그러나, 상기 방법들로 제조된 방향성 규소강판은 결정립들의 방위가 이상적인 (110)[001]방위로부터 평균 3도 이내로 분산되어 있어서 자기적특성의 제고에 한계가 있는 문제가 있다. However, the grain-oriented silicon steel sheet produced by the above methods has a problem in that the orientation of the grains is dispersed within an average of 3 degrees from the ideal (110) [001] orientation, thus limiting the improvement of the magnetic properties.

이를 해결하기 위해, 일본특공소58-26405 및 미국특허 제4,203,784호 등에서는 동일한 방위분산도를 갖더라도 추가적인 자기적특성의 향상을 꾀할 수 있는 방법의 하나인 자구미세화법을 개시하였다.In order to solve this problem, Japanese Patent Application Laid-Open No. 58-26405 and U.S. Patent No. 4,203,784 have disclosed a magnetic domain micronization method, which is one of methods for further improving magnetic properties even with the same azimuth dispersion degree.

한편, 현재 상업적으로 이용되고 있는 방향성 규소강판의 대표적인 제조방법에서는, 앞서 언급한 바와 같은 미세 석출물의 형성을 위해 슬라브 재가열 단계에서 이를 모두 고용시킨 다음, MnS와 같은 유화물은 열간압연단계에서, AlN과 같은 질화물은 열간압연된 강판의 열처리와 제어냉각을 통해서 미세분산시키고 있다. On the other hand, in the typical production method of the oriented silicon steel sheet currently used commercially, all of them are employed in the slab reheating step to form the fine precipitates as mentioned above, and then emulsions such as MnS are hot-rolled in AlN and The same nitride is finely dispersed through heat treatment and controlled cooling of the hot rolled steel sheet.

그러나, 슬라브 재가열단계에서 이들을 모두 고용시키기 위해서는 일반탄소강보다 100~150℃ 높은 온도가 필요하기 때문에 열간압연공정의 생산성 및 실수율이 극도로 저하되는 문제를 안고 있다. However, in order to employ all of them in the slab reheating step, a temperature of 100 to 150 ° C. is higher than that of general carbon steel, and thus the productivity and error rate of the hot rolling process are extremely reduced.

일례로, 일본특공소30-3651, (소)40-15644, (소)51-13469호에서는 슬라브 재가열온도를 각각 1260℃, 1350℃, 1230℃ 이상으로 하고 있는데, 실제 실시예에서는 1320℃ 이상에서 해야만 하고, 특히 두께가 200mm이상인 실제 공업적 제조라인에서는 1400℃ 가까운 온도로 재가열하지 않으면 상업적인 제품을 제대로 만들 수 없는 것으로 알려져 있다. For example, Japanese Patent Application Nos. 30-3651, (S) 40-15644 and (S) 51-13469 set the slab reheating temperatures to 1260 ° C, 1350 ° C, and 1230 ° C or higher, respectively. It is known that, in actual industrial manufacturing lines with a thickness of more than 200 mm, commercial products cannot be made properly without reheating to temperatures close to 1400 ° C.

슬라브를 이와 같은 고온으로 가열하게 되면 다음과 같은 문제를 야기한다. 즉, 슬라브 가열에 사용되는 에너지가 증가하고 용융슬래그가 과도하게 형성되어 실수율이 저하될 뿐 아니라, 흘러내리는 슬래그와 노상이 반응하기 때문에 작업후에는 필히 보수를 해야하는 문제들이다.Heating the slab to such high temperatures causes the following problems. In other words, the energy used to heat the slab increases and the molten slag is excessively formed, which lowers the error rate, and the slag and the roadbed react with each other.

상기한 슬라브의 고온재가열에 의한 문제를 해결하기 위하여, 일본특허 제60-179855호와 대한민국 특허공보 제90-7447호에서는 종래와 같이 AlN를 완전히 고용시키지 않고, 슬라브재가열시 불완전 용체화시킨후 후공정에서 질소를 부화시켜 Si이 대부분인 (Si,Al)N 석출물을 미세하게 석출시킴으로써, 자기적 특성이 우수한 방향성 규소강판을 제조하는 방법을 개시하였다. 이들 방법에서는 AlN이 불완전 용체화되기 때문에 슬라브 재가열후 제 역할을 하지 못하는 큰 크기로 형성되고, 이로 인해 잘 관찰되지 않는 것으로 밝히고 있다. 또한, N와 결합하지 않는 일부의 Al이 강내에 다량으로 존재하는 Si와 함께 질화물을 형성하여, 강내에는 AlN나 Si3N4와 같은 석출물이 존재하지 않고 Si이 대부분인 (Si,Al)N 석출물이 존재하게 되고, 이 석출물들은 고온에서 안정하기 때문에, 방향성이 우수한 2차 재결정을 효과적으로 일으킨다고 주장하고 있다. In order to solve the problem caused by the high-temperature reheating of the slab, Japanese Patent No. 60-179855 and Korean Patent Publication No. 90-7447 do not completely employ AlN as in the prior art, but after incomplete solution during slab reheating, A method of producing a grain-oriented silicon steel sheet having excellent magnetic properties by incubating nitrogen in the process to finely deposit (Si, Al) N precipitates containing mostly Si is disclosed. In these methods, AlN is incompletely solvated and formed to a large size that does not play a role after reheating the slab, and thus is hardly observed. In addition, some Al that does not bond with N forms a nitride together with Si present in a large amount in the steel, so that precipitates such as AlN or Si 3 N 4 do not exist in the steel, and most of Si is (Si, Al) N precipitates. Is present, and because these precipitates are stable at high temperatures, they claim to effectively produce secondary recrystallization with good orientation.

그러나, 상기 특허들은 2차 재결정을 발생시키기 위한 정상 결정립 성장억제를 모두 미세한 석출물에 의해 달성하고자 한 것으로, 입계편석에 의해 정상 결정립의 성장억제를 도모한 본 발명과는 그 기술적 사상이 다르다.However, the above patents are intended to achieve all the normal grain growth inhibition for generating secondary recrystallization by fine precipitates, and the technical idea is different from the present invention which aims to suppress the growth of the normal grains by grain boundary segregation.

이에 본 발명자들은 고온재가열에 의한 문제를 해결하기 위한 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 방향성 규소강판을 제조하는데 있어서, Sb를 제강단계에서 적정량 함유시키고 냉간압연후 적정량의 질소를 강내에 부화시켜서 Sb와 N를 효과적으로 입계편석시킴으로써, 자기적특성이 우수한 방향성 규소강판을 제조하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted research and experiments to solve the problem caused by high temperature reheating, and based on the results, the present invention was proposed, and the present invention contains an appropriate amount of Sb in the steelmaking step in producing a grain-oriented silicon steel sheet. After the cold rolling, the appropriate amount of nitrogen is incubated in the steel to effectively produce grain boundary segregation of Sb and N, thereby producing a grain-oriented silicon steel sheet having excellent magnetic properties.

상기 목적을 달성하기 위한 본 발명은, The present invention for achieving the above object,

중량%로 Si:2.0~4.0%, C:0.07% 이하, Mn:0.01~0.015%, P:0.02% 이하, Sb:0.01~0.12%, Al:0.015% 이하, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어진 강 슬라브를 재가열하여 열간압연한 다음, 1회 또는 중간소둔을 포함한 2회 냉간압연한 후, 탈탄소둔 및 질소부화처리를 동시에 혹은 잇달아 행하여 N의 총량이 150~250ppm로 되도록 하는 것을 포함하여 이루어지는 자기적 특성이 우수한 방향성 규소강판의 제조방법에 관한 것이다.Si: 2.0 to 4.0%, C: 0.07% or less, Mn: 0.01 to 0.015%, P: 0.02% or less, Sb: 0.01 to 0.12%, Al: 0.015% or less, balance Fe and other unavoidably incorporated by weight Reheating the steel slab of impurity and hot rolling, followed by cold rolling once or two times including intermediate annealing, followed by decarbonization and nitrogen enrichment treatment simultaneously or successively so that the total amount of N is 150-250 ppm. It relates to a method for producing a grain-oriented silicon steel sheet excellent in magnetic properties.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 AlN 미세 석출물 뿐 아니라 N 및 Sb의 입계편석을 이용하여 정상 결정립의 성장을 억제시키고, 이를 통해 방향성이 우수한 규소강판을 제조하고 하였다. 즉, 이 방법에 의하면, 미세한 석출물 형성원소를 슬라브 재가열시 용 체화시킬 필요가 없기 때문에, 종래와 같은 고온의 슬라브 재가열이 필요없는 장점이 있는 것이다.The present inventors suppress the growth of the normal grains using grain boundary segregation of N and Sb as well as AlN fine precipitates, thereby producing an excellent silicon steel sheet. That is, according to this method, since the fine precipitate forming element does not need to be solution-formed when slab is reheated, there is an advantage that the high-temperature slab reheating is not required as in the prior art.

이와 같이, 입계편석에 의해 정상결정립 성장을 억제할 수 있다는 사실은 이미 오래전부터 이론적으로는 알려져 있었다. IEEE Transactions on Magnetics(1997. 페이지1433~1436)에서는, 3%Si을 함유한 강판에 원자상태의 S, N, B이 일정량 강내에 존재하도록 하면 결정립의 정상성장이 크게 억제되어 2차 재결정이 발생한다고 발표하고 있다. 그러나, 이 방법에서는 원자상태로 존재하는 S이 강의 열간취성을 크게 저하시키는 문제를 야기하기 때문에, 고온 재가열에 의한 문제들을 해결할 수 있음에도 불구하고, 상업적으로는 사용되지 않았다. As such, the fact that normal grain growth can be suppressed by grain boundary segregation has been known theoretically for a long time. In IEEE Transactions on Magnetics (1997. pages 1433-1436), the presence of S, N, and B in a certain amount of steel in a steel sheet containing 3% Si greatly suppresses the normal growth of grains and causes secondary recrystallization. It is announced. However, in this method, since S present in the atomic state causes a problem of significantly lowering the hot brittleness of the steel, it has not been used commercially, although problems due to high temperature reheating can be solved.

본 발명자들은 상기한 바와 같은, 입계편석을 이용한 방법의 단점을 해결하기 위해 오랜 기간 연구를 거듭한 결과, 원자상태의 S 대신 일정량의 Sb를 함유시키면 상기 문제들을 완전히 해결할 수 있다는 사실을 발견하였다. 그러나, S은 첨가하지 않더라도 불가피하게 혼입되는 불순물로서, 이같은 불순물 S은 다른 원소와 결합시켜 원자상태로 존재하지 않도록 해야 하는데, 특히 강중 N와 결합하여 N의 입계편석을 방해하기 때문에, 본 발명자들은 S가 N과 결합하지 않도록 하기 위한 방법을 연구한 결과, N를 제강단계에서 함유시키는 것보다는 냉간압연이후의 연속소둔과정에서 N를 부화시키는 것이 보다 효과적이라는 것도 발견하였다. 이와 같이, 연속소둔과정에서 부화시킨 N는 제강단계에서 첨가된 소량의 Al과도 결합하여, AlN 또는 (Al,Si)N 석출물을 형성함으로써, 자기특성을 보다 안정화할 수도 있다.The present inventors have conducted a long study to solve the shortcomings of the method using the grain boundary segregation as described above, and found that containing a certain amount of Sb instead of atomic S can completely solve the above problems. However, S is an inevitable incorporation even if it is not added, and such an impurity S must be combined with other elements so that it does not exist in an atomic state. As a result of studying the method for preventing S from binding to N, it was found that hatching N was more effective in the continuous annealing process after cold rolling than incorporating N in the steelmaking step. In this manner, N, which is hatched in the continuous annealing process, may also be combined with a small amount of Al added in the steelmaking step to form AlN or (Al, Si) N precipitates, thereby further stabilizing magnetic properties.

이하, 본 발명을 강 성분 및 제조공정에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated about a steel component and a manufacturing process.

본 발명의 상기 Si은 강의 비저항을 감소시켜 에너지 손실을 감소시키는 원소로 가능한 많이 첨가되는 것이 바람직하나, 4.0%보다 과도하게 첨가될 경우 냉간압연에 의해 공업적으로 제조되기가 거의 불가능하고, 또 2.0% 미만이면 오스테나이트상이 2차 재결정 열처리과정에서 형성될 가능성이 있으므로, 2.0~4.0%로 설정하는 것이 바람직하다.The Si of the present invention is preferably added as much as possible to reduce the energy loss by reducing the specific resistance of the steel, but when added excessively more than 4.0% is almost impossible to be industrially produced by cold rolling, and also 2.0 If less than%, the austenite phase may be formed during the secondary recrystallization heat treatment, so it is preferably set to 2.0 to 4.0%.

상기 C는 그 함량을 0.07% 이하로 설정하는 것이 바람직한데, 그 이유는 다음과 같다. 즉, 본 발명에서는 저온에서 재가열을 하기 때문에 종래와 같이 주상정의 성장에 의한 연신립 발생 및 여기에 기인한 2차 재결정의 불안정이라는 문제는 없다. 다만, 탄소의 함량이 너무 높게 되면 탈탄공정시 시간이 과도하게 걸려 생산성을 해치게 되며 또 산화층과도 생성에 의한 피막의 열화가능성도 있기 때문에, 가능한 0.07% 이하로 제한하는 것이 바람직한 것이다.It is preferable to set the content of C to 0.07% or less, for the following reason. That is, in the present invention, since reheating is performed at a low temperature, there is no problem of generation of stretch grains due to growth of columnar tablets and instability of secondary recrystallization due to excitation. However, if the carbon content is too high, it takes too much time during the decarburization process to impair productivity and there is also a possibility of deterioration of the film due to the formation of an oxide layer. Therefore, it is preferable to limit it to 0.07% or less.

상기 Mn은 제강중에 불가피하게 첨가되는 S을 고정시킬 수 있는 양으로 첨가하는 것이 바람직하다. 즉, S이 Mn과 함께 재가열시 고용되면 열간압연중 미세한 MnS를 형성하여 혼립조직의 생성 등 미세조직의 제어를 곤란하게 하므로, 본 발명에서는 Mn의 함량을 0.01% 이상으로 설정하여, 강중 불가피하게 혼입되는 S을 완전히 고정하도록 하는 것이 바람직하다. The Mn is preferably added in an amount capable of fixing S, which is inevitably added during steelmaking. In other words, when S is dissolved in Mn reheating together with Mn, it forms fine MnS during hot rolling, making it difficult to control the microstructure, such as the formation of mixed tissues. It is desirable to completely fix the incorporated S.

상기 P은 강중 불가피하게 첨가되는 원소로서, 0.02% 이하로 제어하는 것이 바람직하다.P is an element inevitably added in steel and is preferably controlled at 0.02% or less.

상기 Al의 함량은 적을수록 바람직한데, 0.015% 이상이면 N와 결합해 AlN을 형성함으로써, 입계에 편석하는 N의 함량을 현저히 감소시키기 때문에, 0.015% 이하로 제어하는 것이 바람직하다.The smaller the content of Al is, the more preferable. If it is 0.015% or more, it is preferable to control the content to 0.015% or less because it combines with N to form AlN, which significantly reduces the content of N segregating at grain boundaries.

한편, 상기 Sb는 본 발명의 특징적인 원소로서, 강중 입계에 편석되어 결정립의 정상성장을 억제하는 역할을 한다. 이와 같은 효과를 얻기 위해서는 최소 0.01% 함유되어야 하지만, 그 함량이 0.12% 보다 많으면 강판의 기계적 성질을 저하시켜 가공공정에 적합하지 않게 한다. 따라서, 상기 Sb의 함량은 0.01~0.12%로 설정하는 것이 바람직하다.On the other hand, Sb is a characteristic element of the present invention, segregates in the grain boundary in the steel and serves to suppress the normal growth of crystal grains. In order to obtain such an effect, it should be contained at least 0.01%, but if the content is more than 0.12%, the mechanical properties of the steel sheet will be degraded, making it unsuitable for the processing process. Therefore, the content of Sb is preferably set to 0.01 to 0.12%.

상기와 같이 조성된 강 슬라브를 재가열하고 열간압연한 다음, 1회 또는 중간소둔을 포함한 2회의 냉간압연을 실시하는데, 상기 슬라브 가열온도는 1150~1200℃로 설정하는 것이 바람직하다. 그 이유는 1150℃ 보다 낮을 경우에는 완전 용체화가 이루어지지 않고, 1200℃보다 높을 경우에는 완전 용체화는 이루어지지만 열간압연도중에 석출이 과도하게 이루어지기 때문에 부화된 질소와 결합하는 Al량이 적어지기 때문이다.The steel slab formed as described above is reheated and hot rolled, and then subjected to cold rolling once or two times including intermediate annealing. The slab heating temperature is preferably set to 1150 to 1200 ° C. The reason for this is that when the temperature is lower than 1150 ° C., no complete solution is formed. When the temperature is higher than 1200 ° C., the complete solution is formed, but the precipitation is excessive during hot rolling. to be.

그 후, 냉연판내의 고용 Al량을 적절히 유지하여 탈탄소둔 및 질화처리를 동시에 혹은 잇달아 행할 수 있다.Thereafter, the amount of solid solution Al in the cold rolled sheet can be appropriately maintained to perform decarbonization annealing and nitriding at the same time or successively.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예 1)(Example 1)

중량%로, Si:3.05%, C:0.056%, Mn:0.015%, P:0.006%, 잔부 Fe 및 불가피하게 혼입되는 불순물로 이루어진 규소강에 대해, 하기 표1과 같이 Sb와 Al의 함량을 변화시켜 슬라브를 제조하였다. 이들 슬라브를 1180℃에서 재가열한 후 900℃의 마무리압연온도 조건으로 열간압연하고, 이를 20% HCl용액으로 산세한 후 1회의 냉간압연에 의해 두께 0.27mm의 규소강 냉연강판을 제조하였다. By weight%, Si: 3.05%, C: 0.056%, Mn: 0.015%, P: 0.006%, the balance of Fe and inevitable silicon steel consisting of impurities, the content of Sb and Al as shown in Table 1 below The slab was made by changing. The slabs were reheated at 1180 ° C. and hot rolled at 900 ° C. finish rolling temperature. The slabs were then rinsed with 20% HCl solution to prepare a cold rolled silicon steel sheet having a thickness of 0.27 mm.

이같이 제조한 규소강판을 875℃, 1%NH3+75%H2+24%N2의 분위기에서 연속소둔에 의해 탈탄과 함께 190ppm까지 질소부화를 시킨 후, 2차 재결정열처리에 의해 방향성을 형성시켰다. 그 후, 800A/m 조건에서 유도되는 자속밀도를 측정하고 그 결과를 하기 표1에 나타내었다.The silicon steel sheet thus prepared was subjected to nitrogen enrichment up to 190 ppm with decarburization by continuous annealing in an atmosphere of 875 ° C. at 1% NH 3 + 75% H 2 + 24% N 2 , followed by formation of directivity by secondary recrystallization heat treatment. I was. Thereafter, the magnetic flux density induced at 800 A / m was measured and the results are shown in Table 1 below.

구분division 성분(중량%)Ingredient (% by weight) 2차 재결정율 (면적비율%)Second recrystallization rate (% of area) 자기특성Magnetic properties SbSb AlAl 자속밀도(B10)Magnetic flux density (B 10 ) 발명재1Invention 1 0.0110.011 0.0050.005 100  100 1.921.92 발명재2Invention 2 0.0300.030 0.0090.009 1.921.92 발명재3Invention 3 0.0700.070 0.0130.013 1.901.90 발명재4Invention 4 0.0950.095 0.0150.015 1.921.92 발명재5Invention 5 0.110.11 0.0030.003 1.911.91 비교재1Comparative Material 1 0.0090.009 0.0080.008 6060 1.771.77 비교재2Comparative Material 2 0.0500.050 0.0200.020 4545 1.711.71 비교재3Comparative Material 3 0.0130.013 0.0350.035 3535 1.661.66

상기 표1에 나타난 바와 같이, 냉간압연이후 연속소둔의 질소부화처리시 질소를 190ppm 부화시킨 경우, Sb와 Al의 함량이 본 발명 범위에 있는 발명재(1)~(5)는 모두 완전한 2차 재결정이 형성되어, 자속밀도가 1.9Tesla 이상이었다. As shown in Table 1 above, in the case of nitrogen enrichment of 190ppm in the nitrogen-enrichment treatment of the continuous annealing after cold rolling, the invention materials (1) to (5) in which the content of Sb and Al are in the present invention range are completely secondary. Recrystallization formed and the magnetic flux density was 1.9 Tesla or more.

반면에, Sb의 함량이 적거나 Al의 함량이 많은 비교재(1)~(3)의 경우에는, 2차 재결정이 불완전하여, 자기특성이 열화한 것을 알 수 있다.On the other hand, in the case of the comparative materials (1) to (3) having a low content of Sb or a high content of Al, secondary recrystallization is incomplete, and the magnetic properties are deteriorated.

(실시예 2)(Example 2)

중량%로, Si:3.25%, C:0.043%, Mn:0.011%, P:0.005%, 잔부 Fe 및 불가피하게 혼입되는 불순물로 이루어진 규소강에 대해, 하기 표2와 같이 Sb와 Al의 함량을 변화시켜 슬라브를 제조하였다. 이들 슬라브를 1200℃에서 재가열한 후 900℃의 마무리압연온도 조건으로 열간압연하고, 이를 20% HCl용액으로 산세한 후 1회의 냉간압연에 의해 두께 0.27mm의 규소강 냉연강판을 제조하였다. By weight%, Si: 3.25%, C: 0.043%, Mn: 0.011%, P: 0.005%, the balance of Fe and inevitable silicon steel consisting of impurities, the content of Sb and Al as shown in Table 2 below The slab was made by changing. The slabs were reheated at 1200 ° C. and hot-rolled at 900 ° C. finish rolling temperature conditions, and then pickled with 20% HCl solution to prepare a cold rolled silicon steel sheet having a thickness of 0.27 mm.

이같이 제조한 규소강판을 암모니아를 소량 함유한 분위기를 이용 연속소둔에 의해 탈탄소둔하고, 동시에 하기 표2와 같이 질소량을 변화시키면서 부화처리 한 후, 2차 재결정열처리에 의해 방향성을 형성시켰다. 그 다음, 자속밀도를 측정 하고, 그 결과를 하기 표2에 나타내었다.The silicon steel sheet thus prepared was decarbonized by continuous annealing using an atmosphere containing a small amount of ammonia, and simultaneously hatched while varying the amount of nitrogen as shown in Table 2, and then oriented by secondary recrystallization heat treatment. Then, the magnetic flux density was measured, and the results are shown in Table 2 below.

구분division 성분(중량%)Ingredient (% by weight) N부화량 (ppm)N hatching amount (ppm) 2차 재결정율 (면적비율%)Second recrystallization rate (% of area) 자기특성Magnetic properties SbSb AlAl 자속밀도(B10),TeslaMagnetic flux density (B 10 ), Tesla 발명재aInvention Materiala 0.050.05 0.0080.008 150150 100  100 1.911.91 발명재bInvention material b 0.050.05 0.0080.008 240240 1.931.93 발명재cInvention material c 0.110.11 0.0130.013 180180 1.911.91 발명재dInvention 0.110.11 0.0130.013 220220 1.891.89 발명재eInvention 0.080.08 0.0040.004 210210 1.921.92 비교재aComparative material a 0.050.05 0.0080.008 120120 7070 1.781.78 비교재bComparative material b 0.0110.011 0.0130.013 260260 4040 1.721.72 비교재cComparative material c 0.080.08 0.0040.004 360360 3535 1.681.68

상기 표2에 나타난 바와 같이, 강중 Sb 및 Al 함량과 함께, N 부화량도 본 발명을 만족시켜야만, 완전한 2차 재결정을 이루고 또한 우수한 자기특성을 얻을 수 있는 것을 알 수 있다.As shown in Table 2, together with the Sb and Al content in the steel, the amount of N hatching must also satisfy the present invention, it can be seen that complete secondary recrystallization and excellent magnetic properties can be obtained.

상술한 바와 같이, 본 발명에 의하면, 강중 입계편석을 형성하는 Sb를 제강단계에서 적정 범위로 함유시킴과 동시에 질소부화처리에 의해 적정량의 질소를 첨가함으로써, 완전한 2차 재결정을 형성하고, 이에 따라 우수한 자속밀도를 갖는 방향성 규소강판을 적은 비용으로 생산할 수 있는 효과가 있는 것이다.As described above, according to the present invention, by containing the Sb to form grain boundary segregation in the steel in an appropriate range in the steelmaking step, by adding an appropriate amount of nitrogen by nitrogen enrichment treatment, a complete secondary recrystallization is formed, accordingly It is effective to produce oriented silicon steel sheet having excellent magnetic flux density at low cost.

Claims (1)

중량%로 Si:2.0~4.0%, C:0.07% 이하, Mn:0.01~0.015%, P:0.02% 이하, Sb:0.01~0.12%, Al:0.015% 이하, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물로 이루어진 강 슬라브를 재가열하여 열간압연한 다음, 1회 또는 중간소둔을 포함한 2회 냉간압연한 후, 탈탄소둔 및 질소부화처리를 동시에 혹은 잇달아 행하여, N의 총량이 150~250ppm로 되도록 하는 것을 포함하여 이루어지는 자기적 특성이 우수한 방향성 규소강판의 제조방법Si: 2.0 to 4.0%, C: 0.07% or less, Mn: 0.01 to 0.015%, P: 0.02% or less, Sb: 0.01 to 0.12%, Al: 0.015% or less, balance Fe and other unavoidably incorporated by weight The steel slab made of impurities is reheated and hot rolled, and then cold rolled once or two times including intermediate annealing, followed by decarbonization and nitrogen enrichment treatment simultaneously or successively, so that the total amount of N is 150-250 ppm. Method for producing oriented silicon steel sheet having excellent magnetic properties, including
KR1020000071263A 2000-11-28 2000-11-28 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY KR100544418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000071263A KR100544418B1 (en) 2000-11-28 2000-11-28 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000071263A KR100544418B1 (en) 2000-11-28 2000-11-28 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY

Publications (2)

Publication Number Publication Date
KR20020041599A KR20020041599A (en) 2002-06-03
KR100544418B1 true KR100544418B1 (en) 2006-01-24

Family

ID=19701947

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000071263A KR100544418B1 (en) 2000-11-28 2000-11-28 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY

Country Status (1)

Country Link
KR (1) KR100544418B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159123A (en) * 1984-01-28 1985-08-20 Kawasaki Steel Corp Production of grain oriented electrical steel sheet
JPS61124525A (en) * 1984-11-20 1986-06-12 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
KR950003459A (en) * 1993-07-30 1995-02-16 조말수 Manufacturing method of high magnetic flux density oriented electrical steel sheet
KR19980044925A (en) * 1996-12-09 1998-09-15 김종진 A method for manufacturing a high magnetic flux density directional electric steel sheet by a low temperature slab heating method
KR19980052510A (en) * 1996-12-24 1998-09-25 김종진 Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR20010055100A (en) * 1999-12-09 2001-07-02 이구택 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET HAVING SUPERIOR MAGNETIC PROPERTY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159123A (en) * 1984-01-28 1985-08-20 Kawasaki Steel Corp Production of grain oriented electrical steel sheet
JPS61124525A (en) * 1984-11-20 1986-06-12 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
KR950003459A (en) * 1993-07-30 1995-02-16 조말수 Manufacturing method of high magnetic flux density oriented electrical steel sheet
KR19980044925A (en) * 1996-12-09 1998-09-15 김종진 A method for manufacturing a high magnetic flux density directional electric steel sheet by a low temperature slab heating method
KR19980052510A (en) * 1996-12-24 1998-09-25 김종진 Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR20010055100A (en) * 1999-12-09 2001-07-02 이구택 A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET HAVING SUPERIOR MAGNETIC PROPERTY

Also Published As

Publication number Publication date
KR20020041599A (en) 2002-06-03

Similar Documents

Publication Publication Date Title
US9663839B2 (en) Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
KR101131729B1 (en) Method for manufacturing grain-oriented electrical steel sheet having high permeability
KR100359239B1 (en) Method for producing a directional electric steel plate having a high flux density
KR100544418B1 (en) A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY
KR101089304B1 (en) Method for manufacturing grain-oriented electrical steel sheets showing high magnetic induction and low core loss
KR100479996B1 (en) The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same
KR100435464B1 (en) A method for manufacturing grain oriented steel sheet with high magnetic induction
KR101131721B1 (en) Method for manufacturing grAlN-oriented electrical steel sheets having excellent magnetic properties
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR100345720B1 (en) A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET HAVING SUPERIOR MAGNETIC PROPERTY
KR100650554B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
KR100701195B1 (en) A grain-oriented electrical steel sheet manufacturing method without hot band annealing
KR100359242B1 (en) Low temperature heating method of high magnetic flux density oriented electrical steel sheet
KR20110075373A (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, method for manufacturing the same, and a slab using therefor
KR100479995B1 (en) A method for producing high permeability grain-oriented silicon steel sheet
KR100431608B1 (en) Manufacturing of high magnetic density grain oriented silicon steel
KR100435455B1 (en) Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating
KR100256336B1 (en) The manufacturing method for oriented electric steel sheet with excellent magnetic property
KR100345697B1 (en) A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures
KR101141281B1 (en) A method for manufacturing grain-oriented electrical steel sheet
KR20010060641A (en) A METHOD FOR MANUFACTURING GRAIN-ORIENTED Si-STEEL SHEET WITH HIGH MAGNETIC PROPERTY
KR100360096B1 (en) The method of manufacturing grain oriented silicon steel by low heating
KR101351955B1 (en) Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same
JPH0413811A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH04362132A (en) Production of double oriented silicon steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180110

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 15