KR100479996B1 - The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same - Google Patents

The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same Download PDF

Info

Publication number
KR100479996B1
KR100479996B1 KR10-1999-0056178A KR19990056178A KR100479996B1 KR 100479996 B1 KR100479996 B1 KR 100479996B1 KR 19990056178 A KR19990056178 A KR 19990056178A KR 100479996 B1 KR100479996 B1 KR 100479996B1
Authority
KR
South Korea
Prior art keywords
steel sheet
annealing
oriented electrical
electrical steel
temperature
Prior art date
Application number
KR10-1999-0056178A
Other languages
Korean (ko)
Other versions
KR20010055101A (en
Inventor
한찬희
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0056178A priority Critical patent/KR100479996B1/en
Publication of KR20010055101A publication Critical patent/KR20010055101A/en
Application granted granted Critical
Publication of KR100479996B1 publication Critical patent/KR100479996B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 방향성 전기강판 및 그 제조방법에 관한 것으로, Sn을 함유한 강 슬라브를 저온 재가열하고 탈탄과 질화를 동시에 행함으로써, 철손이 낮은 고자속밀도 방향성 전기강판을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same, and to provide a high magnetic flux density grain-oriented electrical steel sheet with low iron loss by reheating the steel slab containing Sn at a low temperature and simultaneously performing decarburization and nitriding. .

본 발명은, 중량%로 Si:1.0~4.8%, Al:0.005~0.019%, C:0.020~0.045%, Mn:0.05~0.2%, B:0.001~0.012%, S:0.007% 이하, N:0.008% 이하, Sn:0.1~1.0%, 그리고 잔부 Fe 및 기타 불가피한 불순물로 이루어진 철손이 낮은 고자속밀도 방향성 전기강판과, 그리고 이 강 슬라브를 1050~1250℃온도범위에서 재가열하고, 열간압연 및 열연판소둔한 다음 1회 냉간압연하여 최종두께로 하고, 탈탄과 질화를 동시에 행하고, 강판표면에 소둔분리제를 도포한 후 고온소둔하는 것을 포함하는 철손이 낮은 고자속밀도 방향성 전기강판의 제조방법에 관한 것을, 그 기술적 요지로 한다.The present invention is Si: 1.0 to 4.8%, Al: 0.005 to 0.019%, C: 0.020 to 0.045%, Mn: 0.05 to 0.2%, B: 0.001 to 0.012%, S: 0.007% or less, N: High magnetic flux density oriented electrical steel sheets with a low iron loss of 0.008% or less, Sn: 0.1 to 1.0%, and balance Fe and other unavoidable impurities, and reheat the steel slab at a temperature range of 1050 to 1250 ° C. After the sheet annealing, it is cold rolled once to obtain the final thickness, simultaneously decarburizing and nitriding, and applying an annealing separator to the surface of the steel sheet, followed by high temperature annealing. We make thing about the technical summary.

Description

철손이 낮은 고자속밀도 방향성 전기강판 및 그 제조방법{THE HIGH PERMEABILITY GRAIN-ORIENTED ELECTRICAL STEEL SHEET WITH LOW CORE LOSS AND METHOD FOR MANUFACTURING THE SAME}High magnetic flux density oriented electrical steel with low iron loss and manufacturing method thereof {THE HIGH PERMEABILITY GRAIN-ORIENTED ELECTRICAL STEEL SHEET WITH LOW CORE LOSS AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 변압기등 전기기기의 철심으로 사용되는 방향성 전기강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 슬라브 가열온도를 낮추고 최종두께로 압연한 후 억제제를 형성시킴으로써, 낮은 철손과 높은 자속밀도를 얻을 수 있는 방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a grain-oriented electrical steel sheet used as an iron core of an electrical device such as a transformer, and a method for manufacturing the same. More specifically, by lowering the slab heating temperature and rolling to the final thickness to form an inhibitor, low iron loss and high magnetic flux density can be achieved. It relates to a grain-oriented electrical steel sheet obtainable and a method of manufacturing the same.

방향성 전기강판은 압연방향으로 {110}〈001〉방위의 집합조직을 갖는 전기강판으로, 고스(N.P.Goss)의 미국특허 1,965,559에 처음으로 그 제조방법이 개시된이후, 새로운 제조방법이 발명되어 자기특성의 향상이 이루어져 왔다.A grain-oriented electrical steel sheet is an electrical steel sheet having an aggregate structure of {110} < 001 > direction in the rolling direction. Since the manufacturing method is first disclosed in US Patent No. 1,965,559 of NPGoss, a new manufacturing method has been invented and the magnetic properties Improvements have been made.

상기 방향성 전기강판을 제조하기 위해 전기강판에서 압연방향으로 {110}〈001〉방위의 집합조직을 얻는 방법은 다음과 같다. 즉, 냉간압연판을 소둔하여 얻어진 재결정립(1차 재결정립이라 함)들 중에서, {110}〈001〉방위를 갖는 결정립들을 후속 소둔공정에서 우선적으로 성장시킴으로써, 최종적으로 {110}〈001〉방위를 갖는 수㎝크기의 재결정립(2차 재결정립이라 함)을 얻는 것이다. 이 때, {110}〈001〉방위의 결정립들을 우선적으로 성장시키는 역할을 하는 것이 미세한 석출물이나 편석원소이다. 이러한 석출물이나 편석원소는 억제제라 부르며, 1차 재결정립들의 성장을 상당히 고온까지 억제시킨다.In order to manufacture the grain-oriented electrical steel sheet, a method of obtaining the aggregate structure of the {110} &lt; 001 &gt; direction in the rolling direction from the electrical steel sheet is as follows. That is, among the recrystallized grains (called primary recrystallized grains) obtained by annealing the cold rolled sheet, crystal grains having a {110} &lt; 001 &gt; orientation are preferentially grown in a subsequent annealing process, and finally, {110} &lt; 001 &gt; A few cm size recrystallized grain (called secondary recrystallized grain) having an orientation is obtained. At this time, it is a fine precipitate or segregation element that preferentially grows the grains of the {110} <001> orientation. These precipitates or segregation elements are called inhibitors and inhibit the growth of primary recrystallized grains to considerably high temperatures.

상기 억제제가 {110}〈001〉방위를 갖는 결정립들을 우선적으로 성장시키는 이유는 아직도 많은 논란이 있으나, 일반적으로 다음과 같이 설명된다. 억제제는 강판내부에 고르게 분포하고 있어 소둔시 모든 결정립의 성장을 억제시키지만, 소둔온도가 계속적으로 상승하면, 1차 재결정립의 결정립계는 성장구동력이 커지는 반면 억제제는 성장을 하게 되어 점차 결정립계에 대한 구속력을 잃게 된다. 이때, {110}〈001〉방위를 갖는 결정립들은 가장 먼저 성장하여 주위의 결정립에 비해 크기가 커지므로, 주위의 다른 방위를 갖는 결정립들을 잠식하면서 빠르게 성장하는 것이다.The reason why the inhibitor preferentially grows grains having a {110} &lt; 001 &gt; orientation is still much controversial, but is generally explained as follows. The inhibitor is distributed evenly inside the steel sheet to suppress the growth of all grains during annealing, but if the annealing temperature continues to rise, the grain boundaries of the primary recrystallized grains increase the growth driving force, while the inhibitor grows, thereby gradually binding the grain boundaries. Will lose. At this time, since the grains having the {110} <001> orientation grow first and become larger than the surrounding grains, the grains grow rapidly while encroaching on grains having different orientations.

상기한 바와 같이, 방향성 전기강판의 제조방법은 상기 억제제를 이용한다는 점에서 동일한 기술사상을 가지고 있다. 다만, 억제제의 종류에 따라 그 역할을 극대화 할 수 있도록 제조공정이 구성되는 것에 의해 제조기술이 차별화되고, 최종적인 자기특성의 차이도 있는 것이다.As described above, the method for producing a grain-oriented electrical steel sheet has the same technical idea in that the inhibitor is used. However, the manufacturing process is differentiated by constituting the manufacturing process to maximize the role according to the type of inhibitor, there is also a difference in the final magnetic properties.

현재 공업적으로 생산되고 있는 일방향성 전기강판은 억제제로서 MnS, AlN, MnSe와 같은 석출물을 단독 또는 복합으로 이용하여 제조되고 있다. 그 이유는, 상기 MnS, AlN, MnSe와 같은 석출물이 억제제로서의 조건(즉, 2차재결정이 일어나기 직전까지 1차 재결정립의 성장이 억제되도록 석출물들이 충분한 양과 적절한 크기로 고르게 분포될 것, 그리고 2차재결정이 일어나기 직전인 고온까지 열적으로 안정해서 쉽게 분해되지 않을 것)을 비교적 만족하기 때문이다. 대표적인 것으로, MnS만을 억제제로 이용하는 방법, MnS+AlN을 억제제로 이용하는 방법, MnS(Se)+Sb를 억제제로 이용하는 방법이 있다. 이들 방법은 이용하는 억제제의 종류에 따라, 최종 2차 재결정 조직을 얻기 위한 소둔(2차 재결정소둔 또는 고온소둔이라 함)전까지 1회압연-1회소둔하거나, 2회압연-2회소둔하는 것을 포함한다. 이는 앞서 설명한 것처럼 사용하는 억제제의 역할을 극대화하기 위해 제조공정을 구성한 것이다.At present, industrially produced unidirectional electrical steel sheet is manufactured by using precipitates such as MnS, AlN, MnSe alone or in combination as inhibitors. The reason is that the precipitates such as MnS, AlN, MnSe should be evenly distributed in a sufficient amount and in an appropriate size so that the conditions as inhibitors (ie, growth of primary recrystallized grains until just before secondary recrystallization occurs, and 2 This is because it is thermally stable up to a high temperature immediately before the vehicle recrystallization takes place and will not be easily decomposed. Representative examples include a method using only MnS as an inhibitor, a method using MnS + AlN as an inhibitor, and a method using MnS (Se) + Sb as an inhibitor. These methods involve one or one anneal, or two or two anneals, before annealing (called secondary recrystallization annealing or hot annealing) to obtain the final secondary recrystallization structure, depending on the type of inhibitor used. do. This is a manufacturing process to maximize the role of the inhibitor used as described above.

우선, MnS을 억제제로 이용하는 방법은, M.F.Littman에 의해 일본특허 공보(소)30-3651호에 개시되어 있다. 이 방법은 중간소둔을 포함한 2회 냉간압연을 포함하는 것으로, 안정적인 2차재결정 조직을 얻을 수 있는 장점이 있으나, 높은 자속밀도를 얻을 수 없고 2회 냉간압연으로 인한 제조가 상승의 문제가 있다.First, a method of using MnS as an inhibitor is disclosed in Japanese Patent Publication No. 30-3651 by M.F. Littman. This method includes two cold rollings including intermediate annealing, and has the advantage of obtaining a stable secondary recrystallized structure, but a high magnetic flux density cannot be obtained and there is a problem of increasing the manufacturing price due to two cold rollings.

MnS+AlN을 이용하여 일방향성 전기강판을 제조하는 대표적인 방법이 일본특허 공보(소)40-15644호에 개시되어 있다. 이 방법은 80% 이상의 높은 압하율로 1회 냉간압연하는 것을 포함하며, 자속밀도가 높은 제품을 얻을 수 있는 장점이 있으나, 공업적 생산시 제조조건이 매우 엄격하여 각 공정조건을 엄격히 제어해야 하는 문제가 있다.A typical method for producing a unidirectional electrical steel sheet using MnS + AlN is disclosed in Japanese Patent Publication No. 40-15644. This method includes cold rolling once with a high rolling reduction rate of 80% or more, and has the advantage of obtaining a product having a high magnetic flux density. However, in industrial production, the manufacturing conditions are very strict and each process condition must be strictly controlled. there is a problem.

MnS(또는 MnSe)+Sb를 이용하여 방향성 전기강판을 제조하는 대표적인 방법이 일본특허 공보(소)51-13469호에 개시되어 있다. 이 방법에 의하면 높은 자속밀도를 얻을 수 있으나, 2회 냉간압연의 문제와 유독성이 있고 고가인 Sb, Se와 같은 원소를 사용하는 문제가 있다.A typical method for producing a grain-oriented electrical steel sheet using MnS (or MnSe) + Sb is disclosed in Japanese Patent Publication No. 51-13469. According to this method, a high magnetic flux density can be obtained, but there are problems of two cold rolling and a problem of using toxic and expensive elements such as Sb and Se.

그러나, 상기한 종래기술들은 위에서 언급한 단점보다 더욱 심각한 근본적인 문제점을 안고 있다. 즉, 각각의 방법에서 원하는 크기와 분포를 갖는 석출물을 얻어 억제제로 이용하기 위해서는 강 슬라브를 고온에서 재가열해야 하는데, 이는 열간압연 공정에서 석출물의 크기와 분포를 원하는 대로 제어하기 위해 필요한 것으로, MnS나 AlN이 충분히 고용되는 온도로 가열되어야 한다는 기술적인 사상에 근거한 것이다. 즉, 소강성분에 함유된 MnS나 AlN 등을 고온 장시간 가열하여 고용시킨 후 열간압연하는 과정에서, 적절한 크기와 분포를 갖는 석출물로 만들어 주어야 된다. 이론적인 재가열온도는, MnS를 이용하는 방법에서는 1300℃, MnS+AlN를 이용하는 방법은 1350℃, MnS(또는 MnSe)+Sb를 이용하는 방법에서는 1320℃이상이 되면 그 목적을 달성할 수 있다. 그러나, 실제 공업적 생산에서는 슬라브의 크기 등을 고려하고 내부까지 균일한 온도분포를 얻어야 하므로, 슬라브의 표면부는 약 1400℃의 온도로 재가열하고 있다.However, these prior arts suffer from a fundamental problem that is more serious than the above mentioned disadvantages. In other words, in order to obtain a precipitate having a desired size and distribution in each method and to use it as an inhibitor, the steel slab needs to be reheated at a high temperature, which is necessary to control the size and distribution of the precipitate as desired in a hot rolling process. It is based on the technical idea that AlN must be heated to a temperature where it is sufficiently dissolved. That is, MnS or AlN, etc. contained in the small steel component is heated to a high temperature for a long time to heat and then hot rolled, it should be made of a precipitate having an appropriate size and distribution. The theoretical reheating temperature can achieve the object when it becomes 1300 degreeC in the method using MnS, 1350 degreeC in the method using MnS + AlN, and 1320 degreeC or more in the method using MnS (or MnSe) + Sb. However, in actual industrial production, since the slab size and the like must be taken into account to obtain a uniform temperature distribution to the inside, the surface portion of the slab is reheated to a temperature of about 1400 ° C.

그러나, 상기와 같이 슬라브를 고온에서 장시간 가열하면, 사용열량이 많아 제조원가 상승하고, 슬라브의 표면부가 용융상태로 흘러내리게 되어 가열로의 보수비가 많이 들며 수명이 단축하고, 슬라브표면에 발달되어 있는 응고조직인 주상정이 조대하게 성장하여 후속되는 열간압연 공정에서 판의 폭방향으로 깊은 크랙(crack)이 발생되어 실수율을 현저하게 저하시키는 문제가 발생하므로, 재가열온도는 낮추어야 하는 실정이다.However, when the slab is heated at a high temperature for a long time as described above, the production cost increases due to a large amount of heat used, and the surface portion of the slab flows down to a molten state, resulting in a high cost of repairing the furnace, shortening the lifespan, and solidifying the slab. As the columnar tablet grows coarse, a deep crack occurs in the width direction of the plate in the subsequent hot rolling process, thereby causing a problem of significantly lowering the error rate. Therefore, the reheating temperature needs to be lowered.

상기한 문제점을 해결하기 위해서, 고용온도가 높은 MnS를 억제제로 이용하지 않는 방법들이 최근 많이 연구되고 있다. 이는 소강성분에 포함되어 있는 원소들로부터 억제제를 전적으로 의존하는 것이 아니고, 제조공정 중 적당한 곳에서 석출물을 만들어 주는 것으로, 그 예로는 일본특허 공보(평)1-230721, 일본특허 공보(평)1-283324 등이 있다. 이들은 모두 질화처리를 이용하는 것으로, 질화처리방법에는 질화능이 있는 화합물을 함유하는 소둔분리제를 강판에 도포하는 것, 고온소둔 공정의 승온기간동안 질화능이 있는 가스를 분위기 가스내에 포함시키는 것, 탈탄공정에서 균열처리후 질화능이 있는 가스분위기에서 강판을 질화하는 것이 있다. In order to solve the above problems, methods that do not use MnS having a high solubility temperature as an inhibitor have been studied in recent years. This does not rely solely on the inhibitor from the elements contained in the steel components, but instead produces a precipitate at a suitable place in the manufacturing process. Examples include Japanese Patent Application Laid-Open No. 1-230721 and Japanese Patent Application Laid-Open No. 1 -283324 and the like. All of them use nitriding treatment. In the nitriding treatment method, an annealing separator containing a compound having nitriding ability is applied to a steel sheet, a nitriding gas is included in the atmosphere gas during an elevated temperature of the high temperature annealing process, and a decarburization process. Nitriding steel sheets in a gas atmosphere with nitriding capability after cracking at.

일본특허 공보(평)2-228425호는 질화의 시점에 관한 것을 개시하는데, 이 방법은 열간압연된 판이나 최종 냉간압연전에 행하는 질화공정에 의해 질소를 강중에 넣어 석출물을 만들어 주는 방법이다. 또한, 일본특허 공보(평)2-294428호는 냉간압연완료 후 탈탄소둔시 질화와 탈탄을 행하는 방법에 관해 개시하는데, 이것에 따르면 2차 재결정이 불안정하게 되는 문제점이 있다. 이에, 일본특허 공보(평)3-2324호에서는 이를 개량하여 탈탄소둔을 우선적으로 행하고 결정립의 크기가 어느정도 이상으로 성장한 후 암모니아가스에 의해 질화를 행하는 방법을 개시하였다.Japanese Patent Laid-Open No. 2-228425 discloses a point of time for nitriding, which is a method in which nitrogen is added into steel to form a precipitate by a nitriding process performed before hot rolling or final cold rolling. In addition, Japanese Patent Application Laid-Open No. 2-294428 discloses a method for performing nitriding and decarburization during decarbonization annealing after cold rolling is completed, which causes a problem that the secondary recrystallization becomes unstable. Accordingly, Japanese Patent Application Laid-Open No. Hei-3-2324 discloses a method of improving this to preferentially perform decarbonization annealing, growing the crystal grains to a certain extent or more, and nitriding with ammonia gas.

상기한 방법들은 암모니아 가스에 의한 질화로 암모니아가 약 500℃ 이상에서 분해되어 발생되는 질소를 강판 내부로 넣어주는 방법을 이용하고 있다. 이는 강판내부로 들어간 질소가 이미 강중에 존재하고 있는 원소인 Al과 반응해서 질화물을 형성시키고, 이를 억제제로 이용하고자 하는 것이다. 이 때 형성된 질화물 중에서 억제제로 이용되는 것은 (Al,Si)N으로 주로 Al계통의 질화물이다.The above methods use a method of injecting nitrogen, which is generated by ammonia decomposition at about 500 ° C. or more by nitriding with ammonia gas, into the steel sheet. This is to form a nitride by reacting with nitrogen, which is already present in the steel, the nitrogen entered into the steel sheet, which is to be used as an inhibitor. Among the nitrides formed at this time, (Al, Si) N is mainly used as an Al nitride.

한편, 본 발명자들은 억제제의 기능을 할 수 있는 새로운 질화물에 대해 여러가지 시도를 행한 결과, BN과 같은 B계통의 질화물을 이용하는 방법을 대한민국 특허출원번호 97-37247호에 개시하였다. 이 방법은 탈탄소둔시 질화와 탈탄을 동시에 행하는 것을 특징으로 하는데, 강중에 넣어준 B과 암모니아 가스의 질화에 의해 강판내부로 들어간 질소를 결합시켜 BN를 형성시켜 억제제로 이용하는 것이다.On the other hand, the present inventors have made various attempts on a new nitride that can function as an inhibitor, and as a result, Korean Patent Application No. 97-37247 discloses a method using a B-based nitride such as BN. This method is characterized in that nitrification and decarburization are simultaneously performed during decarbonization. B is formed by combining B entered in the steel with nitrogen that enters the steel sheet by nitriding ammonia gas to form BN, which is used as an inhibitor.

상기한 방법들은, 강판 내부의 석출물이 고용되지 않도록 슬라브를 저온으로 가열하고, 강판내부의 질소량을 제어하여 질화물 형성에 의한 억제제의 기능을 하도록 강판에 질화능이 있는 물질이나 가스를 이용해 질화함으로써, 연주시 생성된 주조조직의 과도한 성장을 억제하여 비교적 균일한 조직을 얻고 궁극적으로는 강판내부에 석출물을 형성시켜 일방향성 전기강판을 제조하기 위한 방법에 관한 것이다. The above methods are performed by heating the slab to a low temperature so that the precipitate inside the steel sheet is not dissolved and nitriding the steel sheet with a material or gas capable of nitriding to control the amount of nitrogen in the steel sheet to act as an inhibitor by forming nitride. The present invention relates to a method for manufacturing a unidirectional electrical steel sheet by suppressing excessive growth of the cast structure produced during the production to obtain a relatively uniform structure and ultimately forming a precipitate in the steel sheet.

그러나, 상기 방법들은 슬라브 재가열시 가열온도가 높아지거나 가열시간이 길어지면 석출물의 부분적인 고용이 일어날 수 있고, 특히 가열시간이 길어지면 조직이 조대해져 건전한 조직을 갖는 열간압연판을 얻기 힘들게 되는 문제점을 가진다. 실제로 이와 같은 상황은 실제조업에서 빈번히 발생되고 있어 품질의 안정성에 큰 영향을 주고 있고, 또한 상기 질화방법들은 모두 암모니아 가스의 분해시 생성되는 반응성이 강한 질소를 강의 내부로 침투시키는 방법을 이용하는 것으로, 원하는 질소량의 조절이 용이하지 않다. 즉, 소둔온도 및 시간에 따라 질화량이 민감하게 차이가 나는 것은 물론이고, 동일한 소둔온도와 시간에서도 강판의 부위별 편차가 발생하기도 하여, 품질의 안정성에 영향을 미치는 것이다.However, in the above methods, when the heating temperature is increased or the heating time is long when the slab is reheated, partial solid solution may occur. In particular, when the heating time is long, the tissue becomes coarse to obtain a hot rolled plate having a healthy structure. Has In practice, such a situation is frequently generated in actual operation, which greatly affects the stability of the quality. Also, all of the nitriding methods use a method of infiltrating highly reactive nitrogen into the steel, which is generated during decomposition of ammonia gas. Controlling the desired amount of nitrogen is not easy. That is, the amount of nitriding is sensitively changed depending on the annealing temperature and time, as well as the variation of parts of the steel sheet even at the same annealing temperature and time, which affects the stability of the quality.

이에, 본 발명자는 상기한 종래 기술들의 제반 문제점을 해결하기 위하여, 연구 및 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은, Sn을 함유한 강 슬라브를 저온 재가열하고 탈탄과 질화를 동시에 행함으로써, 철손이 낮은 고자속밀도 방향성 전기강판을 제공하고자 하는데, 그 목적이 있다.In order to solve the above problems of the prior arts, the present inventors have conducted research and experiments and proposed the present invention based on the results. The present invention is a low-temperature reheating and decarburization of Sn-containing steel slab. By simultaneously performing nitriding and nitriding, an object of the present invention is to provide a high magnetic flux density oriented electrical steel sheet having low iron loss.

본 발명은, 중량%로 Si:1.0~4.8%, Al:0.005~0.019%, C:0.020~0.045%, Mn:0.05~0.2%, B:0.001~0.012%, S:0.007% 이하, N:0.008% 이하, Sn:0.1~1.0%, 그리고 잔부 Fe 및 기타 불가피한 불순물로 이루어진 철손이 낮은 고자속밀도 방향성 전기강판에 관한 것이다.The present invention is Si: 1.0 to 4.8%, Al: 0.005 to 0.019%, C: 0.020 to 0.045%, Mn: 0.05 to 0.2%, B: 0.001 to 0.012%, S: 0.007% or less, N: A high magnetic flux density oriented electrical steel sheet having a low iron loss of 0.008% or less, Sn: 0.1 to 1.0%, and balance Fe and other unavoidable impurities.

또한, 본 발명은 중량%로 Si:1.0~4.8%, Al:0.005~0.019%, C:0.020~0.045%, Mn:0.05~0.2%, B:0.001~0.012%, S:0.007% 이하, N:0.008% 이하, Sn: 0.1~1.0%, 그리고 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 1050~1250℃온도범위에서 재가열하고, 열간압연 및 열연판소둔한 다음 1회 냉간압연하여 최종두께로 하고, 탈탄과 질화를 동시에 행하고, 강판표면에 소둔분리제를 도포한 후 고온소둔하는 것을 포함하는 철손이 낮은 고자속밀도 방향성 전기강판의 제조방법에 관한 것이다.In addition, the present invention is Si: 1.0 to 4.8%, Al: 0.005 to 0.019%, C: 0.020 to 0.045%, Mn: 0.05 to 0.2%, B: 0.001 to 0.012%, S: 0.007% or less, N by weight : 0.008% or less, Sn: 0.1 ~ 1.0%, remainder Fe and other unavoidable impurities of steel slab are reheated at 1050 ~ 1250 ℃ temperature range, hot rolled and hot rolled annealed, and then cold rolled once to final thickness The present invention relates to a method for producing a high magnetic flux density oriented electrical steel sheet having low iron loss, which includes simultaneously performing decarburization and nitriding, applying an annealing separator to a steel sheet surface, and then performing high temperature annealing.

이하, 본 발명에 대하여 상세히 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

우선, 강성분의 한정이유에 대하여 설명한다.First, the reason for limitation of a steel component is demonstrated.

상기 Si은 강의 비저항을 높여주어 철손특성을 현저하게 개선하는 원소로, 일방향성 전기강판의 제조에 반드시 들어가는 원소이다. 그 첨가량은 여러가지 제한 요소에 의해 결정되는데, 본 발명에서는 1.0~4.8%로 설정하는 것이 바람직하다. 그 이유는 Si이 4.8%이상 함유되면 공업적으로 냉간압연을 안정적으로 할 수 없으며, 1.0% 이하인 경우에는 그 첨가효과가 미미하여 큰 의미가 없기 때문이다.The Si is an element that increases the specific resistance of the steel to significantly improve the iron loss characteristics, and is an element that is necessarily included in the production of unidirectional electrical steel sheet. Although the addition amount is determined by various restriction | limiting factors, it is preferable to set it as 1.0 to 4.8% in this invention. The reason is that when 4.8% or more of Si is contained, cold rolling cannot be stably industrially, and when it is 1.0% or less, the effect of addition is insignificant, which is not significant.

상기 C는 열간압연조직의 미세화를 위해 첨가하는데, 이 후에는 불순물로 되어 자기적 특성에 악영향을 미치므로 제거되어야 하므로, 그 함량은 0.020~0.045%로 하는 것이 바람직하다. 상기 C를 0.020% 이상 첨가하는 이유는, 3%Si이 함유된 경우 C가 약0.018% 함유되면 열간압연시 페라이트-오스테나이트 변태로 인한 열간압연조직의 미세화가 가능한데, Si양이 증가하는 것을 고려하면 이보다 약간 높은 함량을 필요로 하기 때문이다. 한편, C가 최종제품에 남아있게 되면 자기시효를 일으켜 변압기 등의 전기기기의 특성을 열화시키므로, 최종제품에서는 0.003% 이하로 엄격히 관리되어야 한다. 따라서, 방향성 전기강판의 제조에는 탈탄공정을 통해 상기 C의 함량을 관리하는데, 탈탄과 질화를 동시에 행하는 본 방법에서는 C의 함량이 낮아야 유리하다. 따라서, 열연조직의 미세화 측면에서는 C의 양이 높은 것이 좋으나, 그 함량이 너무 많아 조대한 탄화물이 석출되면 동시 탈탄질화소둔시 탄소의 제거가 어려워지므로, 0.020~0.045%로 하는 것이 바람직하다.The C is added for the miniaturization of the hot rolled tissue, but since it becomes an impurity to be removed because it adversely affects the magnetic properties, the content thereof is preferably 0.020 to 0.045%. The reason for adding 0.020% or more of C is that when C contains about 0.018% when 3% Si is contained, it is possible to refine the hot rolled structure due to ferrite-austenite transformation during hot rolling. This is because it requires a slightly higher content than this. On the other hand, if C remains in the final product, it causes self-aging and degrades the characteristics of electrical equipment such as transformers. Therefore, it should be strictly controlled to 0.003% or less in the final product. Therefore, in the production of the grain-oriented electrical steel sheet, the content of C is controlled through a decarburization process. In the present method of simultaneously performing decarburization and nitriding, the content of C is advantageously low. Therefore, it is preferable that the amount of C is high in terms of miniaturization of the hot-rolled structure, but when the coarse carbide precipitates because the content is too high, it is difficult to remove carbon during simultaneous decarbonation annealing, so it is preferable to set it at 0.020 to 0.045%.

상기 Al은 Si과 마찬가지로 비저항을 증가시키는 원소로, 열간압연 특성에 해가되지 않는 범위내에서 첨가하는 것이 유리하다. 상기 Al이 0.005% 이하 첨가되면 비저항증가의 관점에서 볼 때 그 첨가효과가 미미하고, 0.019% 이상으로 되면 열간압연 작업성이 저하되고 Al계통의 질화물을 형성해 억제제의 과잉으로 2차 재결정 조직발달을 저해할 수 있으므로, 그 함량은 0.005~0.019%로 설정하는 것이 바람직하다.Al, like Si, is an element that increases specific resistance, and it is advantageous to add Al within a range that does not harm hot rolling properties. When the Al content is less than 0.005%, the effect of the addition is insignificant from the point of view of the increase in resistivity, and when it is more than 0.019%, the hot rolling workability is deteriorated and the Al-based nitride is formed to develop secondary recrystallized tissue due to excessive inhibitor. Since it can inhibit, it is preferable to set the content to 0.005 to 0.019%.

상기 Mn은 전기저항을 높여주고 철손을 낮추는 효과가 있는 성분으로, 그 함량이 너무 많은 경우에는 자속밀도의 저하를 초래하므로, Mn의 함량은 0.05~0.2%로 선정하는 것이 바람직하다.The Mn is a component having an effect of increasing electrical resistance and lowering iron loss, and when the content thereof is too large, it causes a decrease in magnetic flux density. Therefore, the Mn content is preferably selected to 0.05 to 0.2%.

상기 B은 강중에 고용상태로 유지되었다가 최종두께로의 냉간압연 후, 동시탈탄질화공정에서 암모니아가스의 분해에 의해 강중에 도입된 질소와 결합함으로써 억제제로 이용된다. 그 양이 0.001% 이하로 되면 억제제의 양이 부족하여 안정적인 2차재결정 조직을 얻을 수 없고, 0.012%를 넘으면 2차 재결정 조직을 얻을 수는 있으나 자속밀도가 감소하므로, 0.001~0.012%로 설정하는 것이 바람직하다.The B is used as an inhibitor by maintaining solid solution in the steel and then cold rolling to the final thickness and then combining with nitrogen introduced into the steel by decomposition of ammonia gas in the simultaneous decarbonation process. If the amount is less than 0.001%, the amount of inhibitor is insufficient to obtain a stable secondary recrystallized tissue. If it exceeds 0.012%, the secondary recrystallized tissue can be obtained, but the magnetic flux density decreases, so it is set to 0.001 ~ 0.012%. It is preferable.

상기 Sn은 본 발명의 특징적인 원소로 열연 재가열시 주조조직인 주상정이 과도하게 성장하는 것을 억제하고, 열간압연 후 강판의 길이방향으로 발생하는 조대한 연신립의 발생을 억제하는 기능을 한다. 또한 동시 탈탄질화과정에서 강판표면의 산화물층을 고르게 발달시켜 질화량의 제어를 용이하게 한다. 그 함량은 0.1~1.0%로 설정하는 것이 바람직한데, 그 이유는 상기 Sn의 함량이 0.1% 미만이면 효과가 미미하고, 1.0%를 넘으면 자속밀도의 열화와 열연작업성의 저하를 초래하기 때문이다.Sn is a characteristic element of the present invention to suppress the excessive growth of the columnar crystals of the casting structure during hot reheating, and to suppress the generation of coarse elongated grains occurring in the longitudinal direction of the steel sheet after hot rolling. In addition, during the simultaneous decarbonation, the oxide layer on the surface of the steel sheet is evenly developed to facilitate the control of the amount of nitride. It is preferable to set the content at 0.1 to 1.0% because the effect of the Sn content is less than 0.1% is insignificant, and if the content is more than 1.0%, the magnetic flux density deteriorates and the hot rolling workability is reduced.

상기 N는 동시 탈탄질화과정에서 이용되는 것을 제외하고는 다른 영향이 없어 일부러 첨가되어도 무방하나, 용해시 불순물로 들어가는 양만으로도 충분하다. 상기 N가 0.008%보다 과량 첨가되면 강중 함유되어 있는 Al과 반응해 조대한 AlN 석출물을 형성하여 1차 재결정입도를 작게하는데, 1차 재결정입도가 작아지면 안정적인 2차 재결정조직을 얻기 위해 동시탈탄 질화소둔의 온도도 높아져야 한다. 소둔온도가 높아지면 1차 재결정립의 불균일 현상을 초래하여, 궁극적으로 자성에 좋지 못한 영향을 주기 때문에, 그 함량은 0.008% 이하로 설정하는 것이 바람직하다.N may be added deliberately because there is no other effect except that it is used in the simultaneous decarbonation process, but it is sufficient only to enter the impurities during dissolution. When N is added in excess of 0.008%, the first recrystallized grain is reduced by forming coarse AlN precipitates by reacting with Al contained in the steel. The temperature of the annealing should also be high. When the annealing temperature is increased, it causes unevenness of the primary recrystallized grains and ultimately adversely affects the magnetism. Therefore, the content is preferably set to 0.008% or less.

상기 S은 편석이 심한 원소로 열간작업성을 위해서는 가능한한 함유되지 않도록 하는 것이 바람직하지만, 제강시 탈황공정을 거쳐 극저 S으로 하기 위한 공정에 추가비용이 들기 때문에, 불순물로 함유되는 정도의 양은 허용해도 무방하다. 그러나, S의 함량이 0.007%를 넘으면 강중에 포함되어 있는 Mn과 반응하여 MnS을 형성해 1차 재결정립을 작게하므로, 그 함량은 0.007% 이하로 하는 것이 바람직하다.It is preferable that S is not contained as much as possible for hot workability due to segregation. However, since the additional cost is required in the process for desulfurization at the time of steelmaking, the amount of impurities is acceptable. You can do it. However, if the content of S exceeds 0.007%, it reacts with Mn contained in the steel to form MnS to make the primary recrystallized grains small, so the content is preferably 0.007% or less.

다음, 제조공정조건에 대하여 설명한다.Next, manufacturing process conditions are demonstrated.

상기와 같이 조성된 강슬라브를 재가열하는데, 그 온도는 1050~1250℃ 범위로 하는 것이 바람직하다. 그 이유는 가열온도가 1050℃ 이하이면 열간압연 작업이 어려워지고, 1250℃ 이상이면 자기적 특성에는 크게 영향이 없으나, 슬라브의 저온가열에서 오는 잇점이 크게 감소되기 때문이다.Reheating the steel slab formed as described above, the temperature is preferably in the range of 1050 ~ 1250 ℃. The reason is that when the heating temperature is 1050 ° C or less, hot rolling becomes difficult, and when the heating temperature is 1250 ° C or higher, the magnetic properties are not significantly affected, but the advantages of low temperature heating of the slab are greatly reduced.

다음, 재가열 후 열간압연된 판은 900~1150℃범위에서 소둔하는 것이 바람직하다. 기존에는 열연판소둔시 석출물의 부분고용 및 재석출로 안정한 석출물 분포를 얻기 위해, 1100~1150℃에서 유지한 후, 약 900℃에 도달하면 급냉하는 방법을 이용하였으나, 본 발명은 석출물의 관점을 고려하지 않아도 되므로 열연조직의 균일화와 산세성 향상을 위해서 900~1150℃의 범위에서 열연소둔을 행하고, 냉각방법은 엄밀한 제어하지 않는다.Next, the hot rolled plate after reheating is preferably annealed in the 900 ~ 1150 ℃ range. Conventionally, in order to obtain stable distribution of precipitates by partial employment and re-precipitation of precipitates during hot-rolled sheet annealing, after maintaining at 1100 to 1150 ° C, a method of quenching when reaching about 900 ° C is used. Since it does not need to be considered, hot-rolling annealing is carried out in the range of 900 to 1150 ° C. in order to homogenize the hot-rolled structure and improve pickling properties, and the cooling method is not strictly controlled.

상기 열연소둔판을 산세한 후 냉간압연하는데, 중간소둔없이 1회의 압연으로 최종두께까지 압연하는 것이 바람직하다. 상기 냉간압연율은 자속밀도를 고려하여 84~90%범위내로 설정한다.After the hot-rolled annealing plate is pickled and cold rolled, it is preferable to roll to the final thickness by one rolling without intermediate annealing. The cold rolling rate is set in the range of 84 to 90% in consideration of the magnetic flux density.

최종제품두께로 냉간압연된 판을 동시 탈탄질화소둔하는데, 이 때 소둔로내의 분위기는 습한 수소+질소의 혼합분위기에 건조한 소량의 암모니아 가스를 투입시켜서 행하는 것이 바람직하다. 이 과정에서 강판의 탄소는 제거되고, 암모니아 가스의 분해에 의해 생긴 질소는 강판내부로 들어가게 된다. 강판내부에 들어가는 질소의 양은 소둔온도, 소둔시간, 분위기중의 암모니아 분율에 의해 영향을 받으며, 소강성분에 따라 적절히 제어된다. 또한, 이 과정에서 질소량의 제어와 함께 1차 재결정의 입도도 조절되는데, 이 모든 과정은 동일한 로내에서 이루어진다.The plate cold-rolled to final product thickness is simultaneously subjected to decarbonation annealing. At this time, the atmosphere in the annealing furnace is preferably performed by adding a small amount of dry ammonia gas to a mixed atmosphere of wet hydrogen + nitrogen. In this process, carbon in the steel sheet is removed, and nitrogen generated by decomposition of ammonia gas enters the steel sheet. The amount of nitrogen entering the steel sheet is affected by the annealing temperature, the annealing time and the ammonia fraction in the atmosphere, and is appropriately controlled according to the steel composition. In addition, in this process, the particle size of the primary recrystallization is controlled along with the control of the amount of nitrogen, all of which is performed in the same furnace.

동시 탈탄질화소둔 후 강판표면에 소둔분리제, 예를 들어 MgO를 주성분으로 하는 소둔분리제를 도포하고 코일상으로 고온소둔한다. 고온소둔은 2차 재결정 조직을 발달시키는 승온구간과 불순물을 제거하는 순화소둔 구간으로 이루어지는데, 승온구간의 승온속도는 석출물의 재배열이 일어나기 때문에 중요하다. 경험적으로 승온속도가 너무 빠르면 2차 재결정이 불안정해지는 반면, 승온속도가 너무 느리면 소둔시간이 길어져 비경제적이다. 따라서, 승온속도는 10~40℃/hr로 하는 것이 바람직하다. 상기 승온구간에서의 분위기는 억제제로 사용되는 질화물의 유실을 방지하기 위해, 질소가 포함된 분위기를 유지해주는 것이 바람직하고, 순화소둔은 강중 유해원소를 제거하는 과정이므로 환원분위기를 유지하도록 100%수소를 사용하는 것이 바람직하다.After simultaneous decarbonation annealing, an annealing separator, for example, an annealing separator mainly composed of MgO, is applied to the surface of the steel sheet and subjected to high temperature annealing on a coil. The high temperature annealing consists of a temperature rising section for developing a secondary recrystallization structure and a pure annealing section for removing impurities. The temperature rising rate of the temperature rising section is important because rearrangements of precipitates occur. Empirically, if the rate of temperature rise is too fast, the secondary recrystallization becomes unstable, while if the rate of temperature rise is too slow, the annealing time is long, which is uneconomical. Therefore, it is preferable that the temperature increase rate shall be 10-40 degreeC / hr. In order to prevent the loss of the nitride used as an inhibitor in the elevated temperature range, it is preferable to maintain an atmosphere containing nitrogen, and the pure annealing is a process of removing harmful elements in the steel so that 100% hydrogen is maintained to maintain a reducing atmosphere. Preference is given to using.

이하, 본 발명의 특징을 야금학적으로 설명한다.Hereinafter, the features of the present invention will be described metallurgically.

일반적으로 방향성전기강판의 제조기술은 다음과 같은 기술사상에 근거한다. 즉, 기존의 재가열온도가 높은 방향성전기강판의 제조에서는 재가열시 석출물을 완전히 고용시키고 열간압연 및 후공정에서 적절한 크기와 분포로 석출시켜 억제제로 이용한 반면, 재가열온도가 낮은 방향성전기강판의 제조에서는 재가열시 석출물의 고용이 일어나지 않도록 하여 열간압연을 행하고 최종두께로 냉간압연을 한 후 질화처리에 의해 석출물을 만들어 억제제로 이용하는 것이다. 이 경우 재가열온도가 높거나 가열시간이 길어지면 석출물이 일부 고용되어 열연과정에서 석출되므로, 이후 질화처리로 생성된 석출물과 동시에 존재하게 되어 결정립성장을 억제하는 억제제로 작용하게 된다. 이에 따라, 결정립크기에 의한 입성장구동력과 억제제에 의한 입성장 억제력의 균형에 의해 적절한 온도에서 2차 재결정이 일어나도록 함으로써 우수한 자기특성을 얻고자 하는 방향성 전기강판의 제조기술에서는, 의도하지 않은 과도한 억제제의 생성으로 인해 2차 재결정이 일어나지 않거나 자기특성이 저하하는 문제가 생기게 된다.In general, the manufacturing technology of oriented electrical steel sheet is based on the following technical ideas. That is, in the manufacture of oriented electrical steel sheet with high reheating temperature, the precipitates are completely employed in reheating and precipitated with appropriate size and distribution in hot rolling and post-processing to be used as inhibitors, whereas in the manufacture of directional electrical steels with low reheating temperature Hot-rolling is performed to prevent the occurrence of municipal precipitates, and cold-rolling to the final thickness is used to suppress the precipitates by nitriding. In this case, when the reheating temperature is high or the heating time is long, the precipitate is partially dissolved and precipitated during the hot rolling process, and thus it is present simultaneously with the precipitate produced by nitriding, thereby acting as an inhibitor to suppress grain growth. Accordingly, in the manufacturing technique of the grain-oriented electrical steel sheet which is intended to obtain excellent magnetic properties by allowing secondary recrystallization to occur at an appropriate temperature by balancing the grain growth driving force due to the grain size and the grain growth suppression force by the inhibitor, excessive unintentional excessive The generation of inhibitors leads to the problem that secondary recrystallization does not occur or magnetic properties are degraded.

상기한 바와 같이, 방향성 전기강판의 2차 재결정 발생은 각 공정의 허용범위가 매우 좁아서 엄밀히 제어되어야만 안정적인 특성을 얻는 것이 가능하지만, 실제조업에서는 불가피한 요인에 의해 재가열온도가 상승하거나 시간이 증가하는 문제가 빈번히 발생한다. 일례로 열간압연시 판파단이 발생할 경우, 이의 조치를 위해 재가열로에서 대기하고 있는 슬라브의 가열시간은 불가피하게 증가하게 되어 자기특성의 악화가 필연적으로 수반되는 것이다.As described above, the secondary recrystallization of the grain-oriented electrical steel sheet can be obtained stable characteristics only when the tolerance of each process is very narrow and strictly controlled, but in practice, reheating temperature increases or time increases due to inevitable factors. Occurs frequently. For example, when a plate break occurs during hot rolling, the heating time of the slab waiting in the reheating furnace for this measure is inevitably increased, which necessitates deterioration of magnetic properties.

이에, 본 발명에서는 강중 Sn을 첨가하여 상기한 문제점을 해결하고자 한 것을 특징으로 한다. 즉, Sn은 주조조직인 주상정이나 등축정사이에 편석하여 재가열시 주조조직의 과도한 성장을 억제하므로, 열간압연후 조직을 미세화 및 균일화하여 최종 자기특성을 좋게하는 것이다. 또한, 열간압연된 판의 두께방향 중심부에는 압연방향으로 길게 늘어난 연신립이 분포하게 되는데, 이는 후속공정인 냉간압연과 동시 탈탄질화소둔을 거친 후에도 남아서 최종소둔시 2차 재결정립의 발생을 어렵게 하여 자기특성을 저하시킨다. 이 경우, Sn을 첨가하면 이러한 연신립 발생을 극히 억제시켜 열연판의 중심부조직을 개선시킨다.Thus, the present invention is characterized in that to solve the above problems by adding Sn in the steel. That is, Sn is segregated between columnar tablets and equiaxed crystals, which are cast structures, to suppress excessive growth of the cast structures upon reheating, thereby improving final magnetic properties by miniaturizing and uniformizing the structures after hot rolling. In addition, the elongated stretched grain in the rolling direction is distributed in the center of the thickness direction of the hot rolled plate, which remains after the subsequent cold rolling and simultaneous decarbonation annealing, making it difficult to generate secondary recrystallized grains during final annealing. Decreases the magnetic properties. In this case, addition of Sn greatly suppresses the formation of the stretched grains, thereby improving the central structure of the hot rolled sheet.

나아가, Sn은 동시 탈탄 질화소둔시 질화량 조절을 용이하게 하는 역할을 한다. 일반적으로 방향성전기강판의 탈탄은 수분이 함유된 질소와 수소의 혼합가스분위기에서 수행된다. 이 때 강표면은 산화되어 표면피막이 형성되는데, 이는 대부분 Fe2SiO4로 대표되는 Fe와 Si이 주성분인 복합산화물이다. 이 산화물은 탈탄소둔후 도포되는 MgO와 최종소둔 과정에서 반응하여 절연성을 갖는 유리질피막으로 된다. 상기 Fe2SiO4로 존재하는 산화물층은 내부결함이 많은 다공성으로, 이 층을 통하여 가스의 출입이 자유롭게 일어나는데, 암모니아가스의 분해로 생긴 반응성이 강한 질소도 이층을 통하여 강의 내부로 확산된다. 그러나, 이 산화물층은 내부결함이 많고 부위별 편차가 심해서 가스의 출입도 이에 따라 영향을 받게 되어 강중으로 유입된 질소량이 편차를 나타내게 된다. 이 때, Sn은 이 산화물의 성질을 변화시켜 다소 치밀한 구조로 변화시킴으로써, 동일한 조건에서 질화처리한 경우 강중에 유입되는 질소량을 좁은 범위로 제어할 수 있게 하는 역할을 한다.Furthermore, Sn plays a role of facilitating the nitriding amount control during simultaneous decarburization annealing. In general, the decarburization of the grain-oriented electrical steel sheet is carried out in a mixed gas atmosphere of nitrogen and hydrogen containing water. At this time, the steel surface is oxidized to form a surface coating, which is a composite oxide mainly composed of Fe and Si, which are represented by Fe 2 SiO 4 . This oxide reacts with MgO applied after decarbonization annealing in the final annealing process to form an insulating glassy film. The oxide layer present as Fe 2 SiO 4 is porous with a lot of internal defects, and gas is freely introduced through the layer, and highly reactive nitrogen generated by decomposition of ammonia gas also diffuses into the steel through the two layers. However, this oxide layer has a lot of internal defects and a great variation in each part, so that the entrance and exit of the gas is affected accordingly, and the amount of nitrogen introduced into the river exhibits a deviation. At this time, Sn changes the properties of the oxide to a rather dense structure, and serves to control the amount of nitrogen flowing into the steel in a narrow range when nitriding under the same conditions.

이하, 실시예를 통하여 본 발명을 설명한다.Hereinafter, the present invention will be described through examples.

(실시예1)Example 1

중량%로, C:0.031%, Si:3.15%, Mn:0.1%, S:0.006%, Al:0.013%, N:0.0028%, B:0.0041%를 함유하고, 잔부 Fe 및 불가피한 원소로 이루어진 비교강(가)와 C:0.034%, Si:3.13%, Mn:0.1%, S:0.006%, Al:0.013%, N:0.0031%, B:0.0041%, 및 Sn:0.54%를 함유하고, 잔부 Fe 및 불가피한 원소로 이루어진 발명강(가)를 이용하고, 재가열온도를 각각 1150℃, 1200℃, 1250℃로 하여 150분간 가열한 후 열간압연하여 판두께가 2.3mm인 열연판을 얻었다. 이 열연판을 1120℃에서 2분간 소둔한 후 100℃의 물로 급냉하고 산세하여, 0.30mm의 두께로 냉간압연하였다.Comparison by weight percent, containing C: 0.031%, Si: 3.15%, Mn: 0.1%, S: 0.006%, Al: 0.013%, N: 0.0028%, B: 0.0041%, and the balance Fe and inevitable elements Steel and C: 0.034%, Si: 3.13%, Mn: 0.1%, S: 0.006%, Al: 0.013%, N: 0.0031%, B: 0.0041%, and Sn: 0.54% Invented steel (A) made of Fe and an unavoidable element was heated for 150 minutes with reheating temperatures of 1150 ° C, 1200 ° C and 1250 ° C, respectively, followed by hot rolling to obtain a hot rolled plate having a plate thickness of 2.3 mm. The hot rolled sheet was annealed at 1120 ° C. for 2 minutes, quenched with water at 100 ° C., pickled, and cold rolled to a thickness of 0.30 mm.

냉간압연된 판에 대하여, 875℃로 유지된 로에 노점 48℃인 25%H2+75%N2의 혼합가스와 건조한 NH3를 함유시킨 분위기에서 155초 동안 동시 탈탄질화를 행하였다. 이 때, NH3가스는 체적분율로 1.0~1.2%이고, 강판의 총 질소량은 190ppm으로 하는 것을 목표로 하였다. 이 강판에 소둔분리제인 MgO를 도포하여 최종 고온소둔을 행하였다. 고온소둔은 25%H2+75%N2 분위기에서 15℃/hr의 승온속도로 1200℃까지 가열하고, 1200℃도달하면 100%H2 분위기에서 10시간 유지하였다.The cold rolled plate was subjected to simultaneous decarbonation for 155 seconds in an atmosphere containing a mixed gas of 25% H 2 + 75% N 2 with a dew point of 48 ° C. and a dry NH 3 in a furnace kept at 875 ° C. At this time, the NH 3 gas was 1.0 to 1.2% by volume fraction, and the total nitrogen content of the steel sheet was set to 190 ppm. MgO which is an annealing separator was applied to this steel sheet, and final high temperature annealing was performed. The high temperature annealing was heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 25% H 2 + 75% N 2 , and maintained at 100% H 2 for 10 hours after reaching 1200 ° C.

상기와 같이 제조된 시편에 대하여 가열온도 변화에 따른 최종 자속밀도를 측정하고, 그 결과를 하기 표1에 나타내었다.For the specimen prepared as described above was measured the final magnetic flux density according to the heating temperature change, the results are shown in Table 1 below.

시편Psalter 재가열온도(℃)Reheating Temperature (℃) 자속밀도(B10(Tesla))Magnetic flux density (B 10 (Tesla)) 비교강(가)Comparative Steel (A) 11501150 1.9311.931 12001200 1.9271.927 12501250 1.8731.873 발명강(가)Inventive Steel 11501150 1.9441.944 12001200 1.9421.942 12501250 1.9391.939

상기 표1에서 알 수 있는 바와 같이, 비교강(가)의 경우는 재가열온도가 높아질수록 자속밀도가 급격히 감소하였지만, 발명강(가)의 경우는 자속밀도가 거의 감소하지 않았다. 따라서, 본 발명에 의해 Sn을 첨가하면 자속밀도는 재가열온도변화에 크게 의존하지 않아서, 안정적으로 방향성 전기강판을 얻을 수 있는 것을 알 수 있었다.As can be seen in Table 1, in the case of the comparative steel (a), the magnetic flux density rapidly decreased as the reheating temperature was increased, but in the case of the inventive steel (a), the magnetic flux density hardly decreased. Therefore, it was found that when Sn is added according to the present invention, the magnetic flux density does not depend largely on the reheating temperature change, thereby stably obtaining the grain-oriented electrical steel sheet.

(실시예2)Example 2

실시예1의 비교강,발명강에 대하여 1200℃의 온도에서 가열시간을 150, 180, 240, 300분으로 변화시켜 재가열하고 열간압연하여 판두께가 2.3mm인 열연판을 얻었다. 이 열연판을 1120℃에서 2분간 소둔하여 100℃의 물로 급냉한 후 산세하여 0.30mm의 두께로 냉간압연하였다.The heating time of the comparative steel and the invention steel of Example 1 was changed to 150, 180, 240, and 300 minutes at a temperature of 1200 DEG C, and reheated and hot rolled to obtain a hot rolled sheet having a plate thickness of 2.3 mm. The hot rolled sheet was annealed at 1120 ° C. for 2 minutes, quenched with 100 ° C. water, pickled, and cold rolled to a thickness of 0.30 mm.

냉간압연된 판에 대하여, 875℃로 유지된 로에 노점 48℃인 25%H2+75%N2의 혼합가스와 건조한 NH3를 함유시킨 분위기에서 155초 동안 동시 탈탄질화를 행하였다. 이 때, NH3가스는 체적분율로 1.0~1.2%이고, 강판의 총 질소량은 190ppm으로 하는 것을 목표로 하였다. 이 강판에 소둔분리제인 MgO를 도포하여 최종 고온소둔을 행하였다. 고온소둔은 25%H2+75%N2 분위기에서 15℃/hr의 승온속도로 1200℃까지 가열하고, 1200℃에 도달하면 100%H2 분위기에서 10시간 유지하였다.The cold rolled plate was subjected to simultaneous decarbonation for 155 seconds in an atmosphere containing a mixed gas of 25% H 2 + 75% N 2 with a dew point of 48 ° C. and a dry NH 3 in a furnace kept at 875 ° C. At this time, the NH 3 gas was 1.0 to 1.2% by volume fraction, and the total nitrogen content of the steel sheet was set to 190 ppm. MgO which is an annealing separator was applied to this steel sheet, and final high temperature annealing was performed. The high temperature annealing was heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 25% H 2 + 75% N 2 , and maintained at 100% H 2 for 10 hours after reaching 1200 ° C.

상기와 같이 제조된 시편에 대하여 가열시간 변화에 따른 철손을 측정하고, 그 결과를 하기 표2에 나타내었다.The iron loss of the specimen prepared as described above was changed according to the heating time, and the results are shown in Table 2 below.

시편Psalter 재가열시간(분)Reheat time (minutes) 철손(W17/50(w/kg)) Iron loss (W 17/50 (w / kg)) 비교강(가)Comparative Steel (A) 150150 0.920.92 180180 0.920.92 240240 1.041.04 300300 1.251.25 발명강(가)Inventive Steel 150150 0.890.89 180180 0.870.87 240240 0.910.91 300300 0.980.98

상기 표2에서 알 수 있는 바와 같이, 비교강의 경우는 가열시간이 길어짐에 따라 철손이 높아져 300분이 되었을 때는 급격히 증가하였으나, 발명강의 경우는 철손의 열화가 적었다.As can be seen in Table 2, in the case of the comparative steel, the iron loss increased with increasing heating time, and rapidly increased at 300 minutes, but in the case of the inventive steel, the iron loss was less.

(실시예3)Example 3

중량%로, C:0.035%, Si:3.15%, Mn:0.1%, S:0.006%, Al:0.015%, N:0.0058%, B:0.0037%를 함유하고, 잔부 Fe 및 불가피한 원소로 이루어진 비교강(나)로 대표되는 동일한 출강분 슬라브 8매와 C:0.041%, Si:3.14%, Mn:0.1%, S:0.006%, Al:0.016%, N:0.006%, B:0.0044%, Sn:0.44%를 함유하고, 잔부 Fe 및 불가피한 원소로 이루어진 발명강(나)로 대표되는 동일한 출강분 슬라브 8매를 150분간 1200℃에서 재가열한 후 열간압연하여 판두께가 2.3mm인 열연판을 얻었다. 이 열연판을 1200℃에서 2분간 소둔한 후 100℃의 물로 급냉하고, 산세하여 0.30mm의 두께로 냉간압연하였다.Comparison by weight%, containing C: 0.035%, Si: 3.15%, Mn: 0.1%, S: 0.006%, Al: 0.015%, N: 0.0058%, B: 0.0037%, and the balance Fe and inevitable elements Eight slabs of the same tap represented by steel (B), C: 0.041%, Si: 3.14%, Mn: 0.1%, S: 0.006%, Al: 0.016%, N: 0.006%, B: 0.0044%, Sn The same tapping slab containing 0.44% and represented by the invention steel (b) consisting of the balance Fe and the unavoidable element was reheated at 1200 ° C. for 150 minutes and hot rolled to obtain a hot rolled sheet having a thickness of 2.3 mm. . The hot rolled sheet was annealed at 1200 ° C. for 2 minutes, quenched with water at 100 ° C., pickled, and cold rolled to a thickness of 0.30 mm.

냉간압연된 판에 대하여, 875℃로 유지된 로에서 노점 48℃인 25%H2+75%N2의 혼합가스와 건조한 NH3를 함유시킨 분위기에서 155초 동안 동시 탈탄질화를 행하였다. 이 때 비교강(나)로 부터 얻어진 냉간압연판은 NH3가스의 체적분율을 1.0%로, 발명강(나)로 부터 얻어진 냉간압연판은 NH3가스는 체적분율을 1.2%로 하여, 강판의 총 질소량을 190ppm으로 하는 것을 목표로 하였다. 동시탈탄질화 후 각 코일의 전반부와 후반부에서 각각 표본을 추출하여 총 질소량을 분석하였다.The cold rolled plate was subjected to simultaneous decarbonation for 155 seconds in an atmosphere containing a mixed gas of 25% H 2 + 75% N 2 with a dew point of 48 ° C. and a dry NH 3 in a furnace kept at 875 ° C. In this case, the cold rolled sheet obtained from the comparative steel (b) has a volume fraction of NH 3 gas of 1.0%, and the cold rolled sheet obtained from the inventive steel (b) has a volume fraction of 1.2% of NH 3 gas. The total nitrogen content of was aimed at 190 ppm. After co-denitrification, samples were taken from the first half and the second half of each coil to analyze the total nitrogen content.

상기와 같이 제조된 시편에 대하여, 강중 총 질소량을 분석한 결과를 하기 표3에 나타내었다.For the specimen prepared as described above, the results of analyzing the total nitrogen in steel is shown in Table 3 below.

시편Psalter 목표값(ppm)Goal Value (ppm) 실측값(ppm)Measured value (ppm) 코일수Number of coils 측정횟수Number of measurements 최소at least 최대maximum 차이Difference 비교강(나)Comparative Steel (B) 190190 150150 250250 -40,+60-40, + 60 88 1616 발명강(나)Inventive Steel (B) 180180 210210 -10,+20-10, + 20

상기 표3에 나타난 바와 같이, 발명강(나)는 비교강(나)에 비해 목표로 하는 총 질소량에 대한 편차가 적은 것을 알 수 있다. 즉, Sn을 첨가한 발명강(나)는 비교강(나)와 산화층 성질이 달라 동시탈탄 질화조건이 다르기 때문에, 암모니아 분압을 높여서 목표질소량을 동일하게 한 것이다. 따라서, Sn을 첨가하면 동시 탈탄질화공정에서 질화량의 조절을 용이하게 할 수 있다는 것을 확인하였다.As shown in Table 3, it can be seen that the inventive steel (b) has a smaller variation in the total amount of nitrogen targeted than the comparative steel (b). That is, invented steel (b) to which Sn was added differs in the properties of the oxide layer from the comparative steel (b), and thus the conditions of simultaneous decarbonation and nitridation are different. Therefore, the target nitrogen amount is made equal by increasing the ammonia partial pressure. Therefore, it was confirmed that addition of Sn can facilitate the control of the amount of nitriding in the simultaneous decarbonation process.

앞서 언급한 것처럼 슬라브(다)와 Sn을 첨가한 슬라브(라)의 산화층 성질이 달라져 동시탈탄질화조건이 다르게 나타났다. 즉, 동일조건에서는 Sn을 첨가한 슬라브(라)는 슬라브(다)에 비하여 질소의 양이 적게 들어간다. 따라서, 암모니아 분압을 높이는 방법으로 목표질소량을 동일하게 하였다. 표에서 보는 것처럼 목표질소량에 대한 편차가 슬라브(라)가 현저하게 적은 것을 알 수 있다. 이는 공정제어가 용이한 것을 나타내며, 안정적인 제품특성을 얻는데 매우 유리하다.As mentioned above, the characteristics of the oxide layer of the slab (d) and the added slab (d) were different, resulting in different conditions of simultaneous decarbonation. That is, under the same conditions, the amount of nitrogen contained in the slab (la) to which Sn was added is smaller than that of the slab (c). Therefore, the target nitrogen amount was made the same by increasing the partial pressure of ammonia. As shown in the table, it can be seen that the variation in the target nitrogen amount is significantly smaller in the slab. This indicates that the process control is easy, and it is very advantageous to obtain stable product characteristics.

상술한 바와 같이, 본 발명에 따라 석출물 억제제로서 Sn을 첨가하면, 강 슬라브의 재가열온도를 저온으로 하는 것이 가능하고, 동시탈탄질화소둔시 질화량 조정을 용이하게 할 수 있는 것이 가능하여, 철손이 낮고 자속밀도가 높은 방향성 전기강판을 제공할 수 있는 효과가 있다.As described above, when Sn is added as a precipitate inhibitor according to the present invention, it is possible to reduce the reheating temperature of the steel slab to a low temperature, and to easily adjust the amount of nitriding at the time of simultaneous decarbonation annealing. There is an effect that can provide a low strength, high magnetic flux density oriented electrical steel sheet.

Claims (2)

중량%로 Si:1.0~4.8%, Al:0.005~0.019%, C:0.020~0.045%, Mn:0.05~0.2%, B:0.001~0.012%, S:0.007% 이하, N:0.008% 이하, Sn:0.1~1.0%, 그리고 잔부 Fe 및 기타 불가피한 불순물로 이루어진 철손이 낮은 고자속밀도 방향성 전기강판.Si: 1.0 to 4.8%, Al: 0.005 to 0.019%, C: 0.020 to 0.045%, Mn: 0.05 to 0.2%, B: 0.001 to 0.012%, S: 0.007% or less, N: 0.008% or less, Sn: 0.1 ~ 1.0%, high magnetic flux density oriented electrical steel with low iron loss, consisting of balance Fe and other unavoidable impurities. 중량%로 Si:1.0~4.8%, Al:0.005~0.019%, C:0.020~0.045%, Mn:0.05~0.2%, B:0.001~0.012%, S:0.007% 이하, N:0.008% 이하, Sn: 0.1~1.0%, 그리고 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 1050~1250℃온도범위에서 재가열하고, 열간압연 및 열연판소둔한 다음 1회 냉간압연하여 최종두께로 하고, 탈탄과 질화를 동시에 행하고, 강판표면에 소둔분리제를 도포한 후 고온소둔하는 것을 포함하는 철손이 낮은 고자속밀도 방향성 전기강판의 제조방법.Si: 1.0 to 4.8%, Al: 0.005 to 0.019%, C: 0.020 to 0.045%, Mn: 0.05 to 0.2%, B: 0.001 to 0.012%, S: 0.007% or less, N: 0.008% or less, Sn: Steel slab consisting of 0.1 ~ 1.0%, balance Fe and other unavoidable impurities is reheated in the temperature range of 1050 ~ 1250 ℃, hot rolled and hot rolled annealed, then cold rolled once to final thickness, decarburization and nitriding A method of producing a high magnetic flux density oriented electrical steel sheet having low iron loss, comprising simultaneously carrying out the coating and applying the annealing separator to the surface of the steel sheet.
KR10-1999-0056178A 1999-12-09 1999-12-09 The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same KR100479996B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0056178A KR100479996B1 (en) 1999-12-09 1999-12-09 The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0056178A KR100479996B1 (en) 1999-12-09 1999-12-09 The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20010055101A KR20010055101A (en) 2001-07-02
KR100479996B1 true KR100479996B1 (en) 2005-03-30

Family

ID=19624570

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0056178A KR100479996B1 (en) 1999-12-09 1999-12-09 The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100479996B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131729B1 (en) * 2004-12-28 2012-03-28 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheet having high permeability
KR101042854B1 (en) * 2008-11-19 2011-06-21 김의삼 Fog machine
KR101223115B1 (en) 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
KR101223117B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and Method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211232A (en) * 1989-09-28 1991-09-17 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH08225842A (en) * 1995-02-15 1996-09-03 Nippon Steel Corp Production of grain-oriented silicon steel sheet
JPH1046252A (en) * 1996-08-05 1998-02-17 Nippon Steel Corp Production of superlow core loss grain oriented magnetic steel sheet
KR19980063732A (en) * 1996-12-09 1998-10-07 김종진 Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
JPH11106828A (en) * 1997-10-02 1999-04-20 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in both high magnetic field and low magnetic field characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211232A (en) * 1989-09-28 1991-09-17 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH08225842A (en) * 1995-02-15 1996-09-03 Nippon Steel Corp Production of grain-oriented silicon steel sheet
JPH1046252A (en) * 1996-08-05 1998-02-17 Nippon Steel Corp Production of superlow core loss grain oriented magnetic steel sheet
KR19980063732A (en) * 1996-12-09 1998-10-07 김종진 Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
JPH11106828A (en) * 1997-10-02 1999-04-20 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in both high magnetic field and low magnetic field characteristic

Also Published As

Publication number Publication date
KR20010055101A (en) 2001-07-02

Similar Documents

Publication Publication Date Title
KR101149792B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same
KR101351956B1 (en) Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same
KR100479996B1 (en) The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same
KR100359239B1 (en) Method for producing a directional electric steel plate having a high flux density
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
KR101263842B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101059213B1 (en) Stable manufacturing method of oriented electrical steel sheet with excellent magnetic properties
KR101263795B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, Method for manufacturing the same, and a slab using therefor
KR20020044243A (en) A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
KR100479995B1 (en) A method for producing high permeability grain-oriented silicon steel sheet
KR20020044244A (en) A method for manufacturing grain-oriented electrical steel sheet
KR100501004B1 (en) A method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR101263841B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR100359242B1 (en) Low temperature heating method of high magnetic flux density oriented electrical steel sheet
KR100359243B1 (en) Method for producing a directional electric steel plate having high magnetic property and thin profile
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR20120074030A (en) Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
KR100721819B1 (en) Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
KR100530064B1 (en) A Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100256336B1 (en) The manufacturing method for oriented electric steel sheet with excellent magnetic property
KR100431608B1 (en) Manufacturing of high magnetic density grain oriented silicon steel
KR100435455B1 (en) Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating
KR100337126B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel with excellent magnetic and coating properties
KR101286209B1 (en) Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140321

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150316

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160322

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170321

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 15